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A B S T R A C T

Solar Irradiance measurements are critical for a broad range of energy systems, including evaluating perfor-
mance ratios of photovoltaic systems, as well as forecasting power generation. Using sky images to evaluate
solar irradiance, allows for a low-cost, low-maintenance, and easy integration into Internet-of-things network,
with minimal data loss. This work demonstrates that a vision transformer-based machine learning model can
produce accurate irradiance estimates based on sky-images without any auxiliary data being used. The training
data utilizes 17 years of global horizontal, diffuse and direct data, based on a high precision pyranometer and
pyrheliometer sun-tracked system; in-conjunction with sky images from a standard lens and a fish-eye camera.
The vision transformer-based model learns to attend to relevant features of the sky-images and to produce
highly accurate estimates for both global horizontal irradiance (RMSE =52 W∕m2) and diffuse irradiance (RMSE
= 31 W∕m2). This work compares the model’s performance on wide field of view all-sky images as well as
images from a standard camera and shows that the vision transformer model works best for all-sky images. For
images from a normal camera both vision transformer and convolutional architectures perform similarly with
the convolution-based architecture showing an advantage for direct irradiance with an RMSE of 155 W∕m2.
1. Introduction

Global deployment of photovoltaic systems continues to grow at
pace, reaching 1.2 TW capacity by the end of 2022. To sustain such
rapid growth, there is an urgent need for highly accurate and reliable
measurements of irradiance, which is critical in evaluating perfor-
mance ratios, as well as power generation forecasting. The accuracy
and reliability of these measurements help to reduce the levelized
cost of electricity when deploying photovoltaic systems. This is of
even further interest for the deployment of bifacial systems, whereby
irradiance measurements are used to calculate albedo. Additionally,
for sun-tracking systems, which ITRPV predicts 40% market share by
2030 [1], irradiance and subsequent plane-of-array (POA) estimation
is needed for real-time tracking algorithms [2]. Currently, the state-of-
art and industry standard measurement technique is to utilize Class-A
pyranometers for measuring global horizontal irradiance, whilst an
additional sun-tracking system and shadow ball is required for diffuse
horizontal irradiance. Furthermore, a pyrheliometer as well as a sun-
tracked system is required for direct normal irradiance. Therefore,
several expensive systems are required to measure GHI, DHI and DNI,
which need regular maintenance and costly recalibration [3,4]. In
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addition, they can be limited in sensitivity and response time, without
further investments in expensive datalogging systems. An alternative
approach to measuring GHI, DHI and DNI is to utilize a single digital
camera, and evaluate the irradiance based on sky imaging through
machine learning (ML) models [5]. ML optimizes adaptive models with
algorithms like gradient descent, using extensive training data [6].
In a supervised learning approach these models learn by adjusting
parameters or ‘‘model weights’’ based on errors calculated against
expected outputs for specific inputs. After finding suitable parameters,
these models can predict values for new inputs, a process termed
inference. Deep learning (DL), a subset of ML, typically features multi-
layer neural network based models. It commonly separates the base
network responsible for heavy computations from the head network
containing fewer layers, the latter of which varies depending on the
task. By leveraging transfer learning, the previously learned parameters
are retrained in the base model while replacing the head model with
one suitable for the new task. Here, pretrained base model parameters
from an image classification task are used and fine-tuned to map
irradiance values to sky images [7,8]. Two types of sky images are
utilized in this study, all-sky images taken using a fish-eye lens camera
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and sky images from a standard camera. Sky images refer to cloud-
imaging using cameras situated on the ground, looking onto the sky
above. Deploying these models offers cost-effective ways to generate
accurate irradiance data both online and retroactively. Sky images are
important as they offer a sub-kilometer view of cloud shadows, which
will impact the irradiance values. This provides sufficient spatial and
temporal resolution to estimate GHI, DHI and DNI effectively [9]. In
this paper, it is investigated the use of a vision transformer architecture
to create a model that can take in a single sky image without any
auxiliary data and produce an irradiance estimate. Additionally, it is
shown that images from standard cameras as well as all-sky imagers can
be used to accurately model the levels of irradiance by making use of
such DL based models. The transformer architecture has revolutionized
the field of natural language processing and its recent application to
computer vision tasks has shown them to be competitive with deep
convolutional neural networks (CNNs) [10]. It utilizes multiple layers
of self-attention to focus on the most relevant parts of the image. The
high performance and interpretability of this architecture makes it an
attractive candidate for mapping of sky images to irradiance.

As the level of solar irradiance seen in a particular location varies
based on the cyclical changes of the season, the sun position through-
out the day, and weather conditions, it is important to test the DL
models from training data in locations where the level of cloud cover
changes frequently (i.e. temperate climates). In this work, data from
the Chilbolton Facility for Atmospheric and Radio Research (CFARR),
Hampshire, UK (51.1445N, 1.4270W) [11–14] is utilized, using over
17 years or sky images and irradiance measurements.

To the best of the authors knowledge this paper is the first to
deploy a vision transformer-based model to the task of solar irradiance
modeling and is built from training data in temperate climates.

The paper is structured as follows: First an overview of previous
work in the field of irradiance modeling is presented. Following this,
the proposed modeling framework is introduced detailing the approach
to accurately estimate irradiance levels. The fourth section discusses the
methods used to evaluate the performance of the proposed model. The
dataset used in this work is described in section five. The sixth section
details the implementation of the proposed model, including the train-
ing. Results and discussion are presented in the seventh section, where
the performance of the proposed model is analyzed and compared
to previous methods. Finally, a conclusion is provided, summarizing
the findings of this study and highlighting the potential benefits and
applications of using machine learning to map sky images to irradiance
values within the field of solar energy.

The contributions of this paper are as follows:

• Demonstrate that expensive pyranometer equipment can be sub-
stituted by all-sky cameras feeding images to DL models

• It is shown that even normal camera images can serve as the basis
for usable irradiance estimates

• Vision transformer model is thoroughly compared to a conven-
tional approach and shown to be advantageous for all-sky images

• It is demonstrated that the model learns to attend to relevant
features of the sky images

2. Related work

Classically, irradiance modeling has been based on geographic data
such as latitude and longitude as well as solar elevation and altitude
in addition to meteorological input data such as aerosol content and
atmospheric water vapor column [15]. Most of the models that use
atmospheric data as input are considered clear-sky models, which
estimate the terrestrial surface irradiance for cloudless conditions [16].
These models vary widely in their complexity and in their required
input data. Due to high capital and operational costs, frequent cali-
bration and maintenance there is a need for alternative methods for
measuring GHI, DHI and DNI [3,17,18]. Due to the general success
2

and the increasingly low barrier of entry of ML, it has seen broad
adoption in the physical sciences [19,20]. DL based approaches, in
particular, have become increasingly popular for tackling previously
intractable or poorly addressed problems. In the field of computer
vision DL models utilizing convolutional layers, called deep convolu-
tional networks (CNNs) have been particularly successful [21]. In the
field of irradiance modeling such a model has been used to extract
relevant features from all-sky images, which were then fed into a multi-
layer-perceptron (MLP) to either classify whether the sun was shaded
or to directly map images to corresponding irradiance measures [5].
The authors make use of a dataset provided by NREL [22]. To train
and validate their model they restrict the dataset to samples collected
during summertime between 8 am and 4 pm, totaling 21 600 images.
They initialize the model weights for the irradiance mapping task from
a model trained to classify sky images as either showing the sun or
the sun being covered by clouds. Using this transfer learning approach
for the irradiance mapping task they report a root mean square error
(RMSE) of 130 W∕m2 on their testing dataset.

Another deep CNN based model has been used for estimating the
angular dependence of irradiance based on all-sky images and sun-
position [23]. They use the model extract information from the image
and concatenate the resulting features with the information from the
sun-position fed through an MLP. This serves as the input to the head
network consisting of an additional MLP. Using a dataset provided
by NREL they show widely varying model performance depending on
the tilt angle. ResNet architectures, which integrate residual connec-
tions into CNN architectures, have been used in combination with a
cloudiness classification to explore modeling of GHI values based on
all-sky-images [24,25]. The authors trained sub-models for different
sky conditions to output GHI estimates. They present a physics based
model to classify images into three sky conditions. Based on a limited
dataset of 1200 test images from the SIRTA dataset [26], they report
an RMSE of 14.63 W∕m2 for images classified as sunny, 51.63 W∕m2

for partially overcast and 53.38 W∕m2 for overcast. Furthermore they
show that increasing the model size only improved performance on
sunny images. Another CNN based approach in combination with con-
volutional block attention modules and local cloud cover values was
reported to achieve good results for mapping all-sky images to GHI
values [27]. They present a methodology to generate local cloud cover
auxiliary data to improve model performance. In their architecture
they combine channel attention and spatial attention modules on the
output of convolutional blocks. For a dataset of sky images and GHI
values provided by NREL, they report an RMSE value normalized by
the average ground truth GHI value of 11%. An approach combining
classical ML with DL architectures is presented by Henriques de Sá [28].
They extract 17 features such as the fraction of the sun that is covered
and the average pixel intensity for every image in a dataset of all-
sky images and use an MLP to estimate GHI. On their test set of
9996 images they report an RMSE of 72.3 W∕m2. Chu et al. have
demonstrated that a using a network of cameras providing all-sky
images in combination with a irradiance mapping algorithm can be
utilized to map out irradiance over large areas without the use of
radiometers [29]. They mask the images in several different ways
and extract a total of 900 features from each image. They report an
RMSE of 86.4 W∕m2 for a simple linear regression model and 73.2
W∕m2 for an MLP based model using a subset of 360 features. Using
information from several different measurement systems, including an
all-sky imager, Blum et al. showed that diffuse irradiance and plane of
array irradiance can be estimated [3]. This shows that improving the
estimates of irradiance from all-sky imagers can contribute to a variety
of solar applications.

As the above discussion shows there have been several attempts
to use DL based approaches for the task of irradiance modeling. Such
approaches are typically based on CNN architectures while transformer
architectures based on the self-attention mechanism are largely unex-

plored. Furthermore, modeling is largely focused on GHI.
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Fig. 1. High level illustration of the model’s operation with the number of patches
shown being less than the model uses (for illustrative purposes).

3. Proposed framework

Fig. 1 shows a high-level overview of the proposed framework. A
data-efficient image transformer (DeiT) with a linear head to map sky
images directly to irradiance values is utilized [30,31]. This type of
architecture is part of the vision transformer family of models. Unlike
convolution based architectures, this type of architecture does work
directly with the image arrays. Instead, the input image is first split
into a sequence of patches which are then rolled out into vectors, this
serves as the input to a trainable linear layer which projects them
to the internal encoding dimension of the model. To the sequence of
embedded patches, a learnable embedding is prepended, if the model is
used for image classification, this embedding represents the class. Posi-
tional embeddings are added to give the model positional information.
This serves as the input for the transformer encoder, which consists
of multiple blocks of multi-headed self-attention and MLP layers. A
full discussion of the attention blocks and the underlying mechanism
is beyond the scope of this paper and the reader is referred to the
original publication [32]. From the output of the transformer encoder,
only the prepended class embedding is put through an MLP to produce
an irradiance value. The DeiT-based model has a patch size of 16 pixels,
an embedding dimension of 192, a depth of 12 layers with 3 attention
heads. The choice of model configuration is based on the available
pretrained model weights as well as model size considerations.

4. Model evaluation

In order to evaluate the models performance and facilitate com-
parison to related works the commonly employed metric of RMSE is
used. In addition Mean Bias Error (MBE) and t-statistic are reported as
evaluation metrics [33,34]. It is a useful metric for regression problems
as the resulting numbers can be intuitively evaluated as they are of the
3

Table 1
Models with associated evaluation metrics for both the all-sky image and the normal
camera datasets.

Model Images used Target RMSE 𝑡-statistic MBE

DeiT All-sky Global 52 130 31
ResNet All-sky Global 55 145 36
DeiT Normal Global 77 184 44
ResNet Normal Global 78 197 47
DeiT All-sky Diffuse 31 99 19
ResNet All-sky Diffuse 33 108 22
DeiT Normal Diffuse 47 97 30
ResNet Normal Diffuse 44 103 29
DeiT All-sky Direct 94 68 55
ResNet All-sky Direct 94 74 58
DeiT Normal Direct 172 63 122
ResNet Normal Direct 155 62 109

same unit and order of magnitude as the target values. The evaluation
metrics can be calculated as follows [35]:

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑘=1

(

𝑦𝑘 − 𝑦̂𝑘
)2 (1)

𝑀𝐵𝐸 = 1
𝑛

𝑛
∑

𝑘=1

(

𝑦𝑘 − 𝑦̂𝑘
)

(2)

𝑡 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =

√

(𝑛 − 1)𝑀𝐵𝐸2

𝑅𝑀𝑆𝐸2 −𝑀𝐵𝐸2
(3)

Here n is the number of samples, 𝑦𝑘 is the ground truth irradiance
and 𝑦̂𝑘 is the model output for an input image. During training of the
model, a simple mean squared error (MSE) is used.

5. Dataset

The data was originally gathered at the Chilbolton Facility for
Atmospheric and Radio Research (CFARR), Hampshire, UK (51.1445N,
1.4270W) [11–14]. Three types of illumination data were available:
two pyranometers collected whole sky radiation and diffuse solar ra-
diation. A pyrheliometer collected direct irradiance. The data for the
project consisted of files with the radiometer measurements with each
file containing the data for a single day and the cloud image files of two
different cameras. The radiometer files contained the measurements in
units of W∕m2 with timestamps accurate to 1 s with each file containing
about 8000 data points. Two types of cloud images were available, one
from a regular camera with a limited field of view, collection of which
was discontinued in 2016 and a fisheye (all-sky) camera with a full
180-degree field of view, collection of which started in 2016. The all-
sky images were collected by National Center for Atmospheric Science
(NCAS). Since the images for both cameras were taken roughly every
5 min, the data was pre-processed such that the radiometer data was
averaged over a time window of 30 s and this average was assigned to
one image. The data was aligned based on the timestamps so that the
time window for averaging the radiometer data always started at the
time stamp of the image. This allowed a direct mapping of one image
to an irradiance value. Fig. 2 shows the raw measurement data that was
available from Chilbolton for a single day for all three targets. As can be
seen the illumination data varies smoothly with time of day but shows
strong drops in illumination related to change in cloud cover. This raw
data was used to assign to each image an average of the measurement
data available for a 30 s time window starting from the timestamp of
the image. This had the consequence that the target data is somewhat
smoother compared to the raw data. The histograms of the target data
in Fig. 2 show that the global and diffuse irradiance values have a
right skew while the direct irradiance values are dominated by very low
values with a noticeable bump near the peak values. The distribution of
data here had different threshold values applied below which the data
points were removed from the dataset. The threshold values were 10,
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Fig. 2. Results of using all-sky images to train the DeiT model with a-c showing comparisons of ground truth irradiance data to the model’s estimates for a single day, d-f showing
comparison of ground truth to model estimates for all samples in the testset and g-i showing what the model learns to pay attention to illustrated via attention maps.
10 and 2 W∕m2 for global, diffuse and direct irradiance, respectively.
To make sure the dataset did not contain any very dark images it was
further restricted by removing all datapoints taken between 11 pm and
3 am. Not every image had all three irradiance values available, hence
the number of training and testing samples varied between irradiance
targets. Table 1 gives an overview of the number of samples used during
model training for both cameras and all targets. To reduce the GPU
memory requirements and to enable the use of transfer learning from
weights pretrained on ImageNet, all images were resized to 224 by 224
pixels, a commonly used image size in DL computer vision tasks. After
each image was aligned to its closest window of measurements, the data
was split into a training and evaluation dataset as well as a separate
testing dataset. This split was done by using days 5 to 9 of each month
as the fixed testing dataset, days 15 to 19 as an evaluation dataset while
keeping the rest for training. The mean and standard deviation of the
training dataset were used to normalize all target data to have a mean
of 0 and a standard deviation of 1 during training. Additionally the
images were transformed using the mean and standard deviation of the
ImageNet dataset [7,8]. For the images taken by the all-sky imager,
a mask of black pixels was used to block out objects in the frame to
make sure the model learns to extract the relevant information from
the image of the sky.

6. Implementation and training setting

Both models were implemented using PyTorch [36] and the code
is publicly available.1 The weights of both models are initialized from

1 Model code can be found here: https://github.com/Gittingthehubbing/
Solar_Irradiance_ViT.
4

models pretrained on the ImageNet dataset [8]. The weights of the
MLP head were randomly initialized. The AdamW optimizer with a
learning rate of 9e−5 was used for training [37]. An exponential
learning rate warmup and decay was used during training. Randomized
image augmentation was applied during training by applying random
rotations up to 45 degrees with a probability of 10%. The model is
trained for 14 epochs with a batch size of 128. The model is trained to
produce estimates of global irradiance and then fine tuned to produce
estimates for diffuse and direct irradiance. This procedure is carried
out for both the all-sky images as well as the images from the ordinary
camera.

7. Results and discussion

Table 1 gives an overview of the achieved performance of the
DeiT and ResNet models for all types of irradiance. Since most of the
competing models found in literature are based on CNNs, a typical
ResNet is chosen as a comparison. Both the proposed vision transformer
and the conventional ResNet are able to produce accurate estimates
for global as well as for diffuse irradiance but struggle with direct
irradiance. This is likely related to the distribution of values, which are
much more skewed towards very low values with a slight bump in the
frequency of values at the higher end for the target of direct irradiance,
as illustrated in Fig. 2(f). Learning to estimate direct irradiance from
the given dataset is also difficult due to the lower number of training
samples available. It is notable that the DeiT model outperforms the
ResNet model when all-sky images are used as a basis for the irradiance
estimation while the ResNet shows a slight advantage when images
from the normal camera are used. Overall, the estimates are much more
accurate when all-sky images are used as the input to the model. This is

https://github.com/Gittingthehubbing/Solar_Irradiance_ViT
https://github.com/Gittingthehubbing/Solar_Irradiance_ViT
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Fig. 3. Results of using images from normal camera to train the DeiT model with a-c showing comparisons of ground truth irradiance data to the model’s estimates for a single
day, d-f showing comparison of ground truth to model estimates for all samples in the testset and g-i showing attention maps.
likely related to the amount of information that the model can extract
from the larger field of view being much higher. However, if cost is the
main concern, even images from a normal camera can produce usable
estimates.

The overall performance of the DeiT model is well illustrated in
Figs. 2 and 3, which show both the deviation from ground truth for a
single day as well as a comparison of the model’s estimates to ground
truth as density plots for all three types of irradiance targets. Here
it can be seen that using all-sky images as the DeiT model’s input
produces much tighter distribution around the ideal. The density plot
also illustrates that the model struggles with direct irradiance, as this
presents the most challenging target due to the high volatility and
the target’s distribution, with this being especially pronounced for the
normal images. Overall, Fig. 2 shows that the DeiT based model can
produce reliable estimates for all irradiance targets even when there
is significant volatility in the data. Furthermore, Fig. 3 shows that the
model still manages to produce good estimates for global and diffuse
irradiance when images from an ordinary camera are used. However,
it struggles to produce useful estimates for direct irradiance. While the
model is shown to perform well on data from the Chilbolton facility,
it should be mentioned that a limitation of the proposed approach and
ML based approaches in general is that the trained model is unlikely
to generalize well to datasets far outside its training data distribution,
which means a model would have to be fine-tuned on data from the
new source if one wishes to use the model on data recorded at a
different facility or using different equipment.

To make the inner workings of the DeiT model more interpretable,
attention rollout was performed using the same input image for models
trained to estimate different targets [38]. As the attention maps in Fig. 2
5

show, for the all-sky images, the model pays particular attention to
relevant features of the sky images for all targets. Particular attention
is paid to the part of the image showing the sun and its immediate
surrounding area with the pattern of attention being similar when
the model is trained to predict global irradiance and direct irradiance
but differs significantly for diffuse irradiance predictions. The latter
pattern being more distributed across the image and less focused on
the position of the sun. Repeating the same procedure using images
from a normal camera results in the attention maps shown in Fig. 3.
It is notable that the differences in attention maps for the models
trained for different targets differs more than for the all-sky images.
This further shows that the normal images do not allow for the same
level of information extraction and do not enable the model to learn
to pay attention to features most relevant for the particular type of
irradiance that is to be estimated.

To evaluate how the DeiT model performs under different sky condi-
tions, the testing dataset of the all-sky images is split by clearness index.
This index is defined as the ratio of ground level irradiance and extra-
terrestrial irradiance [39,40]. Conditions with a clearness index below
0.3 are considered to be overcast, conditions with an index between
0.3 and 0.78 to be intermediate and anything above to be clear. Since
Chilboltons rich dataset offers a wide range of sky conditions it can
be demonstrated that the model shows good performance in all sky
conditions with an RMSE of 41 W∕m2 in overcast, 55 W∕m2 in inter-
mediate and 80 W∕m2 in clear conditions, as can be seen in Fig. 4. A
small bias towards overestimating irradiance values under overcast and
underestimating irradiance values under clear conditions is present.
This further illustrates the robustness of the proposed approach and
supports the idea of using sky cameras in various conditions to broaden
the acquisition of irradiance measurements in various locations.
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Fig. 4. DeiT model estimates against ground truth for global irradiance using all-sky images as input with the results being split by clearness index.
8. Conclusion

Using field data spanning 17 years from a temperate climate loca-
tion, it has been demonstrated that a vision transformer-based model
can produce accurate irradiance estimates based on sky-images without
any auxiliary data being used. It is shown that the model learns to
attend to relevant features depending on the type of irradiance that
is to be estimated. Comparisons are made for model performance
using images from a normal camera as well as images from an all-
sky imager with the use of all-sky images resulting in better estimates.
Furthermore, to assess the DeiT models performance in the context of
previous work, a comparison is made between the proposed attention-
based model and a conventional CNN type network, a ResNet, which
resulted in the DeiT model outperforming the comparison model when
all-sky images are used, while the ResNet showed performance on par
with DeiT when normal images are used as input. This work shows that
relatively inexpensive cameras in conjunction with DL based models
can serve as a reliable replacement for pyranometer and pyrheliometer
equipment to assess and monitor site conditions. In the future, this
image prediction will be used to link irradiance to POA and optimize
tracker position through improved sun-tracking algorithms, as well as
improving decomposition and transposition models.
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