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Abstract: How to create realistic shapes by interpolating two known shapes for facial blendshapes
has not been investigated in the existing literature. In this paper, we propose a physics-based math-
ematical model and its analytical solutions to obtain more realistic facial shape changes. To this
end, we first introduce the internal force of elastic beam bending into the equation of motion and
integrate it with the constraints of two known shapes to develop the physics-based mathematical
model represented with dynamic partial differential equations (PDEs). Second, we propose a uni-
fied mathematical expression of the external force represented with linear and various nonlinear
time-dependent Fourier series, introduce it into the mathematical model to create linear and various
nonlinear dynamic deformations of the curves defining a human face model, and derive analytical
solutions of the mathematical model. Third, we evaluate the realism of the obtained analytical
solutions in interpolating two known shapes to create new shape changes by comparing the shape
changes calculated with the obtained analytical solutions and geometric linear interpolation to the
ground-truth shape changes and conclude that among linear and various nonlinear PDE-based ana-
lytical solutions named as linear, quadratic, and cubic PDE-based interpolation, quadratic PDE-based
interpolation creates the most realistic shape changes, which are more realistic than those obtained
with the geometric linear interpolation. Finally, we use the quadratic PDE-based interpolation to
develop a facial blendshape method and demonstrate that the proposed approach is more efficient
than numerical physics-based facial blendshapes.

Keywords: dynamic partial differential equations; analytical solutions; facial interpolation;
facial blendshapes

MSC: 35Q80

1. Introduction

Facial interpolation and blendshapes are the most popular tools in quickly creating
many different facial expressions from known facial expressions. Realistic facial expressions
play a crucial role in conveying the motions, personality, and intentions of a human
character and communicating with others. It is the most important part of character
animation. Despite the popularity of facial interpolation and blendshapes, we have not
found any research studies which investigate how to use shape interpolation to create more
realistic facial expressions from two known facial expressions.
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Shape interpolation is to create new shapes from known shapes. It is widely applied
in facial blendshapes. Various shape interpolation methods have been developed. Among
them, geometric linear interpolation, which is the case of a linear model with two known
shapes, is widely used to create new facial shapes between two known shapes.

As discussed in [1], facial movements and deformations are highly nonlinear since a
human face is a very complicated biomechanical system consisting of skeletons, muscles,
flesh, skin, and other tissues. One such example is human jaw movement. The real orbit of
a vertex on the chin is roughly an arc centred at the temporomandibular joint, as shown by
the light blue curve in Figure 1a. When the geometric linear interpolation is used to create
new shapes of human jaw movement between ω = 0 and ω = 1, the orbit of the vertex on
the chin is a straight line, as shown by the purple line in Figure 1b. Another such example
is the closing movement of human eyes. The trail of real eyelid movements should follow
the contour of the corner shown by the light blue curve in Figure 2a. When the geometric
linear interpolation is used to create new shapes between ω = 0 and ω = 1, the trail is a
straight line highlighted in purple in Figure 2b.
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Apart from the geometric linear interpolation, other geometric interpolation methods
have also been proposed. These methods include cosine interpolation, etc. Besides the
linear model, bilinear, multilinear, and nonlinear models are also proposed. Despite
this, no research studies investigate how to choose a proper interpolation method to
create more realistic shape changes from two known shapes. The work carried out in [1]
investigates how to achieve more realistic facial blendshapes with a cubic polynomial and
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about 500 known facial expressions by solving an optimisation problem involving over
30,000 optimisation variables. It is not applicable to the case investigated in this paper,
where only two facial expressions are known.

Since geometric linear and nonlinear interpolation methods do not consider the under-
lying physics of facial movements, physics-based facial blendshapes have been developed.
However, physics-based facial blendshapes usually involve heavy numerical calculations
and are not suitable for facial animation requiring high computational efficiency.

To tackle the problems of poor realism of geometric interpolation and low efficiency
of physics-based facial blendshapes, this paper will propose a new, efficient, and realistic
shape interpolation method. We first propose a PDE-represented physics model and derive
its analytical solutions. Then, we introduce two known facial expressions to determine
unknown constants in the analytical solutions. After that, we evaluate and identify the
most suitable analytical solution. Finally, we use the most suitable analytical solution to
create more realistic facial shapes.

2. Related Work

The work proposed in this paper will introduce PDE-represented physics to develop a
more realistic and efficient method of facial interpolation and facial blendshapes. In this
section, we briefly review existing work in facial blendshapes and PDE-based geomet-
ric modelling.

2.1. Facial Blendshapes

Many methods for facial blendshapes have been developed. Among them, geometric
and physics-based facial blendshapes are very popular.

Geometric facial blendshapes create new facial shapes from known ones. Linear,
bilinear, and multilinear models have been proposed to generate facial blendshapes. Among
them, the linear model is most widely applied in computer animation.

The linear model presents a linear weighted combination of known facial shapes.
A comprehensive review of facial blendshapes based on the linear model is made in [2].
When only two facial shapes are known, the linear model becomes the geometric linear
interpolation [3], which has been combined with the facial action coding system (FACS) to
create a computer facial animation design [4]. Apart from the geometric linear interpolation,
nonlinear interpolation, such as a cosine interpolation function [5], is also proposed to
provide some special effects.

The linear model has been used to develop various facial blendshape methods. A
direct manipulation method is presented in [6], which integrates linear model-based facial
blendshapes and user interaction to manipulate facial meshes. A framework is proposed
in [7] to automatically create optimal facial blendshapes from example poses of a facial
model. Facial mesh vertices are modified in [8] through iterative optimisation from captured
facial movements. The linear model is used to capture facial details through automatically
generating localised blendshapes and incrementally adding a blendshape to obtain missing
source features [9]. It has also been used to develop an approach of splitting a face
mesh into natural clusters and connecting each mesh segment with the relevant set of
deformation controllers [10]. By using Laplacian smoothing to separate a three-dimensional
model into a smoothed mesh and separated details, the linear model is used to obtain
a linear combination of the separated details from multiple three-dimensional models
and add the linear combination to the smoothed mesh of a target model to achieve facial
blendshapes [11].

Besides the linear model, bilinear, multilinear, and nonlinear models have also been de-
veloped. Bilinear models are used in [12] to separate style and content. They are introduced
in [13] to recognise three-dimensional faces and facial expressions. The multilinear model is
used to parameterise the space of geometric variations caused by identity, expression, and
viseme [14]. The nonlinear model is proposed to develop an interactive facial animation
editing system [15], which first computes blendshape weights from the linearly constrained
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quadratic optimisation and then nonlinearly interpolates the deformation gradients of
blendshapes to update the blendshape weights and facial mesh vertices.

Although various geometric facial blendshape methods have been developed, we are
unaware of any work that investigates how to interpolate two known shapes to create
realistic shapes. This problem will be tackled in this paper.

Physics-based facial blendshapes introduce the underlying physics to create more re-
alistic facial shape changes. Ma et al. integrate physical-based simulation into blendshapes
by constructing a mass-spring system for each blendshape target, linearly interpolating
the rest lengths of the springs, and calculating the equilibrium of the mass-spring system
to achieve physics-based blendshapes [16]. Hahn et al. unify keyframing and physical
simulation by using tetrahedral finite elements to solve Newton’s second law for standard
Saint-Venant Kirchhoff or Neo-Hookean material models [17]. Instead of using a basis of
shapes, Barrielle et al. use a basis of forces for blendshapes to encode facial dynamics that
simulate mesh deformations by integrating the blendshape paradigm and physics-based
techniques through finite element modelling of the face as an elastic thin shell [18]. Different
from the methods of adding physics to face rigs, Kozlov et al. propose to add physics to
facial blendshape animation by using a blendvolume rig that enriches blendshape rigs
with a simple volumetric tissue structure and shape-dependent material parameters called
blendmaterials through finite element-based simulation [19]. Ichim et al. use tetrahedral
meshes to discretise the soft tissue of the face, formulate a set of nonlinear potential ener-
gies to simulate the physical interaction of passive flesh, active muscles, and rigid bone
structures with linear finite elements and minimise the nonlinear potential energies to
achieve physics-based facial animation [20]. Wagner et al. present a neural network and
physics-based approach to achieve physics-based facial blendshapes [21].

Since physics-based facial blendshapes consider the underlying physics, they create
more realistic facial shape changes. However, they involve heavy numerical calculations
such as mass-spring and finite element simulations. This issue will be addressed by
developing analytical and efficient physics-based facial blendshapes.

2.2. PDE-Based Geometric Modelling

The research into PDE-based geometric modelling was pioneered by Bloor and Wil-
son [22]. After that, many research studies have been carried out to develop various
PDE-based geometric modelling methods.

Ugail et al. develop efficient techniques that construct PDE surfaces interactively in
real-time [23]. Monterde and Ugail introduce a general fourth-order partial differential
equation to generate Bézier surfaces from boundary information [24]. Xu and Zhang
use geometric partial differential equations to develop a general framework for surface
modelling [25]. You et al. present a dynamic skin deformation method based on a time-
dependent partial differential equation [26]. Castro et al. make a comprehensive survey on
partial differential equation-based geometric design [27]. Sheng et al. propose a patchwise
partial differential equation function representation and use it to replace large polygon
meshes [28]. Ugail gives a detailed description of geometric design using partial differ-
ential equations [29]. Sheng et al. use spectral solutions to fourth-order elliptic PDEs to
produce and animate three-dimensional facial geometry [30]. Pan et al. combine geometric
partial differential equations with surface subdivision to develop a unified method for
freeform surface design [31]. Chen et al. visualise computed tomography data of human
heads through partial differential equation-based surface reconstruction [32]. Wang et al.
investigate how to optimally convert PDE surface-represented high-speed train heads
into NURBS surfaces [33]. You et al. introduce partial differential equations to develop a
physics-based deformation method for creating detailed three-dimensional virtual char-
acter models [34]. Wang et al. integrate partial differential equation-based geometric
modelling and boundary-based surface creation to obtain the first analytical C0 continuous
four-sided PDE patches [35]. Zhu et al. use a fourth-order partial differential equation
to reconstruct three-dimensional surfaces from multi-view two-dimensional images [36].
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Fu et al. propose a time-independent static second-order partial differential equation of
two parametric variables u and v without involving any forces, derived its analytical solu-
tion, and used the analytical solution and geometric linear interpolation to generate new
models from a neutral shape and a target shape or from a neutral shape and more than one
target shape [37]. Since the static PDE has no ability to describe shape changes, geometric
linear interpolation is used to interpolate PDE surfaces for creating new facial models from
existing facial models. Due to this reason, the method proposed in [37] is unable to achieve
more realistic facial interpolation than the geometric linear interpolation, as discussed in
Section 4.3 of this paper.

Although there are extensive research studies about PDE-based geometric modelling,
we have not found any work that investigates how to use PDE-based geometric modelling
to achieve more realistic facial interpolation from two known facial shapes. In this paper, we
will propose a time-dependent dynamic partial differential equation involving a parametric
variable u, a time variable t, an inertia force, a damping force, an internal deformation force,
and an external force to describe facial shape changes with underlying physics and develop
a physics-based analytical method to achieve more realistic facial shape interpolation and
facial blendshapes than the geometric linear interpolation.

3. PDE-Represented Physics and Analytical Solution

In existing work, the equation of motion has been widely applied in computer graphics
to simulate physics-based facial animation [38–42] and muscle and skin deformations [41].
It has the following form:

m
∂2w
∂t2 + c

∂w
∂t

+ qw = fw

(w = x, y, z)
(1)

where w is a position function, which has three components x, y, and z, m and c denote
mass and damping coefficient, respectively, qw is an internal deformation force and fw is an
external force.

The surface model of a human face can be defined with a set of curves. The deformation
of each of the curves can be described by the following equation, which is similar to the
governing equation describing the elastic bending of a beam.

k
∂4w
∂u4 = q

w
(2)

where the flexural rigidity k = EI, E is the modulus of elasticity, I is the moment of inertia,
k ∂4w

∂u4 is the internal deformation force and qw is the external force.

Using the internal deformation force k ∂4w
∂u4 to replace qw in Equation (1), the equation

of motion becomes the following time-dependent dynamic partial differential Equation:

m
∂2w
∂t2 + c

∂w
∂t

+ k
∂4w
∂u4 = fw (3)

In the above Equation, the first term is the inertia force caused by acceleration, the
second term is the damping force caused by velocity, and the third term is the internal
deformation force caused by curve deformation. The position function w and the exter-
nal force fw are the functions of the time variable t and the parametric variable u, i.e.,
w = w(u, t) and fw = fw(u, t).

Shape interpolation is to generate new shapes from two known shapes, i.e., a neutral
shape and a target shape. If we use w0(u) and w1(u) to indicate the known neutral shape
at t = 0 and the known target shape at t = 1, respectively, the boundary conditions for
Equation (3) can be written as follows:

t = 0 w(u, t) = w0(u)
t = 1 w(u, t) = w1(u)

(4)
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Equations (3) and (4) are the mathematical model of physics-based facial interpolation
and facial blendshapes. The task of physics-based shape interpolation is to solve the
mathematical model.

Numerical methods such as the finite difference method are very effective in solving
the mathematical model represented by Equations (3) and (4). However, these numerical
methods involve heavy calculations, require large computer resources, and do not suit
situations such as computer animation where high computational efficiency is required. To
address the disadvantages of numerical methods, we derive an analytical solution w(u, t)
to Equation (3) subjected to boundary conditions (4) in this section.

At a time instant t, w(u, t) = w(u) indicates a spatial curve, which can be described
with a Fourier series. According to Equation (4), two position boundary conditions are
known, which can be used to determine two unknown constants in the analytical solution
w(u, t). It means the external force fw(u, t) should involve two unknown coefficients to be
determined with the two position boundary conditions. To tackle both linear and various
nonlinear shape changes, the external force should be represented with linear and various
nonlinear functions of the time variable t. Based on these considerations, the external force
is taken to be a combination of a Rth order polynomial of the time variable t with two
unknown coefficients and a Fourier series of the parametric variable u, i.e.,

fw(u, t) = ew0 + ew0tR + ∑N
n=1[(êwn + ěwntR)cos2nπu + (

∼
e wn + ewntR)sin2nπu]

(w = x, y, z; R = 1, 2, 3, . . .)
(5)

where ew0, ew0, êwn, ěwn,
∼
e wn, and ewn (n = 1, 2, 3, . . . , N) are unknown coefficients, which

are related to the position function through Equation (3), and R indicates the order of the
polynomial. R = 1 and R > 1, respectively, describe a linear change and various nonlinear
changes of the external force against the time variable t.

According to the external force (5) and Equation (3), the analytical solution to Equation (3)
should have the following form:

w(u, t) = gw0(t) + ∑N
n=1 [gwn(t) cos2nπu + gwn(t)sin2nπu

]
(6)

Substituting Equations (5) and (6) into (3), Equation (3) is changed into the following
ordinary differential Equation:

m
d2gw0(t)

dt2 + m
N

∑
n=1

[
d2gwn(t)

dt2 cos2nπu +
d2gwn(t)

dt2 sin2nπu

]
+ c

dgw0(t)
dt

+c
N

∑
n=1

[
dgwn(t)

dt
cos2nπu +

dgwn(t)
dt

sin2nπu

]

+16kπ4
N

∑
n=1

n4[gwn(t) cos2nπu + gwn(t)sin2nπu
]
= ew0 + ew0tR

+∑N
n=1

[(
êwn + ěwntR

)
cos2nπu +

(∼
e wn + ewntR

)
sin2nπu

]
(7)

The above ordinary differential Equation is equivalent to the following three ordinary
differential Equations:

m
d2gw0(t)

dt2 + c
dgw0(t)

dt
= ew0 + ew0tR (8)

m
d2gwn(t)

dt2 + c
dgwn(t)

dt
+ 16kn4π4gwn(t) = êwn + ěwntR (9)

m
d2gwn(t)

dt2 + c
dgwn(t)

dt
+ 16kn4π4gwn(t) =

∼
e wn + ewntR (10)
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In what follows, we investigate how to obtain the analytical solutions to each of the
above three ordinary differential equations.

3.1. Analytical Solution of Equation (8)

Since the right-hand side term of Equation (8) is a polynomial, we can use the method
of undetermined coefficients to solve it. The analytical solution is taken to be as follows:

gw0(t) = ∑R+1
r=0 bwrtr (11)

Substituting Equation (11) and its first and second derivatives with the time variable t
into the ordinary differential Equation (8), we obtain the following:

m∑R+1
r=2 r(r − 1)bwrtr−2 + c∑R+1

r=1 rbwrtr−1 = ew0 + ew0tR (12)

The above Equation can be further changed into the following form:

m∑R−1
r=0 (r + 1)(r + 2)bwr+2tr + c∑R−1

r=0 (r + 1)bwr+1tr + c(R + 1)bwR+1tR = ew0 + ew0tR (13)

Equaling the terms of tR in the above Equation, the unknown constant bwR+1 is
obtained as follows:

bwR+1 =
ew0

c(R + 1)
(14a)

Equaling the terms of tr (r = R − 1, R − 2, R − 3, . . . , 3, 2, 1), the unknown constant
bwr+1 are obtained as follows:

bwr+1 = −m(r + 2)bwr+2

c
(r = R − 1, R − 2, R − 3, . . . , 3, 2, 1)

(14b)

Equaling the terms of t0, the unknown constant bw1 are obtained as follows:

bw1 = (ew0 − 2mbw2)/c (14c)

In this paper, we investigate how linearly (R = 1), quadratically (R = 2), and cubically
(R = 2) varying external forces affect the realism of shape interpolation.

For a linearly varying external force, R = 1. The unknown constants are obtained
from Equations (14a) and (14c).

bw1 =
ew0

c
− mew0/c2

bw2 = ew0/(2c)
(15)

For a quadratically varying external force, R = 2. The unknown constants are obtained
from Equations (14a)–(14c)

bw1 =
ew0

c
+ 2m2ew0/c3

bw2 = −mew0

c2

bw3 = ew0/(3c)

(16)
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For a cubically varying external force, R = 3. Same as above, the unknown constants
are obtained from Equations (14a)–(14c)

bw1 =
ew0

c
− 6m3ew0

c4

bw2 =
3m2ew0

c3

bw3 = −mew0

c2

bw4 = ew0/(4c)

(17)

3.2. Analytical Solution of Equation (9)

With the same treatment, we take the analytical solution of Equation (9) to be as follows:

gwn(t) = ∑R
r=0 cwrtr (18)

Substituting Equation (18) and its first and second derivatives with respect to the time
variable t into the ordinary differential Equation (9) and letting

Bn = 16kn4π4 (19)

we obtain the following:

m∑R
r=2 r(r − 1)cwrtr−2 + c∑R

r=1 rcwrtr−1 + Bn∑R
r=0 cwrtr

= êwn + ěwntR
(20)

The above Equation can be further changed into the following form:

m∑R−2
r=0 (r + 2)(r + 1)cwr+2tr + c∑R−2

r=0 (r + 1)cwr+1tr + cRcwRtR−1

+BncwR−1tR−1 + BncwRtR + Bn∑R−2
r=0 cwrtr = êwn + ěwntR

(21)

From the above Equation, the unknown constants can be obtained as follows:

cwR = ěwn/Bn

cwR−1 = − cRcwR
Bn

= −
cR
Bn

ěwn

Bn
= − cR

B2
n

ěwn for (R ≥ 2)

cwr = −[(r + 2)(r + 1)mcwr+2 + (r + 1)ccwr+1]/Bn

(r = R − 2, R − 3, R − 4, . . . , 3, 2, 1)

cw0 = (ê wn − 2mcw2 − ccw1)/Bn for (R ≥ 2)

cw0 = (ê wn − ccw1)/Bn for (R = 1)

(22)

For a linearly varying external force, R = 1. The unknown constants are obtained
from Equation (22)

cw0 = (ê wn − ccw1)/Bn

cw1 = ěwn/Bn
(23)

For a quadratically varying external force, R = 2. The unknown constants are obtained
from Equation (22)

cw0 = (ê wn − 2mcw2 − ccw1)/Bncw1 = − 2c
B2

n
ěwn

cw2 = ěwn/Bn

(24)
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For a cubically varying external force, R = 3. Same as above, the unknown constants
are obtained from Equation (22)

cw0 = êwn/Bn + 12c
měwn

B3
n

− 6
c3

B4
n

ěwn

cw1 = −6měwn

B2
n

+
6c2

B3
n

ěwn

cw2 = − 3c
B2

n
ěwn

cw3 = ěwn/Bn

(25)

3.3. Analytical Solution of Equation (10)

Using the same treatment, the analytical solution of Equation (10) can be taken to be
the following:

gwn(t) = ∑R
r=0 dwrtr (26)

Substituting Equation (26) and its first and second derivatives with respect to the
time variable t into the ordinary differential Equation (10), we can obtain the following
unknown constants:

dwR = ewn/Bn

dwR−1 = − cRdwR
Bn

= −
cR
Bn

ewn

Bn
= − cR

B2
n

ewn for (R ≥ 2)

dwr = −[m(r + 2)(r + 1)dwr+2 + c(r + 1)dwr+1]/Bn

(r = R − 2, R − 3, R − 4, . . . , 3, 2, 1)

dw0 =
(∼

e wn − 2mdw2 − cdw1

)
/Bn for (R ≥ 2)

dw0 =
(∼

e wn − cdw1

)
/Bn for (R = 1)

(27)

For a linearly varying external force, R = 1. The unknown constants are obtained
from Equation (27)

dw0 =

∼
e wn − cdw1

Bn

dw1 = ewn/Bn

(28)

For a quadratically varying external force, R = 2. The unknown constants are obtained
from Equation (27)

dw0 =
∼
e wn/Bn − 2mewn/B2

n +
2c2

B3
n

ewn

dw1 = − 2c
B2

n
ewn

dw2 = ewn/Bn

(29)

For a cubically varying external force, R = 3. Same as above, the unknown constants
are obtained from Equation (27)

dw0 =
∼
e wn/Bn + 12c

mewn

B3
n

− 6
c3

B4
n

ewn

dw1 = −6mewn

B2
n

+
6c2

B3
n

ewn

dw2 = − 3c
B2

n
ewn

dw3 = ewn/Bn

(30)
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Substituting Equation (16) into (11), (23) into (18), and (28) into (26), and then substi-
tuting Equations (11), (18) and (26) into (6), we obtain the analytical solution for R = 1

w(u, t) = bw0 + (
ew0

c
− mew0/c2)t +

ew0

2c
t2 + ∑N

n=1 [(
êwn

Bn
− cěwn

B2
n

+ ěwnt/Bn)

cos2nπu + (

∼
e wn

Bn
− cewn

B2
n

+ ewnt/Bn)sin2nπu]

(31)

Substituting Equation (17) into (11), (24) into (18), and (29) into (26), and then substi-
tuting Equations (11), (18), and (26) into (6), we obtain the analytical solution for R = 2

w(u, t) = bw0 +

(
ew0

c
+

2m2ew0

c3

)
t − mew0

c2 t2 +
ew0t3

3c
+

∑N
n=1 [(

êwn

Bn
− 2měwn

B2
n

+
2c2

B3
n

ěwn −
2c
B2

n
ěwnt + ěwnt2/Bn)cos2nπu

+(

∼
e wn

Bn
− 2mewn

B2
n

+
2c2

B3
n

ewn −
2c
B2

n
ewnt + ewnt2/Bn)sin2nπu]

(32)

Substituting Equation (18) into (11), (25) into (18), and (30) into (26), and then substi-
tuting Equations (11), (18), and (26) into (6), we obtain the analytical solution for R = 3

w(u, t) = bw0 +

(
ew0

c
− 6m3ew0/c4

)
t +

3m2ew0

c3 t2 − mew0

c2 t3 + ew0t3/(4c)

+∑N
n=1

{[
êwn

Bn
+ 12c

měwn

B3
n

− 6
c3

B4
n

ěwn − 6
(

měwn

B2
n

− c2

B3
n

ěwn

)
t − 3c

B2
n

ěwnt2 +
ěwnt3

Bn

]
cos2nπu

+

[∼
e wn

Bn
+ 12c

mewn

B3
n

− 6
c3

B4
n

ewn − 6
(

mewn

B2
n

− c2

B3
n

ewn

)
t − 3c

B2
n

ewnt2 + ewnt3/Bn

]
sin2nπu

} (33)

Respectively substituting Equations (31)–(33) into the boundary conditions (4), we de-
termine the unknown constants bw0, ew0, ew0, êwn, ěwn,

∼
e wn, and ewn in the above Equations.

Then, we use Equations (31)–(33) to conduct linear, quadratic, and cubic PDE-based shape
interpolation, which will be investigated in the following section.

4. PDE-Based Interpolation

To investigate the realism of shape changes created with the above linear, quadratic,
and cubic PDE-based shape interpolation, in this section, we first introduce how to create the
ground-truth models from the captured photos. Then, we extract curves from the ground-
truth models. After that, we compare the shape changes obtained with the proposed
PDE-based methods and geometric linear interpolation to the ground-truth shape changes,
which demonstrates that quadratic PDE-based shape interpolation creates the most realistic
facial shape changes. Finally, we use the quadratic PDE-based shape interpolation method
to create new facial shapes from the neutral expression and each of the sad, angry, confused,
grinning and puff expressions.

4.1. Creation of Ground-Truth Facial Shape Changes

As discussed before, the geometric linear interpolation does not consider the under-
lying physics of facial skin deformation. The shape changes generated with this method
are less realistic. In contrast, physics-based modelling improves the realism of animated
objects [42], and physics-based models provide realistic three-dimensional geometry of the
bones and muscles [43].

To demonstrate that the method proposed in this paper can create more realistic shape
changes from two known shapes, we compare the facial models created with the above
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analytical solutions and geometric linear interpolation to the ground-truth facial models,
which are reconstructed with the method below.

First, we divide a facial movement into 11 poses. At each of the 11 poses, approximately
30 images are taken and processed to obtain a sparse point cloud with COLMAP, which
is a general-purpose Structure-from-Motion (SfM) [44] and Multi-View Stereo (MVS) [45]
pipeline with a graphical and command-line interface. Adding more pictures where point
cloud data were too sparse. Figure 3 shows the photos of the 11 poses taken from the
front view.

Axioms 2024, 13, x FOR PEER REVIEW 11 of 25 
 

4.1. Creation of Ground-Truth Facial Shape Changes 

As discussed before, the geometric linear interpolation does not consider the under-

lying physics of facial skin deformation. The shape changes generated with this method 

are less realistic. In contrast, physics-based modelling improves the realism of animated 

objects [42], and physics-based models provide realistic three-dimensional geometry of 

the bones and muscles [43]. 

To demonstrate that the method proposed in this paper can create more realistic 

shape changes from two known shapes, we compare the facial models created with the 

above analytical solutions and geometric linear interpolation to the ground-truth facial 

models, which are reconstructed with the method below. 

First, we divide a facial movement into 11 poses. At each of the 11 poses, approxi-

mately 30 images are taken and processed to obtain a sparse point cloud with COLMAP, 

which is a general-purpose Structure-from-Motion (SfM) [44] and Multi-View Stereo 

(MVS) [45] pipeline with a graphical and command-line interface. Adding more pictures 

where point cloud data were too sparse. Figure 3 shows the photos of the 11 poses taken 

from the front view. 

     

 

𝑡 = 0.0 𝑡 = 0.1 𝑡 = 0.2 𝑡 = 0.3 𝑡 = 0.4  

      

𝑡 = 0.5 𝑡 = 0.6 𝑡 = 0.7 𝑡 = 0.8 𝑡 = 0.9 𝑡 = 1.0 

Figure 3. Taken photos at 11 poses from the front view. 

Then, the surface mesh is reconstructed with SideFX Houdini. The reconstructed fa-

cial models are further processed through Autodesk Maya. Figure 4 shows the recon-

structed ground-truth facial models at 11 poses. 

     

 

𝑡 = 0.0 𝑡 = 0.1 𝑡 = 0.2 𝑡 = 0.3 𝑡 = 0.4  

      

𝑡 = 0.5 𝑡 = 0.6 𝑡 = 0.7 𝑡 = 0.8 𝑡 = 0.9 𝑡 = 1.0 

Figure 4. Reconstructed facial models at 11 poses. 

Figure 3. Taken photos at 11 poses from the front view.

Then, the surface mesh is reconstructed with SideFX Houdini. The reconstructed facial
models are further processed through Autodesk Maya. Figure 4 shows the reconstructed
ground-truth facial models at 11 poses.
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4.2. Conversion from Three-Dimensional Surface Models into Curve Representations

The analytical solutions given by Equations (31)–(33) are time-dependent 3D curves.
To use them to interpolate a neutral model and a target model, these surface models should
be converted into curve representations.

The reconstructed facial models and other facial models used in this paper are polygon
models. Converting these polygon models into curve representations is achieved through
the following two steps.
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First, we extract vertex indices. A Maya Embedded Language (MEL) script is used
for this purpose. With this MEL script, we manually specify a vertex as a starting vertex
of a curve to be extracted and an edge starting from the vertex. Then, we run the Maya
Select Edge Loop MEL command to extend the curve. If the curve to be extracted goes in
the wrong direction at one vertex, an edge in the correct direction is selected, and the Maya
Change Edge Loop Mel command is run to change the wrong direction to the correct one.
The extraction of the curve is completed by selecting the edge before the ending vertex and
running the Maya Stop Edge Loop Mel command.

Once the vertex indices of a curve are extracted, a Mel script is written to extract the
coordinate values from the extracted vertex indices of a facial model at different poses.
With this method, all curves are extracted. Figure 5 shows the extracted curves from the
facial model at t = 0.0 shown in Figure 4.
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4.3. Comparison with the Ground-Truth Models

The Equation for the geometric linear interpolation can be written as follows:

wtn = w0n + t(w1n − w0n)

(w = x, y, z; n = 1, 2, . . . , N)
(34)

where the subscript “0” indicates the neutral polygon model, “1” indicates the target
polygon model, n is the vertex index, and N is the total vertex number of the neutral
polygon model or target polygon model.

With the method proposed in [37], the vertices on a polygon model are divided into
groups. The M vertices w0m (m = 1, 2, 3, . . . , M) in one group of the neutral polygon
model are approximated by the corresponding vertices wPDE

0 (um, vm) (m = 1, 2, 3, . . . , M)
on a PDE surface wPDE

0 (u, v) and the same M vertices w1m (m = 1, 2, 3, . . . , M) on the
target polygon model are approximated by the corresponding vertices wPDE

1 (um, vm)
(m = 1, 2, 3, . . . , M) on another PDE surface wPDE

1 (u, v). Since the neutral polygon model
and the target polygon model are ground-truth shapes, the differences
w0m − wPDE

0 (um, vm) and w1m − wPDE
1 (um, vm) are the errors introduced by the PDE sur-

faces wPDE
0 (u, v) and wPDE

1 (u, v), respectively. When the geometric linear interpolation is
used to interpolate the two PDE surfaces wPDE

0 (u, v) and wPDE
1 (u, v), i.e., wPDE

t (u, v) =
wPDE

0 (u, v) + t
[
wPDE

1 (u, v)− wPDE
0 (u, v)

]
, we have wPDE

t (um, vm) = wPDE
0 (um, vm) +

t
[
wPDE

1 (um, vm)− wPDE
0 (um, vm)

]
. If the ground-truth shapes at the time instant

t (0 < t < 1) are wtm, the errors wtm − wPDE
t (um, vm) are larger than the errors wtm − wtm

where wtm = w0m + t(w1m − w0m) are obtained by the geometric linear interpolation be-
tween the ground-truth neutral polygon model and the ground-truth target polygon model.

As discussed above, the method proposed in [37] is less accurate and realistic than the
geometric linear interpolation (34). Due to this reason, we will consider the geometric linear
interpolation rather than the method proposed in [37] in the following comparison study.
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Taking the facial model at t = 0.0 shown in Figure 4 as a neutral model and the facial
model at t = 1.0 as a target model, we use the geometric linear interpolation and the
analytical solutions, i.e., linear PDE (Equation (31)), quadratic PDE (Equation (32)), and
cubic PDE (Equation (33)) based shape interpolation to obtain the facial models at t = 0.1,
0.2, 0.3, . . ., 0.9.

For PDE-based shape interpolation, w0(u) and w1(u) indicate the curves on the neutral
model (t = 0.0) and target model (t = 1.0) shown in Figure 4, respectively. After substituting
Equations (31)–(33) to determine the unknown constants, we use them to obtain the facial
models by setting t = 0.1, 0.2, 0.3, . . ., 0.9 in Equations (31)–(33) and depicted the obtained
facial models in Figure 6 where Figure 6a–c are from Equations (31)–(33), respectively.

Substituting w0n obtained from the facial model at t = 0.0 and w1n obtained from the
facial model at t = 1.0 shown in Figure 4 into the geometric linear interpolation (34) and
setting t to 0.1, 0.2, 0.3, . . ., 0.9, respectively, we obtain the facial models at the nine poses
and depicted them in Figure 6d.

Comparing Figure 6 with Figure 4, we found that the quadratic PDE-based inter-
polation and cubic PDE-based interpolation create more realistic facial models than the
geometric linear interpolation and linear PDE-based interpolation. The facial models cre-
ated by the quadratic PDE-based interpolation and cubic PDE-based interpolation are the
closest to the ground-truth models shown in Figure 4.

In order to show the differences between the ground-truth models and the models
obtained with the quadratic PDE-based interpolation and the geometric linear interpolation
more clearly, we put the models at t = 0.7 in Figure 7 where the left, middle and right
models are, respectively, from the ground-truth, quadratic PDE-based interpolation and
the geometric linear interpolation. Observing the three models shown in Figure 7, it is clear
that the model obtained with the quadratic PDE-based interpolation is far closer to the
ground-truth model than the model obtained with the geometric linear interpolation.

To quantify the differences between the models created with different interpolation
methods and the ground-truth models, we calculate the average and maximum errors of
the corresponding curves on the created models and the ground-truth models with the
following equations:

EA =
1
N ∑N

n=1
wtn − wtn

D

EM = max
1
D
{

wt1 − wt1 wt2 − wt2 . . . wtN − wtN
} (35)

where the overbar indicates the ground-truth models, the double overbar indicates the cre-
ated models, and D is the distance between the two farthest vertices on the neutral model.

The obtained average errors EA and the maximum error EM are shown in the graphs of
Figure 8. In the Figure, the numbers 1–49 on the horizontal axis are the index of the curves.

The largest maximum error and largest average error of the 49 curves are given
in Table 1, where LME stands for the largest maximum error, and LAE indicates the
largest average error. The data in the table indicate the following: (1) all three PDE-based
interpolation methods, i.e., linear PDE, quadratic PDE and cubic PDE achieve smaller
values of the largest maximum error and largest average error than the geometric linear
interpolation; (2) among the three PDE-based interpolation methods, the quadratic PDE-
based interpolation achieves the smallest values of the largest maximum error and largest
average error; (3) the largest maximum error and the largest average error caused by the
geometric linear interpolation are 2.33 and 1.65 times of those caused by the quadratic
PDE-based interpolation.
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Table 1. Largest maximum errors and largest average errors.

Linear PDE Quadratic PDE Cubic PDE Geometric Linear Interpolation

LME 0.021548 0.010629 0.010826 0.024761

LAE 0.009358 0.006903 0.007916 0.011378

From Figures 6–8 and the above discussions, we can conclude the following: (1)
The average and maximum errors caused by the geometric linear interpolation are the
largest except for the average errors for curves 21, 22, 24, and 26–29. (2) In comparison
with the geometric linear interpolation and linear PDE-based interpolation, the quadratic
and cubic PDE-based shape interpolation methods have smaller average errors except
for curves 24–29 and smaller maximum errors for all 49 curves. It indicates that facial
skin deformations are nonlinear. (3) The largest average error and largest maximum error
caused by the quadratic PDE-based interpolation are lower than those caused by the
cubic PDE-based interpolation, (4) the quadratic PDE-based interpolation achieves smaller
average errors for all the curves and smaller maximum errors for most curves than the cubic
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PDE-based interpolation. Conclusions (3) and (4) indicate that the quadratic PDE-based
interpolation is more accurate than the cubic PDE-based interpolation. Therefore, the
quadratic PDE-based interpolation can be used to create the most realistic facial shapes
among the four methods discussed in this paper.
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Based on the above discussion, we will apply the quadratic PDE-based method in
interpolation between a neutral model and target models and facial blendshapes among
different facial expressions to create more realistic facial shape changes than using the
geometric linear interpolation in the remaining parts of this paper.

Although the linear PDE-based facial interpolation has bigger errors than the quadratic
and cubic PDE-based facial interpolation, it is applicable to situations where shape changes
are linear. For very few curves, such as curves 24–29 shown in the second of Figure 8,
the cubic PDE-based facial interpolation has smaller maximum errors than the quadratic
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PDE-based facial interpolation. It indicates that the cubic PDE-based method may be more
suitable for these curves than the quadratic PDE-based method.

The approach proposed in this paper is also applicable to part of a curve and the
curves in local regions of face models. This can be easily achieved by using w0(u) and
w1(u) in Equation (4) to represent part of a curve and the curves in local regions of face
models. With such a treatment, more realistic facial interpolation can be obtained.

4.4. Quadratic PDE-Based Interpolation of Facial Models

One neutral and five target expressions will be used in interpolation calculations to
create new facial models and animation. The five target facial expressions are sad, angry,
confused, grinning, and puff. The neutral expression is shown in the left column of Figure 9.
The sad, angry, confused, grinning, and puff expressions are shown in the right column of
the Figure.

The curves representing the neutral expression are taken to be w0(u) in Equation (4)
and the corresponding ones on each of the sad, confused, grinning, and puff expressions
are taken to be w1(u). After setting t = 0 and t = 1 in Equation (32) and substituting it into
Equation (4) to determine the unknown constants, we use it to create new facial models at
any instant.

Setting the time variable t in Equation (32) to 0.2, 0.4, 0.6, and 0.8, we obtain new facial
models at these instants and depict them in the second, third, fourth, and fifth columns of
Figure 9. In the Figure, the first, second, third, fourth, and fifth rows indicate sad, angry,
confused, grinning, and puff expressions, respectively.
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5. PDE-Based Facial Blendshapes

Facial blendshapes based on the geometric linear interpolation are to create new facial
models with one neutral model and more than one target model through the following
weighted combination [2]:

w = w0 + ∑N
j=1 ξ j

(
wj − w0

)
(36)

where w0 is a neutral model, wj (j = 1, 2, 3, . . . , N) are target models, and ξ j (j = 1, 2, 3, . . . , N)
are weights with ξ j ≥ 0 and ∑N

j=1 ξ j = 1.
With the PDE-based interpolation proposed in this paper, we use Equation (32) to

interpolate a neutral expression and the jth target expression and obtain the following
quadratic PDE-based interpolation equation for the jth target expression:

wj(u, t) = bj
w0 +
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wnt2/Bn)cos2nπu

+(

∼
e

j
wn

Bn
− 2mej

wn

B2
n

+
2c2

B3
n

ej
wn −

2c
B2

n
ej

wnt + ej
wnt2/Bn)sin2nπu]

(w = x, y, z)

(37)

Substituting the above analytical solution into the following blending Equation

wb(u, t) = ∑N
j=1 ξ jwj(u, t) (w = x, y, z) (38)
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we obtain the following:

wb(u, t) = bb
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(w = x, y, z)

(39)

where
bb
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j
wn

∼
e

b
wn = ∑N

j=1 ξ j
∼
e

j
wn

eb
wn = ∑N

j=1 ξ je
j
wn

(40)

For the neutral expressions and the sad, angry, confused, grinning, and puff expres-
sions investigated in the above section, we have N = 5. Respectively setting the weights
ξ j and the time variable t to different values, we can use Equations (39) and (40) to create
many new blend shapes.

For the illustrative purpose, we set ξ j to 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 for each of the
analytical solutions obtained from the five target expressions. It gives 7775 different weight
combinations. For example, ξ1 = 0.2, ξ2 = 0.0, ξ3 = 0.6, ξ4 = 1.0, and ξ5 = 0.8 are one
weight combinations. The sum of these weights is larger than 1.0. They can be scaled
to satisfy the sum of 1.0 through ξ j/∑5

i ξi (i = 1, 2, 3, 4, 5), i.e., ξ1 = 0.0769, ξ2 = 0.0,
ξ3 = 0.2308, ξ4 = 0.3846, and ξ5 = 0.3077.

For each of the weight combinations, we set the time variable t to different instants
and substitute them into Equation (39) to obtain the facial models at the instants. Here,
we set t = 1.0 and use the 7775 weight combinations to obtain 7775 new facial models.
Figure 10 below shows 50 facial models selected from the 7775 facial models.

The above figure shows that different combinations of facial blendshape weights create
different shapes when the time variable t is fixed. Different from the facial blendshapes
using Equation (36), where one weight combination can create one new shape only, the
facial blendshapes using Equation (39) will enable one weight combination to create many
different new shapes by simply setting the time variable t to different values. It indicates
that the proposed method not only improves the realism of facial interpolation and fa-
cial blendshapes but also noticeably raises the capacity to create more facial shapes for
facial animation.

We have calculated the CPU time using the quadratic PDE-based facial blendshapes to
obtain the coordinate values of the 259 and 7775 facial models with 5071 vertices for each
of the facial models. On a laptop with a 3.3 GHz Intel Core i7- processor and 16 GB of main
memory, it takes 2.46 s to create the 259 facial models and 72.748 s to create the 7779 facial
models. In [20], physics-based simulation is used to consider the physical interaction of
passive flesh, active muscles, and rigid bone structures, and the numerical solution takes
over 2 min to generate a new facial model with 6393 surface vertices and 8098 volumetric
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vertices on a laptop with a 3.1 GHz Intel Core i7 processor and 16 GB of main memory.
Clearly, the analytical PDE-based approach proposed in this paper is far more efficient than
the numerical method proposed in [20].
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Apart from the advantage of the high efficiency of the quadratic PDE-based facial
blendshapes, another advantage is good realism. Since the quadratic PDE-based interpola-
tion Equation (32) creates the most realistic shapes among the geometric linear interpolation
and the three PDE-based interpolation methods based on Equations (31)–(33), the facial
blendshapes based on the quadratic PDE-based interpolation Equation (32) are more realis-
tic than the facial blendshapes based on the geometric linear interpolation and the linear
and cubic PDE-based shape interpolation.

6. Conclusions

How to create new and realistic facial expressions efficiently from two known facial
expressions is an important and unsolved problem. In this paper, we have developed a new
facial interpolation method to tackle the problem and used the new facial interpolation
method to develop a new method of facial blendshapes.

The new facial interpolation and blendshape approach is physics-based and analyt-
ical, which simulates dynamic skin deformation with better realism than the methods
based on geometric linear interpolation and higher simulation efficiency than numerical
physics-based techniques. To develop the new approach, we have converted the polygon
representation of three-dimensional facial models into a curve representation, introduced
curve deformation resistance into the equation of motion and combined it with the bound-
ary conditions of curve shape changes to obtain the mathematical model of facial skin
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deformations, derived analytical solutions of the mathematical model, and used them to
achieve linear and nonlinear physics-based interpolation and blendshapes of facial models.

We have compared the ground-truth facial shape changes to those obtained from
the proposed approach and the geometric linear interpolation and demonstrated that the
proposed approach achieves better realism of facial shape interpolation than the geometric
linear interpolation. Due to the nature of the analytical solutions of the physics-based
mathematical model, the proposed approach is far more efficient than existing numerical
solutions of physics-based models.
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