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Abstract

Graphs like social networks, molecular graphs, and traffic networks are everywhere in
the real world. Deep Graph Representation Learning (DGL) is essential for most graph
applications, such as Graph Classification, Link Prediction, and Community Detection.
DGL has made significant progress in recent years because of the development of Graph
Neural Networks (GNNs). However, there are still several crucial challenges that the field
faces, including in (semi-)supervised DGL, self-supervised DGL, and DGL-based graph
clustering. In this thesis, I proposed three models to address the problems in these three
aspects respectively.

GNNs have been widely used in DGL problems. However, GNNs suffer from over-
smoothing due to their repeated local aggregation and over-squashing due to the exponential
growth in computation paths with increased model depth, which confines their expres-
sive power. To solve this problem, a Hierarchical Structure Graph Transformer called
HighFormer is proposed to leverage local and relatively global structure information. I
use GNNs to learn the initial graph node representation based on the local structure in-
formation. At the same time, a structural attention module is used to learn the relatively
global structural similarity. Then, the improved attention matrix was obtained by adding
the relatively global structure similarity matrix to the traditional attention matrix. Finally,
the graph representation was learned by the improved attention matrix.

Graph contrastive learning (GCL) has recently become the most powerful method
in self-supervised graph representation learning (SGL), of which graph augmentation is
a critical component to generating different views of input graphs. Most existing GCL
methods perform stochastic data augmentation schemes, for example, randomly dropping
edges or masking node features. However, uniform transformations without carefully
designed augmentation techniques may drastically change the underlying semantics of
graphs or graph nodes. I argue that the graph augmentation schemes should preserve
the intrinsic semantics of graphs. Besides, existing GCL methods neglect the semantic
information that may introduce false-negative samples. Therefore, a novel GCL method
with semantic invariance graph augmentation termed SemiGCL is proposed by designing a
semantic invariance graph augmentation (SemiAug) and a semantic-based graph contrastive
(SGC) scheme.

Deep graph clustering (DGC), which aims to divide the graph nodes into different
clusters, is challenging for graph analysis. DGC usually consists of an encoding neural
network and a clustering method. Although DGC has made remarkable progress with
the development of deep learning, I observed two drawbacks to the existing methods:



iv

1) Existing methods usually overlook learning the global structural information in the
node encoding process. Consequently, the discriminative capability of representations will
be limited. 2) Most existing methods leverage traditional clustering methods such as K-
means and spectral clustering. However, these clustering methods can not simultaneously
be trained with the DGL methods, leading to sub-optimal clustering performance. To
address these issues, I propose a novel self-supervised DGC method termed Structural
Semantic Contrastive Deep Graph Clustering (SECRET). To get a more discriminative
representation, I design a structure contrastive scheme (SCS) by contrasting the aggregation
of first-order neighbors with a graph diffusion. A consistent loss was also proposed to keep
the structure of different views consistent. To jointly optimize the DGL and clustering
method, I proposed a novel Self-supervised Deep-learning-based Clustering (SDC) model.
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Chapter 1

Introduction

Graphs are mathematical abstractions used to represent relationships or connections be-
tween entities. They are utilized to model complex systems and phenomena in various
fields [86, 171, 90, 63], including computer science, biology, physics, sociology, and
many others. For example, in social networks, people are represented as nodes, and their
connections are edges, which can be used to analyze the network’s structure, identify
influential individuals, or predict the spread of information or diseases. The versatility of
graphs [9] as a modeling tool has made them a popular choice in many different fields, and
their use continues to grow as more complex systems are studied and analyzed.

Different from Euclidean data, such as images [66] and texts [111, 112], which have
a grid-like structure and are represented as arrays or vectors, graphs are non-Euclidean
structured data [173, 167] that represent a set of objects (nodes) and their relationships
(edges). Each node in a graph can contain information, such as attributes or features,
that describe the object it represents. Each edge represents a relationship between two
nodes, which can be weighted or directed. The structure of a graph can be used to model
complex relationships and dependencies between objects. Therefore, analyzing graphs can
be challenging because of their complex and irregular structure.

To solve this problem, many Deep Graph Representation Learning (DGL) [72, 50,
155, 166, 203] methods were proposed. The goal of graph representation learning is to
learn low-dimensional vector representations, or embeddings, for the nodes or edges of
a graph that capture the structural and semantic properties of the graph. Among them,
Graph Neural Networks (GNNs) [72, 155, 50] are specifically designed to learn such
representations by recursively aggregating and transforming [2, 119, 38] information
from neighboring nodes in graphs which have been a promising approach for learning
representations of graph-structured data. GNNs learn node embeddings by considering
the graph structure and node attributes and using this information to propagate across the
graph. This allows them to capture complex dependencies between nodes and to learn
rich and informative representations that can be used for various downstream tasks such
as node classification[190], link prediction[163], and graph generation[162]. There are
many different types of GNNs, including graph convolutional networks (GCNs) [72],
graph attention networks (GATs) [157], and GraphSage [50]. Each type of GNN has its
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Fig. 1.1 The challenges of Deep Graph Representation Learning(DGL) in three different
tasks.

strengths and weaknesses [170], and researchers continue developing new architectures
and techniques to improve their performance. DGL has indeed made significant progress
in recent years.

DGL is a fundamental component of graph learning, enabling the practical analysis,
modeling, and understanding of complex graph-structured data across various domains
and applications. Its importance will grow as researchers and practitioners explore new
techniques and applications in graph learning. However, there are still several crucial
challenges in DGL. In this thesis, I try to improve the performance of DGL so that all the
downstream tasks of graph learning can be developed. Through plenty of experiments, I
found that both the node feature and graph structure are essential in graph learning, but the
most important thing is finding a way to combine these two pieces of information. In my
research, I make the most of these two pieces of information, and for structure information,
I consider both the local structure and global structure. I have divided my research into
three aspects: (semi-)supervised DGL, self-supervised DGL, and the application of DGL
on graph clustering. The research problems in the three aspects were concluded in Figure
1.1. In (semi-)supervised DGL, there are three main problems. The first two are the
over-smoothing and over-squashing problems, and the third is that existing methods only
consider the local structure information but neglect the global graph structural information.
In self-supervised DGL, there are two main problems. The first is that existing graph
augmentation methods are all stochastic, which may change the semantic information of
the graph dramatically, and the second is that existing contrastive methods usually generate
false-negative samples, which may degenerate the representation performance. In the
application of DGL on graph clustering methods, there are also two main problems. The
first is that the existing techniques didn’t incorporate the exact structure information in
the graph contrastive model, and the second is existing deep graph clustering methods
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usually leverage the traditional clustering methods, which are hard to optimize with the
DGL network at the same time, so the results may not be optimal.

This thesis has investigated the importance of semantic and structure information
in DGL. The primary argument of the research is that both the semantic and structural
information, including the local and global structures, are essential for DGL. Semantic
information is the meaningful representation of data that captures its underlying meaning
or semantics. It goes beyond the raw data and aims to extract higher-level concepts,
relationships, and patterns relevant to the task. I designed some simple but efficient
algorithms to learn the semantic information first, which is then used as prior knowledge for
the DGL method. In graphs, structural information refers to the characteristics, properties,
and relationships inherent in the graph’s topology or arrangement of nodes and edges.
This information provides insights into the organization, connectivity, and patterns present
in the graph data. Local and global structure information refers to different levels of
granularity when analyzing the connectivity and organization of nodes and edges within a
graph. Local structure information focuses on the characteristics and relationships of nodes
and edges within the immediate vicinity of a given node or a small subset of nodes in the
graph. It involves analyzing a node’s local neighborhood, adjacent nodes, and immediate
connections to understand its local context and connectivity patterns. Global structure
information focuses on the entire graph’s overall organization, connectivity, and properties.
It involves analyzing the collective behavior, emergent properties, and structural patterns
arising from the interactions between nodes and edges across the graph. local structure
information focuses on the properties and relationships of nodes within the immediate
neighborhood, while global structure information considers the overall organization and
properties of the entire graph. Both types of information are essential for understanding
the complex interactions and behavior of nodes and edges within graphs and are used in
various graph analysis and machine-learning tasks.

However, most existing DGL methods only consider the local structure information but
neglect the global structure information, which may degenerate the representation power
of DGL. I proposed methods to learn both the global structure information and the local
structure information, and then these two structures of information are combined for the
DGL training. I chose many commonly used attributed graph datasets to measure the
performance of proposed DGL methods. The attributed graph datasets are from domains
such as citation graphs, social networks, and biochemical graphs (protein and chemical
compounds). The sizes of these graphs are different, so it is efficient to measure the perfor-
mance of the DGL methods. These datasets are all commonly used in various techniques
that are convenient to compare with other methods. For measuring the performance of
DGL, both the classification and clustering results of the representations are used. I use
deep learning methods in this research but not other machine learning methods. The reason
is that Deep learning graph representation methods offer several advantages over traditional
machine learning methods, including their capacity to capture complex patterns, end-to-end
learning capabilities, scalability to large graphs, flexibility and adaptability to diverse data
modalities, and state-of-the-art performance on graph-based tasks. These characteristics
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make them highly effective and widely used in graph representation learning and analysis
across various fields and applications. I used the Deep Graph Library as my graph network
framework in the experiments. Deep Graph Library is a powerful and versatile library for
graph-based machine learning and deep learning, offering a comprehensive set of tools
and functionalities for building, training, and deploying graph neural network models in
various applications and domains. I chose this library because of its ease of use, flexibility,
scalability, performance, integration with deep learning frameworks, and active community
support.

There are some limitations while conducting my research. 1). Computational Re-
sources and Hardware Limitations: Deep learning models, especially large ones, require
substantial computational resources. GPUs are commonly used to accelerate deep learning
computations due to their parallel processing capabilities. However, limitations in GPU
memory, computational power, and access to high-performance hardware can still pose
challenges, particularly for training large models on extensive datasets. 2). Data Availabil-
ity and Quality: Deep learning models thrive on large, diverse datasets. The availability
of high-quality labeled data is crucial for training accurate models. In some domains,
obtaining sufficient labeled data can be challenging, and the data quality can significantly
impact model performance. 3). Ethical and Bias Concerns: Deep learning models can
inherit biases in training data, potentially leading to biased predictions. Ensuring fairness,
transparency, and addressing ethical considerations in model development is essential to
prevent unintended consequences and reinforce trust. The experiment results proved that
my proposed methods are valid and reliable. The validity is because I ran each algorithm
ten times and got the average results. The reliability is as I used the augmentation of
datasets for each proposed method so that the results are consistent and stable.

Ethical considerations are paramount in developing and deploying DGL models. Here
are some key ethical considerations for DGL: 1). Privacy and Data Protection: DGL
often involves analyzing sensitive data, such as social networks, healthcare records, or
financial transactions. Ensuring the privacy and confidentiality of individuals’ data is
crucial to prevent unauthorized access, misuse, or unintended disclosure of personal
information. The datasets I used in my experiments have already been authorized, and
the personal information has been removed. 2). Fairness and Bias: DGL models may
inadvertently perpetuate biases in the training data, leading to unfair or discriminatory
outcomes. Mitigating biases and ensuring fairness in model predictions is essential,
particularly when making decisions that affect individuals’ opportunities, resources, or
rights. I use augmented data in my methods to reduce the bias. 3). Transparency and
Interpretability: DGL models can be complex and opaque, making it challenging to
understand how they arrive at specific decisions or predictions. Ensuring transparency
and interpretability in model development helps build trust and accountability, enabling
users to understand and scrutinize the model’s behavior. In my DGL model, I try to
interpret how the deep learning network works. 4). Accountability and Responsibility:
Developers and researchers working on DGL models are responsible for anticipating and
addressing their work’s potential ethical implications. They should be accountable for
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the consequences of model deployment and strive to minimize harm while maximizing
societal benefits. 5). Informed Consent and Data Ownership: When collecting or using
graph data for model training, obtaining informed consent from individuals whose data is
being used is essential. Additionally, clarifying data ownership and usage rights ensures
transparency and empowers individuals to make informed decisions about their data. In my
experiment, I obtained informed consent from the owner and declared the data ownership
and usage rights. 6). Security and Adversarial Attacks: DGL models may be vulnerable to
adversarial attacks, where malicious actors manipulate input data to deceive or compromise
the model’s performance. Ensuring robustness and resilience against such attacks is critical
for model integrity and security. 7). Regulatory Compliance: DGL models may be
subject to regulatory requirements and standards, particularly in highly regulated domains
such as healthcare, finance, and law enforcement. Compliance with applicable laws,
regulations, and ethical guidelines is essential to avoid legal and ethical implications.
Addressing ethical considerations in DGL requires a multidisciplinary approach involving
collaboration between researchers, developers, policymakers, ethicists, and stakeholders.
By prioritizing ethical principles and values throughout the model development lifecycle,
we can harness the potential of DGL while minimizing risks and promoting responsible
innovation.

After defining the research methodology of this thesis, I will discuss this research in
detail in three aspects: (semi-)supervised DGL, self-supervised DGL, and the application
of DGL to graph clustering. I will explain both the research problem and solutions.

Firstly, GNNs have gained much attention recently for their strong graph representation
capacity. It has become the most popular method in (semi-)supervised DGL. However,
GNNs can suffer from over-smoothing [200], and over-squashing [113], which cause many
issues in various GNN-based tasks. Over-smoothing is a phenomenon where the node
representations in a GNN become too similar after multiple rounds of message passing.
This can happen because each node aggregates information from its neighbors. If this
process is repeated too often, the information becomes diluted, and the node representations
become indistinguishable. This can lead to poor performance in node classification or
link prediction tasks. Over-squashing is a related issue where the computational paths
in a GNN grow exponentially with the depth of the model. However, when the model
gets deeper, a node’s receptive field grows exponentially with the number of layers.
Therefore, much information is squashed into a single node vector, which may lose
important information from the node far away from the target node, and the computational
cost becomes prohibitively high. This can lead to poor scalability and inefficiency in GNN-
based methods. To address these issues, researchers have developed various techniques
such as graph attention mechanisms [157], residual connections [52], and skip connections
[99]. Nevertheless, although these techniques can improve the performance of GNNs, they
do not completely solve the challenges associated with message passing.

Transformers [154] have been very successful in the field of natural language pro-
cessing (NLP) [20, 93, 10, 45] and have recently gained popularity in the field of graph
representation learning as well. GNNs were previously the go-to method for graph repre-
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sentation learning, but some recent works have shown that Transformers [188, 182, 169]
can be used to achieve state-of-the-art performance on several graph-related tasks. The
success of Transformers in NLP is largely due to their ability to model long-range de-
pendencies in sequential data using self-attention mechanisms. This same self-attention
mechanism can also be applied to graph data, where nodes can attend to other nodes based
on their structural relationships, allowing for effective modeling of global dependencies in
the graph. Plenty of graph transformer works have been proposed to incorporate the graph
information into the transformer. To the best of my knowledge, existing graph transformer
methods only consider the local graph structural information but neglect the global graph
structural information, which degrades the graph transformer’s performance. Local graph
structural information refers to information directly connected to a particular node in
the graph. In contrast, global graph structural information refers to information spread
throughout the entire graph. Global structure information is critical for graph learning
because it includes semantic information, such as the overall topic of the graph.

To solve this problem, a hierarchical structure graph transformer called HighFormer
is proposed that leverages both the local and global structural information. Specifically,
firstly, GNN was used to learn the initial graph node representation based on the local
structural information. At the same time, a structural attention module is proposed to learn
the global structural similarity. Then, the proposed structural attention matrix(SAM) was
learned by combining the traditional attention matrix and the global structure similarity
matrix.

Secondly, most of the existing DGL models are designed in (semi-)supervised scenarios
[57, 72, 157], which require abundant manual labels for training. However, collecting
manual labels is costly, especially for large-scale graph datasets like social networks. To
address the manual-label issues of supervised DGL, self-supervised graph representation
learning (SGL) [27] was proposed to learn graph representations without manual labels. In
self-supervised graph representation learning, GNN-based models are trained by pretext
tasks that do not require manual labels. The idea behind self-supervised learning is to use
the input data structure to generate the supervision signals. The pretext tasks used in SGL
are designed to encourage the model to learn important features of the graph structure,
For example, masked graph generation [31, 183], which randomly masks some nodes or
edges in a graph and then trains the model to predict the missing nodes or edges. This task
encourages the model to learn meaningful representations of the graph structure. Also,
graph contrastive learning [156, 148] is trained to distinguish between a pair of graphs
(positive or negative). These tasks encourage the model to learn discriminative features of
the graph structure that are critical for distinguishing between different graphs. Therefore,
a well-designed pretext task can help the SGL model learn informative embeddings that
improve the performance of downstream tasks.

Graph contrastive learning (GCL) has recently become the most promising technique
for learning representations from graph-structured data. GCL aims to learn a representation
function that maps graph data points into a low-dimensional vector space such that the
Mutual Information (MI) [17] of the positive sample pairs is maximized, and the MI of
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negative pairs is minimized. MI is a metric used to measure the statistical dependence
between two random variables. Higher MI indicates a stronger relationship or dependency
between the two variables. For example, if two points in a graph have a strong relationship,
we think that these two points are positive samples. Otherwise, they are negative samples.
In GCL, positive and negative samples are generated by leveraging graph augmentation
techniques [185]. Graph augmentation involves applying a series of random perturbations
to the input graph to generate new similar graphs that are not identical to the original
graph. By maximizing the MI of positive pairs and minimizing the MI of negative pairs,
GCL can learn to extract meaningful and informative features that capture the underlying
structure of the graph. One advantage of GCL is that the learned representations are
less sensitive to small changes or disturbances in the input data. This robustness is
valuable because it allows the model to generalize well to new, slightly altered input
data instances. In graph data, perturbations could refer to changes in the graph structure,
node attributes, or other variations. GCL aims to ensure that the learned representations
capture the underlying patterns in the data, making them more resistant to noise or small
modifications. This can improve the performance in applications where the graph data
is noisy or incomplete. Additionally, GCL can learn representations generalizable to
unseen graphs, which is important for applications where the input graphs vary in size
and structure. However, there are still several challenges and limitations to the existing
GCL methods. I argue that there are two most critical problems with the existing GCL
approaches. 1) Graph augmentation: Most existing graph augmentation methods perform
stochastic transformation schemes [156, 129, 51], such as randomly dropping edges or
masking node features. However, uniform transformations without carefully designed
augmentation techniques may drastically change the underlying semantics of graphs or
graph nodes. 2) Negative sampling: Negative sampling is a common technique used in
graph contrastive learning methods. It involves selecting examples that are not similar to
the positive example. Negative sampling helps train the model more efficiently, especially
when dealing with large graphs, as it avoids considering all possible negative pairs. It
focuses on a subset of negative examples, making the training process computationally
feasible while providing valuable information for learning robust representations. However,
existing graph contrastive methods neglect the semantic information that may introduce
false-negative samples since they treat all the other samples except the positive sample
as negative, such that some may belong to the same cluster or have similar semantic
information to the positive sample.

To solve these issues, I propose a novel graph contrastive learning method with semantic
invariance graph augmentation termed SemiGCL by designing a semantic invariance graph
augmentation (SemiAug) and a semantic-based graph contrastive (SGC) scheme that
leverages a semantic debiasing negative sampling (SDNS) method to generate negative
samples. Concretely, a PageRank-based semantic clustering method is proposed to divide
the graph into semantic clusters to learn a semantic invariance augmentation. Then, based
on the cluster assignment, a semantic invariance augmentation was proposed on both
graph structure and node attribute. Specifically, I designed two kinds of augmentations:
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structure-level augmentation and attribute-level augmentation. For the structure level, I
randomly add edges on the intra-class clusters. For the attribute level, similar to mixup
[193], I adopted the operation of linear interpolation that mixes each node’s features and
their cluster prototypes to get the augmented features of each node. At last, I designed
a semantic-based graph contrastive (SGC) method with SDNS, in which the negative
samples were selected from other clusters except for the cluster where the positive sample
was. Therefore, the semantic information was used to decrease the false-negative samples,
improving the discriminative capability of the graph contrastive network.
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Fig. 1.2 The general pipeline of Self-supervised Deep Graph Clustering (SGC).

Thirdly, benefiting from the rapid development and the strong graph representation
performance of self-supervised graph representation learning (SGL)[27], Self-supervised
Deep Graph Clustering (SGC) has been more effective in node clustering for a graph
than traditional clustering methods. SGC is particularly useful when the graph is large
and complex. As the training data increases, the model becomes more accurate. SGC
consists of a self-supervised encoder neural network that embeds the nodes into the
representation space and a clustering model that separates the node representations into
different groups. The general pipeline of the SGC method can be demonstrated in Figure
1.2. More recently, graph contrastive learning (GCL) [156, 129, 51] has become the most
promising technique in SGC, benefiting from the powerful capability of capturing implicit
supervision information [94].

Although the promising performance of Contrastive Graph Clustering (CGC) has
been achieved, I found that the existing method still suffers from many limitations and
drawbacks. First of all, existing GCL [206] methods typically focus on node views of
graphs but do not explicitly incorporate the global structural information of the graph in
the contrastive model. As a result, these methods may suffer from representation collapse
[94], which refers to the situation where all nodes are mapped to the same representation.
This can be problematic, especially in tasks where the graph structure is important, such
as in graph clustering or classification. What’s more, in the process of node clustering,
most of the existing SGC methods leverage traditional clustering methods, for example,
K-means. However, adopting the traditional clustering methods in SGC suffers from many
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problems, such as being highly dependent on initialization and unable to optimize the node
representation learning and clustering in a unified framework.

To overcome these limitations, I propose a novel contrastive deep graph clustering
method called Structural Semantic Contrastive Deep Graph Clustering (SECRET) by
designing a structure contrastive scheme (SCS) to keep the structural consistency of
two different views and a self-supervised deep learning clustering (SDC) method, which
proposed a comprehensive similarity measure criterion and consider the similar node as
supervision information. The SCS incorporates the structural information of the graph in
the contrastive model that promotes the representation to be more informative. The SDC
jointly optimizes the node representation learning and clustering in a unified framework
that leverages the strong graph representation capability of GNNs.

1.1 Motivation

Graph-structured data can be found in various real-world applications [89, 202, 181],
such as Social networks, Recommender systems, Bioinformatics, Transportation networks,
Knowledge graphs, and so on. Graph representation learning aims to learn low-dimensional
vector representations of nodes in a graph that capture important structural and semantic
information. One of the key developments that led to the popularity of graph representation
learning was the introduction of deep learning techniques for graph data, called Deep
Graph Representation Learning (DGL). Since then, numerous DGL methods have been
proposed, ranging from graph convolutional networks (GCNs) [72] to graph autoencoders
(GAEs) [71] to graph attention networks (GATs) [157]. These methods have achieved state-
of-the-art performance on graph-based tasks such as node classification, link prediction,
and graph clustering.

DGL has made significant progress in recent years. However, there are still several
crucial challenges that the field faces, including in (Semi-)Supervised DGL, Self-supervised
DGL, and Self-supervised Deep Graph Clustering, such as over-smoothing [200], over-
squashing [113], graph augmentation [156], negative sampling [95], and graph clustering
[187]. This thesis analyzes these challenges in detail and proposes three methods to solve
the problems respectively.

1.2 Research questions and contributions

After providing the background of the DGL and the motivation for this research, the present
study endeavors to formulate three research questions that will be answered within this
thesis, and specific contributions will also be provided.

Q1. In (semi-)supervised DGL, GNNs often suffer from over-smoothing and over-
squashing problems caused by the message-passing paradigm, which will lead
to poor performance in the following learning tasks. How do we solve these two
challenges caused by message-passing?
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In Chapter 3, I propose a hierarchical structure graph transformer called High-
Former that combines local and global structure information with the Transformer.
Graph Transformers use self-attention to encode the relationships between nodes in
a graph, which allows them to capture long-range dependencies and global graph
structure. This makes them particularly effective for tasks that require modeling
complex relationships between graph nodes, such as graph and node classification.
On the other hand, GNNs use message passing to iteratively update node representa-
tions based on the representations of their neighbors in the graph. This allows them
to capture local graph structure and node features, making them well-suited for node
classification and link prediction tasks. Therefore, these two methods show that both
local and global graph structures are critical for node clustering and classification
tasks.

In HighFormer, I use GNN to learn the initial graph node representation based
on the message passing scheme with the local structure information. At the same
time, a structural attention module is used to learn the global structural similarity.
Then, I added the softmax attention matrix and the global structure similarity matrix
to form the structural attention matrix. Specifically, the original graph was initially
input into the GNN to get a local-structure-based representation. On the other hand,
the graph structure was input into a structural attention module, which leverages Per-
sonalized PageRank to compute the global structural similarity. Then, the softmax
attention matrix and the global structural similarity matrix were added to form an
improved attention matrix. Finally, I compute the graph representation using the
learned improved attention matrix. I use two softmax operations to ensure the final
attention matrix considers the graph structure and node feature relationships. In my
proposed method, I leverage the personal PageRank to mine the global structure
information of the graph instead of the positional encoding. The proposed approach
introduces both the local structure information and the global structure information
that improve the discrimination of the Transformer. I have theoretically proved
that the commonly used positional encoding Laplacian eigenvectors only introduce
the local position of each node but can’t express the global position information.
Extensive experimental evaluation shows that the proposed HighFormer outperforms
the positional-encoding-based graph Transformer methods.

Q2. In self-supervised DGL, existing graph contrastive learning (GCL) methods usually
leverage stochastic graph augmentation methods (randomly adding or dropping
features and edges), which may change the underlying semantic information of the
graph dramatically. Besides, the negative sampling (sampling the negative samples,
which are data points dissimilar or unrelated to a given anchor) method may intro-
duce false-negative samples (the model predicts the sample is negative, but the true
result is positive) in the existing contrastive scheme. How do we solve these two
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main issues in GCL?

To solve these two critical problems in GCL, I consider the semantic informa-
tion in graph augmentation and negative sampling. In Chapter 4, I propose a novel
graph contrastive learning method with semantic invariance graph augmentation
termed SemiGCL by designing a semantic invariance graph augmentation (SemiAug)
and a semantic-based graph contrastive (SGC) scheme that leverages a semantic
debiasing negative sampling (SDNS) method to generate negative samples. Con-
cretely, a PageRank-based semantic clustering method is proposed to divide the
graph into semantic clusters to learn a semantic invariance augmentation. Then,
based on the cluster assignment, a semantic invariance augmentation was proposed
on both graph structure and node attribute. Specifically, I have designed two kinds
of augmentations: structure-level augmentation and attribute-level augmentation.
For the structure level, I randomly add edges on the intra-class clusters, and for the
attribute level, similar to mixup [193], I adapt the operation of linear interpolation
that mixes each node’s features and their cluster prototypes to get the augmented
features of each node. At last, I designed a semantic-based graph contrastive (SGC)
method with SDNS, in which I selected negative samples from other clusters except
for the positive sample cluster. This method presents a novel GCL model, SemiGCL,
by introducing the SemiAug, which generates semantic invariance augmentations.
Graph augmentation is a critical component of GCL, so experimental results show
that the proposed SemiAug can improve the representation performance. In this
method, I introduce the semantic information to the graph augmentation and the
graph contrastive scheme, then proposed SemiAug and SGC, respectively, that the
semantic information improves the augmentation performance and decreases the
false-negative samples that will enhance the discriminative capability of the graph
contrastive network.

Q3. Existing Contrastive Graph Clustering (CGC) has achieved promising performance,
benefiting from its powerful capability of capturing implicit supervision informa-
tion. However, CGC still suffers from two significant problems. The first issue is
representation collapse, in which each node’s representations are similar without
discrimination. The second issue is that if traditional clustering methods are used
in CGC, optimizing representation learning and clustering simultaneously will be
challenging. How do we solve these two critical issues in CGC?

There are many applications for DGl. DGC is one of the most critical applica-
tions, which helps summarize large datasets by identifying groups of similar objects
or data points. This can help understand the underlying structure of the data and
provide insights into the relationships between different variables. CGC has gained
attention in recent years for its promising results.
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In Chapter 5, I propose a novel contrastive deep graph clustering method called
Structural Semantic Contrastive Deep Graph Clustering (SECRET) by designing
a structure contrastive scheme (SCS) to keep the structural consistency of two dif-
ferent views and a self-supervised deep-learning-based clustering (SDC) method,
which leverages a comprehensive similarity measure criterion considering both the
attribute embedding similarity and the structural similarity, which better reveal node
relationships and can be seen as supervision information, as similar nodes should be
in the same clusters. The SCS incorporates the structural information of the graph in
the contrastive model that promotes a more accurate representation. The SDC jointly
optimizes the node representation learning and clustering in a unified framework
that leverages the strong graph representation capability of GNNs.

1.3 Thesis outline

In this section, I will give a brief introduction of each chapter in this thesis as follows:

• Chapter 1 introduces the research background, motivation, research problems, and
the main contributions of this thesis.

• Chapter 2 gives a comprehensive review of Deep Graph Representation Learn-
ing(DGL), including the (Semi-)Supervised DGL, Self-supervised DGL, and an
important application of DGL, the Self-supervised Deep Graph Clustering, as shown
in Figure 1.1. I also highlighted the gaps in existing research works, which will be
solved in the following three chapters.

• Chapter 3 introduces the proposed hierarchical structure graph transformer (High-
Former) that leverages local and global structural information, solving the over-
smoothing and over-squashing problems caused by the message-passing paradigm.

• Chapter 4 introduces the proposed graph contrastive learning method with semantic
invariance graph augmentation (SemiGCL) by designing a semantic invariance
graph augmentation (SemiAug) and a semantic-based graph contrastive (SGC)
scheme that leverages a semantic debiasing negative sampling (SDNS) method to
generate negative samples. In SemiGCL, the semantic information improves the
augmentation performance and decreases the false-negative samples, which improves
the discriminative capability of the graph contrastive network.

• Chapter 5 introduces the proposed Structural Semantic Contrastive Deep Graph
Clustering (SECRET) by designing a structure contrastive scheme (SCS) to keep the
structural consistency of two different views and a self-supervised deep-learning-
based clustering (SDC) method, which leverages a comprehensive similarity measure
criterion considering both the attribute embedding similarity and the structural
similarity, which better reveal node relationships and can be seen as supervision
information, as similar nodes should be in the same clusters. The SCS incorporates
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the global structural information of the graph in the contrastive model that promotes
a more accurate representation. The SDC jointly optimizes the node representation
learning and clustering in a unified framework that leverages the strong graph
representation capability of GNNs.

• Chapter 6 gives the conclusions of this thesis and provides some future works.

1.4 List of publications

Below is a list of the publications I have used to convey the research contributions I have
made and documented in this thesis. However, most of the contents in this thesis haven’t
been published or are still under review.

1. H. Zheng, Z. Liang, F. Tian, and Z. Ming, “NMF-based comprehensive latent factor
learning with multiview data,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep.
2019, pp. 489–493.

The list of the papers which haven’t been published:

1. H. Zheng, F. Tian, "Hierarchical Structure Graph Transformer"

2. H. Zheng, F. Tian, "Graph Contrastive Learning with Semantic-invariance Graph
Augmentation"

3. H. Zheng, F. Tian, "Structural Semantic Contrastive Deep Graph Clustering"



Chapter 2

Deep Graph Representation Learning

In this chapter, I will establish a common notation framework and give a comprehensive
review of Deep Graph Representation Learning(DGL) methods, including the (Semi-
)Supervised DGL, Self-supervised DGL, and an important application of DGL Deep
Graph Clustering, as shown in Figure 1.1. I also highlighted the gaps in existing research
works, which will be solved in the following three chapters.

2.1 (Semi-)Supervised Deep Graph Representation Learn-
ing

This section will comprehensively survey (Semi-)Supervised DGL methods. DGL refers
to the task of learning low-dimensional representations or embeddings of nodes, edges,
and entire graphs in a graph-structured data using deep learning techniques. The goal
of DGL is to capture the structural, relational, and semantic information encoded in the
graph data and to represent it in a continuous vector space, where it can be used for various
downstream tasks such as node classification, link prediction, graph classification, and
graph generation. DGL methods typically leverage deep neural network architectures, such
as graph neural networks (GNNs), convolutional neural networks (CNNs), recurrent neural
networks (RNNs), or their variants, to learn expressive representations of graph-structured
data. These architectures are designed to operate directly on the graph structure, allowing
them to capture the local and global dependencies between nodes, edges, and graph
neighborhoods. DGL has emerged as a powerful framework for learning representations of
graph-structured data in various domains, including social networks, biological networks,
citation networks, knowledge graphs, and recommendation systems. By leveraging deep
learning techniques, DGL methods are able to capture complex relationships and patterns in
graph data, enabling effective and scalable solutions for a wide range of graph-based tasks.
There are two main categories of methods, i.e., Graph Neural Networks(GNNs) and Graph
Transformers. GNNs[72] have become the primary strategies for graph representation
learning, benefiting from their powerful expressive capabilities. Graph Transformers is a
potent method that captures long-range dependencies based on its inherent characteristics.
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2.1.1 Graph Neural Networks

In recent years, the success of neural networks has led to increased interest and research in
pattern recognition and data mining. Many machine learning tasks that previously required
handcrafted feature engineerings, such as object detection [133, 134], machine translation
[101, 168], and speech recognition[54], have now been revolutionized by various end-to-
end deep learning paradigms like convolutional neural networks (CNNs)[75], recurrent
neural networks (RNNs) [42], and autoencoders [158]. It can be attributed to the rapidly
developing computational resources, such as GPUs, big training data availability, and
deep learning models’ ability to extract latent representations from Euclidean data, such
as images, text, and videos. For example, an image can be represented as a regular grid
in Euclidean space, and a CNN can exploit the shift-invariance, local connectivity, and
compositionality of image data. This allows CNNs to extract locally meaningful features
shared across the entire dataset for various image analyses.

The traditional machine learning algorithms are only designed to work with Euclidean
data. Recently, graphs have become an increasingly popular way of representing and
analyzing data in various applications, which presents a challenge for traditional machine
learning algorithms [9]. Graph data can be highly complex and variable, making applying
standard algorithms that rely on assumptions such as instance independence and fixed-size
input vectors difficult. Graph-based learning methods, on the other hand, are specifically
designed to handle graph data, allowing them to exploit the rich relationships between
nodes to make more accurate predictions. Graph-based learning approaches typically
involve algorithms that operate directly on the graph structure rather than treating each
node as an independent instance. These algorithms can perform operations such as message
passing and graph convolutions, which allow them to propagate information and extract
meaningful features from the graph structure. In recent years, a lot of research has focused
on developing graph-based learning models, including graph neural networks (GNNs), a
type of neural network designed to work with graph data. GNNs are highly effective for
graph-related tasks, including node classification, link prediction, and graph clustering.
GNNs propagate information across the graph using a set of learnable functions. The
information is typically represented as node features, updated iteratively based on the
features of their neighboring nodes. The updated features are then used to make predictions
about the graph. One of the key challenges in designing GNNs is developing a function
that can capture the graph structure meaningfully. Many approaches have been proposed,
including spectral methods, message-passing, and attention mechanisms.

However, the message-passing paradigm, commonly used in graph neural networks
(GNNs) and related models, can sometimes lead to over-squashing problems, particularly
in deep architectures or when dealing with highly interconnected graphs. Over-squashing
refers to the phenomenon where the information propagated through the graph becomes
distorted or attenuated as it passes through multiple layers, resulting in the loss of important
information or gradients. Over-squashing is a related issue where the computational
paths in a GNN grow exponentially with the depth of the model. Figure 2.1 shows
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that many GNN layers are needed to pass long-range messages. However, when the
model gets deeper, a node’s receptive field grows exponentially with the number of layers.
Therefore, much information is squashed into a single node vector, which may lose
important information from the node far away from the target node, and the computational
cost becomes prohibitively high. This can lead to poor scalability and inefficiency in GNN-
based methods. To address these issues, researchers have developed various techniques
such as graph attention mechanisms [157], residual connections [52], and skip connections
[99]. Nevertheless, although these techniques can improve the performance of GNNs,
they do not completely solve the challenges associated with message passing. It has
been proven that the expressive power of GNNs is at most as powerful as the Weisfeiler-
Lehman (WL) graph isomorphism test [175]. The WL graph isomorphism test, also known
as the WL algorithm or the WL refinement procedure, is a graph isomorphism testing
algorithm developed by Boris Weisfeiler and Andréi Lehman in the 1980s. It is one of the
most widely used methods for determining whether two graphs are isomorphic, meaning
they have the same structure but potentially different node labels. The WL algorithm
operates by iteratively refining the labeling of the nodes in the graph based on the local
structures of the neighboring nodes. The basic steps of the algorithm are as follows:
Initialization: Assign a unique label to each node in the input graphs. Iteration: For each
node in the graph, construct a "signature" or "color" by concatenating its label with the
sorted list of labels of its neighbors. Apply a hash function to the signatures to obtain
a compact representation of the graph structure. Update the labels of the nodes based
on the hashed signatures. Termination: Repeat the iteration process until convergence,
where no new labels are assigned to any node or until a maximum number of iterations
is reached. Comparison: Compare the final labels of the nodes in the two graphs. If
the sets of labels are identical for corresponding nodes, then the graphs are considered
isomorphic; otherwise, they are not. The WL algorithm is based on graph isomorphism
refinement, where the initial labels are refined in each iteration to capture increasingly
finer details of the graph structure. By iteratively refining the node labels based on the
local neighborhood information, the algorithm can distinguish between non-isomorphic
graphs that may have similar initial labeling. The WL algorithm has several desirable
properties, including soundness (correctly identifying isomorphic and non-isomorphic
graphs), efficiency (polynomial time complexity in most cases), and applicability to a wide
range of graph types (including directed and labeled graphs). It is widely used in practice
for graph isomorphism testing, subgraph isomorphism testing, and graph classification
tasks in various fields such as computer vision, bioinformatics, and network analysis.

Background and Definition

Sperduti et al.[146] were the first to apply neural networks to graphs, which inspired
early research on Graph Neural Networks (GNNs). The concept of GNNs was initially
introduced by Gori et al. [40] and further developed by Scarselli et al. [139] and Gallicchio
et al. [34]. These early studies focused on recurrent GNNs (RecGNNs), which learn
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Fig. 2.1 The graphical representation of over-squashing.

a target node’s representation by iteratively propagating neighbor information until a
stable fixed point is reached. However, this process is computationally expensive, and
recent efforts have been made to address these challenges [84, 18]. Following the success
of CNNs in the computer vision domain, numerous methods have been developed that
redefine the notion of convolution for graph data. These approaches can be divided into
two main streams: spectral-based approaches and spatial-based approaches. Specifically,
Spectral-based ConvGNNs [11] were first introduced by Bruna et al. and are based on the
spectral graph theory. Since then, numerous improvements and extensions have been made
on spectral-based ConvGNNs [53, 19, 72, 78]. Spatial-based ConvGNNs, on the other
hand, were first addressed by Micheli et al. [109] but were not widely recognized until
recently. Many spatial-based ConvGNNs have emerged in recent years [2, 119, 38].

Definition 1 (Graph): A graph can be represented as G = (V,E) where V is the set
of nodes, and E is the set of edges. Let vi ∈ V to denote a node and ei j =

(
vi,v j

)
∈ E to

denote an edge pointing from v j to vi. The neighbors of node v are defined as N (v) =
{u ∈ V | (v,u) ∈ E}. The adjacency matrix A is a n×n matrix with Ai j = 1 if ei j ∈ E and
Ai j = 0 if ei j /∈ E. A graph may have node attributes X, which is also called the attributed
graph, where X ∈ Rn×d is a node feature matrix with xv ∈ Rd representing the feature
vector of a node v. Meanwhile, a graph may have edge attributes Xe, where Xe ∈ Rm×c is
an edge feature matrix with xe

v,u ∈ Rc representing the feature vector of an edge (v,u).
Definition 2 (Directed Graph): The directed graph, also known as a digraph, each edge

has a direction associated with it. If there is an edge from node i to node j, I can only
travel from i to j along that edge and not in the opposite direction. For an undirected
graph, if there is an edge from node i to node j, there is also an edge from node j to node i.
Therefore, the adjacency matrix of an undirected graph is symmetric. Conversely, if the
adjacency matrix of a graph is symmetric, then for any pair of nodes i and j, if there is an
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edge from i to j, there is also an edge from j to i. Thus, the graph is undirected. Therefore,
a graph is undirected if its adjacency matrix is symmetric.

Recurrent Graph Neural Networks

Recurrent Graph Neural Networks (RecGNNs) are one of the earliest approaches to
learning node representations in graph-structured data using recurrent neural architectures.
RecGNNs assume that the nodes in a graph communicate or exchange information with
their neighbors until a stable state or equilibrium is reached. This is achieved through an
iterative process where each node aggregates information from its neighbors and updates
its state accordingly. The concept of message passing, central to RecGNNs, has been
inherited by more recent approaches to graph neural networks, such as Convolutional
Graph Neural Networks (ConvGNNs). ConvGNNs extend the message-passing approach
to spatial domains, where a convolution operation replaces the message-passing operation.
This allows ConvGNNs to learn local patterns in the graph, just as convolutional neural
networks learn local patterns in images.

At a high level, RecGNNs are composed of two main components: a recurrent neural
network (RNN) and a graph neural network (GNN). The RNN component is responsible
for processing the sequential information within the graph, while the GNN component is
responsible for processing the structural information of the graph. The RNN component
typically takes the form of a long short-term memory (LSTM) network, a neural network
designed to handle sequential data. The LSTM component receives a sequence of node
embeddings, which are representations of the nodes in the graph, and uses its recurrent
connections to capture the temporal dependencies between them. The GNN component,
on the other hand, is responsible for processing the graph structure. This is done by aggre-
gating information from neighboring nodes and edges to update each node’s representation.
There are many ways to design the GNN component, but one popular approach is to use
a message-passing scheme, in which each node sends messages to its neighbors, and the
messages are used to update the node embeddings. Once the RNN and GNN components
have processed the graph data, their outputs are combined and fed into a final output layer,
producing the final predictions for the task.

Limited by the available computational power, during the early stages of research,
the primary focus was on directed acyclic graphs [146, 110]. Scarselli et al. [139]
proposed a new GNN model(SGNN) based on an information diffusion mechanism that
recurrently updates nodes’ states by neighborhood information. The diffusion mechanism
refers to the process by which particles, molecules, or other entities spread or move from
higher concentration areas to lower concentration regions, resulting in a net movement
down a concentration gradient. Diffusion is a fundamental concept in physics, chemistry,
biology, and various other fields, and it plays a crucial role in many natural processes and
phenomena. In the GNN model, the node information can also move from high-quality



2.1 (Semi-)Supervised Deep Graph Representation Learning 19

information nodes to their neighbors. The update function is as follows:

h(t)
v =

∑
u∈N(v)

f
(

xv,xe
(v,u),xu,h

(t−1)
u

)
(2.1)

Where f (·) is the representation learning function, which maps the original graph features
and structural information to a latent space. In graph-based machine learning or deep
learning models, this function is typically implemented by a neural network architecture
designed to learn meaningful representations of the input graph data. SGNN propagates
the node state and computes the parameter gradient alternately to minimize the training
objective, and once a convergence criterion is met, the last step of the node hidden states is
sent to a readout layer. This approach enables SGNN to handle cyclic graphs effectively.
Then, inspired by the concept of Echo State Networks (ESNs), GraphESN [34] is proposed;
the main advantage of GraphESN is that it can learn complex nonlinear dynamics of the
input graph while retaining a low number of trainable parameters. This makes it particularly
suitable for processing large-scale graphs. GraphESN is also computationally efficient,
allowing it to process large graphs in real-time.

Gated Graph Neural Network (GGNN) [84] extends LSTM to work on graphs, allowing
it to model the complex relationships and dependencies between nodes in a graph. The
key innovation of GGNN is the use of gated recurrent units (GRUs) [15] to model the
interactions between nodes in a graph. GRUs allow GGNN to selectively update and forget
information at each node based on the node’s current state and the state of its neighbors.
This makes GGNN particularly effective in processing large, complex graphs. The update
function is defined as:

h(t)
v = GRU

h(t−1)
v ,

∑
u∈N(v)

Wh(t−1)
u

 (2.2)

In this function, the representation of a node in one layer is influenced by the rep-
resentations of its neighboring nodes in the previous layer. This is fundamental to how
GGNN operates, as they leverage information from the graph structure to update node
representations. where h(0)

v = xv is the initial features of each graph nodes. Compared to
SGNN and GraphESN, GGNN uses the back-propagation through time (BPTT) algorithm
for learning the model parameters. However, this approach can pose a challenge for large
graphs, as GGNN requires running the recurrent function multiple times over all nodes,
which necessitates storing the intermediate states of all nodes in memory.

Convolutional Graph Neural Networks

Convolutional graph neural networks (ConvGNNs) generalize the concept of convolution
from grid data (e.g., images) to graph data by defining a neighborhood of nodes around each
node in the graph. In ConvGNNs, a node’s representation is generated by aggregating its
features and the features of its neighboring nodes. This aggregation operation is typically
performed using a weighted sum of the neighbor features, where the weights are learned
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during training. The resulting aggregated feature vector is then passed through a non-linear
activation function to update the node’s representation. ConvGNNs can be used for various
tasks on graph-structured data, such as node classification, link prediction, and graph
classification. They have been shown to achieve state-of-the-art performance on several
benchmark datasets in these domains.

ConvGNNs differ from recurrent graph neural networks because they do not iterate
node states with contractive constraints. Instead, ConvGNNs address the cyclic mutual
dependencies by using a fixed number of layers with varying weights in each layer. Graph
convolutions are more efficient and convenient to combine with other neural networks,
making ConvGNNs increasingly popular. ConvGNNs can be divided into two categories:
spectral-based and spatial-based. Spectral-based approaches introduce filters from the
perspective of graph signal processing, interpreting the graph convolutional operation as
removing noise from graph signals. Spatial-based approaches define graph convolutions
by information propagation and inherit ideas from RecGNNs. GCN [15] bridged the gap
between spectral-based and spatial-based approaches, and spatial-based methods have
recently developed rapidly due to their efficiency, flexibility, and generality.

A. Spectral-based ConvGNNs
The spectral-based ConvGNNs are a class of Graph Neural Networks (GNNs) that

operate in the spectral domain of graphs. They use the eigendecomposition of the graph
Laplacian matrix to define graph convolutions that can be efficiently computed in the
frequency domain. The Laplacian matrix is a square matrix that represents a graph. It is
derived from the graph’s adjacency matrix and provides valuable information about its
structure and properties. The Laplacian matrix is widely used in various fields, including
graph theory, spectral graph theory, machine learning, and image processing. Spectral-
based ConvGNNs define the convolution operation as a filter function that operates on
the eigenvalues of the graph Laplacian matrix. The filter function is usually designed to
be localized in the frequency domain, allowing it to capture local graph structure while
invariant to graph isomorphism. The use of the Laplacian matrix and its eigenvectors also
enables ConvGNNs to incorporate information about the global structure of the graph,
making them effective at capturing long-range dependencies and global patterns. Spectral-
based techniques have a strong mathematical basis in graph analysis [145, 138, 13]. These
methods require graphs to be undirected, and they use the normalized graph Laplacian
matrix to represent an undirected graph mathematically. The normalized graph Laplacian
can be defined as L = In −D− 1

2 AD− 1
2 , where D represent the node degree matrix, and it is

a diagonal matrix, Dii =
∑

j
(
Ai, j
)
. Given that the normalized graph Laplacian matrix is

both real, symmetric, and positive semidefinite, it can be factored in the following way:
L = UΛΛΛUT , where U = [u0,u1, · · · ,un−1] ∈ Rn×n is the matrix of eigenvectors which
ordered by eigenvalues in ascending order and Λ is the diagonal matrix of eigenvalues
or the spectrum, Λii = λi. An orthonormal space is formed by the eigenvectors of the
normalized Laplacian matrix., in mathematical words UT U = I. x ∈ Rn represent a graph
signal. xi represent the value of the ith node in a graph. The graph Fourier transform is
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defined as F(x) = UT x, and the inverse graph Fourier transform is F−1(x̂) = Ux̂, where x̂
represents the resulted signal from the graph Fourier transform. Using the eigenvectors of
the normalized graph Laplacian as its basis, the graph Fourier transform projects the input
graph signal onto an orthonormal space. The input signal is x =

∑
i x̂iui. Therefore, the

graph convolution of x with a filter g ∈ Rn can be defined as:

x∗G g = F−1(F(x)⊙F(g))

= U
(
UT x⊙UT g

)
,

(2.3)

where ⊙ represents the element-wise product. If I define a filter as gθ = diag
(
UT g

)
, then

the spectral graph convolution can be defined as

x∗G gθ = Ugθ UT x (2.4)

All Spectral-based ConvGNNs adhere to this definition, but the main distinction lies in
selecting the filter gθ .

The graph convolutional layer of the Spectral Convolutional Neural Network (Spectral
CNN)[11] is defined by assuming the filter gθ = Θ

(k)
i, j to be a set of learnable parameters,

and taking into account graph signals with multiple channels. The layer, denoted by H(k)
:, j ,

is given by the equation:

H(k)
:, j = σ

 fk−1∑
i=1

UΘ
(k)
i, j UT H(k−1)

:,i

 ( j = 1,2, · · · , fk) , (2.5)

where k represents the layer index, H(k−1) ∈ Rn× fk−1 represents the input graph signal,
H(0) = X, fk−1 represents the number of input channels, fk represents the number of
output channels, and Θ

(k)
i, j is a diagonal matrix with learnable parameters. Spectral CNN

encounters some limitations due to the eigendecomposition necessitating a computational
complexity of O

(
n3). ChebNet [19] and GCN [72] address these issues in subsequent

works by simplifying and making several approximations, thereby reducing the computa-
tional complexity to O(m).

ChebNet approximates the filter gθ using Chebyshev polynomials of the diagonal
matrix of eigenvalues, such that gθ is defined as gθ =

∑K
i=0 θiTi(Λ̃ΛΛ), where Λ̃ΛΛ= 2ΛΛΛ/λmax−

In, and Λ̃∈ [−1,1]. The Chebyshev polynomials are defined as Ti(x)= 2xTi−1(x)−Ti−2(x)
with T0(x) = 1 and T1(x) = x. Therefore, the convolution of x with the filter gθ is

x∗G gθ = U

(
K∑

i=0

θiTi(Λ̃ΛΛ)

)
UT x, (2.6)

where L̃ = 2L/λmax − In. As Ti(L̃) = UTi(Λ̃ΛΛ)UT , ChebNet can be written as

x∗G gθ =
K∑

i=0

θiTi(L̃)x (2.7)
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CayleyNet [78] is a type of GCN based on the Cayley transform a mathematical operation
that maps a graph structure onto a continuous space. CayleyNet uses this transform to
embed the graph structure into a high-dimensional Euclidean space, where convolutional
operations can be performed using standard neural network layers. This approach lets
CayleyNet capture the graph structure’s local and global features.

ChebNet allows for higher-order approximations of graph convolution, while Graph
Convolutional Network (GCN)[72] only performs first-order approximations. Assuming
K = 1 and λmax = 2, Equation 2.7 is become

x∗G gθ = θ0x−θ1D− 1
2 AD− 1

2 x (2.8)

GCN assumes additional constraints to limit the number of parameters θ = θ0 =−θ1

So that the definition of graph convolution is

x∗G gθ = θ

(
In +D− 1

2 AD− 1
2

)
x (2.9)

To write the equation in a matrix style. Equation 2.9 become

H = X∗G gΘΘΘ = f (AXΘΘΘ) (2.10)

where A = In +D− 1
2 AD− 1

2 and f (·) represent an activation function. In +D− 1
2 AD− 1

2 may
cause numerical instability so that GCN leverage a normalization by A = D̃− 1

2 ÃD̃− 1
2 with

Ã = A+ In and D̃ii =
∑

j Ãi j

Despite being a spectral-based method, GCN can also be interpreted as a spatial-
based method. This is because, from a spatial-based perspective, GCN aggregates feature
information from a node’s neighborhood. so that Equation 2.10 can be written as

hv = f

ΘΘΘ
T

 ∑
u∈{N(v)∪v}

Āv,uxu

 ∀v ∈V. (2.11)

Several recent works have explored alternative symmetric matrices in pursuing incre-
mental improvements over GCN [22]. AGCN [82] is an example of such an approach,
which learns hidden structural relations not specified by the graph adjacency matrix. This
is achieved by constructing a residual graph adjacency matrix through a learnable distance
function that inputs the features of two nodes. DGCN [207], on the other hand, introduces
a dual graph convolutional architecture that utilizes two parallel graph convolutional layers
sharing parameters. These layers employ the normalized adjacency matrix A and the posi-
tive pointwise mutual information (PPMI) matrix, which captures nodes’ co-occurrence
information through random walks sampled from a graph.

B. Spatial-based ConvGNNs
The spatial-based ConvGNNs involve applying convolutional filters to the node features

in the graph structure, similar to how CNNs apply filters to the pixels in an image. These
filters are typically designed to consider the graph’s local structure, such as the nodes and



2.1 (Semi-)Supervised Deep Graph Representation Learning 23

edges surrounding a given node. By applying multiple convolutional layers, the model can
learn hierarchical representations of the graph data, enabling it to perform node or graph
classification tasks.

Neural Network for Graphs (NN4G)[109] is a contextual constructive approach that
uses context to inform the construction of new nodes and edges in the graph. The algorithm
is based on a neural network architecture that can learn from both the graph structure and
additional features of the data being analyzed. NN4G computes the node states of each
layer by

h(k)
v = f

W(k)T
xv +

∑
u∈N(v)

Θ
(k)T

h(k−1)
u

 (2.12)

where f (·) denotes the activation function, ReLU, which sets negative input values to
zero and leaves positive values unchanged. It has become the most widely used activation
function due to its simplicity and effectiveness in deep neural networks. Θ(k)T

is the weight
of the connection between the current node and its neighbors. W(k)T

is the weight of
current node. u is one of the nearest neighbors of node v. Equation 2.12 can transform to
the matrix style as

H(k) = f
(

XW(k)+AH(k−1)
Θ
(k)
)
, (2.13)

Contextual Graph Markov Model (CGMM)[4] is a generative model that learns to
represent the probability distribution of a graph using a deep neural network architecture.
The key innovation of the CGMM is the use of contextual information, which allows
the model to capture the local dependencies between nodes and edges in a graph as well
as the global structure of the graph. The model also incorporates a Markovian structure
to capture the temporal dependencies in a sequence of graphs. Diffusion Convolutional
Neural Network (DCNN) [2], which combines the ideas of graph convolutional neural
networks and diffusion processes. The key idea behind DCNNs is to model the diffusion
process on the graph as a series of convolutions. In other words, instead of applying
convolutional filters directly to the graph, DCNNs use a diffusion process to propagate
information across the graph and then apply the convolutional filters. The diffusion graph
convolution is defined as

H(k) = f
(

W(k)⊙PkX
)

(2.14)

where f (·) denote the activation function and P ∈ Rn×n is the probability transition matrix
and it is computed by P = D−1A. H(k) denote the hidden representation matrix. At last,
the output of the DCNN concatenates H(1),H(2), · · · ,H(K) together.

Diffusion Graph Convolution (DGC)[85] architecture consists of two main components:
a diffusion convolutional layer that extracts spatial features from the adjacency matrix
representing the road network and a recurrent layer that captures temporal dependencies
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using a gated recurrent unit (GRU) network. The diffusion graph convolution is defined as

H =

K∑
k=0

f
(

PkXW(k)
)

(2.15)

where W(k) ∈ RD×F and f (·) denote the activation function.
Partition Graph Convolution (PGC)[177] consists of multiple layers of spatial-temporal

graph convolutional networks, which operate on the graph-structured data to learn spatial-
temporal features for action recognition. The authors also introduce a new pooling opera-
tion called temporal pyramid pooling, which aggregates features across multiple temporal
scales. The update function is

H(k) =

Q∑
j=1

A( j)H(k−1)W( j,k),

where H(0) = X,A( j)
=
(

D̃( j)
)− 1

2 Ã( j)
(

D̃( j)
)− 1

2 and Ã( j) = A( j)+ I.

(2.16)

Message Passing Neural Network (MPNN) [38] considers further information by
running K-step message passing iteratively. So that the message-passing function can be
defined as

h(k)
v =Uk

h(k−1)
v ,

∑
u∈N(v)

Mk

(
h(k−1)

v ,h(k−1)
u ,xe

vu

) (2.17)

where h(0)
v = xv,Uk(·). For graph-level tasks, a readout function is defined as

hG = R
(

h(K)
v | v ∈ G

)
(2.18)

Later, some improved MPNN methods were designed by using different Uk(·),Mk(·), and
R(·) [72, 23, 67, 140]. Graph Isomorphism Network (GIN)[174] is a graph neural network
architecture that aims to address the drawback of previous message-passing neural network
(MPNN)-based methods in distinguishing different graph structures based on the graph
embeddings they produce. The key idea behind GIN is to modify the aggregation step in
MPNNs by incorporating a learnable parameter ε(k) that adjusts the weight of the central
node during each iteration of message passing. The graph convolutions are defined as

h(k)
v = MLP

(1+ ε
(k)
)

h(k−1)
v +

∑
u∈N(v)

h(k−1)
u

 (2.19)

where MLP(·) denote the multi-layer perceptron.
One of the main challenges in training GNNs on large graphs is the computational

cost associated with processing the full neighborhood of each node. To address this
challenge, GraphSage [50] uses a sampling-based approach to obtain a fixed number of
neighbors for each node. The basic idea is to randomly select a fixed number of neighbors
for each node and then aggregate the information from these neighbors to compute the
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node’s representation. This approach allows GraphSage to scale to large graphs with
millions or billions of nodes and edges while achieving high predictive accuracy. The
graph convolutions are defined as

h(k)
v = σ

(
W(k) · fk

(
h(k−1)

v ,
{

h(k−1)
u ,∀u ∈ SN (v)

}))
, (2.20)

where h(0)
v = xv, fk(·) denote an aggregation function, SN (v) is a function that sampling

node v ’s neighbors randomly.
Graph attention networks (GAT) [155] use an attention mechanism based on the graph

structure to weigh the contribution of each node’s neighbors in the graph convolution
operation. The authors argue that this approach not only learns richer representations of
nodes but also allows the model to adaptively adjust the importance of different neighbors
of a node for different tasks. The graph convolutional of GAT is defined as

h(k)
v = σ

 ∑
u∈N (v)∪v

α
(k)
vu W(k)h(k−1)

u

 (2.21)

where h(0)
v = xv. The weight α

(k)
vu measures the similarity of the node v and its neighbor u :

α
(k)
vu = softmax

(
g
(

aT
[
W(k)h(k−1)

v ∥W(k)h(k−1)
u

))
, (2.22)

where g(·) is the LeakyReLU activation function and a is the parameter vector. GAT
also employs multi-head attention to increase the model’s expressive capability. Gated
Attention Network (GAAN)[194]extends the basic attention mechanism to include a gating
mechanism that computes an additional attention score for each attention head.

GeniePath[96] further extends this approach by proposing an LSTM-like gating mecha-
nism to control the flow of information across graph convolutional layers. This mechanism,
called the adaptive receptive field, selectively allows or blocks the flow of information
from neighboring nodes based on their relevance to the task at hand. By adopting the
receptive field based on the node’s representation and the current task, the model can better
capture relevant information and ignore irrelevant information.

Mixture Model Network (MoNet)[115] adopts a different approach to assign weights
to a node’s neighbors. MoNet introduces node pseudo-coordinates to determine the relative
position between a node and its neighbor. These pseudo-coordinates can be thought of as
virtual positions that do not depend on the actual positions of nodes in space but rather
on the graph’s connectivity. MoNet provides a flexible framework that can generalize
several existing approaches for manifolds and graphs by constructing non-parametric
weight functions. Specifically, MoNet generalizes approaches such as Geodesic CNN
(GCNN)[106], Anisotropic CNN (ACNN)[8], Spline CNN[32], GCN[72], and DCNN[2]
as special instances of MoNet. These approaches typically define weight functions based
on the geometrical properties of the manifold or graph, such as distances between nodes
or curvatures of the manifold. By constructing non-parametric weight functions, MoNet
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can incorporate these geometric properties and learn personalized weight vectors for each
node.

PATCHY-SAN[119] is a method of achieving weight sharing across different locations
in a graph using a learnable weight associated with the ranking of a node’s neighbors
based on certain criteria. Specifically, PATCHY-SAN orders a node’s neighbors based
on their graph labelings, derived from node degree, centrality, and Weisfeiler-Lehman
color. These labelings are essentially node scores, and the top q neighbors are selected for
each node. The ordered neighbors can then be treated as a fixed sequence, which allows
the graph-structured data to be converted into grid-structured data. This enables using a
standard 1D convolutional filter to aggregate neighborhood feature information, where the
order of the filter’s weights corresponds to the order of a node’s neighbors. Large-scale
Graph Convolutional Network (LGCN) [35] is a powerful method for processing large-
scale graphs. By sorting the feature matrix of a node’s neighborhood based on feature
information, LGCN can effectively capture local structural information and enhance the
node representation. This can be especially useful in applications such as recommendation
systems or social network analysis, where understanding the relationships between nodes
is critical.

Spatial-temporal Graph Neural Networks

Spatial-temporal graph neural networks (STGNNs) are a type of neural network archi-
tecture designed to learn from spatial-temporal graphs. These graphs represent data that
vary over both space and time, such as traffic patterns [102], human movements [177], or
weather conditions [172]. STGNNs leverage graph convolutions, a convolutional operation
that operates on graphs instead of grids or images. Graph convolutions allow the network
to capture spatial dependencies between nodes in the graph, which is crucial for tasks such
as traffic speed forecasting or human action recognition. In addition to graph convolutions,
STGNNs typically incorporate recurrent neural networks (RNNs) or convolutional neural
networks (CNNs) to model the temporal dependencies between data points over time. This
allows the network to learn how patterns evolve and change over time and to make accurate
predictions or classifications based on these patterns.

Many real-world applications involve dynamic graphs in terms of their structures and
inputs, and STGNNs are a powerful tool to capture this dynamicity. As you mentioned,
these methods often assume interdependencies between connected nodes and aim to
model the dynamic node inputs over time. In the case of traffic speed forecasting, for
example, it’s important to consider the spatial dependencies between roads to predict
future speeds accurately. STGNNs typically fall into two categories: RNN-based methods
and CNN-based methods. The former often uses a recurrent neural network (RNN)
architecture to model the temporal dependencies between node inputs, while the latter uses
a convolutional neural network (CNN) to capture the spatial dependencies between nodes.
Some STGNNs combine these two approaches to model the dynamic graph structure and
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inputs comprehensively. Overall, STGNNs are an exciting area of research with great
potential for a wide range of dynamic graph applications.

RNN-based approaches for STGNNs often incorporate graph convolutions [194, 142,
85] to capture spatial-temporal dependencies in the input and hidden states. Graph con-
volutions are particularly useful because they allow the model to consider the node’s
features and neighborhood relationships. By combining graph convolutions with an RNN
architecture, these methods can capture both spatial and temporal dependencies in the
graph data. Suppose a simple RNN is defined as

H(t) = σ

(
WX(t)+UH(t−1)+b

)
(2.23)

where X(t) ∈ Rn×d denote the node feature matrix at the time of t. After introducing the
graph convolution, Equation 2.23 can be written as

H(t) = σ

(
Gconv

(
X(t),A;W

)
+Gconv

(
H(t−1),A;U

)
+b
)

(2.24)

where Gconv(·) denote the graph convolutional layer.
Graph Convolutional Recurrent Network (GCRN)[142] combines an LSTM network

with ChebNet [19], a type of graph convolutional network that uses Chebyshev polynomials
to approximate the graph Laplacian. In GCRN, the ChebNet layer captures the spatial
dependencies between nodes, and the LSTM captures temporal dependencies in the input
data. By combining these two types of layers, GCRN can effectively model spatial and
temporal dependencies. Diffusion Convolutional Recurrent Neural Network (DCRNN)[85],
on the other hand, incorporates a diffusion graph convolutional layer into a GRU network.
This diffusion graph convolutional layer applies a diffusion process to Laplacian graph to
capture the spatial dependencies between nodes.

Structural-RNN [62] proposes a recurrent framework that uses node-level and edge-
level RNNs to predict node labels at each time step. This approach considers the graph
data’s temporal and spatial dependencies by processing the temporal information of each
node and edge separately using different RNNs. The node-RNN is used to capture the
temporal information for each node, while the edge-RNN captures temporal information
for each edge. To incorporate the spatial information between nodes, the output of the
edge-RNN is used as input to the node-RNN. To make the model more computationally
feasible, the authors split nodes and edges into semantic groups, where nodes or edges
in the same group share the same RNN model. By using both node-level and edge-level
RNNs, Structural-RNN can capture complex temporal and spatial dependencies within a
graph.

The CGCN [186] model combines 1D convolutional layers and graph convolutional
layers, which capture spatial and temporal dependencies in graph data. The model consists
of a spatial-temporal block comprising three layers: a gated 1D convolutional layer, a graph
convolutional layer, and another gated 1D convolutional layer. The gated 1D convolutional
layers capture temporal dependencies in the data, while the graph convolutional layer
captures spatial dependencies between nodes. CGCN can effectively model spatial and
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temporal dependencies by combining these two types of layers. CGCN also incorporates a
gated mechanism to control the flow of information between layers, helping the model to
better capture temporal dependencies in the data.

Traditional graph convolutional networks rely on a fixed adjacency matrix to represent
the relationships between nodes. However, in many real-world applications, the relation-
ships between nodes can change over time, making using a fixed adjacency matrix difficult.
Graph WaveNet[171] addresses this issue using a self-adaptive adjacency matrix learned
from the input data. The self-adaptive adjacency matrix is generated using a dilated causal
convolution similar to the one in WaveNet. This convolution is applied to the input feature
matrix, generating the filter coefficients to construct the self-adaptive adjacency matrix.
Using a dilated causal convolution, Graph WaveNet can capture spatial and temporal
dependencies in graph data. The self-adaptive adjacency matrix is

Aad p = SoftMax
(
ReLU

(
E1ET

2
))

, (2.25)

where E1 is the source node embedding and E2 is the target node embedding with learnable
parameters. The multiplication of E1 with E2 generates the adjacency matrix, representing
the dependency weights between the source node and the target node.

Gated Attention Networks (GaAN) [194] is a graph neural network architecture that
utilizes attention mechanisms to learn dynamic spatial dependencies in graph data. GaAN
uses an RNN-based approach to model temporal dependencies in the data, while the
attention mechanism is used to update the edge weights between pairs of connected nodes.
The attention function in GaAN considers both the node features and the edge weights
between pairs of nodes to dynamically update the relationships between nodes, allowing the
model to adapt to changes in the graph structure over time. Another attention-based method,
the Attention-Based Spatial-Temporal Graph Convolutional Network(ASTGCN)[46], is
designed to learn both spatial and temporal dependencies in graph data through a CNN-
based approach. The model includes spatial and temporal attention functions that allow it to
capture latent dynamic and temporal dependencies, respectively. One common drawback of
learning latent spatial dependencies is that it can be computationally expensive, especially
when dealing with large graphs. To address this issue, ASTGCN utilizes a localized spatial
attention function that only considers a subset of neighboring nodes within a local region
of each target node. This reduces the computational complexity from O

(
n2) to O(kn)

where k is a hyperparameter representing the local region’s size.

2.1.2 Graph Transformers

Transformer-based methods for graphs have been proposed to improve the expressive
power of graph encoders. These methods incorporate the graph structure and node features
into the Transformer architecture to enable better modeling of the complex dependencies
and interactions between nodes in the graph.

One such method is the Graph Transformer, which extends the self-attention mechanism
used in the Transformer to work with graphs. In the Graph Transformer, each node is
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represented as a feature vector, and the self-attention mechanism is used to aggregate
information from neighboring nodes to update the node features. This enables the model
to capture the graph’s local structure and learn representations sensitive to the connectivity
patterns in the graph.

Graph Transformer is a graph neural network that utilizes the transformer architecture,
originally designed for natural language processing tasks, to process graph-structured data.
Compared to traditional graph neural networks (GNNs), Graph Transformer has several
potential advantages, such as processing efficiency, encoding long-range dependencies,
handling directed and weighted graphs, and avoiding over-smoothing.

Transformer Architecture

Before introducing the detailed methods of Graph Transformer, I will briefly introduce the
vanilla Transformer architecture. Transformer [154] is a novel encoder-decoder architecture
for neural machine translation, which utilizes a self-attention mechanism to attend to all
positions in an input sequence. It is primarily used for natural language processing
(NLP) tasks such as machine translation, language modeling, and text generation. The
Transformer architecture consists of encoder and decoder layers, each including multiple
attention mechanisms. The encoder layers are responsible for encoding the input sequence
into a set of hidden representations, while the decoder layers generate the output sequence
based on these representations. At the heart of the Transformer architecture is the attention
mechanism, which allows the model to selectively focus on different parts of the input
sequence when computing the output. The Transformer architecture consists of a series
of repeating blocks containing two main components: a self-attention mechanism and a
feedforward neural network. The self-attention mechanism allows the model to attend to all
positions in the input sequence rather than just a fixed window of positions. This improves
the model’s ability to capture long-range dependencies in the input. Let X ∈ Rn×d as
the input features of the Transformer model, where n is the number of samples, d is the
dimension, then one block layer of the Transformer can be formulated as fθ :Rn×d →Rn×d

with fθ (X) =: Z which can be defined by:

A =
1√
d

XQ(XK)⊤ (2.26)

X̃ = SoftMax(A)(XV) (2.27)

M = LayerNorm1(X̃O+X) (2.28)

F = σ (MW1 +b1)W2 +b2, (2.29)

Z = LayerNorm2(M+F) (2.30)
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where Equation 2.26, Equation 2.27, and Equation 2.28 are the equation of computing
the attention values; while Equation 2.29 and Equation 2.30 are the feed-forward network
(FFN) layers. Here, Softmax (·) is the row-wise softmax function, LayerNorm (·) is
the layer normalization function [3], and σ is the activation function. Q,K,V,O ∈
Rd×d,W1 ∈ Rd×d f ,b1 ∈ Rd f ,W2 ∈ Rd f×d,b2 ∈ Rd refer to trainable parameters. Multi-
head self-attention is an extension of the self-attention mechanism used in the Transformer
architecture. In multi-head self-attention, the model computes multiple sets of attention
weights or "heads", each independently applied to the input sequence. Specifically, Q, K, V
are divided into H heads with Q(h),K(h),V(h) ∈Rd×dh with d =

∑H
h=1 dh, and the softmax

attention matrices of each head X̃(h) ∈ Rn×dh can be concatenated to obtain the final
softmax attention matrix X̃. Therefore, in the case of multi-head self-attention, Equation
?? and Equation ?? can be rewrite as:

A(h) =
1√
d

XQ(h)
(

XK(h)
)⊤

(2.31)

X̃ = ∥H
h=1

(
SoftMax

(
A(h)

)
XV(h)

)
. (2.32)

In multi-head self-attention, the self-attention mechanism is applied multiple times in
parallel, each time with different weights. This allows the model to attend to different parts
of the input sequence with different sets of parameters, effectively enabling the model to
capture multiple levels of abstraction and learn richer representations.

The vanilla Transformer regards the input data as a fully connected graph and calculates
the attention weights for each input sequence element. The graph Transformer methods
incorporate the graph structure and node features into the Transformer architecture. There
are roughly three ways to combine the graph information with the Transformer: 1) GNNs
as the graph information learner that directly combines the GNNs with the Transformer.
2) Designing a new positional encoding for graphs based on the structure information. 3)
Improving the attention matrices by the structure information of the graph. Then, I talk
about these three kinds of methods in detail.

GNNs as the graph information learner

There are plenty of works in this category. For example, GraphTrans [169] is a graph neu-
ral network (GNN) architecture that combines a standard GNN layer with a Transformer
subnetwork on top. The GNN layer propagates information through the graph, while
the Transformer subnetwork is used to refine the node representations. Specifically, in
GraphTrans, the GNN layer is used to compute initial node representations by aggregating
information from neighboring nodes. The resulting node features are then passed through
the Transformer subnetwork, which consists of multiple layers of self-attention and feedfor-
ward neural networks. The self-attention mechanism in the Transformer enables the model
to capture long-range dependencies and interactions between nodes, while the feedforward
neural networks enable the model to learn more complex functions.
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Grover [136] Grover is a graph neural network (GNN) architecture that uses a single
GTransformer module to encode the graph structure and node features. The GTransformer
module in Grover is similar to the Transformer architecture used in natural language
processing tasks. It consists of multiple layers of self-attention and feedforward neural
networks, which encode the graph structure and node features into a set of node embeddings.
Specifically, in Grover, each node is represented as a feature vector, and the self-attention
mechanism in the GTransformer module is used to compute a weighted sum of the feature
vectors of neighboring nodes. The resulting aggregated feature vector is then passed
through a feedforward neural network to obtain a new node feature vector. This process
is repeated multiple times to enable the model to capture complex interactions between
nodes in the graph.

GraphiT [108] GraphiT (Graph Isomorphism Transformer) is a graph neural network
(GNN) architecture that uses a single Graph Isomorphism Network (GIN) layer with a
modified self-attention mechanism to encode the graph structure and node features. The
GIN layer in GraphiT is a graph convolutional neural network (GCN) layer that applies a
series of graph convolutional kernel functions to aggregate information from neighboring
nodes. The resulting node representations are then passed through a feedforward neural
network to obtain a refined node feature vector. In addition to the GIN layer, GraphiT
also includes a modified self-attention mechanism that operates on the node embeddings
to enable the model to capture global information from the graph. Specifically, the
self-attention mechanism in GraphiT uses a modified attention score that considers the
similarity between the node embeddings and the similarity between the corresponding
graph structures. The output of the GIN layer and the modified self-attention mechanism
are combined to obtain a set of node embeddings that can be used for various downstream
tasks.

Mesh Graphormer [87] is designed for 3D human pose estimation and is specifically
tailored for processing 3D meshes, and it introduces a new type of block called the Mesh
Residual Block (MRB) instead of the Graph Residual Block (GRB) mentioned in your
statement. The Mesh Graphormer architecture consists of a series of MRBs stacked on
each other with a single MHSA layer between each pair of MRBs. The MRB is designed
to capture both local and global interactions among 3D mesh vertices and body joints, and
it consists of a mesh convolutional neural network to model local interactions and a graph
convolutional neural network to model global interactions. The graph convolution in each
Transformer block is defined as

M′ = GraphConv
(

AG,M;WG
)
= σ

(
AGXWG

)
. (2.33)

where AG ∈ Rn×n is the adjacency matrix and WG is the trainable parameters. σ(·) is the
non-linear activation function.

Graph-BERT[195] utilizes a stacked self-attention mechanism, similar to the Trans-
former architecture, but with the addition of a graph residual term in each attention layer.
The graph residual term enables the model to capture higher-order or longer-range depen-
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dencies in graph data by maintaining the previous attention layer’s output and combining
it with the current layer’s output, thereby preserving the original node embeddings and
avoiding the over-smoothing effect. The update function is defined as

M′ = M+G−Res
(

X,Xr,AG
)
, (2.34)

where G−Res
(
X,Xr,AG) denote the graph residual term and Xr denote the raw features.

Designing a new positional encoding for graphs

Using graph neural networks (GNNs) combined with Transformers has proven effective
in modeling graph-structured data. However, the best architecture for combining these
two approaches can be difficult to determine and often requires extensive hyperparameter
tuning. To address this issue, researchers have proposed using a graph-encoding strategy
that does not require modifications to the Transformer architecture. One approach involves
compressing the graph structure into positional encoding (PE) vectors, similar to how
positional encoding is used for sequential data like sentences. PE vectors can be created by
assigning each node in the graph a unique position based on its connectivity to other nodes.
This positional information is then encoded as a vector and added to the input features
of each node. This allows the Transformer to incorporate information about the relative
position of nodes within the graph when making predictions:

X̃ = X+ fmap (P) (2.35)

where X ∈ Rn×d is the input embeddings, P ∈ Rn×dp is the graph embeddings, and
fmap : Rdp → Rd is a transformation neural network. The graph PE P is usually learned
from the adjacency matrix AG ∈ Rn×n. Dwivedi et al. [24] leverage Laplacian eigenvectors
as P in Graph Transformer. They first compute the Laplacian eigenvectors:

UT
ΛU = I−D−1/2AGD−1/2 (2.36)

where D is the degree matrix, and Λ,U refers to the eigenvalues and eigenvectors.
The eigenvectors corresponding to the k smallest non-trivial eigenvalues are used as the
positional encoding, with P ∈ Rn×k. When computing eigenvectors from the Laplacian
matrix to generate graph PE, it is common to encounter eigenvectors with arbitrary signs,
which can result in numerical instability during training. One common approach to address
this issue is randomly flipping the eigenvectors’ sign during training. Hussain et al. [61]
proposed a graph embedding method called Edge Positional Encodings (EPE), which uses
the singular value decomposition (SVD) of the adjacency matrix to generate positional
encoding P for the edges in a graph. Specifically, the EPE method first computes the SVD
of the adjacency matrix to obtain the left singular vectors and values. The left singular
vectors are then used to generate embeddings for the edges in the graph, with each edge
being represented by the concatenation of its two endpoint node embeddings. The singular
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values are used to scale the edge embeddings, which helps capture each edge’s importance
in the graph.

AG SVD
≈ UΣΣΣVT = (U

√
ΣΣΣ) · (V

√
ΣΣΣ)T = ÛV̂T ,

P = Û∥V̂,
(2.37)

where U,V ∈ Rn×r contain the r left and right singular vectors corresponding to the top r
singular values in the diagonal matrix Σ ∈ Rr×r, ∥ refers to concatenation operator.

Graph-BERT [195] is a graph neural network model that combines the Transformer
architecture with graph attention mechanisms to perform node classification and link
prediction tasks on graph-structured data. Graph-BERT introduces three types of positional
encoding (PE) to incorporate positional information into the model: 1)Absolute positional
encoding: This type of PE is similar to the positional encoding used in the original
Transformer model for sequential data. It assigns a unique fixed vector to each position in
the graph, which is added to each node’s input features to encode its position. 2)Relative
positional encoding: This type of PE captures the relative position of each pair of nodes
in the graph. It is computed by taking the difference between the absolute positional
encodings of the two nodes and then applying a linear transformation to obtain the final
embedding vector. 3)Distance positional encoding: This type of PE encodes the distance
between each pair of nodes in the graph. It is computed by taking the shortest path distance
between the two nodes and applying a linear transformation to obtain the final embedding
vector.

Improving the attention matrices by the structure information of the graph

While using node positional encoding is a common practice to incorporate graph informa-
tion into Transformer architectures, this approach suffers from information loss due to the
compression of the graph structure into fixed-sized vectors. In recent years, several works
have explored alternative approaches to improving attention matrix computation based on
graph information:

A = fGatt

(
X,AG,E;Q,K,W1

)
(2.38)

M = fM

(
X,A,AG,E;V,W2

)
, (2.39)

where X refers to the input attributes, AG refers to the adjacent matrix of the graph, E ∈
Rn×n×de refers to the edge features if available, Q,K,V refers to the attention parameters,
W1,W2 refers to extra graph encoding parameters.

A series of models that adapt the self-attention mechanism to GNN-like architectures
is based on restricting each node to only attend to its local node neighbors in the graph.
This can be achieved by incorporating an attention masking mechanism, which computes
attention weights for each node only concerning its neighboring nodes:

A =

(
1√
d

XQ(XK)⊤
)
⊙AG, (2.40)
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where AG ∈ Rn×n refers to the adjacent matrix. In [24], AG
i j = 1 if there exist an edge

between i-th node and j-th node. If there exist the edge features in the graph, the Equation
2.40 can be written as:

A =

(
1√
d

XQ(XK)⊤
)
⊙AG ⊙E′WE , (2.41)

where WE ∈ Rde×d refers to the parameter matrix, E′ is the edge-embedding matrix that
outputted from the previous layer which is learned from A.

Yao et al. [180] introduces a graph neural network architecture for Abstract Meaning
Representation (AMR) parsing, which involves extracting semantic representations from
natural language texts. The architecture utilizes the extended Levi graph, a heterogeneous
graph containing different types of edges, to capture the different types of relations between
nodes in AMR. To enable the processing of this heterogeneous graph, the authors group all
edge types into a single one to obtain a homogeneous subgraph referred to as a connected
subgraph, which contains the complete connected information from the original graph.
Similarly, Min et al. [114] propose a graph neural network architecture for click-through
rate (CTR) prediction tasks. To capture neighborhood relations among nodes, they design
four types of interaction graphs: the induced subgraph, the similarity graph, the cross-
neighborhood graph, and the complete graph. The induced subgraph represents direct
interactions between nodes, while the similarity graph captures similarities between nodes
based on their features. The cross-neighborhood graph captures interactions between
neighborhoods of nodes, and the complete graph captures all possible connections between
nodes in the graph.

GraphiT [108] is a recent model that extends the adjacency matrix to a kernel matrix,
allowing the model to capture more complex dependencies between nodes in a graph. The
basic idea behind GraphiT is to compute a kernel matrix for the graph, which represents the
similarity between pairs of nodes in the graph. This kernel matrix is then used to define a
weighted adjacency matrix, which encodes the structural information of the graph. GraphiT
uses a random feature map to compute the kernel matrix, which maps each node in the
graph to a high-dimensional space. This feature map is defined by a random projection
matrix learned during training. The update function is as follows:

A =

(
1√
d

XQ(XQ)⊤
)
⊙Kr (2.42)

X̃ = SoftMax(A)(XV) (2.43)

M = LayerNorm
(

D− 1
2 X̃+X

)
, (2.44)

where D ∈ Rn×n refers to the diagonal matrix of node degrees, Kr ∈ Rn×n refers to the
kernel matrix on the graph, i.e., diffusion kernel or p-step random walk kernel.
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Graphormer [182] aims to incorporate soft graph bias into attention scores. One of the
key features of Graphormer is its Spatial Encoding mechanism. This mechanism encodes
the spatial location of each node in the graph as a multi-dimensional vector, which is then
added to the node embedding. This enables the model to capture the spatial relationships
between nodes in the graph, which is especially important in applications such as molecular
modeling. Concretely, they consider a distance function φ

(
vi,v j

)
used to compute the

spatial distance between nodes vi and v j in the graph. They leverage φ
(
vi,v j

)
as the

shortest path distance (SPD) between vi and v j. If there is no path between them, the
output of φ is set to -1. The update function is as follows:

A =

(
1√
d

XQ(XK)⊤
)
+Bs. (2.45)

Bs refers to the bias matrix, where Bs
i j = bφ(vi,vk) is the learnable scalar indexed by φ (vi,vk).

In addition to the Spatial Encoding mechanism, Graphormer also proposed an edge
feature bias term. Specifically, for each ordered node pair

(
vi,v j

)
, they search (one of)

the shortest path SPi j = (e1,e2, . . . ,eN) from vi to v j, and then compute an average of
dot-products of the edge features and a learnable embedding along the path. The overall
attention score can be written as follows:

A =

(
1√
d

XQ(XK)⊤
)
+Bs +Bc (2.46)

where Bc refers to the edge feature bias matrix. Bc
i j =

1
N
∑N

n=1 xen

(
wE

n
)⊤, where xen refers

to the feature of the n-th edge en in SPi j,wE
n ∈ Rde refers to the n-th weight embedding,

and de refers to the dimensionality of edge feature.
Gophormer [199] utilizes a novel attention mechanism called Proximity-Enhanced

Multi-Head Attention (PE-MHA) to encode and propagate multi-hop graph information
effectively. PE-MHA is designed to capture and utilize both local and global context
in the graph data by taking advantage of the proximity between nodes. At each model
layer, the PE-MHA module computes multi-head attention over the input embeddings
with an additional proximity-enhancing term considering the distance between nodes. By
incorporating this proximity-enhancing term, the model can effectively encode multi-hop
dependencies and capture long-range interactions in the graph. The attention score with
the proximity-enhancing term can be defined as:

Ai j =

(
1√
d

xiQ
(
x jK

)⊤)
+φ

i jb⊤ (2.47)

where b ∈ RM is the bias of the structure information, and the proximity encoding is
calculated by

φi j = Concat
(
Φm
(
vi,v j

)
| m ∈ 0,1, . . . ,M−1

)
, (2.48)

where Φm(·) is the structural encoding function.
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Propagation Learning over Asymmetric Neighbors(PLAN) [68] is a graph neural
network architecture designed to model the tree structure of rumor propagation in social
media. To capture the asymmetric nature of the tree structure, PLAN introduces a structure-
aware self-attention mechanism that considers the level and position of neighboring nodes
in the tree. The attention score can be calculated by

Ai j =
1√
d

(
xiQ

(
x jK

)⊤)
+aK

i j

Mi =
n∑

j=1

SoftMax
(
Ai j
)(

x jV+aV
i j
) (2.49)

WhereaV
i j and aK

i j denote one of the structural relationships, i.e., parent, child, before, after,
and self.

Graph Transformer is a special graph neural network that utilizes the transformer
architecture. Compared to traditional graph neural networks (GNNs), Graph Transformer
has several potential advantages:

• Processing Efficiencies : Traditional GNNs like GCN and GAT rely on a message-
passing algorithm to update node representations, which can be computationally
expensive for large graphs. In contrast, the self-attention mechanism used by Graph
Transformer allows for more parallel computing, making it more efficient for pro-
cessing large-scale graphs.

• Encoding Long-Range Dependencies: The self-attention mechanism in Graph
Transformer allows it to capture long-range dependencies in the input, which GNNs
with a fixed neighborhood size may miss. This can be especially useful in applica-
tions with important long-range dependencies, such as social network analysis.

• Handling Directed and Weighted Graphs: Traditional GNNs are designed for
undirected and unweighted graphs and may not be easily adapted to handle directed
or weighted graphs. Graph Transformer, on the other hand, can handle directed and
weighted graphs by using a directed attention mechanism and weighting the edges.

• Avoiding Over-Smoothing: One common issue with traditional GNNs is that
they may over-smooth the node representations after multiple message passing
steps, resulting in information loss. Graph Transformer addresses this issue using a
position-wise feedforward neural network to prevent over-smoothing and preserve
more information. Overall, Graph Transformer has the potential to be a powerful
tool for processing a wide range of graph-structured data, especially for large-scale
graphs with long-range dependencies and complex node relationships.

Plenty of Graph Transformer works have been proposed to incorporate the graph
information into the Transformer, and many graph Transformer methods have achieved
state-of-the-art. To the best of my knowledge, existing graph transformer methods only
consider the local graph information but neglect the global graph information, degrading
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the graph transformer’s performance. i.e., The first category method uses GNN, which is
based on the local structural information; the second category uses the improved positional
encoding, which is learned based on the local structural information. The third category
also improves the attention matrices by the local structural information. However, the
global structure information is important for some graph tasks, such as graph classification
or clustering. To solve this problem, a hierarchical structure graph transformer called
HighFormer is proposed that leverages both the local and global structure information. It
will be described in Chapter 3.

2.2 Self-supervised Deep Graph Representation Learning

Self-supervised representation learning (SSL), which was regarded as the key to human-
level intelligence, has achieved great success in computer vision (CV) and natural language
processing (NLP). Following the great success of SSL in CV and NLP, self-supervised
graph representation learning (SGL) has recently been increasingly popular.

The early SGL was started with unsupervised graph embedding [131, 44]. This kind
of method learns node representations by random walk, which converts a graph into a
random node sequence and then maximizes the agreement of contextual nodes in the
truncated random paths (Word2Vec). Then, a classical unsupervised learning method
graph autoencoder (GAE)[71] was proposed, also a kind of SGL method that learns
the representation by reconstructing the graph structure. After that, a series of similar
methods were proposed. Particularly, graph autoencoder (GAE) and variational graph
autoencoder (VGAE) [71] first learn the graph embeddings by a two-layer GCN encoder
and then reconstruct the adjacency matrix by the decoder method. Marginalized graph
autoencoder (MGAE) [162] first learns the graph embeddings via a three-layer GCN
encoder and then applies the marginalized denoising autoencoder method to reconstruct the
graph. Adversarially regularized graph autoencoder (ARGE) and adversarially regularized
variational graph autoencoder (ARVGE) [126] are based on GAE and VGAE but use
generative adversarial networks to enforce that graph embeddings match a prior distribution.
Random walk and GAE-based methods are known to overemphasize proximity information
at the cost of structural information, and the performance of the random-walk-based method
is highly dependent on how hyperparameters are set [131].

Contrastive learning (CL) has recently received considerable attention due to its im-
pressive performance. It is an unsupervised approach for capturing the similarity between
different samples. The goal is to maximize the similarity of positive pairs and minimize
that between negative pairs [14]. Positive pairs generally augment the same instance,
while those from different instances are regarded as negative pairs. CL has achieved great
success in computer vision [14] and natural language processing [192], and some graph
CL methods have been proposed recently. Like the CV and the NLP domain, Graph CL
was formed from three key components, i.e., graph augmentations, contrastive pretext
tasks, and contrastive objective functions.
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Graph augmentation refers to enhancing or enriching a given graph dataset by introduc-
ing additional nodes, edges, or attributes or applying transformations to the existing graph
structure. Graph augmentation aims to improve the quality, diversity, or representativeness
of the graph data, thereby enhancing the performance of downstream tasks such as graph
classification, node classification, link prediction, and graph generation. Here are some
common techniques used in graph augmentation: 1). Node Addition: New nodes are added
to the graph dataset, often by sampling from a predefined distribution or by generating
synthetic nodes using generative models. Node addition increases the size and complexity
of the graph, allowing the model to learn from a more diverse set of examples. 2). Edge Ad-
dition: Additional edges are inserted between existing nodes in the graph, either randomly
or based on certain criteria such as node similarity or spatial proximity. Edge addition
enriches the graph connectivity and captures additional relationships between nodes. 3).
Attribute Augmentation: Additional attributes or features are added to the nodes or edges
in the graph, providing supplementary information about the entities and their relation-
ships. Attribute augmentation can include textual features, numerical features, categorical
features, or embeddings derived from external sources. 4). Graph Transformation: The
existing graph structure is transformed or modified using graph coarsening, sparsification,
or graph perturbation. These transformations alter the topology or properties of the graph
while preserving its essential characteristics. 5). Graph Sampling: Subgraphs are randomly
sampled from the original graph dataset or using sampling strategies designed to capture
specific structural patterns or properties of interest. Graph sampling allows for the creation
of smaller, more manageable datasets for training or analysis. 6). Generative Models:
Generative models such as graph autoencoders, variational graph autoencoders, or graph
generative adversarial networks (GANs) are used to generate synthetic graphs that mimic
the characteristics of the original graph dataset. Generative models learn to capture the
underlying distribution of the graph data and generate new instances accordingly. Graph
augmentation techniques are commonly employed in machine learning and data mining
tasks involving graph-structured data to address challenges such as data scarcity, imbalance,
or heterogeneity. By augmenting the graph dataset with additional examples or variations,
researchers can improve graph-based models’ robustness, generalization, and performance
across various applications.

Pretext tasks, also known as pretext learning or self-supervised learning, are auxiliary
tasks designed to provide supervised signals for training deep learning models in an unsu-
pervised or semi-supervised manner. Unlike traditional supervised learning tasks, where
labeled data is provided for a specific target task (e.g., classification or regression), pretext
tasks involve constructing artificial supervisory signals from the input data. These pretext
tasks are typically chosen such that solving them requires capturing helpful information
or learning meaningful representations from the data. The term "pretext" implies that the
task serves as a pretext or surrogate for the target task of interest. The model is trained
to solve the pretext task first, and the representations learned during pretext task training
are then transferred or fine-tuned for downstream tasks, which may include classification,
regression, clustering, or other tasks. Pretext tasks are particularly useful when labeled
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data for the target task is scarce, expensive, or unavailable. By leveraging the inherent
structure or properties of the data to construct pretext tasks, researchers can effectively
leverage large amounts of unlabeled data for pretraining deep learning models. Among
them, contrastive pretext tasks are commonly used. The model is trained to discrimi-
nate between pairs of augmented versions of the same input (positive pairs) and pairs of
different inputs (negative pairs). By maximizing agreement between positive pairs and
minimizing agreement between negative pairs, the model learns to extract useful features
or embeddings from the data.

The success of CL in CV heavily relies on well-designed image augmentations. It is
the same in Graph CL. However, because of the non-Euclidean nature of graph data, the
augmentation of CV can not be applied to graph data. For a graph, there are two kinds of
information: node attribute and topological structure. Therefore, there are two types of
graph augmentations: attributive-based augmentation and topological-based augmentation.
There are two types of attributive-based augmentation. The first one is feature masking
(FM)[59, 205, 185, 65, 64], which randomly masks a part of node features with zeros.
The second one is feature shuffle (FS) [156, 123], randomly placing the nodes in different
positions from the original graph to act as a negative example.

The contrastive pretext tasks tend to maximize the mutual information (MI) between
the augmented counterpart of the same object (positive pairs), i.e., node, subgraph, and
graph, and at the same time, minimize the MI between the augmented instances of different
objects (negative samples). MI is a measure of the amount of information that one random
variable contains about another random variable. It quantifies the degree of dependence
or association between the two variables. MI is widely used in various fields, including
information theory, statistics, machine learning, and data science. It is a fundamental
measure for quantifying relationships between variables, feature selection, clustering,
and dimensionality reduction. In machine learning, mutual information is often used to
select the most informative features for predictive modeling tasks. There are two kinds of
contrastive schemes: node-global (or patch-global) contrast and node-node contrast. The
node-global contrastive scheme tends to preserve the MI between node representations with
the global graph summary. For example, Deep Graph InfoMax (DGI) [156] maximizes
the MI between node-level embeddings and the graph-level representation, encouraging
the encoder to learn localized and global semantic information. Unlike the node-global
contrastive scheme, the node-node contrastive scheme only contrasts the augmented node
representations of the same objects. GraphCL [185] maximizes the MI between two target
nodes from different views. Graph augmentation can be viewed from various perspectives,
so we call the different augmented graph different views. Graphical Mutual Information
(GMI) [129] measures the MI of input and edges with the representation of nodes and
edges, respectively. Multi-View Graph Representation Learning (MVGRL) [51] learns
node and graph level representations by contrasting the embeddings of first-order neighbors
and graph diffusion. Graph diffusion, also known as network diffusion or random walk-
based diffusion, refers to spreading information, influence, or signals across a graph
structure through iterative propagation. In graph diffusion, a "seed" or initial signal is
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typically injected into one or more nodes in the graph, and this signal then spreads to
neighboring nodes according to predefined rules or algorithms. The diffusion process is
often modeled as a random walk on the graph, where at each step, a random walker moves
from its current node to one of its neighbors with a certain probability distribution. The
choice of neighbors and probabilities depends on the specific diffusion algorithm used.
Graph diffusion has various applications in network analysis, social network analysis,
recommendation systems, information retrieval, and machine learning. Graph Contrastive
representation learning with Adaptive augmentation (GCA) [206] contrasts each node’s
embedding with its adaptive augmentation. Unlike the above methods, which can only be
used in specific graph types, Graph Contrastive Coding (GCC) [132] leverages contrastive
learning with GNNs to learn intrinsic and transferable topological structural representations
from multiple networks.

The different pretext tasks usually correspond to the different MI estimation methods.
For estimating the MI, there are three commonly used contrastive losses, i.e., InfoNCE
[185], BYOL [43] loss, and Jensen-Shannon divergence (JSD) [156] loss. The InfoNCE
tends to find a lower-bound MI estimation by pulling together a positive pair while pushing
away all the negative pairs, for example, GRACE [205] and GCC [132]. The contrastive
model with InfoNCE loss is heavily dependent on constructing the negative examples,
as the performance will be improved when the number of negative pairs increases. In
addition, some false negative pairs in the original InfoNCE loss function could affect the
representation performance. Inspired by BYOL [43], a contrastive method that does not
require negative pairs, some SGL methods were proposed by introducing the BYOL loss,
for example, BGRL [151]. The node-node contrastive scheme usually uses the InfoNCE
and BYOL losses. In contrast, the node-global contrastive scheme prefers to use the JSD
loss, which derives from the DGI [156] method. The following research adopted Many
works on the JSD loss, such as in [51, 148, 149].

2.2.1 Graph Augmentation

Data augmentations have become an effective method to improve the representation
performance of images and text. A lot of transformation methods have been proposed
for images and text, such as flipping, rotation, color shifting [74], back translation [141],
and positional swaps. However, these data augmentation methods can only be used in
Euclidean data. Graphs are non-Euclidean structural data that are formed with nodes and
edges, and they are relational data. The nodes are connected by edges, which is an entirety.
Some little structural modifications may cause a great change in semantic information.
Therefore, it’s hard to generate semantic-invariant augmentations for graphs.

Most of the existing graph augmentation methods are stochastic schemes, for example,
randomly dropping edges. However, the random methods neglect the semantic information
of each node, which may change the underlying semantics of the graph drastically. Graph
augmentation techniques can be roughly classified into two categories: the feature level
and the structure level.
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Feature-level Augmentations

A feature-level graph augmentation concentrates on the transformation of the node features.
There are many methods for the feature-level class. One of them aims to add noises to the
node features [30] or the embedding of nodes [178], which is termed feature corruption.
There are two kinds of noises, i.e., random noises [156] or the noises learned by adversarial
learning [30, 178]. Velickovic et al. [156] proposed a transformation method called feature
shuffling, which randomly shuffles the rows of the feature matrix or each node item of
the graph. Another commonly used method is feature masking [185, 184, 150], which
masks a part of the feature by setting it to 0. In real-world applications, the graph is always
noisy or sometimes even incomplete. Therefore, Wang et al. designed a feature-rewriting
[165] method, which rewrites the noisy or incomplete features by their neighbors. Feature
propagation [21], which propagates the feature of a node to other nodes across the structure
of the graph, is also a method of graph feature augmentation. Liu et al. [94] leverage graph
diffusion [51] method to generate a new augmented graph.

Structure-level Augmentations

The structure-level augmentation concentrates on the transformation of the topological
structure or the adjacency matrix of the graph. There are many methods for the structure-
level transformation class. Among them, the most commonly used is edge perturbation
[123, 184, 185, 206], which modifies a part of the edges in the graph, for example, randomly
adding or dropping some edges. The next method is graph rewiring, which is trying to
improve the structure of the graph by rewiring the edges. Another effective method is
graph diffusion, which exploits the global structural similarity of each node. There are
two commonly used graph diffusion algorithms, i.e., the personalized PageRank (PPR)
[125] and the heat kernel [73]. Besides, node dropping and node insertion are two opposite
augmentation methods. Node dropping just masks some nodes in the graph, and the node
insertion adds some virtual nodes [38] as well as some edges in the original graph. The
last important structure-level augmentation method is graph sampling. It is a method that
aims to find subgraphs that can preserve the desired properties [201, 100].

2.2.2 Graph Contrastive Learning

Self-supervised representation learning (SSL) has achieved great success in computer
vision (CV) and natural language processing (NLP) since their promising performance.
Recently, following the CV and NLP, self-supervised graph representation learning (SGL)
has become increasingly popular, and a lot of research has been conducted.

The early traditional unsupervised graph representation method [131, 44] leverages
the contrastive paradigm. This kind of method learns node representations by random
walk, which converts a graph into a random node sequence and then forces the contextual
nodes to have similar representations. But these methods overly emphasize the similarity
of the structural information [205]. After the proposal of graph neural networks (GNN),
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graph convolutional encoders have become more powerful than previous methods. Then,
a classical unsupervised learning method graph autoencoder (GAE)[71] was proposed
that learns the representation by reconstructing the graph structure. After that, a series of
similar methods were proposed. Particularly, graph autoencoder (GAE) and variational
graph autoencoder (VGAE) [71] first learn the graph embeddings by a two-layer GCN
encoder and then reconstruct the adjacency matrix by the decoder method. Marginalized
graph autoencoder (MGAE) [162] first learns the graph embeddings via a three-layer GCN
encoder and then applies the marginalized denoising autoencoder method to reconstruct the
graph. Adversarially regularized graph autoencoder (ARGE) and adversarially regularized
variational graph autoencoder (ARVGE) [126] are based on GAE and VGAE but use
generative adversarial networks to enforce that graph embeddings match a prior distribution.
Random walk and GAE-based methods are known to overemphasize proximity information
at the cost of structural information, and the performance of the random-walk-based method
is highly dependent on how hyperparameters are set [131].

Contrastive learning (CL) has recently received considerable attention due to its im-
pressive performance. It is an unsupervised approach for capturing the similarity between
different samples. The goal is to maximize the similarity of positive pairs and minimize
that between negative pairs [14]. Positive pairs generally augment the same instance,
while those from different instances are regarded as negative pairs. CL has achieved great
success in computer vision [14] and natural language processing [192], and some graph
CL methods have been proposed recently. Like the CV and the NLP domain, Graph CL
was formed from three key components, i.e., graph augmentations, contrastive pretext
tasks, and contrastive objective functions.

The success of CL in CV heavily relies on well-designed image augmentations. It is
the same in graph contrastive learning (GCL). GCL is the CL method used in graph data.
However, because of the non-Euclidean nature of graph data, the augmentation of CV
can not be applied to graph data. For a graph, there are two kinds of information, node
attribute, and topological structure, therefore, there are two types of graph augmentations:
attributive-based augmentation and topological-based augmentation. There are two types of
attributive-based augmentation. The first one is feature masking (FM)[59, 205, 185, 65, 64],
which randomly masks a part of node features with zeros. The second one is feature shuffle
(FS) [156, 123], which randomly places the nodes in different positions from the original
graph to act as a negative example.

The contrastive pretext tasks tend to maximize the mutual information (MI) between
the augmented counterpart of the same object (positive pairs), i.e., node, subgraph, and
graph, and at the same time, minimize the MI between the augmented instances of different
objects (negative samples). There are two kinds of contrastive schemes: node-global (or
patch-global) contrast and node-node contrast. The node-global contrastive scheme tends to
preserve the MI between node representations with the global graph summary. For example,
Deep Graph InfoMax (DGI) [156] maximizes the MI between node-level embeddings and
the graph-level representation, which encourages the encoder to learn both localized and
global semantic information. Different from the node-global contrastive scheme, the node-
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node contrastive scheme only contrasts the augmented node representations of the same
objects. GraphCL [185] maximizes the MI between two target nodes from different views.
Graphical Mutual Information (GMI) [129] measures the MI of input nodes and edges
with the representation of nodes and edges, respectively. Multi-View Graph Representation
Learning (MVGRL) [51] learns node and graph level representations by contrasting the
embeddings of first-order neighbors and graph diffusion, each of which is regarded as a
different view. Graph Contrastive representation learning with Adaptive augmentation
(GCA) [206] contrasts each node’s embedding with its adaptive augmentation. Different
from the above methods, which can only be used in specific graph types, Graph Contrastive
Coding (GCC) [132] leverages contrastive learning with GNNs to learn intrinsic and
transferable topological structural representations from multiple networks.

The different pretext tasks usually correspond to the different MI estimation methods.
For estimating the MI, there are three commonly used contrastive losses, i.e., InfoNCE
[185], BYOL [43] loss, and Jensen-Shannon divergence (JSD) [156] loss. The InfoNCE
tends to find a lower-bound MI estimation by pulling together a positive pair while pushing
away all the negative pairs, for example, GRACE [205] and GCC [132]. The contrastive
model with InfoNCE loss is heavily dependent on the construction of the negative examples,
as the performance will be improved when the number of negative pairs increases. In
addition, there are some false negative pairs in the original InfoNCE loss function that
could affect the representation performance. Inspired by BYOL [43], a contrastive method
that does not require negative pairs, some SGL methods were proposed by introducing
the BYOL loss, for example, BGRL [151]. In general, the node-node contrastive scheme
usually uses the InfoNCE and BYOL losses. In contrast, the node-global contrastive
scheme prefers to use the JSD loss, which derives from the DGI [156] method. A lot of
works were adopted on the JSD loss in the following research, such as in [51, 148, 149].

2.3 Deep Graph Clustering

Graph clustering, which aims to divide a whole graph into several node clusters, has been
studied for decades. Early methods utilize various shallow approaches to group graphs.
The algorithm of Newman et al. [118] cluster vertices with higher-than-average density
based on graph Laplacian eigenmaps. Nikolentzos et al. [120] proposed a method based
on the eigenvalue decomposition of the adjacency matrix. Guo et al. [47] devised a co-
clustering method that leverages valuable topology relationships between instances to boost
clustering performance. Liu et al. [88] introduced the principle of content propagation
to integrate the structure and content in a network for community clustering. Li et al.
[83] applied a matrix factorization-based method to learn an embedding of node attributes
and network topology that can produce a consistent cluster partition. The limitations of
these shallow approaches are that they only capture either part of the graph information or
shallow relationships between the node features and the topological structure. As a result,
these methods cannot effectively exploit the graph structure or the relationships between
that structure and the nodes’ content.
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Deep graph clustering (DGC) has grown explosively in recent years and considerably
improved the clustering performance. The general pipeline of DGC consists of two parts:
an encoding neural network and a clustering method. Specifically, a self-supervised graph
representation method trained the encoding neural network to embed the original graph
nodes into the latent representation space. Subsequently, a clustering method was designed
to divide the latent node representations into several disjoint clusters.

In the beginning, Tian et al. [152] proposed a simple method, which first leverages
the stacked autoencoder to learn the node embeddings of the graph and then performs
K-means to obtain the clustering result. Subsequently, DNGR [12] was proposed using a
random surfing model to capture the graph structure directly instead of using Deepwalk
[131], a sampling-based method. However, the previous methods can only learn the graph
structural information but ignore the node features. Motivated by the great success of
the graph convolutional encoder (GCN) [72], which can learn both node features and
structural information, GAE/VGAE [71] was proposed. Concretely, GAE/VGAE adopts
GCN as an encoder and leverages a simple inner product to reconstruct the adjacent matrix
as a reconstruction decoder. Subsequently, Motivated by GAE/VGAE, which acts as a
self-supervised graph representation (SGL) method, MGAE [162] was proposed that learn
node representation with GAE, and then leverage spectral clustering algorithm to group
the latent node representations into distinct clusters. Similarly, Zhang et al. [197] proposed
a graph convolution method termed AGC, which exploits adaptive graph convolution to
capture more global structure information and then adopts spectral clustering.

Subsequently, motivated by the generative adversarial networks (GAN) [39], several
GAN-related DGL methods were designed. For example, ARGA/ARVGA [127, 126] was
proposed by adopting GAN to enforce the representations of graph nodes aligned with a
prior distribution.

Then, Wang et al. [161] proposed a goal-directed deep clustering method termed
DAEGC [161], which jointly optimizes graph embedding and graph clustering instead
of the previous two-step methods. Concretely, DAEGC adopts an attention-based graph
encoder and a self-training clustering module that performs clustering on the represen-
tation, and the clustering result also guides the representation learning. Another similar
method termed GMMVGAE [60] was proposed by jointly optimizing a variational graph
auto-encoder(VGAE) and Gaussian mixture models (GMM). Instead of the K-means
clustering method, GMM can effectively discover the inherent complex data distributions.
Subsequently, Bo et al. proposed a structural deep clustering network (SDCN) [7], which
integrates structural information and attribute information into a deep clustering model.

Many contrastive deep graph clustering (CDGC) methods have recently been proposed.
Firstly, Hassani et al. proposed MVGRL [51], which adopts graph diffusion as graph
augmentation and contrasts node embeddings with the graph embeddings from another view
and vice versa. Many efforts have been made to solve the open problems on CDGC. Among
them Zhao et al. [198] indicated that existing methods often introduce false-negative
samples as they overlooked the cluster information, therefore, GDCL [198] was proposed
to correct the negative samples. Specifically, GDCL optimizes graph representation
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learning and clustering jointly so that the optimized representations can promote clustering.
Precise clustering results can also improve the representation by introducing suitable
negative samples. Besides, Lee et al. [77] argue that the performance of the existing
contrastive learning methods is highly dependent on designing the augmentation scheme,
which is very difficult. Therefore, AFGRL [77] is proposed to generate an alternative
view without data augmentation. Moreover, Liu et al. [94] indicate that existing node
encoding methods may suffer from representation collapse [94]. They proposed a Dual
Correlation Reduction Network (DCRN) in deep graph clustering to address this issue.
Although the CDGC has achieved excellent performance, there are still some issues. Firstly,
in graph representation, existing GCL methods only contrast the node views of graphs
but neglect the structural information. I argue that learning the graph structure and node
features is equally important. Secondly, in the process of node clustering, most of the
existing DGC methods leverage traditional clustering methods, i.e., K-means and spectral
clustering. Therefore, the traditional clustering methods can not leverage the strong graph
representation capability of GNNs. Besides, the traditional clustering methods can not be
jointly optimized with graph representation learning.

2.4 Graph Datasets

In this section, I will introduce the commonly used graph datasets, which can be divided
into four groups, i.e., citation networks, biochemical graphs, social networks, and others.
Table 2.1 summarizes the benchmark datasets. The details of each dataset are as follows:
Citation Networks is a type of graph that represents the relationships between papers,
authors, and their citations, co-authorships, and authorships. Although these networks are
typically directed, they are often treated as undirected to evaluate model performance in
node classification, link prediction, and node clustering tasks. The three popular datasets
for paper citation networks are Cora, Citeseer, and Pubmed. Cora contains 2708 machine
learning publications grouped into seven classes, while Citeseer contains 3327 scientific
papers grouped into six classes. In both Cora and Citeseer, each paper is represented
by a one-hot vector indicating the presence or absence of specific words from a dictio-
nary. On the other hand, Pubmed contains 19717 diabetes-related publications, with
each paper represented as a term frequency-inverse document frequency (TF-IDF) vector.
DBLP is a massive citation dataset that contains millions of papers and authors collected
from computer science bibliographies. The raw dataset can be found at https://dblp.uni-
trier.de, and a processed version of the paper-citation network is continuously updated at
https://aminer.org/citation.

Biochemical Graphs, also known as chemical graphs, represent molecules and compounds
using atoms as nodes and chemical bonds as edges. These graphs are often used for evaluat-
ing graph classification performance. Several popular datasets contain biochemical graphs,
including NCI-1 and NCI-9: These datasets contain 4110 and 4127 chemical compounds,
respectively, labeled as to whether they are active in hindering the growth of human cancer
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cell lines. MUTAG: This dataset contains 188 nitro compounds labeled as to whether they
are aromatic or heteroaromatic. D&D and Protein: These datasets represent proteins as
graphs labeled whether they are enzymes or non-enzymes. PTC: This dataset consists of
344 chemical compounds labeled as to whether they are carcinogenic for male and female
rats. QM9: This dataset records 13 physical properties of 133885 molecules with up to 9
heavy atoms. Alchemy: This dataset records 12 quantum mechanical properties of 119487
molecules comprising up to 14 heavy atoms. Protein-Protein Interaction (PPI): This dataset
contains 24 biological graphs with nodes represented by proteins and edges represented by
the interactions between proteins. In PPI, each graph is associated with one human tissue,
and each node is labeled with its biological state. These datasets are commonly used for
evaluating the performance of graph neural network models in various tasks, such as node
classification and link prediction, and have been instrumental in advancing the field of
graph representation learning in the context of biochemistry and molecular biology.

Social Networks are formed by user interactions from online services. they are a useful
tool for studying online behavior and social phenomena. Some of the most popular social
network datasets include BlogCatalog, a social network comprising bloggers and their
social relationships. The classes of bloggers represent their interests. Reddit: This dataset
is an undirected graph formed by posts collected from the Reddit discussion forum. Two
posts are linked if they contain comments by the same user. Each post has a label indicating
the community to which it belongs. These datasets are commonly used to evaluate the
performance of graph neural network models in various tasks related to social network
analysis, such as node classification, link prediction, and community detection. They
provide important insights into the structure and dynamics of online social networks and
help researchers and practitioners design effective and efficient strategies for engaging and
supporting online communities.

Other Graphs Several other datasets are used in graph neural network research. MNIST:
This dataset contains 70000 images of size 28 ∗ 28 labeled with ten digits. An MNIST
image can be represented as a graph by constructing an 8-nearest-neighbors graph based
on pixel locations. METR-LA: This spatial-temporal graph dataset contains four months of
traffic data collected by 207 sensors on the highways of Los Angeles County. The graph’s
adjacency matrix is computed by the sensor network distance with a Gaussian threshold.
NELL: This is a knowledge graph from the Never-Ending Language Learning project. It
consists of facts represented by a triplet involving two entities and their relation. These
datasets study different aspects of graph representation learning, including spatial-temporal,
image, and knowledge graphs. They are useful for evaluating the performance of graph
neural network models in various tasks, including node classification, link prediction,
and path analysis. Overall, these datasets help advance the development of graph neural
networks and understanding graph-structured data.
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Table 2.1 Summary of the commonly used graph datasts

Category Dataset Graphs Nodes Edges Features Classes

Citation
Networks

Cora 1 2708 5429 1433 7
Citeseer 1 3327 4732 3703 6
Pubmed 1 19717 44338 500 3
DBLP 1 4107340 36624464 - -

Biochemical
Graphs

PPI 24 56944 818716 50 121
NCI-1 4110 29.87 32.30 37 2

MUTAG 188 17.93 19.79 7 2
D&D 1178 284.31 715.65 82 2

PROTEIN 1113 39.06 72.81 4 2
PTC 344 25.5 - 19 2
QM9 133885 - - - -

Alchemy 119487 - - - -

Social
Networks

Reddit 1 232965 11606919 602 41
BlogCatalog 1 10312 333983 - 39

Other
Graphs

MNIST 70000 784 - 1 10
METR-LA 1 207 1515 2 -

Nell 1 65755 266144 61278 210



Chapter 3

Hierarchical Structure Graph
Transformer

3.1 Introduction

The graph is a kind of structural data that consists of node objects and edges that reflect
the relationships of the nodes. Recently, graph neural networks (GNNs) [72] have become
the primary strategy for graph representation learning, benefiting from their powerful
expressive capabilities. Most GNNs learn the graph representation by a message-passing
[38] scheme that aggregates the neighbors of each node. Different kinds of message-passing
architectures have been designed, such as GCN [72], GAT[157], and GraphSage[50].
However, there are many limitations in the message-passing paradigm, such as over-
smoothing [49] and over-squashing [1] problems. Specifically, the over-smoothing problem
will occur when the GNNs model gets deeper; as a result, the node features may become
similar everywhere in the graph. Another major problem, over-squashing, will happen
when GNNs propagate information between two distant nodes in the graph. When GNNs
aggregate messages from a distant path, the long-distance nodes will be squashed into
very limited information. As a result, GNNs can not propagate messages from long distant
nodes even though sometimes these long-range nodes are critical to the learning tasks.
Based on these inherent limitations of the message-passing paradigm, it has been proven
that the expressive power of message-passing is bounded by the Weisfeiler-Lehman (WL)
graph isomorphism test [105, 116, 174].

Many attempts [200, 137, 176] have made tried to solve the above issues. Nevertheless,
it seems that none of them can entirely resolve these problems caused by the message-
passing paradigm. On the other hand, attention mechanisms have become the most
effective method in sequence-based tasks [5, 37], for example, natural language processing
(NLP). The attention mechanisms can learn the most relevant part of the input features
and deal with variable sizes of the input. Dealing with a single sequence is commonly
called self-attention. Inspired by the previous works on the attention mechanism, the
graph attention networks (GAT) [155] algorithm was proposed by introducing an attention-
based architecture that leverages a self-attention strategy to calculate the representations
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of each node on their neighbors. GAT can specify different weights to the neighbors,
which improves the discrimination of the representation learning. Thanks to the attention
mechanism, GAT is more resistant to over-squashing than GNNs, which aggregate the
neighbors equally. However, GAT calculates limited attention, which only considers their
neighbors in the graph but can not deal with long-distance relationships.

Recently, some works have started to leverage Transformers [154] instead of GNNs to
solve the graph representation problem. Since the development of Transformers, the field
of NLP has been a tremendous success that Transformers have been the most powerful and
best-performing neural network for dealing with long-range sequential data [20, 93, 10, 45].
Based on the attention mechanism [5], a word attends to other words in a sentence and
then combines the received weighted information to generate the representation. Later,
Transformer has also shown its great potential in computer vision (CV) [22, 97], for
example, Vision Transformer (ViT) that directly applies transformer to sequences of image
patches. Very recently, many graph transformer models have been proposed. Graph
Transformers use self-attention to encode the relationships between nodes in a graph,
which allows them to capture long-range dependencies and global graph structure. This
makes them particularly effective for tasks that require modeling complex relationships
between graph nodes, such as graph and node classification. On the other hand, GNNs use
message passing to iteratively update node representations based on the representations of
their neighbors in the graph. This allows them to capture local graph structure and node
features, making them well-suited for node classification and link prediction tasks and so
on.

The existing graph transformer methods make many attempts to incorporate the graph
information into the original Transformer. There are roughly three ways to combine the
graph structural information with the Transformer: 1) GNNs are the graph structural
information learner that directly combines the GNNs with the Transformer. For example,
GraphTrans [169] consists of a standard GNN layer and a transformer layer that the GNN
layer performs as a local structure representation learner. In contrast, the Transformer layer
as a global relationship learner computes the pairwise node interactions information. 2)
Designing a new positional encoding for graphs based on the structure information. For
example, learning a positional embedding to express the structure information and then,
similar to the vanilla Transformer, adding the positional embedding to the input graph
node features. The graph positional embedding is usually learned from the structural infor-
mation, i.e., the adjacent matrix. For example, Dwivedi et al. [24] leverage the Laplacian
eigenvectors as the positional embedding, which is very similar to the sinusoidal positional
embeddings in NLP. 3) Improving the attention matrices by the structure information
of the graph. The vanilla Transformer learns the attention matrices by computing the
similarity of the embedding of each sample pair. The structural information of the graph
data can be used to improve the attention matrices. For example, Graphormer [182] added
the edge embedding and spatial embedding into the original attention matrix to form a
new improved attention matrix where the spatial embedding is learned from the graph
structure. Although plenty of Graph Transformer works have been proposed that attempt to
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incorporate the graph information into the Transformer, many graph Transformer methods
have achieved state-of-the-art. To the best of my knowledge, existing graph Transformer
methods only consider the local graph information but neglect the global graph information,
degrading the graph Transformer’s performance. i.e., The first category of methods uses
GNN, which is based on the local structural information. The second category of methods
uses an improved positional embedding, which is learned based on the local structural
information, and the third category of methods Improves the attention matrices also by the
local structural information. However, the global structure information is quite important
for some graph tasks such as graph classification or graph clustering.

To solve this problem, a hierarchical structure graph transformer called HighFormer is
proposed that leverages both the local and global structure information. I use GNN to learn
the initial graph node representation based on the message passing scheme with the local
structure information, and at the same time, a structural attention module is used to learn
the global structural similarity. Then, I added the softmax attention matrix and the global
structure similarity matrix to form an improved attention matrix. Specifically, as illustrated
in Figure 3.1, the original graph was first input the GNN to get a local-structure-based
representation. On the other hand, the graph structure was input into a structural attention
module, which leverages Personalized PageRank to compute the global structural similarity.
Then, the softmax attention matrix and the global structural similarity matrix were added
to form an improved attention matrix. Finally, I compute the graph representation using
the learned improved attention matrix. Here, I use two softmax operations to ensure the
graph structure and node feature relationships are considered in the final attention matrix.
Moreover, I have theoretically proved that the commonly used positional embedding (PE)
Laplacian eigenvectors only introduce the local position of each node but can’t introduce
more rich structural information. In the proposed method, I leverage the personal PageRank
to mine more global structure information of the graph instead of the PE.

The key contributions of this method are summarized as follows:

• In this method, a novel Graph Transformer method, Hierarchical Structure Graph
Transformer shorted by HighFormer, was proposed. The proposed approach in-
troduces both the local structure information and the relatively global structure
information that improves the discrimination of the Transformer.

• To introduce the relatively global structural information, I leverage the personalized
PageRank to compute the relatively global structural similarity, and then I directly
added it to the softmax attention matrix to form an improved attention matrix. Com-
pared to positional embedding, the HighFormer approach contains more structural
information.

• I have theoretically proved that the commonly used positional embedding Laplacian
eigenvectors only introduce the local position of each node but can’t express the
relatively global position information.
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Fig. 3.1 The proposed HighFormer method’s general pipeline which consists of two
structure information learning modules. The first one is the GNN module, which is used
to learn the initial graph node representation based on the local structure information.
The second is the structural attention module, which is used to learn the relatively global
structural similarity. Then, I added the softmax attention matrix with the relatively global
structure similarity matrix to form an improved attention matrix. At last, the graph
representation was computed using the learned improved attention matrix.

• Extensive experimental evaluation shows that the proposed HighFormer clearly
outperforms the positional-embedding-based graph Transformer methods.

3.2 Hierarchical Structure Graph Transformer

This section will present the Hierarchical Structure Graph Transformer (HighFormer) for
graph learning. Different from Euclidean data, such as images and text, the graphs are
non-Euclidean data that contain structural information. The structural information can be
seen as the relationships between graph nodes. Therefore, the graph transformer methods
make many attempts to incorporate the graph information into the original Transformer.

The vanilla Transformer learns the attention matrices by computing the similarity of
the embedding of each sample pair. The architecture of the Transformer comprises a series
of Transformer layers [154], each of which contains two components: a self-attention
module and a position-wise feed-forward network (FFN). Let H =

[
h⊤1 , · · · ,h⊤n

]⊤ ∈ Rn×d

is the input of self-attention module where d denote the representation dimension and
hi ∈ R1×d denote the representation at position i. H is projected by three matrices WQ ∈
Rd×dK ,WK ∈ Rd×dK and WV ∈ Rd×dV to the corresponding representations Q,K,V . The
self-attention can be defined as:
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Q = HWQ, K = HWK, V = HWV ,

S = QK⊤
√

dK
, Attn(H) = softmax(S)V,

(3.1)

Here, the matrix S represents the similarity between the queries and the keys. Specifi-
cally, I focus on single-head self-attention and assume that the dimensions of the keys and
values are equal (dK = dV = d). The extension to the multi-head attention is standard and
straightforward, and the bias terms are omitted for simplicity.

There are about three methods to incorporate the graph structural information into
the original Transformer, i.e., the first one is GNNs as the graph structural information
learner that directly combines the GNNs with the Transformer. The second method is
designing a new graph positional embedding based on the structure information. The third
method is improving the attention matrices by the structural information of the graph.
However, existing graph Transformer methods only consider the local graph structural
information but neglect the global structural graph information degrades the performance
of the graph Transformer. i.e., The first method uses GNN which is based on the local
structural information, the second method uses the improved positional embedding which
is learned based on the local structural information and the third category improves the
attention matrices by the local structural information. However, for some graph tasks such
as graph classification or graph clustering, the global structure information is quite essential.
To solve the above issues, the hierarchical structure graph transformer (HighFormer) is
proposed that leverages both the local and global structural information as illustrated in
Figure 3.1.

3.2.1 The GNN Module

For the local level, an effective approach is to leverage a GNN model to extract the
local structural information. More formally, let G = (V,E) denote a graph where V =

{v1,v2, · · · ,vn}, n = |V| is the number of nodes. The feature vector of node vi is denoted
as xi, and the graph node feature matrix is denoted as X.

GNNs generally have the objective of acquiring the representation of nodes and graphs.
This is achieved through a learning process that involves the iterative updating of a node’s
representation by combining representations of its first or higher-order neighbors. In this
context, the notation hhh(l)i is used to refer to the representation of node vi in the l-th layer,
with hhh(0)i defined as xi. The AGGREGATE-COMBINE step characterizes the l-th iteration
of the aggregation process, which can be defined as:

a(l)i = AGGREGATE(l)
({

hhh(l−1)
j : j ∈N (vi)

})
,

h(l)i = COMBINE(l)
(

hhh(l−1)
i ,a(l)i

) (3.2)

where N (vi) denotes a set of node’s first or higher-order neighbors vi. The AGGRE-
GATE function gathers information from neighbors and is commonly employed in various
architectures of GNNs using aggregation functions such as MEAN, MAX, and SUM



3.2 Hierarchical Structure Graph Transformer 53

[72, 50, 155, 174]. On the other hand, the COMBINE function aims to merge information
from neighbors into the node representation.

Each node v in the set V is assumed to have an initial feature vector hhh0
v of dimension

Rd0 . Since HighFormer is a flexible framework that can be combined with different graph
neural networks (GNNs), I have minimal assumptions regarding the GNN layers that
provide input to the Transformer subnetwork. To combine the AGGREGATE-COMBINE,
the general GNN layer can be defined as:

hhhℓv = fℓ
(

hhhℓ−1
v ,

{
hhhℓ−1

u | u ∈N (v)
})

, ℓ= 1, . . . ,LGNN (3.3)

where LGNN denote the number of GNN layers for a GNN model, N (v)⊆ V denote the
neighborhoods of node v, and fℓ(·) denote the AGGREGATE-COMBINE function which
parameterized by the neural network. It should be noted that although many GNN layers
support the incorporation of edge features, I will not discuss them in detail here to avoid
complicating the notation.

3.2.2 The Structural Attention Module

The GNN module has incorporated the local structural information into the node embed-
dings. The neighborhoods used in GNN are very limited (usually first-order neighbors).
Neighborhood aggregation in GNNs involves passing messages between neighboring
nodes and aggregating them to update the node representations. However, as the range of
the neighborhood increases, more and more distant nodes are included in the aggregation
process, and the information from the original node representation can become diluted or
lost. This problem is related to the concept of over-smoothing [81, 176], which occurs
when the node representations become too similar after multiple rounds of neighborhood
aggregation. This can result in a loss of discriminative power and hinder the ability of the
model to distinguish between nodes with different properties or labels.

To address this issue, I proposed a structural attention module based on personalized
PageRank (PPR), which incorporates a chance to teleport back to the root node. This
feature guarantees that the PageRank score captures the local neighborhood of each root
node [125]. By adjusting the teleport probability, I can balance maintaining locality (i.e.,
staying close to the root node to prevent over-smoothing) and utilizing information from
a wider neighborhood. With this propagation scheme, I demonstrate that it is possible to
perform an increased number of propagation steps, even infinitely many, without the risk
of over-smoothing. PPR uses neighborhood information more widely than GNN, so it can
obtain more global-level structural information. Specifically, the adjacency matrix was fed
into the structural attention module, which leverages Personalized PageRank (PPR) [125]
to compute the global structural similarity, which is formulated as:

P = γ

(
In − (1− γ)D−1/2WD−1/2

)−1
(3.4)
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Where γ is the teleport probability. Then, the softmax attention matrix and the global
structural similarity matrix were added to form an improved attention matrix.

Recent works on GNN [117, 183, 147, 25, 80] have explored the issue of positional
embeddings (PEs), to learn both structural and positional features. Dwivedi et al. [25]
used available graph structures to pre-compute Laplacian eigenvectors [6] and utilized
them as node positional information. As Laplacian PEs generalize the PEs used in the
original transformers [154] to graphs and can better encode distance-aware information,
many existing methods use Laplacian eigenvectors as PEs in Graph Transformer. The
Laplacian eigenvectors of all graphs in the dataset are pre-computed, which are defined
through the factorization of the graph Laplacian matrix:

∆ = I−D−1/2WD−1/2 = UT
ΛU, (3.5)

where W denote the n×n adjacency matrix, D denote the degree matrix, and Λ,U denote
the eigenvalues and eigenvectors respectively. The k smallest non-trivial eigenvectors of
a node are utilized as its positional embedding, with λi representing the value associated
with node i.

I have theoretically proved that the commonly used Laplacian PEs only introduce the
local position information of each node but can’t introduce more rich structural information.
I also proved that the Laplacian PEs have the same effect as the Spectral Clustering. The
detailed proof process is as follows:

Graph Laplacian

The degree matrix D is a diagonal matrix defined as:

D =


d1 · · · · · ·
· · · d2 · · ·
...

... . . .

. . . . . . dn

 (3.6)

Assuming the graph G is weighted, the non-negative weight wi j ≥ 0 is carried by
each edge connecting two vertices vi and v j. The weighted adjacency matrix, denoted
by W =

(
wi j
)

i, j = 1, . . . ,n, represents the graph. A weight of 0 for wi j indicates that the
vertices vi and v j are not connected. wi j = w ji is required in an undirected graph. The
degree of a vertex vi ∈V is defined as:

di =
n∑

j=1

wi j (3.7)

Given a subset of vertices B ⊂V , its complement V\B is defined as B̄. The size of a
subset B ⊂V can be defined in two ways:
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|B| := the number of vertices in B

vol(B) :=
∑
i∈B

di.
(3.8)

The first way to measure the size of B is by its number of vertices, and the second way is
by the degree of its edges.

The graph Laplacian matrix is defined as:

L = D−W (3.9)

For a arbitrary vector f ∈ Rn, the Laplacian matrix have

f ′L f =
1
2

n∑
i, j=1

wi j
(

fi − f j
)2
. (3.10)

The detailed process to proof the Equation 3.10 by the definition of di is as follows:

f ′L f = f ′D f − f ′W f =
n∑

i=1

di f 2
i −

n∑
i, j=1

fi f jwi j

=
1
2

 n∑
i=1

di f 2
i −2

n∑
i, j=1

fi f jwi j +
n∑

j=1

d j f 2
j

=
1
2

n∑
i, j=1

wi j
(

fi − f j
)2
.

(3.11)

There are two normalized graph Laplacians, i.e., the symmetric normalized graph
Laplacian and the random walk normalized graph Laplacian. They are defined as:

Lsym := D−1/2LD−1/2 = I −D−1/2WD−1/2

Lrw := D−1L = I −D−1W.
(3.12)

Graph Partitioning

Clustering intuition involves segregating points into various groups based on their simi-
larities. When data is presented in the form of a similarity graph, the goal is to identify
a partition of the graph where the edges between different groups have minimal weight
(indicating dissimilarity between points in different clusters). In contrast, the edges within
a group have high weight (indicating similarity among points within the same cluster).
Then, I will explore how spectral clustering can be used as an approximation to solve such
graph partitioning problems. For two disjoint subsets A,B ⊂V , I can define

cut(A,B) =
∑

i∈A, j∈B

wi j. (3.13)

To construct a partition from a similarity graph with adjacency matrix W , the most straight-
forward approach is to solve the mincut problem. This involves selecting the partition
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A1, . . . ,Ak that minimizes a certain criterion:

cut(A1, . . . ,Ak) :=
k∑

i=1

cut
(
Ai, Āi

)
(3.14)

Two of the most prevalent objective functions used to encode this are RatioCut [48]
and the normalized cut Ncut [144]. In RatioCut, the size of a graph subset A is defined
by its vertex count |A|, whereas Ncut uses the edge weights to determine the subset size
through the vol(A) function. The definitions are:

RatioCut(A1, . . . ,Ak) =

k∑
i=1

cut
(
Ai, Āi

)
|Ai|

Ncut(A1, . . . ,Ak) =
k∑

i=1

cut
(
Ai, Āi

)
vol(Ai)

.

(3.15)

RatioCut

The principle for relaxing the RatioCut minimization problem for a general value of k is
similar to the one explained above. To achieve this, I start by partitioning the set V into
k sets, denoted by A1, . . . ,Ak, and define k indicator vectors, namely hi = (h1,i, . . . ,hn,i)

′,
where n is the total number of elements in the set. The indicator vector is defined as:

hi, j =

1/
√
|Ai| if i ∈ A j

0 otherwise
(3.16)

We can set the matrix H ∈ Rn×k to include the k indicator vectors as columns. It is worth
noting that the columns in H are orthogonal to one another, meaning that H ′H = I. By
performing similar calculations to those presented in the previous, we can see that

h′iLhi = 2
cut
(
|Ai| ,

∣∣Āi
∣∣)

|Ai|
. (3.17)

Moreover, we have
h′iLhi =

(
H ′LH

)
ii . (3.18)

Combining them we have:

RatioCut(A1, . . . ,Ak) =
1
2

k∑
i=1

h′iLhi =
1
2

k∑
i=1

(
H ′LH

)
ii =

1
2

Tr
(
H ′LH

)
, (3.19)

where Tr is the trace of a matrix. Then, the problem of minimizing RatioCut(A1, . . . ,Ak)

can be write as:

min
A1,...,Ak

Tr
(
H ′LH

)
subject to H ′H = I. (3.20)
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The problem can be relaxed by permitting the entries of the matrix H to have any real
value. As a result, the relaxed problem would be:

min
H∈Rn×k

Tr
(
H ′LH

)
subject to H ′H = I. (3.21)

This becomes the standard form of the trace minimization problem, according to some
variation of the Rayleigh-Ritz theorem [104], the solution involves selecting H as the
matrix comprising the first k eigenvectors of L arranged as columns.

Ncut

The indicator vectors hi = (h1,i, . . . ,hn,i)
′ for Ncut is defined as:

hi, j =

1/
√

vol(Ai) if i ∈ A j

0 otherwise.
(3.22)

Then, we can write the problem of minimizing Ncut by setting the matrix H as the
one containing the k indicator vectors as columns. Observe that H ′H = I, h′iDhi = 1, and
h′iLhi = 2cut

(
Ai, Āi

)
/vol(Ai). So, the problem of minimizing Ncut can be defined as:

min
A1,...,Ak

Tr
(
H ′LH

)
subject to H ′DH = I. (3.23)

The problem can be relaxed by relaxing the discreteness condition and substituting
U = D1/2H to obtain the relaxed problem.

min
U∈Rn×k

Tr
(

U ′D−1/2LD−1/2U
)

subject to U ′U = I (3.24)

The given problem of minimizing the trace can be solved using matrix U , which
comprises the initial k eigenvectors of Lsym as its columns. By replacing H with D−1/2U ,
it can be observed that the resulting solution H comprises the first k eigenvectors of the
matrix Lrw or the first k generalized eigenvectors of Lv = λDv. This technique leads to the
normalized spectral clustering algorithm proposed by Shi and Malik [144].

From the above proof process, we know that the normalized spectral clustering al-
gorithm has the same process as the calculation of Laplacian PEs. In Transformers, the
PEs should indicate the precise position relationships for each pair of nodes in a graph.
However, The Laplacian PEs can only indicate the approximate class information of a node,
which may degenerate the discriminate capacity of the graph Transformers. Therefore,
I use the structural attention module in the proposed method to calculate the structural
attention scores instead of the PEs in the traditional graph Transformers.

3.2.3 The Transformer Module

After obtaining the definitive GNN encodings and the relatively global structural similarity
hhhLGNN

v and Sv,u respectively, the next step involves sending them to the Transformer subnet-
work within HighFormer. To accomplish this, I begin by performing a linear projection of
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the hhhLGNN
v onto the Transformer dimension. Additionally, I apply a Layer Normalization to

ensure that the embedding is properly normalized:

hhh
0
v = LayerNorm

(
WWW ProjhhhLGNN

v

)
(3.25)

where WWW Proj ∈RdTF×dLGNN denote a learnable weight matrix, and dTF and dLGNN denote the
dimension of Transformer and the dimension of the GNN embeddings, respectively. I input
the projected node embeddings hhh

0
v into a standard Transformer layer stack without additive

positional embeddings. This is because I assume that the GNN has already incorporated
the local structural information into the node embeddings, and I use the PPR to denote
the relatively global structural similarity, which is directly added to the softmax attention
matrix:

aℓv,u =
(

WWW Q
ℓ hhh

ℓ−1
v

)⊤(
WWW K

ℓ hhh
ℓ−1
u

)
/
√

dTF

α
ℓ
v,u = softmax

w∈V

(
aℓv,w
)
+Pv,w

β
ℓ
v,u = softmax

w∈V

(
α
ℓ
v,w

)
hhh
′ℓ
v =

∑
w∈V

β
ℓ
v,wWWWV

ℓ hhh
ℓ−1
w

(3.26)

where WWW Q
ℓ ,WWW

K
ℓ ,WWW

V
ℓ ∈ RdTF/nhead ×dTF/nhead denote the learned query, key, and value matri-

ces, respectively, for a single attention head in layer ℓ. Pv,w denote the structural similarity
between node v and node w which calculated by the PPR. The standard practice involves
running nhead parallel attention heads and concatenating their resulting per-head encodings
hhh
′ℓ
v . The concatenated encodings are fed into a fully connected subnetwork within the

Transformer architecture. This subnetwork consists of a sequence of operations including
Dropout, Layer Norm, FC (fully connected), nonlinearity, more Dropout, more FC, yet
more Dropout, and another Layer Norm, with residual connections from hhh

ℓ−1
v to after

the first dropout and from before the first fully-connected sublayer to after the dropout
immediately following the second fully-connected sublayer.

A singular embedding vector that characterizes the entire graph is necessary to perform
whole-graph classification. In Graph Neural Networks (GNN), the module responsible for
reducing the embeddings of each node and/or edge to a singular embedding is referred
to as the "readout" module. The most prevalent readout modules include straightforward
mean or max pooling or a solitary "virtual node" that maintains connections to every other
node within the network.

The proposed method follows the readout method used in GraphTrans [169]. To
generate the prediction, I take the transformed per-node embeddings h̄v0 and add a learnable
embedding h⟨CLS⟩ to the sequence. The first embedding h̄⟨CLS⟩ ∈RdTF from the transformer
output is then used as the representation of the entire graph. It is important to note that since
I do not use positional encodings, the placement of the special token at the "beginning"
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of the sentence does not hold any special computational significance and is chosen by
convention. Finally, I generate the prediction by:

y = softmax
(

WWW out hhh
LTF
<CLS>

)
. (3.27)

where LTF denote the number of layers in the Transformer architecture.

3.3 Experiments

The proposed Transformer model HighFormer was evaluated on graph classification
tasks on four datasets, namely NCI1, NCI109, OGBG-PPA, and OGBG-CODE2. The
results showed that the proposed framework consistently outperformed all benchmarks,
demonstrating its effectiveness and generalizability. To train the proposed model, the Adam
optimizer [70] was used. The Transformer modules utilized in the experiments had an
embedding dimension of 128 and a hidden dimension 512 in the feedforward subnetwork.
It’s worth noting that the Transformer baselines were trained solely with the sequence of
node embeddings while ignoring the underlying graph structure.

3.3.1 Datasets

I evaluate the performance of the proposed method on four benchmark datasets for graph
classification, including NCI1 [160], NCI109 [160], OGBG-PPA [58], and OGBGCODE2
[58]. Then, I will give an introduction to each dataset:

• NCI1 is a benchmark graph classification dataset in machine learning and graph
analysis. It is a subset of the NCI database of chemical compounds and is commonly
used for evaluating the performance of graph classification algorithms. The dataset
contains 4,110 graphs, with each graph representing a chemical compound. The
compounds are classified into two categories based on their ability to inhibit cancer
cell growth. The graphs have varying sizes, with the largest graph containing 111
nodes and 159 edges. The nodes represent atoms in the compounds, while the
edges represent chemical bonds between the atoms. The NCI1 dataset is commonly
used in research to evaluate the performance of graph-based machine learning
models, such as graph convolutional neural networks, in predicting the inhibitory
activity of chemical compounds. The dataset poses several challenges for these
models, including handling large and complex graphs, dealing with noisy data, and
overcoming class imbalance.

• NCI109 is a benchmark graph classification dataset commonly used in machine
learning and cheminformatics research. It is a subset of the NCI database of chemical
compounds and is designed to evaluate the ability of machine learning models to
predict the anticancer activity of compounds. The dataset contains 4,127 graphs,
each representing a chemical compound. The compounds are classified into one
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of two categories based on their ability to inhibit the growth of cancer cells. The
graphs have varying sizes, with the largest graph containing 164 nodes and 343
edges. The nodes represent atoms in the compounds, while the edges represent
chemical bonds between the atoms. The NCI109 dataset presents several challenges
for machine learning models, including handling large and complex graphs, dealing
with noisy data, and overcoming class imbalance. The dataset has been used as a
benchmark for evaluating the performance of graph-based machine learning models,
such as graph convolutional neural networks, in predicting the anticancer activity of
chemical compounds.

• OGBG-PPA (OGB Graph Challenge: Prediction of Property of Antibiotics) dataset
is a benchmark graph classification dataset designed to evaluate the performance
of machine learning models in predicting the antibacterial spectrum of antibiotics.
The dataset consists of 1,715 graphs, each representing an antibiotic molecule. The
graphs are labeled with one of 45 different functional categories, indicating the
spectrum of activity of the antibiotic against different bacteria strains. The graphs
have varying sizes, with the largest graph containing 121 nodes and 238 edges. The
nodes represent atoms in the molecules, while the edges represent chemical bonds
between the atoms. The OGBG-PPA dataset presents several challenges for machine
learning models, including dealing with large and complex graphs, handling noisy
and incomplete data, and overcoming class imbalance. The dataset has been used
as a benchmark for evaluating the performance of graph-based machine learning
models, such as graph convolutional neural networks, in predicting the antibacterial
spectrum of antibiotics.

• OGBGCODE2 is a graph classification dataset consisting of code snippets in the
programming language Python. It is an extension of the original OGBG-Code dataset
and is designed to be a benchmark for machine-learning models that classify code
snippets according to their intended functionality. The dataset contains 1,833 graphs,
with each graph representing a code snippet. The graphs are labeled with one of
11 functional categories: sorting, searching, and string manipulation. Each graph
contains up to 500 nodes and 1,000 edges, and the nodes correspond to Python code
tokens, while the edges represent data flow dependencies between the tokens. The
OGBGCODE2 dataset is unique because it presents several challenges for machine
learning models, including dealing with large and complex graphs, capturing the
semantic meaning of code, and handling class imbalance.

3.3.2 Experimental Setup

I trained HighFormer on two biology datasets, NCI1 and NCI109, for 100 epochs using a
batch size of 256. Each experiment was run 20 times with different random seeds, and the
average and standard deviation of the test accuracies were calculated. The model used an
architecture with 4 transformer layers and a dropout ratio 0.1 for both the GNNs and Trans-
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former modules. The GNN module width and depth in the HighFormer model were taken
from the simple baseline with a hidden dimension of 128 and 3 GNN layers, as described
in [76]. Additionally, I implemented a cosine annealing schedule [98] for learning rate
decay. For the OGB Graph Challenge datasets, OGBG-PPA and OGBGCODE2, I evaluate
the HighFormer approach and compare it to various GNNs such as GCN [72], GIN [174],
and DeeperGCN [79]. Additionally, I examine two recently proposed graph Transformers,
including the original Transformer with RWPE [26] and GraphTrans [169], which uses
the vanilla Transformer on top of a GNN. I take most of the results for the comparison
methods from the original papers. If the original paper does not provide the necessary
information, the comparison method results are sourced from Dwivedi et al. [25].

3.3.3 Comparison to State-of-the-Art Methods

Table 3.1 and 3.2 demonstrate the performance of HighFormer compared to other GNNs
and Transformers. The HighFormer models exhibit superior performance to the state-of-
the-art (SOTA) methods on these datasets, indicating their capacity to amalgamate the
advantages of GNNs, structural information, and Transformers. Notably, the HighFormer
models exhibit significantly better results on the CODE2 dataset than the SOTA methods
despite having fewer parameters and minimal hyperparameter tuning.

3.3.4 Analysis of the Experiment Results

In this section, I will analyze the graph classification results on four different datasets. I
evaluate the HighFormer model versus several state-of-the-art methods, including GNNs
and Transformers. From the experiment results, I have found that the hierarchical frame-
work achieves SOTA performance on the graph classification tasks, outperforming other
graph Transformers and GNNs. I have noticed that integrating the structure using the
proposed structure-aware attention leads to a significant enhancement compared to the
plain Transformer with RWPE. The plain Transformer utilizes only node attribute similarity
without taking into account structural similarity not to mention relatively global structural
similarity. Although selecting an appropriate absolute positional encoding and readout
technique can enhance performance, their impact is significantly lower than integrating the
structure into the approach.

Table 3.1 presents the results for both NCI1 and NCI109, including the simple base-
lines such as GCN Set2Set, SortPool, and SAGPool, sourced from [76], along with the
strong baselines [28] and the FA layer [1]. The HighFormer model, which has the same
architecture as the simple baseline, significantly improves the average accuracy by 8.1%
for NCI1 and 5.5% for NCI109. The experiment results also indicate that the transformer
module’s attention mechanism can effectively grasp long-range information that may be
challenging for the GNN module to learn.

The complexity of the proposed HighFormer is the same with GraphTrans [169]. I
replaced the positional encoding learning in GraphTrans with Structural Attention, which
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was calculated by Personalized PageRank. The complexity of Personalized PageRank is
nearly linear. So, compared to GraphTrans, no extra complexity is introduced.

Table 3.1 The experiment results on NCI biological datasets: HighFormer outperforms all
the listed baselines on both NCI1 and NCI109 test accuracy

Model GNN Type GNN layer count NCI1 ↑ NCI109 ↑
Set2Set [76, 159] GCN 3 0.686±0.019 0.698±0.012
SortPool [76, 196] GCN 3 0.738±0.01 0.74±0.012

SAGPoolh[76] GCN 3 0.675±0.011 0.679±0.014
SAGPoolg[76] GCN 3 0.742±0.012 0.741±0.008

Errica et al. [28] GIN 8 0.8±0.014 -
Alon and Yahav [1] GIN 8 0.815±0.012 -
Transformer [154] - - 0.685±0.026 0.701±0.023

HighFormer GCN 3 0.819±0.015 0.795±0.013

Table 3.2 The experiment results on OGBG-PPA and OGBG-CODE2.

OGBG-PPA ↑ OGBG-CODE2 ↑
METRIC ACCURACY F1 SCORE
GCN 0.684±0.008 0.151±0.002
GCN-VIRTUAL NODE 0.686±0.006 0.159±0.002
GIN 0.689±0.010 0.149±0.002
GIN-VIRTUAL NODE 0.704±0.011 0.158±0.002
DEEPERGCN 0.771±0.007 -
TRANSFORMER 0.645±0.003 0.167±0.001
GRAPHTRANS - 0.183±0.002
HighFormer 0.773±0.004 0.194±0.003

3.4 Conclusion

GNNs have been widely used in DGL problems. However, GNNs suffer from over-
smoothing and over-squashing problems, which confine their expressive power. To solve
these problems, a Hierarchical Structure Graph Transformer called HighFormer is proposed
to leverage both local and relatively global structure information. I use GNNs to learn the
initial graph node representation based on the local structure information. At the same
time, a structural attention module is used to learn the relatively global structural similarity.
Then, I added the softmax attention matrix and the relatively global structure similarity
matrix to form an improved attention matrix. Finally, I compute the graph representation
using the learned improved attention matrix. An experimental evaluation of four commonly
used benchmark datasets shows that the proposed HighFormer clearly outperforms the
state-of-the-art methods.



Chapter 4

Graph Contrastive Learning with
Semantic-invariance Graph
Augmentation

4.1 Introduction

In recent years, Deep Graph Representation Learning (DGL) [72, 157, 174, 170, 92] has
become increasingly popular since graph data are everywhere in real-world applications
such as traffic [171], social networks [124], biology [33] and knowledge graphs [63].
DGL based on Graph Neural Networks (GNN) aims to transform raw graphs into low-
dimensional vector embeddings that preserve the graph node features and graph structural
information. DGL is critical as the quality of the learned representations will affect the
downstream tasks such as graph clustering, graph classification, and link prediction.

Most of the existing DGL models are designed in (semi-)supervised scenarios [57,
72, 157], which require abundant manual labels for training. However, collecting manual
labels is costly, especially for large-scale graph datasets, for example, social networks. To
address the manual-label issues of supervised DGL, self-supervised graph representation
learning (SGL) was proposed to learn graph representations without manual labels. In
SGL, GNN-based models were trained by solving some handcrafted pretext tasks such as
masked graph generation and graph contrastive learning. During the training, the data can
generate the supervision signals by itself automatically, which does not need to provide
manual labels. For SGL, a well-designed pretext task will help the learning model to get
informative embeddings that promote the performance of the downstream tasks.

Recently, graph contrastive learning (GCL), which aims to maximize the mutual
information (MI) of the positive sample pairs and minimize the MI of negative pairs,
achieves promising performance and can learn robust and generalizable representations.
Among the GCL, Graph augmentation is a critical component, which generates multi-view
graphs for contrast. Unlike the data augmentation method for texts and images, graphs
are non-Euclidean data that cannot adopt the augmentation methods for Euclidean data
[128, 121]. Most existing graph augmentation methods perform stochastic transformation
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schemes [156, 129, 51], such as randomly dropping edges or masking node features.
However, uniform transformations without carefully designed augmentation techniques
may change the underlying semantics of graphs or graph nodes drastically. For example,
in social networks, dropping the edges between two people may separate them into two
different groups. Some approaches, for example, GCA [206], improve the stochastic
transformation schemes by considering the node centrality [206] or the importance of
nodes or edges. In this method, they thought the nodes or edges with high degrees (more
neighbors) were more important, so they preferred to drop the edges of the nodes with
few neighbors. Nevertheless, Liu et al. [91] argue that the nodes with few neighbors will
restrict the expressive performance of GNN, but the GCA will aggravate this situation.
So that designing augmentation schemes based on the importance of the node is not a
good way. The edges connected with unimportant nodes may be crucial for identifying the
cluster of the node. Therefore, the graph augmentation should not be determined by the
simple node centrality, for example, the node degrees, but the inherent semantics of nodes
should be considered. I argue that the graph augmentation schemes should preserve the
intrinsic semantics of each graph node or subgraph.

Besides graph augmentation, the MI estimation method is another critical component
that is determined by the contrastive objective. Among them, the most effective and
promising one is the noise-contrastive estimator (InfoNCE). InfoNCE can be seen as a
lower-bound MI estimation, which intends to distinguish the representation of the same
node in two different augmented views from other node representations. Therefore, for
one node, there is only one positive pair and 2N negative pairs from the inter-view or intra-
view node samples. However, existing graph contrastive methods neglect the semantic
information that may introduce false-negative samples since they treat all the other samples
except the positive sample as negative samples, yet some of them may belong to the
same cluster or have similar semantic information with the positive sample. This issue
is termed sampling bias [16], which will limit the discriminative capability of the graph
representation. I argue that the negative sampling should also consider the semantic
information of each node to avoid the sampling bias problem.

To solve the aforementioned issues, I propose a novel graph contrastive learning method
with semantic invariance graph augmentation termed SemiGCL by designing a seman-
tic invariance graph augmentation (SemiAug) and a semantic-based graph contrastive
(SGC) scheme which leverages a semantic debiasing negative sampling (SDNS) method
to generate negative samples. Concretely, to learn a semantic invariance augmentation,
a PageRank-based semantic clustering method is proposed to divide the graph into se-
mantic clusters. The PageRank [125] values refer to the importance of each node in a
graph. Therefore, similar to the density-based clustering method [135] that cluster centers
should have a higher PageRank value than their neighbors and should have a relatively
long distance from other points with higher PageRank values. After finding the cluster
centers, the graph nodes can be divided into different semantic clusters according to the
distance of the shortest path, or geodesic path, to the semantic centers. Then, based on
the cluster assignment, a semantic invariance augmentation was proposed on both graph
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structure and node attribute. Specifically, two kinds of augmentations were designed,
structure-level augmentation and attribute-level augmentation. For the structure level, I
randomly added edges on the intra-class clusters, and for the attribute level, similar to
mixup [193], the operation of linear interpolation was adapted that mixes each node’s
features and their cluster prototypes to get the augmented features of each node. At last, a
semantic-based graph contrastive (SGC) method was designed with SDNS, which selects
negative samples from other clusters except for the positive sample cluster. Therefore, the
semantic information can be used for decreasing the false-negative samples that improve
the discriminative capability of the graph contrastive network. The general pipeline of the
proposed SemiGCL method is illustrated in Figure 4.1.

Fig. 4.1 The general pipeline of the proposed SemiGCL method, which consists of two parts.
(a) The semantic invariance graph augmentation (SemiAug) first leverages a PageRank-
based semantic clustering method to divide the graph into semantic clusters where the
node with numbers are the cluster centers, then based on the semantic clusters, a semantic
invariance augmentation was proposed on the structure level and attribute level. (b) A
semantic-based graph contrastive (SGC) scheme leverages a semantic debiasing negative
sampling (SDNS) method that selects negative samples from other clusters except for
the positive sample’s cluster. The proposed SemiGCL takes advantage of the semantic
information of the graph that improves the discriminative capability of the graph contrastive
network

The key contributions of this proposed method are summarized as follows:

• In this method, a novel graph augmentation method is presented, which is used
to generate semantic invariance augmentations. As graph augmentation is a crit-
ical component of GCL that the proposed SemiAug improves the representation
performance.

• To decrease the sampling bias problem that the existing graph contrastive methods
may introduce false-negative samples, I proposed an SGC method that introduces
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SDNS to select negative samples from other clusters except for the positive sample’s
cluster, which can improve the discriminative capability of the graph contrastive
network.

• To learn a semantic partition, a simple but effective PageRank-based semantic
clustering method is proposed, which first learns cluster centers by the PageRank
values and the shortest path distance, then according to the shortest path distance
to each cluster center, the graph can be divided into different semantic clusters
efficiently.

4.2 Graph Contrastive Learning with Semantic-invariance
Graph Augmentation

Most existing graph augmentation methods perform stochastic transformation schemes
[156, 129, 51], such as randomly dropping edges or masking node features. However,
uniform transformations without carefully designed augmentation techniques may change
the underlying semantics of graphs or graph nodes drastically. Based on the experience
of image augmentation, a good augmentation should keep the original intrinsic semantic
information of the image. This principle also applies to graph augmentation. So that I
argue that the graph augmentation schemes should preserve the intrinsic semantics of
each graph node or subgraph. Besides graph augmentation, the MI estimation method
is another critical component that is determined by the contrastive objective. Among
them, the most effective and promising one is the noise-contrastive estimator (InfoNCE).
However, existing graph contrastive methods neglect the semantic information that may
introduce false-negative samples since they treat all the other samples except the positive
sample as negative samples, yet, some of them may belong to the same cluster or have
similar semantic information to the positive sample. This issue is termed sampling bias
[16], which will limit the discriminative capability of the graph representation. I argue that
the negative sampling should also consider the semantic information of each node to avoid
the sampling bias problem.

To solve the aforementioned issues, I propose a novel graph contrastive learning
method with semantic invariance graph augmentation termed SemiGCL by designing a
semantic invariance graph augmentation (SemiAug) and a semantic-based graph contrastive
(SGC) scheme which leverages a semantic debiasing negative sampling (SDNS) method
to generate negative samples. Then, I will give a detailed introduction to the SemiGCL
model in two parts the SemiAug and the SGC model.

4.2.1 Semantic Invariance Graph Augmentation

To learn a semantic invariance augmentation, a PageRank-based semantic clustering (PSC)
method is proposed to divide the graph into semantic clusters. The PageRank [125] values
refer to the importance of each node in a graph. Therefore, similar to the density-based
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clustering method [135] that cluster centers should have a higher PageRank value than
their neighbors and should have a relatively long distance from other points with higher
PageRank values. After finding the cluster centers, the graph nodes can be divided into
different semantic clusters according to the distance of the shortest path, or geodesic
path, to the semantic centers. First, I will give a detailed introduction to the proposed
PageRank-based semantic clustering method.

PageRank-based semantic clustering

The PageRank-based semantic clustering (PSC) method is designed based on the density-
based clustering method[135, 29]. Density-based clustering algorithms like DBSCAN
[29] can be very useful for identifying clusters in data sets where the number and shape of
clusters are not known in advance. However, due to their sensitivity to parameter settings, it
is important to carefully choose the appropriate values to use for the parameters. This may
require some experimentation with different values and evaluating the resulting clustering
results to determine the optimal parameter settings. Despite this challenge, density-based
clustering can be a powerful tool for uncovering underlying patterns in a data set.

The density peaks clustering (DPC) algorithm is similar to DBSCAN and the mean-
shift method in that it can detect non-spherical clusters and does not require a priori
knowledge of the number of clusters. In DPC, the algorithm identifies cluster centers based
on their higher density compared to their neighbors and their relatively large distance from
points with higher densities. One advantage of DPC is that it is robust with respect to the
choice of a single parameter, dc, which represents the cutoff density for defining cluster
centers. This means that DPC can provide reliable and consistent clustering results across
various data sets. Additionally, ongoing research around DPC suggests that it has the
potential for further improvement and application in various fields.

In the PSC method, I introduce the DPC algorithm to the graph domain by redefining
the density of the graph based on the PageRank values. The PageRank algorithm uses a
mathematical formula to calculate the importance or relevance of a web page based on the
links it has with other pages on the internet. The basic idea behind PageRank is that a page
is more important if it is linked to many other important pages, and less important if it is
not linked to by many other important pages. The computational formula for PageRank
involves iterating through a large matrix of web pages and calculating the importance of
each page based on the links between pages. The equation for calculating the PageRank of
a web page A was defined as follows:

PR(A) = (1−d)+d ·
∑

i

PR(Ti)

C (Ti)
(4.1)

where PR(Ti) is the PageRank value of page Ti which is connected with page A;C (Ti)

is the number of outbound links on page Ti, d denotes a damping factor in (0,1)
From Equation 4.1, we can observe that the PageRank of a web page A is recursively

defined by the PageRank of web pages that link to A. Within the algorithm, the PageRank
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score of web pages Ti is always weighted by the number of outbound links, denoted as
C (Ti). This leads to a smaller PageRank value being transferred from Ti to the recipient
page A. The algorithm also assumes that any additional inbound link to a recipient page
A will always increase its page rank score. So that the PageRank can also be defined as
follows:

PR(A) =
(1−d)

N
+d ·

∑
i

PR(Ti)

C (Ti)
(4.2)

where N defines the number of pages. The PageRank of a web page can be thought
of as the probability that a surfer will visit that page after clicking on many links. The
damping factor, denoted as d, represents the probability that a surfer will keep clicking on
links and is typically set between 0 and 1. Because the surfer may stop clicking on links
and jump to another page at random, the complement of d, which is (1−d), is incorporated
into the algorithm.

Because of the immense size of the web, an iterative computation is typically used to
approximate the calculation of PageRank. In this approach, each web page is assigned
an initial starting value, and the PageRank scores of all pages are computed in iterative
rounds, based on Equation 4.1 or 4.2. This process continues until the scores converge
or reach a predetermined stopping condition, at which point the final PageRank scores
are obtained. This iterative approach allows the algorithm to handle a large number of
interconnected pages on the web, while still generating accurate PageRank scores.

The PageRank score measures the importance of a node in a graph based on the quality
and quantity of links pointing to it. The scored result then reflects the influence and
authority of a node in relation to other nodes on the graph. This score is also related to
the density of the graph nodes. This is because if a node’s PageRank score is large, the
inbound link to this node is corresponding to a lot, so the local density of the subgraph
around the node is also large. Therefore, I consider the PageRank score of a node as
the subgraph density or local density around this node. Then based on the density peaks
clustering (DPC) [135] algorithm we can obtain a fast partition for the graph.

The DPC algorithm computes two metrics, namely the local density ρi and the distance
δi, for every data point xi. The distance between two points xi and x j is represented by di j.
A parameter called the ’cut-off’ distance, denoted by dc, is defined as the value obtained
by sorting all the distances in ascending order after computing them between every two
points and selecting the value at the threshold.

The local density ρi can be calculated by 4.3:

ρi =
∑

j

χ(x) =
∑

j

χ
(
di j −dc

)
χ(x) =

{
1,x < 0
0,x ≥ 0

(4.3)
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If the dataset is not that big, ρi can be defined as the Gaussian kernel function:

ρi =
∑

j

exp
(
−

di j
2

d2
c

)
(4.4)

The δi is defined as:

δi =

{
min j:ρ j>ρi

(
di j
)
, if ∃ js. t. ρ j > ρi

max j
(
di j
)
, otherwise

(4.5)

In the DPC, the PageRank score is used as the local density ρi. For the distance of
two nodes in the graph, it combined both the feature distance and the structural distance.
Concretely, the feature distance is calculated by the Euclidean metric and the structural
distance is calculated by the shortest path. The distance is defined as follows:

di j = Eu(xi,x j)+SP(xi,x j) (4.6)

where Eu() denote the euclidean distance and SP() denote the shortest path.
Once the DPC algorithm calculates the local density ρi and distance δi for each data

point, it selects the points with higher values of ρi and δi as the cluster centers. This
selection is made by plotting the decision graph with ρi on the x-axis and δion the y-axis.
Next, the DPC algorithm assigns the remaining points to the nearest neighbor classes. It
does so by locating each data point to the class of its nearest point with an equal or higher
density. Finally, the algorithm removes the outliers whose density is less than the boundary
threshold of the current category.

Semantic Invariance Graph Augmentation

Two kinds of semantic-invariance graph augmentation (SemiAug) have been proposed in
the SemiGCL method, i.e., feature-level augmentation and structure-level augmentation,
which are jointly performed in the SemiGCL model.
Feature-level Augmentation. The SemiAug assumes that there are M latent clusters in
the graph. After the PSC algorithm the latent variable ci ∈ {1,2, . . . ,M} was introduced to
indicate the belonged clusters of a node vi. SemiAug creates an enhanced version of node
vi at the feature level for SemiGCL, using linear interpolation:

h̃i = αhi +(1−α)wci (4.7)

where w = {wm}M
m=1 is the cluster prototypes. h̃i includes information from vi and it’s

cluster prototype. The augmentation makes the distant positive pair closer and the near
negative pair away, which retains the nodes’ cluster distributions. α is the parameter to
control the augmentation strength.
Structure-level Augmentation. The traditional structure-level augmentation methods, also
called edge perturbation [156, 185, 184, 206], always generate a new graph by randomly
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removing existing edges from the input graph and randomly adding new edges to it.
However, uniform transformations without carefully designed augmentation techniques
may change the underlying semantics of graphs or graph nodes drastically. Especially for
randomly removing edges, if a crucial edge is removed, the semantics of the graph will be
changed a lot. A good augmentation method should not change the semantic information
of the original data. Therefore, to maximize the preservation of the original semantic
meaning, the proposed structure-level SemiAug method only adds some new edges in the
intra-class. The process of edge perturbation in a mathematical context preserves the initial
order of nodes and modifies a portion of the entries in the adjacency matrices provided.
This can be defined as follows:

Ã = A⊕C, (4.8)

where C denote the corruption matrix and ⊕ is the XOR (exclusive OR) operation. Typ-
ically, the corruption matrix C is generated by independent and identically distributed
(i.i.d.) sampling from a prior distribution. The value of each entry Ci j determines whether
corruption will be applied to the corresponding position (i, j) in the adjacency matrix. For
the proposed SemiAug, according to the initial cluster assignment ci ∈ {1,2, . . . ,M}, I
randomly add edges in the intra-class of the node group. For example, given a corrup-
tion rate ρ , In the intra-class of the node group, I can define the corruption matrix as
Ci j ∼ Bernoulli(ρ). The elements in C are set to 1 with the probability ρ and 0 with the
probability 1−ρ .

4.2.2 Semantic-based Graph Contrastive Scheme

For the traditional graph contrastive method. The contrastive objective is as a discriminator
which distinguishes the embeddings of the same node in two different views from other
node embeddings. In this approach, for each node vi I consider the embedding generated
in one view, denoted as uuui, as the anchor, and the corresponding embedding produced in
the other view, i.e., vvvi, as the positive sample. Moreover, all the other node embeddings in
the two views are considered negative samples. This definition of the pairwise objective
for each positive pair (uuui,vvvi) echo the InfoNCE objective [122], adapted to the multi-view
graph CL model. The objective function is defined as:

ℓ(uuui,vvvi) = log
eθ(uuui,vvvi)/τ

eθ(uuui,vvvi)/τ +
∑

k ̸=i eθ(uuui,vvvk)/τ +
∑

k ̸=i eθ(uuui,uuuk)/τ
(4.9)

where τ denotes the temperature parameter. θ is a critic function that is defined
as θ(uuu,vvv) = s(g(uuu),g(vvv)), where s(·, ·) denote the cosine similarity and g(·) denote the
nonlinear projection [14, 153] which commonly used in the contrastive learning. We can
define negative samples for a positive pair as all other nodes in the two views. This means
that negative samples can come from two sources: inter-view and intra-view nodes, which
correspond to the second and third terms in the denominator of Equation 4.9, respectively.
As these two views are symmetric that the overall loss is defined as
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J =
1

2N

N∑
i=1

[ℓ(uuui,vvvi)+ ℓ(vvvi,uuui)] (4.10)

However, the existing graph contrastive model neglects the semantic information that
may introduce false-negative samples since they treat all the other samples except the
positive pairs as negative samples, yet some of them may belong to the same cluster or have
similar semantic information with the positive samples. This issue is termed sampling bias
[16], which will limit the discriminative capability of the graph representation. Therefore,
the negative sampling should also consider the semantic information of each node to avoid
the sampling bias problem.

To solve the sampling bias problem, the proposed SemiGCL method first leverages the
PSC method to obtain the initial cluster assignment. Assume there are M latent clusters
in the graph. The initial cluster indicating variable ci ∈ {1,2, . . . ,M} can be used as the
supervision information for the graph contrastive model. Then, a semantic debiasing
negative sampling (SDNS) method is proposed to generate negative samples. Different
from the traditional negative sampling method which defined all the other nodes except the
positive pairs as negative samples, SDNS defines the negative samples from other clusters
except for the positive sample’s cluster. The SGC objective function is defined as:

ℓ(uuui,vvvi) = log
eθ(uuui,vvvi)/τ∑

vk /∈ci
eθ(uuui,vvvk)/τ +

∑
vk /∈ci

eθ(uuui,uuuk)/τ
(4.11)

Comparing the traditional objective of the GCL Equation 4.9 with the SGC objective
Equation 4.11, we can see that, the positive pairs are the same, but for the negative samples,
in the SGC objective, the samples that are in the same cluster with the positive pairs are all
removed from the negative samples. Therefore, in the SGC objective, the positive samples
are very similar, and the negative samples are usually quite different from the positive
ones which follows the principle of contrastive learning. The proposed SGC model with
SDNS decreases the false-negative samples by using the learned semantic information that
improves the discriminative capability of the graph contrastive network. As the two views
of the graph are symmetric the overall loss is the same as Equation 4.10.

4.3 Experiments

This section presents the experiments to evaluate the proposed SemiGCL model. First,
I will briefly introduce the experimental setup and then I will provide details of the
experiment process and the experimental results as well as their analysis.
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Table 4.1 Summary of the datasets used in the node classification experiments.

Dataset Nodes Edges Features Classes
Wiki-CS 11,701 216,123 300 10

Amazon-Computers 13,752 245,861 767 10
Amazon-Photo 7,650 119,081 745 8
Coauthor-CS 18,333 81,894 6,805 15

Coauthor-Physics 34,493 247,962 8,415 5

4.3.1 Experimental Setup

Datasets

To conduct a comprehensive comparison, my study includes the use of five commonly used
datasets: Wiki-CS1, Amazon-Computers2, AmazonPhoto3, Coauthor-CS4, and Coauthor-
Physics5. These datasets come from real-world networks in various domains, and their
detailed statistics are summarized in Table 4.1. Our focus is to analyze the performance of
transductive node classification on these datasets. Then I will give an introduction to each
dataset:

• Wiki-CS [107] is a reference network that is constructed based on Wikipedia.
Its nodes correspond to articles about computer science, and the edges represent
hyperlinks between the articles. Each node is labeled with one of ten classes,
representing a specific branch of the field. The features of each node are calculated
as the average of pretrained GloVe[130] word embeddings of the words used in the
article.

• Amazon-Computers and Amazon-Photo [143] are two graphs that represent co-
purchase relationships constructed by Amazon. In these networks, each node rep-
resents a good or product, and two goods are connected when they are frequently
purchased together. Additionally, every node is labeled with its category and has a
sparse bag-of-words feature encoding product reviews.

• Coauthor-CS and Coauthor-Physics [143] are two academic networks that contain
co-authorship graphs based on the Microsoft Academic Graph from the KDD Cup
2016 challenge. These graphs represent nodes as authors and edges as co-authorship
relationships between them; that is, two nodes are connected if they have co-authored
a paper. Additionally, each node has a sparse bag-of-words feature based on the
paper keywords of the corresponding author. The label of an author corresponds to
their most active research field.

1https://github.com/pmernyei/wiki-cs-dataset/raw/master/dataset
2https://github.com/shchur/gnn-benchmark/raw/master/data/npz/amazon_

electronicscomputers.npz
3https://github.com/shchur/gnn-benchmark/raw/master/data/npz/amazon_electronics_

photo.npz
4https://github.com/shchur/gnn-benchmark/raw/master/data/npz/ms_academic_cs.npz
5https://github.com/shchur/gnn-benchmark/raw/master/data/npz/ms_academic_phy.

npz

https://github.com/pmernyei/wiki-cs-dataset/raw/master/dataset
https://github.com/shchur/gnn-benchmark/raw/master/data/npz/amazon_electronics computers.npz
https://github.com/shchur/gnn-benchmark/raw/master/data/npz/amazon_electronics computers.npz
https://github.com/shchur/gnn-benchmark/raw/master/data/npz/amazon_electronics_ photo.npz
https://github.com/shchur/gnn-benchmark/raw/master/data/npz/amazon_electronics_ photo.npz
https://github.com/shchur/gnn-benchmark/raw/master/data/npz/ms_academic_cs.npz
https://github.com/shchur/gnn-benchmark/raw/master/data/npz/ms_academic_phy.npz
https://github.com/shchur/gnn-benchmark/raw/master/data/npz/ms_academic_phy.npz
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Among the five datasets, the Wiki-CS has dense numerical features, while the other
four datasets only contain sparse one-hot features. In the case of the Wiki-CS dataset,
the evaluation of models is conducted using the public splits shipped with the dataset
[107]. However, for the other four datasets, there are no public splits available. In order to
evaluate these datasets, I randomly split them into training, validation, and test sets, where
10%, 10%, and 80% of nodes are selected for each respective set.

Evaluation protocol

I follow the linear evaluation scheme outlined in DGI [156] for each experiment. The
scheme first trains each model in an unsupervised manner, then uses the resultant embed-
dings to train and evaluate a basic ℓ2 regularized logistic regression classifier. To ensure
a fair evaluation, I replicate this procedure twenty times with different data splits and
report the mean performance on each dataset. Furthermore, accuracy is the metric used to
measure performance in these experiments.

Baselines

I evaluate representative baseline methods that can be categorized into two types: (1)
traditional methods such as DeepWalk [131] and node2vec [44]; and (2) deep learning
methods including Graph Autoencoders (GAE, VGAE) [71], Deep Graph Infomax (DGI)
[156], Graphical Mutual Information Maximization (GMI) [129], Multi-View Graph
Representation Learning (MVGRL) [51] and Graph Contrastive representation learning
with Adaptive augmentation (GCA)[206]. Additionally, I present results obtained by
applying a logistic regression classifier on raw node features and using DeepWalk with
embeddings concatenated with input node features. In all cases, the performance metrics
are reported based on the official implementations of the baseline methods.

Implementation details

I use a two-layer GCN [72] as the backbone network for all the deep learning baselines.
The encoder architecture is defined as:

GCNi(X ,A) = σ

(
D̂− 1

2 ÂD̂− 1
2 XWi

)
,

f (X ,A) = GCN2 (GCN1(X ,A),A) .
(4.12)

where Â = A+ I denote the adjacency matrix with self-loops, D̂ =
∑

i Âi denote the degree
matrix, σ(·) denote the nonlinear activation function and WWW i denote the weight matrix.

4.3.2 Experiment Results of Graph Node Classification

The summary of the experiment performance of the different deep learning baselines is in
Table 4.2. Overall, the table shows that the proposed model exhibits strong performance
across all five datasets. SemiGCL consistently outperforms unsupervised baselines by
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significant margins on both transductive tasks, demonstrating that the proposed contrastive
learning framework is superior. On the two coauthor datasets where existing baselines have
already achieved high performance, SemiGCL can still push the performance boundary
further.

Furthermore, I make the following observations. Firstly, traditional contrastive learning
methods like DeepWalk have inferior performance compared to simple logistic regression
classifiers that only use raw features on some datasets (Coauthor-CS and Coauthor-Physics),
indicating their lack of effectiveness in utilizing node features. In contrast, GCN-based
methods, such as GAE, are able to incorporate node features when learning embeddings.
However, on certain datasets (Wiki-CS), their performance is still worse than Deep-
Walk+feature, which we attribute to their simplistic method of selecting negative samples
based on edges only. This demonstrates the importance of selecting negative samples based
on augmented graph views in contrastive representation learning. Moreover, compared to
existing baselines DGI, GMI, and MVGRL, the proposed method performs better due to
its semantic invariance graph augmentation and debiasing negative sampling in the graph
contrastive model, which improves the discriminative capability of the graph contrastive
network. Even though MVGRL incorporates global information through diffusion, it fails
to consider the effects of semantic information on the input graphs.

Secondly, I observe that GCA [206] improves the stochastic transformation schemes by
considering the node centrality [206] or the importance of nodes or edges. In this method,
they thought the nodes or edges with high degrees (more neighbors) were more important,
so they preferred to drop the edges of the nodes with few neighbors. Nevertheless, Liu et
al. [91] argue that the nodes with few neighbors will restrict the expressive performance
of GNN, but the GCA will aggravate this situation. So, designing augmentation schemes
based on the node’s importance is not a good way. The edges connected with unimportant
nodes may be crucial for identifying the node’s cluster. Therefore, the graph augmentation
should not be determined by the simple node centrality, for example, the node degrees, but
the inherent semantics of nodes should be considered.

In summary, the superior performance of SemiGCL compared to existing state-of-the-
art methods verifies the effectiveness of the proposed SemiGCL approach that performs
data augmentation based on the semantic invariance principle and performs the graph
contrastive model with debiasing negative sampling.

Then, I will analyze the complexity of the proposed SemiGCL. Compared to (GCA)[206],
the PageRank-based semantic clustering is learning first. The PageRank-based semantic
clustering is a fast clustering method based on PageRank, and its time complexity is O(n).
So, compared to GCA, no extra complexity is introduced.

4.4 Conclusion

Graph Contrastive Learning (GCL) has become the most successful and powerful method
for self-supervised graph representation learning (SGL). Graph augmentation is a critical
component of GCL, which is used to generate different views of input graphs. Most
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Table 4.2 The summary of the experiment performance of the different deep learning
baselines.

Method Training Data Wiki-CS Amazon-Computers Amazon-Photo Coauthor-CS Coauthor-Physics

Raw features XXX 71.98±0.00 73.81±0.00 78.53±0.00 90.37±0.00 93.58±0.00
node2vec AAA 71.79±0.05 84.39±0.08 89.67±0.12 85.08±0.03 91.19±0.04
DeepWalk AAA 74.35±0.06 85.68±0.06 89.44±0.11 84.61±0.22 91.77±0.15

DeepWalk + features XXX ,AAA 77.21±0.03 86.28±0.07 90.05±0.08 87.70±0.04 94.90±0.09
GAE XXX ,AAA 70.15±0.01 85.27±0.19 91.62±0.13 90.01±0.71 94.92±0.07

VGAE XXX ,AAA 75.63±0.19 86.37±0.21 92.20±0.11 92.11±0.09 94.52±0.00
DGI AAA,AAA 75.35±0.14 83.95±0.47 91.61±0.22 92.15±0.63 94.51±0.52
GMI XXX ,AAA 74.85±0.08 82.21±0.31 90.68±0.17 OOM OOM

MVGRL AAA,AAA 77.52±0.08 87.52±0.11 91.74±0.07 92.11±0.12 95.33±0.03
GCA-DE XXX ,AAA 78.30±0.00 87.85±0.31 92.49±0.09 93.10±0.01 95.68±0.05
GCA-PR XXX ,AAA 78.35±0.05 87.80±0.23 92.53±0.16 93.06±0.03 95.72±0.03
GCA-EV XXX ,AAA 78.23±0.04 87.54±0.49 92.24±0.21 92.95±0.13 95.73±0.03
SemiGCL XXX ,AAA 78.95±0.06 88.05±0.20 92.69±0.26 93.53±0.21 95.89±0.12

existing GCL methods perform stochastic data augmentation schemes. However, uni-
form transformations without carefully designed augmentation techniques may change
the underlying semantics of graphs or graph nodes drastically. Besides, existing graph
contrastive methods neglect the semantic information that may introduce false-negative
samples. Therefore, a novel graph contrastive learning method with semantic invariance
graph augmentation termed SemiGCL is proposed by designing a semantic invariance
graph augmentation (SemiAug) and a semantic-based graph contrastive (SGC) scheme.
SemiGCL outperforms the state-of-the-art methods due to its semantic invariance graph
augmentation and debiasing negative sampling in the graph contrastive model, which
improves the discriminative capability of the graph contrastive network.



Chapter 5

Structural Semantic Contrastive Deep
Graph Clustering

5.1 Introduction

The widespread adoption of networked applications such as citation networks [71], social
networks [124], and protein-protein interaction networks [33], has resulted in a massive
amount of graph data. Graph data mining plays an important role in analyzing the structures
of these networks [170]. However, the complexity of real-world graph structures poses a
significant challenge for graph learning tasks, especially graph clustering [161].

Graph clustering [161] aims to group node objects in a graph that the objects from
a group are more similar to each other than those from other groups in an unsupervised
manner. Graph clustering has been used in numerous applications such as community
detection [83], customer segmentation[191], and protein interaction prediction[33].

Early graph clustering methods leverage various approaches to group the graph nodes,
such as density-based clustering [118], co-clustering [47] and non-negative matrix factor-
ization [164, 83]. However, these shallow approaches only capture either part of the graph
information or shallow relationships between graph topology and node features, which
leads to their sub-optimal performance.

In recent years, benefiting from the rapid development and the strong graph repre-
sentation performance of deep graph neural networks (GNNs), i.e., Graph Convolutional
Networks (GCN)[72], Graph Attention Networks (GAT)[155] and Message Passing Neural
Networks (MPNN)[38], Deep Graph Clustering(DGC) has become the state-of-the-art
graph clustering methods. To learn the representation of both the topology structure and
node features, Graph Autoencoders (GAE/VGAE) [71] is proposed with GCN and a recon-
struction decoder. More recently, contrastive learning[156, 129, 51] has become the most
promising technique in DGC, benefiting from the powerful capability of capturing implicit
supervision information [94].

Although the promising performance of contrastive graph clustering has been achieved,
I found that the existing method still suffers from many problems. Firstly, in the process of
node encoding, existing graph contrastive learning (GCL) methods which can be divided
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into two kinds: node–global contrastive scheme and node-node contrastive scheme [206],
only contrast the node views of graphs but neglect the important structural information.
Therefore, without considering the global graph structure information in GCL, existing
methods may suffer from representation collapse [94], which may map all nodes to the
same representation. Consequently, the discriminative capability of representation will
degenerate. Secondly, in the process of node clustering, most of the existing DGC methods
leverage traditional clustering methods, for example, K-means. However, the traditional
clustering methods have some drawbacks as follows: 1) Firstly, these methods are center-
based clustering algorithms that are highly dependent on the cluster center initialization so
the clustering results of the traditional clustering methods are not stable. 2) Besides, As the
representation and the clustering process are two separate stages, the traditional clustering
methods can not leverage the strong graph representation capability of GNNs. 3) lastly,
these methods cannot jointly optimize the node representation learning and clustering in a
unified framework.

To solve the aforementioned problems, I propose a novel contrastive deep graph clus-
tering method called Structural Semantic Contrastive Deep Graph Clustering (SECRET)
by designing a structure contrastive scheme (SCS) to keep the structural consistency of
two different views and a new self-supervised deep graph clustering method that leverages
a comprehensive similarity measure criterion considering both the attribute embedding
similarity and the structural similarity, which better reveals node relationships and can
be seen as supervision information, as similar nodes should be in the same clusters. Con-
cretely, to get a more discriminative representation, the SCS is proposed by contrasting
the aggregation of first-hop neighbors and a graph diffusion, as the original graph and
its graph diffusion can be seen as two different structural views. I design the SCS to
keep the structure of different views consistent. A new cross-view structural consistency
objective function is proposed to enhance the discriminative capability of the representation
network. For each view, I adopt the node–global contrastive scheme, which maximizes
mutual information (MI) between node and graph representations. Therefore, the designed
new GCL approach includes both node-level contrastive and structure-level contrastive,
which will enhance the discriminative capability of the learned network. To alleviate the
aforementioned problem of traditional clustering methods, I first calculate the nearest
neighbors of each node in the embedding space by the comprehensive similarity. Then, I
propose a self-supervised deep-learning-based clustering (SDC) model by adding a cluster
head in the representation networks. Concretely, in the SDC method, the cluster head
and the representation networks are jointly optimized by assigning a node and one of its
nearest neighbors to the same cluster, according to the homophily property assumption of
real-world networks. The general pipeline of the proposed SECRET method is illustrated
in Figure 5.1.

The key contributions of this proposed method are summarized as follows:

• In this approach, a novel GCL model is presented by introducing the SCS, which
is used to keep the structural consistency of two different views of a graph. Our
proposed GCL method leverage both node-level contrastive and structure-level
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Fig. 5.1 The general pipeline of the proposed SECRET method, which consists of two
parts. (a) The graph structure contrastive representation learning (GSC-RL) method is
proposed to learn the structural-semantic embeddings, which include a structure contrastive
scheme (SCS) to keep the consistency of the local structure and the global structure
and a node-global contrastive scheme to preserve the MI between node representations
with the global graph summary. (b) The self-supervised deep-learning-based clustering
(SDC) combined the graph encoder networks with a clustering head (MLP). I leverage the
proposed comprehensive similarity on the learned embeddings as prior and then encourages
the SDC to output the same labels for similar instances.

contrastive, which will prompt the neural network to learn an accurate graph structure
and a more discriminative representation.

• Instead of leveraging the traditional clustering methods, like K-means, I proposed a
self-supervised deep-learning-based clustering (SDC) model, which can leverage
the strong graph representation capability of GNNs by jointly optimizing the cluster
head and the representation networks through the gradient descent algorithms.

• To train the SDC model, I calculate the nearest neighbors of each node in the embed-
ding space as supervision information. And to better reveal the node relationships in
a graph, a comprehensive similarity measure criterion is proposed, which consists of
the attribute embedding similarity and the structural similarity.

5.2 Structural Semantic Contrastive Deep Graph Cluster-
ing

In this section, I will introduce the proposed Structural Semantic Contrastive Deep Graph
Clustering (SECRET) model which includes a Graph Structure Contrastive Representa-
tion Learning (GSC-RL) method with a structure contrastive scheme (SCS) to keep the
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structural consistency of two different views and a Self-supervised Deep-learning-based
Clustering (SDC) method to leverage the strong graph representation capability of GNNs.
As illustrated in Figure 5.1, SECRET mainly consists of two components, i.e., a graph
representation module and a graph clustering module. The following subsections will
explain each component of the SECRET model and network objectives in detail.

5.2.1 Graph Structure Contrastive Representation Learning

In this section, I will introduce the Graph Structure Contrastive Representation Learning
(GSC-RL) method, which includes a structure contrastive scheme (SCS) to keep the
consistency of the local structure and the global structure and a node-global contrastive
scheme to preserve the MI between node representations with the global graph summary.
The GSC-RL leverages both node-level contrastive and structure-level contrastive, which
will enhance the discriminative capability of the learned network and obtain structural-
semantic embeddings.

Concretely, the SCS is proposed by contrasting the aggregation of first-hop neighbors
and graph diffusion to get a more discriminative representation. The original graph and its
graph diffusion are two different structural views. I designed the SCS to keep the structure
of different views consistent. A new cross-view structural consistency objective function is
proposed to enhance the discriminative capability of the representation network. I adopt
the node–global contrastive scheme for each view, which maximizes mutual information
(MI) between node and graph representations. Therefore, the new GSC-RL approach
includes both node-level contrastive and structure-level contrastive, enhancing the learned
network’s discriminative capability.

Problem Definition

Given a graph G = {V,E}. There are C categories of nodes in the graph. V and E
are the node set and edge set, respectively. Among them, V = {v1,v2, . . . ,vN} and E =

{e1,e2, . . . ,eM}. The attribute of the graph node is X ∈ RN×D and the adjacency matrix is
A =

(
ai j
)

N×N , where ai j = 1 if
(
vi,v j

)
∈ E , otherwise ai j = 0. The degree matrix is D =

diag(d1,d2, . . . ,dN) ∈ RN×N and di =
∑

(vi,v j)∈E ai j. The normalized adjacency matrix is

denoted by Ã ∈ RN×N = D−1(A+ I), where I ∈ RN×N denote the identity matrix.

Graph Diffuse

The structure contrastive scheme (SCS) aims to keep local and global structures consistent.
In this method, the global structure views are generated by the diffusion matrices [36].
Diffusion matrices are mathematical constructs that model and analyze the spread of
information, influence, or other entities through a network or system. They are particularly
relevant in network science, social network analysis, epidemiology, and physics. In the
context of network science and social networks, diffusion matrices are often associated
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with diffusion processes, which describe how a phenomenon (such as information, be-
havior, or disease) spreads across nodes or edges of a network. These matrices represent
the probabilities or rates of transition between different states or conditions within the
network. As the adjacency and diffusion matrices represent the graph’s local structure and
global structure, respectively, maximizing the agreement of these two views of structures
allows the neural networks to learn rich information from both local and global structures.
Diffusion is defined as follows:

Ad =

∞∑
k=0

ΘkTk ∈ Rn×n (5.1)

where T ∈ Rn×n denote the generalized transition matrix, Θ denote the weighting coef-
ficient and it can determine the proportion of local and global information. To guarantees
convergence,

∑
∞

k=0 θk = 1,θk ∈ [0,1], and λi ∈ [0,1] are eigenvalues of T. Diffusion can
be calculated by sparsification and fast approximation approaches [36].

Given a graph G = {V,E}. The adjacency matrix is A ∈ Rn×n and their diagonal
degree matrix is D ∈ Rn×n. There are two kinds of commonly used generalized graph
diffusion. They are Personalized PageRank (PPR) [125] based and heat-kernel [73] based
generalized graph diffusion. They set T = AD−1, and θk = α(1−α)k and θk = e−ttk/k
!, respectively, where α is the teleport probability of random walk and t is the time for
diffusion [36]. Therefore, The heat and PPR diffusion is defined as

Ad
heat = exp

(
tAD−1 − t

)
(5.2)

Ad
PPR = α

(
In − (1−α)D−1/2AD−1/2

)−1
(5.3)

As shown in the first step of Figure 5.1, I transform a sample graph into a correlated
view of the same graph and I only apply the transformation to the structure of the graphs
and not the initial node features. So that the two views of the graph for the structure
contrastive are generated. In this method, I use Ad to represent the heat and PPR diffusion
uniformly. Finally, I denote Gd =

(
X,Ad) as the diffusion of the graph.

Graph Augmentation

Self-supervised graph representation learning has shown promising results in learning
rich representations for nodes in a graph. By leveraging graph augmentation techniques
[51, 185], such as adding or removing edges or nodes, the self-supervised model can learn
from different contexts and enhance the quality of the learned representations. These
techniques enable the model to capture complex patterns and structures present in the
graph, which would be difficult to learn using traditional supervised learning approaches.

Data augmentations have become an effective method to improve the representation
performance of images and text. A lot of transformation methods have been proposed
for images and text, such as flipping, rotation, color shifting [74], back translation [141],
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and positional swaps. However, these data augmentation methods can only be used in
Euclidean data. Graphs are non-Euclidean structural data formed with nodes and edges
and are relational data. The nodes are connected by edges, which is an entirety. Some little
structural modifications may cause a great change in semantic information.

I leverage the adaptive augmentation method proposed in [206] on both the original
and diffusion graphs. A graph consists of two parts of information, i.e., node features and
topology structure. Intuitively, two kinds of graph augmentations, i.e., feature masking
and edge perturbation, are jointly performed in the proposed SECRET model.
Feature Masking. For the attribute-level augmentation, I first calculate the masking
matrix N ∈RN×D by the adaptive augmentation method [206]. The adaptive augmentation
method is a graph-augmented algorithm that tries to keep the important feature and
structure information and perturb the unimportant one. Then the augmented attribute
matrix X̃ ∈ RN×D can be defined as:

X̃ = X⊙N (5.4)

where ⊙ is the Hadamard product [56].
Edge Perturbation. For structure-level augmentation, similar to feature masking, I first
generate a masked matrix M∈RN×N according to the adaptive augmentation method [206],
then, the edge-masked adjacency matrix Am ∈ RN×N can be calculated and normalized by

Am = D− 1
2 ((A⊙M)+ I)D− 1

2 (5.5)

Finally, I denote the augmentation of the original graph G and the diffusion graph Gd

as Gα =
(

X̃,Am
)

and Gβ =
(

X̃,Adm
)

respectively.

The Graph Structure Contrastive Framework

In this method, I designed two kinds of contrastive learning methods. the SCS to keep
the structure of different views consistent and for each view, I adopt the node–global
contrastive scheme which maximizes mutual information (MI) between node and graph
representations. Therefore, the designed GSC-RL approach includes both node-level
contrastive and structure-level contrastive. Then I will introduce these two kinds of
contrastive schemes in detail.
a. Structure Contrastive Scheme

The SCS is proposed by contrasting the aggregation of first-hop neighbors and graph
diffusion to get a more discriminative representation. The original graph and its graph
diffusion are two different structural views. I design the SCS to keep the structure of
different views consistent. A new cross-view structural consistency objective function is
proposed to enhance the discriminative capability of the representation network.

The proposed framework provides flexibility in selecting the network architecture,
as it does not impose any constraints. I choose to prioritize simplicity by utilizing the
commonly utilized graph convolution network (GCN) [72] as the base graph encoder.
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For each view, I employ a dedicated graph encoder. i.e., gθ (), .gω() : .Rn×dx ×Rn×n 7−→
Rn×dh . I regard adjacency and diffusion matrices as two structurally consistent views.
The GCN layers are defined as σ(AmX̃ΘΘΘ) and σ(AdmX̃ΘΘΘ). The objective is to learn
two distinct sets of node representations, where each set of representations corresponds
to one of the views, respectively. Ã = D̂−1/2ÂD̂−1/2 ∈ Rn×n denote the symmetrically
normalized adjacency matrix, D̂ ∈ Rn×n denote the degree matrix of Â = A+ IN where IN

denote the identity matrix, Ad ∈ Rn×n denote the diffusion matrix, X ∈ Rn×dx denote the
node features, Θ ∈ Rdx×dh denote the network parameters. At last, the output is two sets of
graph node representations Hα ,Hβ ∈ Rn×dh which from two views of a graph.

The proposed SCS aims to keep the structure of different views consistent so that the
model maximizes the agreement of the cross-view [206, 179, 205, 204]. Specifically, L1 is
the Mean Squared Error (MSE) loss between the two views of the graph. It is defined as:

L1 =
1
N

N∑
i=1

∥∥∥⃗hα
i − h⃗β

i

∥∥∥2

2
(5.6)

where h⃗α
i ,⃗h

β

i denote the representations of node i from views α,β , respectively.
b. Node-global Contrastive Scheme

I follow the intuitions from DGI [156] to learn a graph convolutional encoder that
maximizes local-global mutual information to obtain node representations that capture the
globally relevant information of the entire graph.

The global graph representation h⃗g is obtained by a readout function, h⃗g =R(H). DGI
employs a discriminator to maximize the local mutual information. The proposed method
utilizes the deep InfoMax [55] algorithm and maximizes the MI between the representation
of each node and their corresponding global graph representation. The objective is defined
as:

L2 =
1
N

N∑
i=1

[
MI
(⃗

hα
i ,⃗h

α
g

)
+MI

(⃗
hβ

i ,⃗h
β
g

)]
(5.7)

where N is the number of nodes in the graph. h⃗α
i ,⃗h

β

i denote the representations of node
i from views α,β , respectively, and h⃗α

g ,⃗h
β
g denote the representations of graph G from

views α,β , respectively.

5.2.2 The Self-supervised Deep-learning-based Clustering

This section proposes a self-supervised deep-learning-based clustering (SDC) model by
adding a cluster head in the representation networks. Concretely, in the SDC method, the
cluster head and the representation networks are jointly optimized by assigning a node
and one of its nearest neighbors to the same cluster, according to the homophily property
assumption of real-world networks.

After the GSC-RL, a shared projection head receives the learned representations as
input. fψ() : .Rn×dh 7−→ Rn×dh . The projection head is an MLP with two hidden layers.
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The GSC-RL has generated two sets of graph node representations Hα ,Hβ . I employ a
linear combination operation to merge the latent embeddings obtained from two different
views:

H =
1
2

(
Hα +Hβ

)
(5.8)

To train the SDC model, I calculate the nearest neighbors of each node in the embedding
space as supervision information. According to the homophily property assumption, a
node and one of its nearest neighbors always have the same label. And to better reveal the
node relationships in a graph, a comprehensive similarity (com_sim) measure criterion is
proposed which is consist of the attribute embedding similarity and the structural similarity.

The attribute embedding similarity applies cosine similarity as the criterion and the
structural similarity leverages the Personalized PageRank (PPR) as the criterion. Let

cos_sim(⃗hi,⃗h j) =
h⃗⊤i h⃗ j

|⃗hi∥∥⃗h j∥
(5.9)

denote the dot product between ℓ2 normalized graph node embeddings h⃗i and h⃗ j (cosine
similarity), and the graph similarity computed by PPR is formulated as:

SPPR = γ

(
In − (1− γ)D−1/2AD−1/2

)−1
(5.10)

where γ is the teleport probability. If I use Scos denote the similarity matrix of the
graph node embeddings. Then, the comprehensive similarity is formulated as:

Scom = Scos +SPPR (5.11)

Then, according to the comprehensive similarity matrix Scom found k-nearest neighbors
(KNN) for each node and regard them as the supervision information to train the projection
head in a self-supervised manner.

After constructing KNNs for each h⃗i, that I use h⃗k
i to denote the k neighbors where

K = {1, · · · ,k}. I plan to learn a clustering function fψ(), where ψ is the parameters of
the clustering model. The clustering function fψ() ends with a Softmax to obtain a soft
assignment over the clusters C = {1, · · · ,c}, with fψ (⃗hi) ∈ [0,1]c. Let f c

ψ (⃗hi) denote the
probability of node sample h⃗i being assigned to the cluster c. I train the SDC model by
minimizing the following objective function:

L3 =−1
n

∑
h⃗i∈V

∑
h⃗k

i ∈N (⃗hi)

log
(

fψ (⃗hi) · fψ (⃗hk
i )
)
+λ

∑
c∈C

f ′cψ () log f ′cψ ()

where f ′cψ () =
1
n

∑
h⃗i∈V

f c
ψ (⃗hi)

(5.12)

The first term in Eq. 5.12 aims to make a consistent prediction for h⃗i and one of its
KNNs sample h⃗k

i , which is randomly selected from N
(⃗

hi

)
. Here, the dot product is

used to implement the consistent of two predictions, that the dot product will be maximal
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when the prediction fψ (⃗hi) and fψ (⃗hk
i ) are one-hot and get the same prediction. To avoid

assigning all samples to a single cluster, an entropy term [41] is used, that is, the second
term in Eq. 5.12. The term "entropy" originates from thermodynamics but has been widely
adopted in various fields, including information theory, statistics, and machine learning,
with different interpretations in each context. Entropy generally represents the uncertainty
or randomness associated with a random variable or a probability distribution. Here, the
entropy term is used to restrain the predictions uniformly across the clusters C, and λ is
the weight of this term.

5.3 Experiments

This section presents the experiments to evaluate the proposed SECRET model. First, I
briefly introduce the experimental setup and elaborate on the process and results. Then,
an ablation study is presented to assess the effectiveness of different parts of SECRET
and give an in-depth analysis. Finally, a sensitivity analysis on critical hyperparameters is
conducted.

5.3.1 Experimental Setup

Datasets

SECRET was evaluated on four benchmark datasets. These four datasets are extensively
used, so comparing the proposed method with other benchmark methods is convenient.
They are Cora 1, Citesser 2, Pubmed 3 and Wiki 4. Cora, Citeseer, and Pubmed [71] are
citation networks where nodes (papers) are connected if one paper cites another. Wiki
[197] is a webpage network where nodes represent webpages, and a link indicates that two
pages are connected. Statistical information about the datasets is provided in Table 5.1.

Table 5.1 Summary of the datasets used in the experiments.

Dataset Nodes Edges Features Classes
Cora 2,708 5,429 1,433 7

Citeseer 3,312 4,732 3,703 6
Pubmed 19,717 44,338 500 3

Wiki 2,405 17,981 4,973 17

Baselines and Evaluation Metrics.

SECRET is compared with three types of clustering methods. 1) Methods that only use
node features: K-means. 2) Structural clustering methods that only use graph structures:

1https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz
2https://linqs-data.soe.ucsc.edu/public/lbc/citeseer.tgz
3https://linqs-data.soe.ucsc.edu/public/Pubmed-Diabetes.tgz
4https://github.com/thunlp/TADW/tree/master/wiki

https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz
https://linqs-data.soe.ucsc.edu/public/lbc/citeseer.tgz
https://linqs-data.soe.ucsc.edu/public/Pubmed-Diabetes.tgz
https://github.com/thunlp/TADW/tree/master/wiki
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Spectral Clustering, which takes the node adjacency matrix as the similarity matrix. Deep-
Walk [131] utilizes local information obtained from random walks to learn representations
by treating walks as the equivalent of sentences. Instead of using sampling-based random
walks for generating linear sequences, Deep Neural Networks for Graph Representations
(DNGR) [12] adopts a random surfing model to capture graph structural information. 3)
Attributed graph clustering methods exploit both graph structures and node features. There
are two kinds of methods in this category. The two-step methods include GAE, VGAE
[71], ARGAE, ARVGAE [127] and AGC [197]. The end-to-end methods include DAEGC
[161], SDCN [7] and GMM-VGAE [60].

Three widely used clustering evaluation metrics are applied [161] i.e., Accuracy (ACC),
Normalized Mutual Information (NMI), and Adjusted Rand Index (ARI) to evaluate the
clustering performance.

Implementation Details

SECRET is implemented as follows. A two-layer GCN [72] is employed as the encoder for
graph representation learning. In the representation learning stage, similar to DGI [156], a
Graph Structure Contrastive method is utilized to obtain node representations that capture
both the local and globally relevant information of the graph. Representation learning is
performed until the contrastive loss stops decreasing.

In the clustering stage, the k-nearest neighbors are identified in the learned compre-
hensive similarity matrix. The KNNs can act as supervision information for the clustering
model. For each node h⃗i, a random neighbor h⃗k

i in KNNs is sampled, then Eq. 5.12 is
employed as the loss function to make consistent predictions for h⃗i and h⃗k

i . The clustering
model is performed until the SDC loss stops decreasing.

Parameter Settings.

All the network weights are updated through Adam [69]. In the first stage, the encoders are
set with a 512-neuron embedding layer, and the representation learning model is trained
for a maximum of 2000 epochs. In the second stage, the clustering task is performed for a
maximum of 2000 epochs. I summarize all hyperparameter configurations in Table 5.2.

For the baselines, the settings are those from the corresponding papers. For those
methods utilizing K-means, I randomly initialized the centroids twenty times and selected
the best result for comparison.

Table 5.2 Hyperparameter Configurations

Dataset
Representation Learning Clustering
pe1 pn1 lr pe2 pn2 lr λ

Cora 0.1 0.2 0.0005 0.4 0.1 0.001 2.0
Citeseer 0.1 0.3 0.0001 0.3 0.5 0.001 3.0
Pubmed 0.0 0.2 0.0005 0.3 0.3 0.0005 2.0

Wiki 0.3 0.4 0.0005 0.0 0.5 0.0005 3.0
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5.3.2 Experimental Results

Each method was run ten times on four benchmark datasets. The average results are listed
in Table 5.3, where bold values indicate the best performance. There are three types of
input: feature information only, structure information only, or both. As the experiment
setup is the same as in the AGC paper [197], a part of the baseline results are taken from
that paper, though some of them lack ARI results. For other baselines without published
results, the source codes of the corresponding original papers were run on the datasets
(except GMM-VGAE [60] whose source is unavailable).

It can be observed in Table 5.3 that the methods using both feature and structure
information of the graph usually outperform those using only one type of information.
This observation demonstrates that both the feature and structure information are essential
for graph clustering. The proposed SECRET model clearly outperforms existing attributed
graph clustering methods across most of the benchmark datasets. On the Cora and Citeseer
dataset, for example, SECRET shows a relative increase of 17.8% and 14.8% w.r.t. ARI
against GMM-VGAE and 26.8% and 16.8% against AGC. The reasons for this performance
gain are that (1) compared to the end-to-end method GMM-VGAE, SECRET can extract
high-level semantically meaningful features; (2) compared to the two-step method AGC,
which uses spectral clustering to obtain a cluster partition, SECRET utilizes KNNs to train
a classifier to get a cluster assignment which can better mine the structure information.
However, SECRET is only comparable to GMM-VGAE on Pubmed. This is probably
because Pubmed is more sparse than other datasets, and the structure information is limited.
Since SECRET puts more emphasis on structure information than other methods, the
performance of SECRET on Pubmed is not as good as on other datasets.

Then, I will analyze the complexity of the proposed SECRET. Compared to other
methods like DAEGC [161] and GMM-VGAE [60]. SECRET calculates a comprehensive
similarity matrix as supervision information. The comprehensive similarity matrix com-
bines attribute embedding similarity and structural similarity, and their time complexity are
all O(n). So, no extra complexity is introduced compared to DAEGC and GMM-VGAE.

5.3.3 Ablation Study

This section reports results from the ablation study to evaluate the effectiveness of different
parts of the proposed method on three citation datasets, that are Cora, Citesser, and Pubmed.
The ablation study evaluates two parts: the representation part and the clustering part.

Representation

The effect of using different graph augmentations on graph contrastive learning (GCL)
[156] was also studied. GCL aims to maximize the mutual information between each node
embedding (local) and the global embedding of the whole graph (global). In particular,
three different cases were considered: 1) GCL without graph augmentation (WOA); 2)
GCL with uniform random graph augmentation (URA); 3) GCL with adaptive graph
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Table 5.3 Average clustering performance (%) for the present models on Cora, Citeseer
and Pubmed datasets.

METHOD INPUT
Cora Citeseer Pubmed Wiki

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-means[103] Feature 35.9 17.2 10.3 43.3 20.8 16.2 59.5 31.1 28.0 29.2 28.6 6.1

Spectral[189] Graph 39.8 29.7 17.4 30.8 9.0 8.2 49.6 14.7 9.8 31.9 35.5 7.5
DeepWalk [131] Graph 52.9 38.4 29.1 39.0 13.1 13.7 64.7 23.8 25.5 38.5 32.4 -
DNGR [12] Graph 41.9 31.8 14.2 32.6 18.0 4.3 46.8 15.3 5.9 37.6 35.9 -

GAE [71] Both 61.3 44.4 38.1 48.2 22.7 19.2 64.2 22.5 22.1 17.3 11.9 -
VGAE [71] Both 64.7 43.4 37.5 51.9 24.9 23.8 69.9 28.6 31.7 28.7 30.3 -
ARGAE [127] Both 64.0 44.9 35.2 57.3 35.0 34.1 68.1 27.6 29.1 41.4 39.5 -
ARVGAE [127] Both 63.8 45.4 40.1 54.4 26.1 24.5 63.5 23.2 22.5 41.6 40.0 -
AGC [197] Both 68.9 53.7 44.8 67.0 41.2 41.7 69.8 31.6 31.1 47.7 45.3 15.1

DAEGC [161] Both 70.4 52.8 49.6 67.2 39.7 41.0 67.1 26.6 27.8 43.5 41.2 14.3
SDCN [7] Both 58.2 42.6 32.8 66.3 39.0 40.6 56.2 15.7 13.1 32.0 26.0 13.0
GMM-VGAE [60] Both 71.5 54.4 48.2 67.4 42.3 42.4 71.071.071.0 30.3 33.033.033.0 - - -

SECRETSECRETSECRET Both 75.975.975.9 59.259.259.2 56.856.856.8 72.072.072.0 47.347.347.3 48.748.748.7 68.6 32.732.732.7 30.9 51.351.351.3 48.448.448.4 32.932.932.9

augmentation [206] (AGA). To compare the representation performance of these methods,
K-means were applied to the learned embeddings. Table 5.4 shows the clustering results
with different augmentation methods. The results indicate that the designed AGA method
outperforms WOA and URA, which proved the effectiveness of the proposed augmentation
method.

Table 5.4 Clustering results with K-means on different augmentation methods which are 1)
GCL without augmentation (WOA). 2) GCL with uniform random augmentation (URA).
3) GCL with adaptive graph augmentation (AGA).

METHOD
Cora Citeseer Pubmed

ACC NMI ARI ACC NMI ARI ACC NMI ARI

WOA 70.9±0.7 55.8±0.6 50.1±1.2 68.1±0.5 43.4±0.7 44.0±0.7 64.2±0.1 25.4±0.3 23.4±0.2
URA 71.0±0.4 56.1±0.3 51.2±0.4 68.4±0.1 43.4±0.1 44.4±0.2 64.2±0.2 25.9±0.3 23.8±0.3
AGA 72.9±0.672.9±0.672.9±0.6 56.9±0.256.9±0.256.9±0.2 52.6±0.652.6±0.652.6±0.6 69.3±0.369.3±0.369.3±0.3 44.0±0.444.0±0.444.0±0.4 45.2±0.545.2±0.545.2±0.5 65.7±0.365.7±0.365.7±0.3 28.3±0.628.3±0.628.3±0.6 26.3±0.626.3±0.626.3±0.6

Clustering

The effect of different components in the SDC loss was also assessed. Eq. 5.12 is the loss
function of the designed SDC model which has two terms i.e., the consistent prediction
term (CPT) and the entropy term (ET). The CPT is used to enforce coherent predictions
between a sample and its KNNs and the ET is for avoiding the cluster degeneracy problem,
which ensures that predictions are uniform across the clusters C. To evaluate the importance
of each term in the SDC loss, an ablation study experiment was designed. The clustering
results are summarized in Table 5.5. It can be seen that: 1) using CPT as the loss function
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only leads to cluster degeneracy, i.e., all samples being assigned to a single cluster, resulting
in poor performance; 2) using ET as the loss function only also leads to bad results, as
it only restricts the predictions uniformly across the clusters; 3) using both CPT and ET
yields the best results.

The effect of the proposed comprehensive similarity (COS) for calculating KNNs was
also studied by comparing it with the commonly used graph node embeddings similarity
(NES). The clustering results are summarized in table 5.6. It can be seen that: 1) using
NES KNNs as supervision information to train the clustering model cannot provide the
best performance, as it fails to reflect the relatively global graph structure; 2) using COS
KNNs as supervision information to train the clustering model yield the best clustering
performance because it considers information not only from the global feature but also
from the relatively global structure.

Table 5.5 The ablation study of the SECRET clustering loss which consists of two terms
the consistent prediction term (CPT) and the entropy term (ET).

Model
Terms Cora Citeseer Pubmed

CPT ET ACC NMI ARI ACC NMI ARI ACC NMI ARI

1 ! # 13.0±0.0 0.0±0.0 0.0±0.0 7.9±0.0 0.0±0.0 0.0±0.0 20.8±0.0 0.0±0.0 0.0±0.0
2 # ! 41.1±3.1 24.5±1.6 17.6±2.8 23.2±0.7 3.4±0.2 0.2±0.1 42.6±0.3 2.9±0.3 3.3±0.2
3 ! ! 74.3±0.174.3±0.174.3±0.1 56.6±0.256.6±0.256.6±0.2 52.8±0.352.8±0.352.8±0.3 70.9±0.070.9±0.070.9±0.0 45.5±0.145.5±0.145.5±0.1 47.2±0.147.2±0.147.2±0.1 67.9±0.167.9±0.167.9±0.1 31.2±0.231.2±0.231.2±0.2 29.3±0.229.3±0.229.3±0.2

Table 5.6 The clustering results are based on different similarity measures to learn KNNs:
1) graph node embeddings similarity (NES). 2) comprehensive similarity (COS).

Structures
Cora Citeseer Pubmed

ACC NMI ARI ACC NMI ARI ACC NMI ARI

NES 73.9±0.2 56.2±0.1 51.7±0.3 70.4±0.1 45.1±0.1 46.6±0.1 66.8±0.1 29.2±0.3 27.2±0.2
COS 74.3±0.174.3±0.174.3±0.1 56.6±0.256.6±0.256.6±0.2 52.8±0.352.8±0.352.8±0.3 70.9±0.070.9±0.070.9±0.0 45.5±0.145.5±0.145.5±0.1 47.2±0.147.2±0.147.2±0.1 67.9±0.167.9±0.167.9±0.1 31.2±0.231.2±0.231.2±0.2 29.3±0.229.3±0.229.3±0.2

5.3.4 Sensitivity Analysis

Lastly, sensitivity analysis was performed for the critical hyperparameters in SECRET,
namely two probabilities pe and pn, which determine the level of graph augmentation on
edges and nodes for the two steps, i.e., Graph Structure Contrastive Representation Learn-
ing (GSC-RL) and Self-supervised Deep-learning-based Clustering (SDC). Attributed
graph clustering was conducted while varying these parameters from 0 to 1, with other
parameters unchanged.

The GSC-RL results on the Cora dataset are shown in Figure 5.2. It can be observed
that the performance of GSC-RL evaluated by quantifying the degree to which the mined
nearest neighbors are the instances of the same semantic cluster, yields the best results
under low probability (pe < 0.5, pn < 0.5). The SDC results on the Cora dataset are shown
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in Figure 5.3. It was found that the performance of clustering in terms of accuracy was the
best when the parameters were close to 0.5 and were relatively stable.
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Fig. 5.2 The performance of GSC-RL with varied hyperparameters pe and pn on the Cora
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Fig. 5.3 The performance of SDC with varied hyperparameters pe and pn on the Cora
dataset in terms of node clustering accuracy (%).

5.4 Conclusion

Although the DGC methods have made remarkable progress, I observe that there are two
drawbacks to the existing methods. 1) In the node encoding process, existing methods
usually overlook the learning of structural information. Consequently, the discriminative
capability of representations will be limited. 2) Most of the existing methods leverage
traditional clustering methods, i.e., K-means. Thus the clustering process can not benefit
from the strong graph representation ability of GNNs, which leads to sub-optimal clustering
performance. To address these issues, I propose a novel self-supervised DGC method
termed Structural Semantic Contrastive Deep Graph Clustering (SECRET). To get a
more discriminative representation, I design a structure contrastive scheme (SCS) by
contrasting the aggregation of first-order neighbors and a graph diffusion, and I propose
a consistent loss to keep the structure of different views consistent. To benefit from the
strong graph representation ability of GNNs, I proposed a novel Self-supervised Deep-
learning-based Clustering (SDC) model, which jointly optimizes the cluster head and
the representation networks through the gradient descent algorithms. To better reveal
the node relationships in a graph, I also proposed a comprehensive similarity measure
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criterion which is calculated by considering both the attribute embedding similarity and
the structural similarity. An experimental evaluation of four commonly used benchmark
datasets shows that the proposed SECRET clearly outperforms the state-of-the-art methods.



Chapter 6

Conclusions and Future Works

This thesis has investigated the importance of global structural and semantic information
for Deep Graph Representation Learning. The primary argument is that for graph data,
both the node feature and structural information, including the local and global structures,
are important for graph representation learning.

6.1 Conclusion

Graph Neural Networks (GNNs) as a Deep Graph Representation Learning (DGL) method
have attracted more and more attention for their convincing performance. DGL has
indeed made significant progress in recent years. However, there are still several crucial
challenges that the field faces, including (semi-)supervised DGL, self-supervised DGL, and
DGL-based graph clustering. In this thesis, I proposed three models to address previous
issues, respectively, which demonstrate a significant outperformance to the state-of-the-art
methods.

GNNs have been widely used in (semi-)supervised DGL problems. However, GNNs
suffer from over-smoothing and over-squashing problems. To solve this problem, a
Hierarchical Structure Graph Transformer called HighFormer is proposed to leverage local
and relatively global structure information. I use GNN to learn the initial graph node
representation based on the local structure information. At the same time, a structural
attention module is used to learn the relatively global structural similarity. Then, I added
the softmax attention matrix and the relatively global structure similarity matrix to form an
improved attention matrix.

The existing graph contrastive learning (GCL) methods often neglect the semantic
information on augmentation schemes and contrastive frames. Therefore, a novel graph con-
trastive learning method with semantic invariance graph augmentation termed SemiGCL
is proposed by designing a semantic invariance graph augmentation (SemiAug) and a
semantic-based graph contrastive (SGC) framework. First, a density-based approach is
proposed to find the potential semantic centers of the graph and then divide the graph
nodes into different semantic clusters according to the distance (structure and feature)
to the semantic centers. Then, I generate the augmented graphs on the structure and
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attribute levels according to the learned semantic cluster assignment. At last, I design a
semantic-based graph contrastive (SGC) framework with a semantic debiasing negative
sampling (SDNS) that selects negative samples from other clusters except for the positive
sample’s cluster.

Although the existing deep graph clustering (DGC) methods have made remarkable
progress, I observe that there are two drawbacks to the existing methods. 1) existing
methods usually overlook learning structural information in the node encoding process.
Consequently, the discriminative capability of representations will be limited. 2) Most ex-
isting methods leverage traditional clustering methods, e.g., K-means. Thus, the clustering
process can not benefit from the strong graph representation ability of GNNs, which leads
to sub-optimal clustering performance. To address these issues, I propose a novel self-
supervised DGC method termed Structural Semantic Contrastive Deep Graph Clustering
(SECRET). To get a more discriminative representation, I design a structure contrastive
scheme (SCS) by contrasting the aggregation of first-order neighbors with a graph diffusion.
I propose a consistent loss to keep the structure of different views consistent. To benefit
from the strong graph representation ability of GNNs, I proposed a novel Self-supervised
The deep-learning-based clustering (SDC) model jointly optimizes the cluster head and
the representation networks through the gradient descent algorithms.

6.2 Future works

Some potential future works for Deep Graph Representation Learning and Deep Graph
Clustering could include the following:

• Graph Transformer models have shown promising performance in various tasks
involving graph-structured data. Graph Transformer architectures are inspired by the
Transformer model originally introduced for natural language processing(NLP) tasks
but adapted to handle graph data. For example, in chapter 3, I have proposed a new
graph Transformer that can learn more information than the GNN module because
the attention mechanism used in the Transformer architecture can capture long-
range information. How to incorporate the graph information into the Transformer
architecture is still an open issue. Specifically, for NLP, positional encoding is
a technique used in transformer models to inject positional information into the
input embeddings of tokens in a sequence. Since transformers do not inherently
understand the order of tokens in a sequence, positional encoding helps the model
learn to capture sequential relationships and understand the relative positions of
tokens within the input sequence. However, the graph structure is not sequence data,
so it’s hard to encode it into positional encoding. In future work, I will try to design
a more proper and efficient way to encode the graph structure.

• Graph contrastive learning has gained significant attention and popularity in recent
years as a powerful approach for learning representations of graph-structured data.
This method is inspired by contrastive learning techniques in computer vision and
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natural language processing and has been adapted to handle graph data. In chapter 4
and chapter 5, I have proposed two new contrastive learning models with promising
performance. However, recent graph contrastive learning methods still suffer from
sample selection bias. The effectiveness of contrastive learning methods heavily
depends on the quality and diversity of the negative examples used during training.
Biased or poorly chosen negative examples can lead to suboptimal representations
and degraded performance. In future work, I will explore more accurate negative
sampling methods to improve the representation performance.

• Joint learning of graph representation and clustering methods is a promising approach
to effectively capture the underlying structure of graph data and perform clustering
simultaneously. The model can effectively leverage both the intrinsic structure of
the graph data and the clustering objectives to produce informative and meaningful
cluster assignments. This approach can potentially improve clustering performance,
particularly in scenarios where the underlying structure of the data is complex or
high-dimensional. In chapter 5, I have proposed a novel contrastive deep graph
clustering method by joint training a structure contrastive scheme (SCS) and a
new self-supervised deep graph clustering method with a promising clustering
performance. However, the computational complexity of the proposed method is
relatively high. I will explore a more efficient and effective method to learn graph
representation and clustering objectives jointly in future work.

• The advancement of graph representation learning has led to many promising appli-
cations across various domains. Graph representation learning in AI pharmaceuticals
is an emerging field that leverages techniques from GNNs and other machine learn-
ing methods to model and analyze molecular structures, biological interactions,
chemical compounds, and other graph-structured data relevant to drug discovery and
development. Despite the significant research efforts in AI pharmaceuticals, several
challenges persist. For example, model interpretability and explainability: Many AI
models used in pharmaceuticals, such as deep learning models, are often considered
"black boxes" due to their complex architectures and high-dimensional representa-
tions. Understanding and interpreting the decision-making process of these models
is crucial for gaining insights into drug mechanisms, safety, and efficacy. In future
work, I will explore interpretable AI pharmaceuticals models to improve the safety
and efficacy of drug designed by AI.
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