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Abstract
In this paper, we propose a few-shot method for pose transfer of anime characters—given a source image of an anime character
and a target pose, we transfer the pose of the target to the source character. Despite recent advances in pose transfer on real
people images, these methods typically require large numbers of training images of different person under different poses to
achieve reasonable results. However, anime character images are expensive to obtain they are created with a lot of artistic
authoring. To address this, we propose a meta-learning framework for few-shot pose transfer, which can well generalize to an
unseen character given just a few examples of the character. Further, we propose fusion residual blocks to align the features
of the source and target so that the appearance of the source character can be well transferred to the target pose. Experiments
show that our method outperforms leading pose transfer methods, especially when the source characters are not in the training
set.

Keywords Generative adversarial networks · Anime generation · Image generation · Video generation · Meta-learning

1 Introduction

Recent years, researchers [1, 5, 7, 8, 26, 27, 30, 32, 34, 43]
have proposed numerous algorithms for pose transfer—given
a source image and a target image, transfer the pose from the
target to the source. Those methods have been conducted on
real people and have not taken into account anime characters,
which have quite different visual appearance and structure
from real people. Real people dataset can be easily con-
structed by collecting a large number of samples through
videos and images, but the anime characters are drawn and
are not easy to collect in the sameway as real people. Specifi-
cally, before training samples can be collected for a character,
that character must be created by artist and 3D modeled
by animator. This entire process is more expensive and less
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convenience compared to collecting real people’s image or
video. Furthermore, dataset for the real people can be very
huge, considering huge amount of image/video on the Inter-
net. However, constructing a similarly very large dataset for
anime characters is challenging. This motivate us to develop
few-shot pose transfer method for anime characters. This
brings great challenges to the pose transfer of anime char-
acters. [13] generate images of full-body anime characters
with generative adversarial networks (GANs) [12]. They can
change the character’s clothes and pose. But their method
can only adapt to one specific character and limited poses and
fail to give satisfying results when source characters have not
been observed in training.

In view of these challenges, we find that model-agnostic
meta-learning (MAML) [3, 11] provides a learning strategy
with which a unseen character in training set can be initial-
ize by fine-tuning in inference based on meta-learned model.
In light of this, we propose a few-shot method for anime
pose transfer that can learn with small anime character data
and generalize well to unseen characters with a few exam-
ples of the characters. At the core of our method is a novel
pose transfer framework that is especially tailored for anime
characters. Figure 1 shows the results of our method.

Our framework solves pose transfer by training condi-
tional GANs containing a generator and a discriminator. The
generator and discriminator are trained on multiple tasks per
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Fig. 1 Given an image of a source anime character and a target pose,
our method transfer the pose of the target to the source automatically

batch to gain generalization ability to adapt to unseen char-
acters. We also propose the fusion residual blocks (FRBs)
to align the features of the source and the target to gener-
ate more accurate textures. With different tasks representing
different characters, each task has a support set and a query
set. The support set has four samples from different poses,
which allow the network to adapt to multi-view appearances
of the anime character. The query set is to verify the network’s
ability of adapting to the new pose and the appearance of the
character. One sample of the support set and query set con-
sists of a color image of the character and its corresponding
pose image.

The proposed training method has two stages. (a) Charac-
ter adapting stage: fine-tuning the parameters of the generator
on the support set. (b) Character refining stage: the fine-tuned
generator is trained on the query set to adapt to new poses
and different views. During testing, given the support set of

a source character and a target pose, we first fine-tune the
parameters of the generator on the support set, and then use
the fine-tuned generator to generate a pose transfer result
from the source image and the target pose.

Our contributions are as follows:

• We propose the first meta-learning framework that is
especially designed pose transfer of anime characters,
which trains with multiple stages to gain superior gener-
alization ability.

• Our proposedmethod, for the first time, can achieve high-
quality pose transfer results on unseen anime characters
with just a few examples of them.

• Extensive experiments show that our method outper-
forms baselines and state-of-the-art pose transfer meth-
ods both in terms of visual quality and quantitative
metrics.

2 Related work

2.1 Pose transfer

U-net [31], Pix2Pix [17] and Pix2PixHD [35] provide a
good network architecture foundation for many pose trans-
fer work [2, 5, 8, 9, 27, 34]. Ma et al. [27] proposed the
novel network (PG2) that allows to generate person images
in arbitrary poses, on the basis of that person’s image and
a new pose. Zhu et al. [45] proposed making the result-
ing features consistent with the characters by adding pose
attention to the generator so that the characters are trans-
ferred into the pose and can be done with a single image.
Chen et al. [8] proposed a novel pose transfer method, pro-

Fig. 2 Architecture of the proposed method, with the training (left)
and testing (right) pipelines. During training, we jointly train a gener-
ator (G) and a discriminator (D). The parameters of the generator is
first updated on the support set of each character so that it adapts to
the character appearance in the character adapting stage (a). Then, the

parameters of the generator and discriminator are updated jointly on the
query set of each character in the character refining stage (b). In testing,
the generator is fine-tuned on the support set of a source character and
then used to generate the image of the character in a target pose
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gressive multiattention network (PMAN), which is built on
many multiattention transfer blocks with two different atten-
tion mechanisms, pose-conditioned batch normalization and
cooperative attention mechanism. Tang et al. [32] used two
generation branches that modeled the person’s shape and
appearance, respectively. Yu et al. [30] proposed a globalflow
local-attention framework to reassemble the inputs at the fea-
ture level. Zhang et al. [43] synthesized a human parsingmap
aligned with the target pose and then used joint global and
local per-region encoding and normalization to generate the
final image. Chan et al. [7] proposed pose transfer of target
videowith the appearance of source video, and normalization
of source pose and target pose enables the source character to
perform pose transfer in case of changing position. This pro-
cess relies on pose estimationmodel, and in order to complete
the pose transfer of a particular character, a large number of
training sample from the character is required to train the
model.

However, these previous methods have difficulty in gen-
eralizing well on the test set if the training samples are
insufficient. They failed generate high-quality images when
the source characters are not in the training set, as demon-
strated in Sect. 5. Furthermore, these methods focus on pose
transfer on real people and did not take into account of anime
characters, which dataset is harder to collect.

To address this issue, we introduce meta-learning to pose
transfer of anime characters, enabling ourmethod to generate
high-quality pose transfer results for an arbitrary character
given just a few samples of the character. Further, we propose
a specializedmodule to accommodate the potential misalign-
ment between the source character and the target pose in the
image space.

2.2 GANs

Compared to variational auto-encoders (VAE) [23] and
PixelRNN [33] generation models, GANs have a broader
application. GANs such as Pix2Pix [17], Pix2PixHD [35],
and CycleGAN [44] have laid solid foundation for the state-
of-the-art GAN study. And the subsequent progressive GAN
[20], StyleGAN [21] goes even further to enhance the gen-
eration of GANs. Based on these foundations, researchers
proposed GAN-based methods for image inpainting [38],
text-to-image synthesis [39], unsupervised video summariza-
tion [4], single image de-raining [42] and de-snowing [18].
These previousworks provide a good reference for the design
of our network architecture.

2.3 Few-shot image-to-image translation

Finn et al. [11] proposed the model-agnostic meta-learning
method (MAML)which can carry out meta-learning training
without changing the network structure. Antoniou et al. [3]

improve MAML by using multi-step loss optimization and
derivative annealing. Zakharov et al. [40] proposed a method
of face animation with few samples using AdaIN to control
the generated image feature network. Liu et al. [25] proposed
a network (FUNIT) based onAdaIN to control image features
for unsupervised image-to-image translation. They all used a
small number of samples to generate a specific image, verify-
ing the generalization ability of GANwith a small number of
samples, and controlled AdaIN to generate an affine transfor-
mation, thus effectively guiding the conditional generation.

While the above methods have achieved good results on
few-shot image-to-image translation, in this paper, we try to
apply few-shot learning to a new scenario, pose transfer of
anime characters.

3 Method

We aim to train a pose transfer that could be fine-tuned in a
few example images of an unseen anime character to gener-
ate the image of the characters in any target pose. To this end,
we propose to use a conditional GANs setup, and train the
generator (G) and discriminator (D) under a meta-learning
framework based on MAML [11] and show our learning
framework in Fig. 2. The difference is that we treat a task
as a character pose transfer problem. Each task’s support set
contains K samples of the corresponding character, and thus
each task is a 1-way K -shot pose transfer problem. Each
task’s query sets contains a 2D projections of the character
that represents a new pose. Each sample is represented by a
color image and its corresponding pose image.

In training, the generator is first trained on the support sets
of different characters. Then, the generator and discrimina-
tor are trained simultaneously on the query set to enable the
generator to adapt to new poses. At test time, given an image
of a source character along with a target pose, we first gen-
erate a support set for the character by pairing up the source
image with its pose image generated using an off-the-shelf
pose detector. Then,wefine-tune the generator on the support
set so that it adapts to the appearance of the source character.
Finally, the generator takes as input an image of the source
character and the target pose and synthesize an output image
of the character in the target pose.

3.1 Generator

The generator G has two inputs, a pose image x and a source
image z, and produces an output image G(x, z). The target
pose is represented by a colored stick figure where joint key-
points are connected by lines according to a human skeleton.

Encoders: Our generator G has two encoders, a pose
encoder and a texture encoder. The pose encoder encodes
x into a pose feature map P , and the texture encoder encodes
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Fig. 3 Generator and discriminator architectures

z into texture feature map T . Both encoders share the same
network architecture,which is a five-layer convolutional neu-
ral networks with kernel sizes 7× 7, 3× 3, 3× 3, 3× 3, and
3 × 3, as shown in Fig. 3.

Fusion Residual Module:We propose fusion residual mod-
ule (FRM) to align the features of the source and target so that
the appearance of source character can be well transferred to
the target pose. The FRM consists of two fusion residual
blocks (FRBs), whose structure is based on ResNet [14], as
shown in the red box of Fig. 4. Given the texture and pose
feature maps, we introduce matrix multiplication into FRB
to establish direct relationship between the row elements of
the texture feature map and the column elements of the pose
feature map to bring the source and pose features into align-
ment. As a result, such matrix multiplication operation has
an effect of shifting the features of the source character to
align with those of the target pose. In this way, the multipli-
cation result will contain weighted texture features around
the position of the target pose. It is then convolved to obtain
an aligned texture feature f , which is finally added onto the
pose featuremap to fuse the aligned texture and pose features,
giving a fusion feature map P f .

Concretely, we feed T and P into two 3 × 3 convolu-
tions, each followed by the BatchNorm [16] and ReLU [29],
and get Conv(P) and Conv(T ). Then, we perform matrix
multiplication in a channel-wise manner to obtain the W :

W = Conv(T ) ⊗ Conv(P). (1)

Let emi,n be the activation at position (i, n) on channel m
of Conv(T ) and umn, j on channel m of Conv(P). wm

i, j is
calculated as:

wm
i, j =

N∑

n=1

emi,nu
m
n, j . (2)

Since the input source image and pose image have pure
white background, their feature maps only activate around
locations where the source character and pose stick figure
exist.

In the FRM, the FRB is applied two times in succession,
as shown in Fig. 4. The first FRB takes as input P and T to
output P f , which is fed into the second FRB along with T
to produced the final output of the FRM.

Figure 4 visualizes aligned texture featuremaps generated
by the FRB when given a single source image and a set of
target poses with the stick figures at different positions in the
image space. As can be seen, as the position of the stick figure
changes across the pose images, the resulting aligned feature
map can shift the features of the source (i.e., the vertical
rectangle of high activations) accordingly to align with the
stick figure in the image space.

Decoder: The output of the FRB is concatenated with the
pose feature map, and then fed into a decoder to obtain an
output image G(x, z). The decoder is formed by stacks of
a convolutional layer and two residual blocks, followed by
two convolutional layers, as shown in Fig. 3. The first con-
volutional layer has 3 × 3 kernel size. Through the three
conv-residual stacks, the spatial resolution of the feature
map is progressively doubled while the output channels are
halved. Changes in spatial resolution are achieved via upsam-
pling. The final two convolutional layers have kernel sizes of
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Fig. 4 Visualization of the FRB feature maps. Left: a source image.
Right: a set of target pose images. Bottom: output aligned texture feature
maps

3 × 3 and 7 × 7. We introduce skip connections as in the
U-net from the encoder to the decoder so that the decoder
can easily access important low-level pose information.

3.2 Discriminator

Our discriminator follows the discriminator architecture of
Pix2Pix [17], which consists of four convolutional layers of
kernel size 4× 4. The discriminator takes as input fixed size
patches randomly sampled from input images and classify
them as real or fake. The discriminator implicitly drives the
performance of the generator, because the generator needs to
generate more realistic images to confuse the discriminator.

3.3 Loss functions

Our network is trained through two stages, as shown in (a)
and (b) of Fig. 2. We use the GAN loss and L1 loss from
Pix2Pix [17] for those two stages. We also use the perceptual
loss introduced by [19]which calculates L1 distance between
feature maps of a pretrained network. Let R = {Ti }Ni=1 be
our training dataset with N tasks, where Ti = (Zi ,Si ,Qi )

denotes the data for the i-th character (task) and zi is a source
image of the character Si = {(xis, yis)} is the support set,
where (xis, y

i
s) is a support set sample, with xis and yis being

a pose image and ground-truth image, respectively. Qi =
{(xis, yis)} is the query set. During training, we sample a batch
of characters per iteration and update the parameters of our
model using the losses defined as follows.

Character Adapting Loss: The character adapting stage
trains G on the support sets of the sampled characters. For
each sampled character i whose source image is zi , we iterate
over all the samples in its support set Si and update G once
using each sample. The GAN loss LGAN

A , L1 loss LL1
A and

perceptual loss Lprec
A for a sample (xis, y

i
s) are written as:

LGAN
A = log(D(xis, y

i
s)) + log(1 − D(xis,G(xis, z

i ))), (3)

LL1
A = ‖yis − G(xis, z

i )‖1, (4)

Lprec
A =

∑

n

‖φn(y
i
s) − φn(G(xis, z

i ))‖1. (5)

whereφn is the activationmap of the n-th layer of a pretrained
network. The full loss for this stage is:

LCA = LGAN
A + λlLL1

A + λpLperc
A . (6)

Character Refining Loss:With the trainedmodels in the pre-
vious stage,we further trainG and Dwith a character refining
loss on the query set of this batch of sampled characters. For
ease of explanation, we define the loss in terms of a single
character. In practice, we need to compute the mean over all
the characters. The character refining loss LCR encourages
the generator G to handle a wide range of different target
poses and different viewpoints in pose transfer. For a sam-
pled character i with the source image zi and the query set
Qi , we draw a query sample (xiq , y

i
q) from Qi and define

LCR as:

LCR = LGAN
R + λlLL1

R + λpLperc
R , (7)

LGAN
R = log(D(xiq , y

i
q)) + log(1 − D(G(xiq , z

i ), xiq)), (8)

LL1
R = ‖yiq − G(xiq , z

i )‖1, (9)

Lprec
R =

∑

n

‖φn(y
i
q) − φn(G(xiq , z

i ))‖1. (10)

where LGAN
R , LL1

R and Lperc
R are GAN loss, L1 loss and per-

ceptual loss, respectively. Character refining loss can force
the generator to adapt to the appearance of new characters at
multiple different views and different poses.

Multi-step Loss: Considering that the model is iterated
over the support set several times during the character adapt-
ing stage, calculating the query set loss using only the final
trained model may result in losing some of the optimiza-
tion information. In light of this, we leverage multi-step loss
(MSL) [3] during the training phase. Specifically, we calcu-
late the query set loss LCR after each iterative update on the
support set, and use the weighted sum of all query set losses
as the final character refining loss, which allows amore accu-
rate optimization of the model parameters θ :

θ = θ − β · ∇θ

N∑

i=1

S∑

s=1

vsLQ
CR . (11)

where β is the learning rate, N is the number of tasks in
each batch size, and S is the number of iterations of each
task on the support set. LQ

CR denotes the query set loss of all
sampled characters computed after s-step iterations of each
task on the support set. vs denotes the importance weight
of LQ

CR , which is calculated in the same way as [3] and is
gradually increased during the iterations of each task.
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Fig. 5 One sample of the source image and the support set (K = 4)

4 Dataset

To train and evaluate our model, we use Unity to create a
dataset by rendering a set of virtual anime characters. All of
these characters are commonanimated characterswith awide
variety of clothes and actions with common size and body
proportions. We render the color image of the characters and
create the corresponding pose images by detecting 17 joint
keypoints on each color image with an off-the-shelf pose
detector, AlphaPose [10, 24, 37]. We render using a fixed
camera position and focus on the character.

Specifically, for each character, we use four different ori-
entation views of front, back, left, and right to render the
character’s pose as the basic pose. In addition,we use dancing
animation sequences of the characters that contain different
poses to generate samples. For each animation sequence, we
sample multiple poses over time, ending up with about 140
samples for each character. The training set contains a total of
37,289 samples from214animecharacters, and the testing set
contains a total of 7,918 samples from 46 anime characters.
These samples vary in terms of pose, viewpoint, character
etc. Each sample is in resolution 256×256 with white back-
ground. We select samples based on K to construct support
set, and one of the data samples is shown in Fig. 5.

5 Experiments and results

5.1 Implementation details

In the training phase, we iterated over 96 epochs. The weight
λl is 75.0 and λp is 0.5. We set the size of the support set
K = 4, the number of tasks in a batch is 4, and the number

of iterations in the character adapting stage per task is 4.
For the character refining stage, we use Adam [22] optimizer
to optimize the model parameters. We set the initial learning
rates of the generator and discriminator as 0.0002 and 0.0004
according to the TTUR update method [15]. We also use
the cosine annealing algorithm to update the learning rate
of the generator. Specifically, we use the cosine annealing
algorithm to set a decreasing learning rate for the generator
with a minimum of 0.00005 during the first 64 epochs of
the training phase and maintain the minimum learning rate
for the next 32 epochs. For the character adapting stage, the
generator are updated by the gradient descent algorithm,with
a learning rate of 0.001. The convolutional layers for both the
generator and the discriminator use spectral normalization
[28, 41]. We train with an image resolution of 256 × 256.

In the testing phase, we used a learning rate of 0.03 for the
character refining stage to utilize the basic pose fine-tuning
generator for each character, then test on the test dataset.

When usingmulti-step loss optimization,we set the size of
the support set K = 2, the number of tasks in a batch is 4 and
all others remain unchanged. Please note that some results
were obtained from a model trained with flexible setting for
efficiency, like without perceptual and MSL losses, and 2
tasks per batch, etc. These include Figs. 7, 8, 10 and 11.

5.2 Comparedmethods

Compared Methods. We compare with an image-to-image
translation baseline, Pix2Pix [17]. Furthermore, we compare
with three leading pose transfer methods, PG2 [27], PATN
[45] and XingGAN [32]. For fair comparison, we used the
training split of our dataset to train on these networks.

5.3 Evaluationmetrics

We use the Fréchet inception distance (FID) [15] to compare
the feature statistics of generated images and the real images.
To compute the FID, we use features from a model trained
on a dataset of anime characters, i.e., Danbooru2018 [6].
We also adopt the structural similarity index (SSIM) [36] to
measure the perceptual distance between generated images
and their ground-truth image.

5.4 Comparison with prior methods

For this experiment, we set support set size K = 1 during test
for fair comparison. Given a source image of a character, and
the sample in its support set is formed by the ground-truth
image and a pose image obtained by applying the AlphaPose
[10, 24, 37] to the ground-truth image.

Figures 6 and 7 show the qualitative results of different
methods on our test dataset and in-the-wild YouTube video
frames of real people with the background removed, respec-
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Fig. 6 Visual comparison of our method (Ours), PATN, PG2, Pix2Pix and XingGAN on our test dataset. The support set size in our method is set
to 1 during test and the MSL is used

tively. We find that while all the methods respect the target
poses well, our method produce results with much better
visual quality than the other methods on the anime charac-
ters in Fig. 6. The Pix2Pix generates blurry results, while
the PATN, XingGAN and PG2 synthesize wrong textures
particularly at the face and clothing regions. Specifically, in
second row of Fig. 6, our method preserves more detailed
feature such as clothing and hair, while other methods have

difficulties in reconstructing these fine details. In the addi-
tion, in the last row of Fig. 6, it is evident that our method
has more accurate color transformation. This suggests that
the other methods fail to generalize to the unseen characters,
while our method can handle them favorably given only a
single example of each character. The superior generaliza-
tion ability of our method is further demonstrated in Fig. 7,
where all the source images contain real people. Despite
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Fig. 7 Visual comparison of our method (Ours), PATN, PG2, and
Pix2Pix on YouTube video frames. The support set size in our method
is set to 1 during test

Fig. 8 Results of our method under 1-shot, 4-shot and 10-shot

being trained only on anime characters, our method is able
to synthesize good appearance on the target poses success-
fully,while the othermethods strugglewith giving reasonable
results. Table 1 shows the FID and SSIM scores for different
methods. We can see that our method outperforms the other
methods in terms of both metrics. More example results by
our method on both anime character and real people can be
found in Fig. 10.

5.5 Number of shots

The results in Sect. 5.4 show that our method can achieve
compelling performance under 1-shot setting. We experi-
ment with varying the number of shots. To this end, given
a source image during generation, we generate K support set
samples by horizontally shifting the character in the image
to create a K -shot setting. Figure 8 shows the results gener-
ated by our network with the number of shots varying from
1, 4 to 10. As expected, when the number of shots increases,
the visual quality of the synthesis results improves gradu-

Table 1 Quantitative results of different methods on our test dataset

Method FID↓ SSIM↑
PATN 6.77 0.807

PG2 6.61 0.820

Pix2Pix 8.37 0.843

XingGAN 7.31 0.812

Ours (1-shot) 5.78 0.871

Ours (1-shot) (MSL) 4.03 0.872

The best results are in bold

Table 2 Effects of different shots and multi-step loss

Method FID↓ SSIM↑
Ours (1-shot) 5.78 0.871

Ours (4-shot) 4.31 0.872

Ours (10-shot) 4.01 0.878

Ours (1-shot) (MSL) 4.03 0.872

Ours (4-shot) (MSL) 2.33 0.874

The best results are in bold

Table 3 Costs of training and fine-tuning. The MSL is unused, and the
time is reported in unit of minutes

Stag Method Time

Training (one epoch) PATN 7

PG2 8

XingGAN 12

Ours (4-shot) 85

Fine-tuning Ours (4-shot) <1

Table 4 Results of the ablation
study (4-shot)

Method FID↓ SSIM↑
w/o ML 5.30 0.837

w/o FT 5.92 0.827

w/o FRM 4.31 0.852

w/o MSL 3.71 0.862

Ours (MSL) 2.33 0.874

The best results are in bold

ally, with more sharp texture details. The quantitative results
reported in Table 2 also indicates that increasing the number
of shots will result in better performance.

5.6 Multi-step loss optimization

Multi-step loss can provide more accurate loss information.
Therefore, we use it in the early stage of training to help the
model iterate and optimize quickly and in the later stage of
training to save training cost by adopting the previous training
strategy.
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Fig. 9 Visual comparison of our full method (Full) against its three
ablations that train without the meta-learning framework (w/o ML),
without the FRM in the generators (w/o FRM), without using fine-
tuning (w/o FT), and without the multi-step loss (w/o MSL) during
training, respectively. The support set size is set to 4

We compare the results of training with multi-step loss for
the case of K = 4. The quantitative results in Table 2 show
that usingmulti-step loss optimization leads to slightly better
performance.

5.7 Training and fine-tuning time

Table 3 shows the time costs used of training our method and
previousmethods. Due to employing theMAML framework,
our method need more training time than previous methods.
However, when performing inference on new unseen char-
acter, our method needs just fine-tuning instead of training.
For each new character, the fine-tuning takes only less 1min
to complete.

5.8 Ablation study

To analyze the necessity of each important component in our
method, we perform an ablation study by comparing our full
method with its several ablations:

• w/o ML: To evaluate the effect of our meta-learning
framework, we experimentwith removing theML frame-
work. As shown in Fig. 9, without theML, the outputs do
not adapt to the appearance of the characters in the input
source images, synthesizing images of random charac-
ters. This suggests that the ML is crucial to the excellent
generalization ability of our method given only a small
number of samples.

• w/o FT: In testing, we need to fine-tune (FT) our gen-
erator on the support set of the source character for a
number of iterations. We remove test-time fine-tuning.
In other words, we generate outputs by directly apply-
ing the generator obtained after the training. As shown
in Fig. 9, without the FT, while the global styles of the
source images can be transferred, the results cannot pre-
serve some local and fine-level appearance of the input
characters, e.g., at the face regions.

• w/o FRM: We evaluate the effect of the FRM by remov-
ing it from the generator. As shown in Fig. 9, when there
exists large positional discrepancy between the character
in the source image and the stick figure in the target pose
image, the method without the FRM can fail to properly
transfer the texture of the source character onto the target
pose. The incorporation of the FRM can solve this issue
well.

Fig. 10 Our pose transfer results on anime characters and real people under 10-shot
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Fig. 11 Failure cases of ourmethod.Ourmethod fails to give reasonable
results when the input source character has very complex texture (top)
or the target pose contains significant self-occlusion and pose ambiguity
(bottom)

• w/o MSL: We evaluate the impact of the multi-step loss
(MSL) by removing it in the training phase. As shown
in Fig. 9, without the MSL, the color of the target image
deviates more compared to the source image, or incor-
rect textures are generated. This suggests that MSL is
important for the generation of details.

We further demonstrate the effectiveness of each compo-
nent quantitatively in Table 4. Our full method achieves the
best performances, indicating the necessity of all the compo-
nents.

5.9 Failure cases

Figure 11gives some failure cases of ourmethod.Ourmethod
may fail to give satisfying results when the input source char-
acter have very complex texture, as shown in the top row of
Fig. 11. This is perhaps because it is quite challenging to
learn how to transfer complex texture patterns to arbitrary
pose given only a few examples of a character. This issue
can be partially alleviated by using more samples in the test-
time support set. How to synthesize complex texture under
low-shot setting is a meaningful next step for our problem.
Failures can also occur in the presence of some extreme pose
(e.g., crouching), which would cause self-occlusion or pose
ambiguity in the 2D stick figure. One such example is given
in the bottom row of Fig. 11.

6 Conclusion

In this paper, we propose a novel approach for anime charac-
ter pose transfer under few-shot setting. With our proposed
meta-learning framework, our method can generate visually

compelling pose transfer results on arbitrary unseen anime
characters given only a few samples of them. The proposed
fusion residual block can learn to align the features of a source
character and a target pose, thereby enabling our method to
reliably synthesize the character’s appearance onto the pose,
even when the character and pose are misaligned spatially.
Our experiments demonstrate that our method significantly
outperforms baselines and previous pose transfer methods in
terms of both visual fidelity and quantitative metrics.
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