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Abstract 

Maintenance of railroad track safety is of utmost importance as derailment accidents cause significant loss to life and 

property. Inspection of railroad tracks and their components is necessary in order to ensure security and well-being of 

goods as well as humans. Fishplate is an essential component in the railroad track environment hence, periodic 

maintenance of fishplates is an imperative goal. In this paper, we propose a method for detection and segmentation of 

fishplate instances in high-altitude drone images (DI) for a closer-view and consequent inspection of fishplate 

instances. For this purpose, a novel two-stage Mask R-CNN-based framework termed as FishTwoMask R-CNN is 

proposed. A new fine-tuning strategy has been developed for the purpose of improving the detections in the second 

stage (Stage 2) which includes a training trick of modifying the loss weights for Stage 2 training. In the first stage 

(Stage 1), we detect fishplate instances, which are then cropped and fed as input to Stage 2, along with Stage 1 dataset. 

The Stage 2 network is then trained through a modified weighted loss and produces final detections for  segmentation 

and further inspection. The ”layers” hyper-parameter is assigned as “heads” for Stage 1 and updated to “4+” for Stage 

2 . Also, the critical analysis of Mask R-CNN hyper-parameters has been carried out during both the stages which has 

lead to an improved detection precision rate of 97% in Stage 2 as opposed to 47% in Stage 1. We evaluate our proposed 

approach on five different test image scenarios in order to view fishplate instance detection results. There has been 

statistical evaluation on out-of-distribution test images also in order to compute the metrics values. The comparative 

results have been evaluated using metrics of  precision, recall, and F1-score on Mask R-CNN Stage 1 and Stage 2 

along with Faster R-CNN and Yolov5 methods. It is inferred that the proposed approach achieves appreciable metrics 

values and thus can be gathered suitable for fishplate instance segmentation in drone images. 

Keywords: Instance segmentation, Drone images, Fishplate instances, Railroad track, Faster R-CNN, Mask R-CNN, 

Yolov5. 

1 Introduction 

Rail transportation networks are one of the primary modes of commuting all over the world. Periodic monitoring of 

railroad tracks and their components is necessary in order to ensure safety of passengers and goods in railroad 

environments. Fishplates are critical components in railroad track infrastructure. The inspection of fishplates is an 

important measure in maintaining railroad track safety. A fishplate, also referred as splice or rail joint bar, is a metal 

bar, which is bolted to the ends of two rail lines in order to join them together , as shown in Fig.1d,2d,2e and 3d [1]. 

The malfunction of fishplates happens due to either loosening of nuts or bolts, cracking of the fishplates, or incorrect 

maintenance or tampering[2]. This may cause misalignment of track sections potentially leading to catastrophic 

failures such as derailment of trains[2].  

There has been an advent of various sensing or image acquisition systems (IAS) along with machine learning 

and computer vision-based methods for fishplate monitoring. In [3] an IOT-based real-time fishplate monitoring 

module comprising of electrical pulse generator (EPG) and GSM-based systems is proposed. This proposed automated 

system monitors the condition of the railroad fishplate bolts in order to send warning signals and avoid accidents. The 

fishplate peak is distinguished in [4] while a sensor, developed from Turck sensor, is fixed under a wheeled car for  
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Fig. 1 Scenario 1 (a) Study Image 1(b) Extracted tracks 1 and 2 (c) Segments from extracted track 

2 (d) Zoomed fishplate instances 

 
collecting magnetic signals. Fishplate localization is performed in images captured through rail imaging system 

while travelling  along rail [5]. Fiber Optic Sensing (FOS) has been used in [6] for structural health monitoring 

of fishplates. 

However, these aforementioned IAS have variable limitations, which include low strain sensitivity jacketed 

fibers, broken bare fibers, and high installation expenses in case of FOS[7] along with inaccessibility for 

remote geographical locations, limited detection range and high cost in case of rail-mounted vehicles or 

inspection trains[8], [9]. Also, records obtained through human inspectors are subjective and irregular. In such  
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Fig. 2 Scenario 2 (a) Study Image 2 (b) Extracted Tracks 1 and 2 (c), (f) Segments from extracted 

track 1 (d), (e) Zoomed fishplate instances 

 
scenarios drone-based image acquisition systems are very beneficial. Drones are the latest trend for railroad 

environment monitoring as they offer various advantages such as ease of control, cost-effectiveness and 

flexibility while aiming inaccessible areas [8]. They are lightweight Unmanned Aerial Vehicles (UAVs) which 

also score over human inspectors, rail-mounted vehicles or inspection trains as they provide efficient track 

image acquisition without railroad traffic blockage. 

Although drone-based image acquisition systems offer large number of benefits, however drone-based 

fishplate monitoring is observed to face the following challenges: 

 

1. Rail lines have varying orientations as observed in drone images. Fishplates are used to join two rail lines together 

and orientation of rail lines affects orientation of fishplates. Thus such variances in the position and direction lead to 

complex fishplate detection scenarios in drone images. 

2. Flying drones at various flight heights leads to capturing different sizes of fishplates in drone images due to varied 

views. In addition, fishplate may be misconstrued in high-altitude drone images thus making fishplate detection in 

drone images a difficult problem. 

3. Different illumination scenarios such as partially sunny/cloudy, sunny lead to illumination inconsistencies. In addition, 

partial occlusion of railroad track along with shaking of the drone due to environmental factors such as wind may 

cause low or uneven brightness as well as contrast as observed in different railroad environments captured in DI.  
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Fig. 3 Scenario 3 (a) Study Image 3 (b) Extracted Tracks 1, 2 and 3 (c) Segments from extracted track 2 

(d) Zoomed fishplate instances 

 

This necessitates an adaptive method for fishplate detection in drone images. 

As these challenges are observed for drone-based image acquisition, fishplate monitoring in drone images remains a 

difficult task. In order to overcome these shortcomings, a novel approach for fishplate detection in railroad images is 

proposed and termed as FishTwoMask R-CNN. The motivation lies in detection and segmentation of tiny fishplate 

instances for obtaining their closer view for inspection in high-altitude drone images. This in turn is helpful for railroad 

track health monitoring for the provision of safety during transportation in order to avoid mishaps, which are indicative 

of loss of life and property. 

The organization of the article are as follows: In Section 2, algorithms related to detection, and health monitoring of 

railroad tracks and their components is discussed. The image acquisition and data generation are discussed in Section 

3. While image acquisition comprises of study area and datasets used, data generation highlights steps for Stage 1 and 



5 
 

Stage 2 fishplate instances dataset creation. In Section 4 theoretical background is presented. The proposed method, 

comprising of Stage 1 and Stage 2 training, is discussed in Section 5. The evaluation of proposed method based on 

experimental results is discussed in Section 6 along with complexity analysis. Finally, conclusion and future work in 

the article are presented in Section 7. 

2 Literature review 

Various optimization and machine-learning techniques have been implemented for object classification and detection 

tasks in different real-life applications[10]–[17]. In addition, object localization is performed for various field 

applications in railroad environment[18], [19]. Object detection and segmentation algorithms have also been 

developed for detection, segmentation and inspection of railroad tracks and their components in railroad track 

environments[9]. The task of classifying and localizing multiple objects in an image is termed as Object detection. 

Semantic Segmentation can be defined as the classification of every pixel in an image labeled as the object class it 

belongs to. However, in this different objects belonging to the same class are undisguisable. Consequently, instance 

segmentation comes into picture. Instance segmentation is similar to semantic segmentation however, all objects of 

the same class are not merged into one big lump instead, each of the class objects are identified as a unique entity for 

instance, each of the individual fishplates in a DI are distinguishable. Mask R-CNN is an efficient model for instance 

segmentation. 

A comprehensive review on the merits and demerits of the existing works have been tabulated in Table 1. Faster R-

CNN algorithms have been implemented for aerial supervision of railroad tracks in drone images[20], [21]. In [21] 

Faster R-CNN along with Yolo and other algorithms is developed for obstacle detection in railroad track aerial images. 

Faster R-CNN is also developed for small object detection and the imbalanced dataset, based on images captured 

using unmanned aerial vehicles (UAV)[22]. In [18] railroad track health monitoring is performed through track assets 

detection using Yolov3. It is observed that Faster R-CNN tends to be more complex than Yolo hence it is slower as 

compared to the single shot detection method. The reason being single shot methods do not require per region 

processing. Mask R-CNN[23] is advantageous over Yolov5 and Faster R-CNN. Pixel-to-pixel alignment is the key to 

Mask R-CNN which is otherwise missing in Faster R-CNN[24]. Additionally, Mask R-CNN unifies both object 

detection and semantic segmentation to perform instance segmentation. 

In [25]  YOLOv5 and Mask R-CNN framework  have been implemented for rails and fasteners localization and rail 

surface defect detection and segmentation respectively. The dataset has been captured using special rail inspection 

vehicle. In [26] Mask R-CNN algorithm has been devised for segmentation and extraction of rail and fastener areas 

while the dataset images have been collected using an inspection cart. The detection of railroad components such as 

rail, clip and spike is performed using Mask  R-CNN on track images captured using iPhone 8 smartphone in [9]. In 

[27] iPhone 8 smartphone is used to collect images for the goal of automatic rail surface defects detection based upon 

Mask R-CNN. In aforementioned studies Mask R-CNN architecture has been implemented along with data samples 

being collected using inspection vehicles and phones. As observed, Mask R-CNN-based architecture is well-suited 

and very efficient for the task of inspecting railroad tracks and their components.  

In [28] Mask R-CNN is used for the detection of sleepers and spaces between sleepers in drone images. Alongside, 

Mask-R-CNN architecture enables segmentation in drone images during identification of healthy and missing rail 

fasteners [29]. Mask R-CNN is advantageous as like object detection it can handle multiple fishplate instances 

alongside differentiating the identities. For detection of fishplate instances in DI various image processing and 

statistical methods have been previously developed. In [30] feature-based template matching has been implemented 

for fishplate detection in DI . However, this work has been computationally extensive as large number of features have 

been calculated beforehand in order to select one suitable feature. The work in [31] computes fishplate detection in 

drone images using Normalized correlation coefficient and Non-maximum suppression. In this approach, a large 

number of false positives are observed. The fishplate detections are obtained in drone images captured at fixed heights, 

both in [30], [31]. Therefore, it can be concluded that Mask R-CNN method is explored in a limited manner for 

fishplate detection in railroad environment drone imagery making it seems a suitable architecture to achieve our goal.  
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Table 1 Comprehensive review of existing works 

Reference 

No. 

Method Used Track Component 

Focused 

Merits Demerits 

[20] Faster R-CNN 

Inception v2 and 

Atrous  models 

Vegetation and obstacle 

detection. 

The Inception v2 model 

provides good 

performance while 

Atrous provides even 

better performance, 

especially for small-

scale objects. 

As development of a 

dedicated dataset for 

different railroad 

terrains is 

recommended, it is 

inferred that 

classification 

knowledge in one 

railroad terrain cannot 

be transferred to another 

railroad terrain. 

[21] Faster R-CNN, 

Yolo 

Obstacle detection. The detection models 

could be used for real-

time obstacle detection. 

More datasets with 

diversity could be 

collected. 

A better high-end 

system could be used 

with modifications in 

the deep neural network 

models. 

[22] Faster R-CNN Catenary support 

device inspection, small 

object detection and 

imbalanced dataset. 

Improved Faster R-CNN 

achieves better 

performance than classic 

methods. 

Avoidance of category 

imbalance required. 

[18] Yolov3 Track Assets detection. Multiple track assets are 

detected. 

Network architecture 

changes required for 

better performance. 

[25] Yolov5, Mask R-

CNN 

Rail surface and 

fasteners defect 

detection. 

Mask R-CNN is found 

efficient. 

More data augmentation 

methods to expand the 

defect samples. Also, 

further improvement of 

the robustness of our 

method. 

[26] Mask R-CNN, 

SVDD (Support 

Vector Data 

Description) 

Foreign Objects defect 

detection. 

Detection of foreign 

objects in ballastless 

trackbed images which 

the algorithm has not 

learned; and still 

obtained desirable 

results. 

Need for simplification 

of the detection process 

and increase in the 

detection speed in the 

future. 

[27] Mask R-CNN Rail surface defects 

inspection. 

Mask R-CNN presents 

promising results upon 

comparison with Otsu 

Prediction performance 

of the developed model 

maybe improved while 



7 
 

taking into consideration 

different lighting 

conditions and 

severities. 

more training data is 

used. 

[28] Mask R-CNN Detection of sleepers 

and spaces between 

sleepers. 

Sleepers are located, 

compared using two 

different methods based 

on the Otsu method and 

Mask R-CNN. 

Expansion towards 

detection of defects in 

various components 

alongside developed 

autonomous UAV. 

[29] Mask R-CNN Railroad fastener fault 

detection. 

Achieved commendable 

results for fastener fault 

detection. 

The drone images are 

closely captured. 

[30] Handcrafted 

Features  

Fishplate detection. Promising results with 

lesser number of false 

detections. 

Computationally 

intensive. 

[31] Normalized 

Correlation 

coefficient, 

Template 

matching  

Fishplate detection. Less computationally 

intensive. 

Large Number of false 

alarms (false positives). 

 

Therefore, our aim is fishplate instance detection and segmentation for inspection purpose in drone images. These DI 

are captured at different flight heights, under uneven illumination and with varying rail line orientations in different 

railroad environments. To achieve this aim we propose the novel two-stage Mask R-CNN framework termed as 

FishTwoMask R-CNN and the main contributions of the proposed approach are summarized as follows: 

1. The work proposes a novel two stage Mask R-CNN framework termed as FishTwoMask R-CNN for fishplate 

instances detection and segmentation in high-altitude drone images. This implies working with a tiny railroad 

component such as a fishplate within a large drone image.  This algorithm is adaptive due to its ability to detect 

fishplate instances in drone images captured under different railroad environments. Our method is a hierarchical 

approach with only two Mask R-CNNs. 

2. A new fine-tuning strategy has been proposed for the improved detection of the fishplate instance in drone images.  

This includes a training trick of modifying the loss weights for the second stage of training (Stage 2) in order to reach 

the top-performing level in the network. 

3. The devised training method also comprises of changing the ‘layers’ hyper-parameter in the architecture while training 

in Stage 1 and Stage 2. Additionally, the cropped fishplate instances from the first stage are incorporated alongside 

the Stage 1 dataset for the second stage of training.  

 

In order to achieve the goal of fishplate instance segmentation for railroad track safety monitoring in drone images, 

the images are acquired and the dataset for the two stages is generated as discussed in Section 3. 

 

3 Image acquisition and Data Generation 

3.1. Study Area and Datasets used  

The images are acquired for generation of both Stage 1 and Stage 2 datasets. In this work, drone-based image acquisition 

has been performed using DJI phantom quadcopter. The drone specifications comprise of high definition 4K resolution 

RGB colour camera along with GPS unit in order to capture geotagged standardized RGB (sRGB) images. Each image 
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Table 2 Datasets Description 

SN SID hF
 

(m) 
DOA 

Central 

Lat/Long 

GSD 

(cm) 

Illumination 

Scenario 

No. of 

images 

in dataset 

(1) S1mp 22m 10-05-2018 
29°51’0.6129”N/ 

77°52’50.9917”E 

0.89 

 

Sunny, Little 

occlusion. 
56 

(2) S2mp 25m 07-07-2017 
29°51’14.9380”N/ 

77°52’5.8300”E 
1.06 Dark. 63 

(3) S3mp 11m 25-04-2017 
29°46’3.3522”N/ 

78°0’35.0221E 
0.47 Little bright. 96 

        

is of size 3000 4000  pixels. The total number of drone images in the acquired datasets is equivalent to 215. These 

drone images are captured over railroad tracks spanning across different track locations near Roorkee, Haridwar, India. 

These drone images are acquired frame by frame and comprise of fishplate instances captured at different locations, 

different flight heights, varied dates/ time and in uneven illumination as observed in complex railroad environments. 

Some of the fishplate instances in drone images are as shown in Fig. 1d, 2d, 2e and 3d. The description of datasets ,used 

as source for Stage 1 and Stage 2 datasets creation, is as mentioned in Table 2 and includes SID ( sample ID), DOA( 

date of acquisition), central latitude and longitude, flight height (Fh), GSD( ground sample distance)[8], illumination 

scenarios and total number of images present in the dataset. GSD is indicative of how big each pixel is on the ground[8]. 

The changes in flight height (Fh) lead to changes in corresponding pixel size which consequently changes number of 

pixels between two rail lines of a rail line pair. Therefore, the calculated pixels are essential during rail line pair 

selection. The notations
1mpS , 

2mpS  and 
3mpS denote IDs of p th fishplate instance segment acquired from the m th 

extracted track of  their respective i th drone image iD  acquired in datasets for train and test purpose for Stage 1 and 

Stage 2. The method used for railroad track extraction from railroad track images is DroneRTEF as proposed and 

discussed in [8]. Fishplate instances from three different datasets are described as follows:  

 Scenario 1: Sample instance(s) p  (
1mpS ), segmented from extracted tracks mE of Study Image 1 from dataset 1D  , 

are as shown in Fig. 1a. Study Image 1 is captured on a sunny day at 4:46 p.m. at 22m flight height. A little amount 

of occlusion is observed in the image. The extracted tracks (Tracks 1 and 2) are as shown in Fig. 1b. The segments 

from extracted track 2 can be viewed in Fig. 1c while the fishplate instances can be viewed in Fig. 1d. 

Scenario 2: Sample instance(s) p  (
2mpS ), segmented from extracted tracks mE of Study Image 2 from dataset 2D , are 

as shown in Fig. 2a. These fishplate instances are segmented from Study Image 2 which is captured at 2:51 p.m. and 

at a flight height of 25 m in low brightness (dark) environment. The extracted tracks 1 and 2 can be viewed in Fig. 2b. 

The   segments from extracted track 1 can be viewed in Fig. 2c, 2f while Fig. 2d, 2e depict zoomed fishplate instances. 

Scenario 3: Sample instance(s) p  (
3mpS ), segmented from extracted tracks mE of Study Image 3 from dataset 3D , are 

as depicted in Fig. 3a. The Study Image 3 is captured at 11m at 11:53 a.m. on a little brighter day. The extracted tracks 

1, 2 and 3 are observed in Fig. 3b while Fig. 3c depicts segments from extracted track 2. Fig. 3d shows zoomed fishplate 

instances. 

3.2. Data Generation 

The datasets acquired in Section 3.1 form the data acquisition module of the FishTwoMask R-CNN architecture. The 

input images in the datasets are of importance as correct representation of fishplate ground truth images is helpful in 

developing Stage 1 and Stage 2 datasets as discussed in Section 3.2. 

3.2.1. Stage 1 Dataset description 

The drone images iD undergo various preprocessing steps in order to form Stage 1 fishplate instances dataset. The 

Stage 1 dataset creation flowchart is represented in Fig. 4 and the same is explained algorithmically in Fig. 6. Drone-
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based image acquisition is carried out for obtaining t drone images ( tD ) of the railroad environments. The g railroad 

tracks are then extracted from the acquired images[8]. The segmentation of each of these extracted railroad track 

images is performed into a total of n overlapping smaller sized railroad track segments impS
. The railroad track 

segments impS
with fishplate instances ‘fishplate’ are then selected to form dataset 1Dataorig

which comprises of 

segments with fishplate samples, as discussed in Step 3- Step 7 (Fig. 6) . The matching criteria of fishplate in the impS
 

is checking for the presence of fishplate though visual inspection of these ground truth segments. The has ‘fishplate’ 

in Step 6 of Algorithm 1(Fig. 6) indicates whether fishplate instance(s) are present in impS
and can be viewed through 

naked eyes in the segment. Consequently, the impS
are examined and if fishplate instance(s) are found in the impS

segments then those corresponding impS
 are selected and added to 1Dataorig

 as discussed in Step 7 (Fig. 6).These

1Dataorig segments are then augmented for obtaining new images, as mentioned in Step 8 (Fig. 6). These new segment 

images in the augmented dataset 1Aug exhibit a variety of conditions for fishplate instances such as different 

brightness, scales, locations, and orientations. As depicted in Step 9 (Fig. 6) the functions of shuffle and rename are 

performed on the combined original 1Dataorig and augmented 1Aug datasets in order to obtain Stage 1 fishplate 

instances dataset 1Data . 

 

 

 Fig. 4 Description of Stage 1 dataset creation 
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Fig. 5 Steps for Stage 2 dataset creation 

Algorithm 1: Data Generation for Stage 1 

Input: Drone image iD   

Output: Fishplate instances dataset 1Data   

1. 1Dataorig   

2. Obtain segments 
impS  from extracted track mE  of iD  

3. for : 1:i t   

4.     for : 1:m g   

5.        for : 1:p n   

6.           if 
impS has  ‘fishplate’ 

7.             Add 
impS to 1Dataorig  

8. Create augmented dataset 1Aug   

9. Construct 1Data from 1Dataorig & 1Aug  

Fig. 6 Algorithm for Stage 1 Data Generation   

3.2.2. Stage 2 Dataset description 

The requirement for Stage 2 dataset arises as, after Stage 1 training, incorrect detections are observed (discussed in 

Section 5.1). Consequently, for Stage 2, we have developed the dataset from Stage 1 fishplate instances dataset 1Data

and termed it as 2Data . The pictorial depiction is provided in Fig. 5 along with the algorithm, which is as discussed 

in Fig. 7. In Fig. 7 1Data  is considered as the input. In Step 2 (Fig. 7), the resultant bounding boxes obtained as outputs 

from 1Data in Stage 1 training, are used to crop the instances from the corresponding segments. The top left coordinates 

 ,x y  of the bounding box along with the width w , height h  are required for cropping using  , ,  ,  x y x w y h  . 

This forms the 1fishinst dataset. The cropping step is of significance as in order to get more context for the fishplate 

instances for better analyses, our approach includes first localizing the fishplate instances in Stage 1 segments and 

cropping around them, then using these cropped portions of the segments for Stage 2. 

These cropped images in 1fishinst dataset are evaluated for fishplate instances ‘fishplate’. If this image comprises of 

the fishplate instance, it is added to the fishplate instances dataset 1fishinstdata or else it is discarded. The has ‘fishplate’ 

in Step 3 of Algorithm 2 (Fig. 7) indicates whether a visible fishplate instance structure is present in the cropped image

1fishinst . The fishplate presence is checked again in Step 3 as 1fishinst is sourced from 1Data . 
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Algorithm 2: Data Generation for Stage 2 

Input: 1Data   

Output: Fishplate instances dataset 2Data   

1. 1fishinstdata   

2. Crop instances from 1Data to form 1fishinst   

3. if 1fishinst has ‘fishplate’ 

4.    Add 1fishinst to 1fishinstdata  

5. Combine 1Data & 1fishinstdata  

6. Construct 2Data from Step 5 data through shuffle and rename 

Fig. 7 Algorithm for Stage 2 Data Generation 

As 1Data is divided into test and train images therefore it is important to check presence of fishplate instances in

1fishinst images especially in those sourced from test images. The 1fishinstdata  is then combined with the Stage 1 

fishplate instances dataset 1Data . In Step 5 (Fig. 7) combining 1Data & 1fishinstdata indicates merging both the 

datasets together in order to apply the functions of shuffle and rename onto this combined fishplate instances dataset. 

This forms Stage 2 fishplate instances dataset 2Data , which is then fed to Stage 2 for training. 

4 Theoretical Background 

The goal of this work is fishplate instance detection and segmentation for fishplate instance monitoring purpose and 

this is facilitated through development of a two-stage Mask-RCNN method while a brief review on the network is 

discussed here in Section 4. Mask R-CNN has been developed by the Facebook AI Research group in 2017 [23]. Mask 

R-CNN extends Faster R-CNN by adding a branch for prediction of the high-quality segmentation mask for each 

instance in conjunction with the existing branch for bounding box regression and classification. The feature extraction 

is performed using the backbone network which is ResNet. The backbone is followed by a Region proposal network  

(RPN) along with two head branches. One of them is for the bounding box regressor while the other is subjected to 

classification. The added branch takes into account the region of interest (ROI), extracted using RPN, in a fully 

convolutional network in order to predict an instance mask for the ROI. Mask R-CNN has a complex loss function 

calculated as the weighted sum of different losses as represented in Eq. 1. The weights of the network are adjusted 

accordingly during training while the total loss is being calculated as: 

_ _ _ _
1 2

_ _ _ _
3 4

_ _
5

loss w rpn class loss w rpn bbox loss

w mrcnn class loss w mrcnn bbox loss

w mrcnn mask loss

   

   

 

      (1) 

In Eq. 1, the RPN class loss _ _rpn class loss  and bounding box loss _ _rpn bbox loss  are in relation with the output 

of the RPN. The RPN class loss, a binary classification loss , is assigned to improper classification of anchor boxes 

by RPN and is positive incase intersection over union (IoU)  between proposed region and the ground truth(GT) 

bounding box is > 0.5. This is to be increased incase multiple fishplate detections do not happen in final output. The 

RPN bounding box loss is equated as a regression loss between the four corner points of the GT bounding box and 

proposed region bounding box. This weight is tuned in case the bounding box needs to be corrected. The class loss 

_ _mrcnn class loss is assigned to improper classification of fishplate present in region proposal. The weight 

corresponding to bounding box loss _ _mrcnn bbox loss is increased if correct classification of fishplate class is 

attempted however, precise localization is not achieved. For _ _mrcnn mask loss the corresponding mask loss  weight 

is increased if pixel level identification of fishplates is of importance. For Stage 2 the mask loss and bounding box 

loss weights are emphasized upon which is helpful in boosting the performance during training. 
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Algorithm 3: Proposed Approach  

Input: 1Data   

Output: Fishplate instances location fishplateloc on test images  

1. Compute Mask R-CNN  

2. if fishplateloc achieved 

3.    Evaluate imask  for location  

4. Else obtain 2Data  

5.  Compute Mask R-CNN 

6. if fishplateloc achieved 

7.    Evaluate 
jmask  for location 

8. Else report missed, false or no detection 

 

 

Fig. 9 Proposed Architecture Algorithm 

 Recall that our main objective is fishplate inspection in high-altitude drone images. This accounts to 

segmentation of fishplate instance in the railroad track drone images. The size of the fishplate is very small compared 

to the drone image, hence making fishplate instance segmentation hard. Using Mask R-CNN on the drone image 

segment will give pixel wise decision regarding classification into fishplate instance or not. For this purpose, we have 

designed the proposed method in Section 5.  

5 Proposed Method and Implementation 

The advantage of the Mask R-CNN in FishTwoMask R-CNN architecture is that it provides with both the bounding 

box and semantic segmentation.  Thus, this caters to a multi-stage approach for the purpose of semantic segmentation 

using the same architecture. Mask R-CNN[23] implementation, performed by Matterport [32] , has been the core of 

our experiments. The code is implemented using Tensorflow framework (version 1.12.0) along with Keras (version 

2.2.4) from Google and it has been run on an HP Z8 G4 Workstation with NVIDIA Quadro P5000 graphics card. The 

original implementation of Mask R-CNN uses a fixed learning rate (lr) equivalent to 0.02 which is decreased to 

0.002(towards the end) along with a weight decay of 0.0001. In the Tensorflow implementation by Matterport lr of 

Fig. 8 Flowchart for proposed approach FishTwoMask R-CNN 
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0.001 is set with a comment stating weight explosion might be due to optimizer differences. The proposed method is 

trained using  hyper-parameters described in Table 3 for both stages. Alongside, “layers” hyper-parameter is assigned 

as ‘heads’ for Stage 1 and ‘4+’ for Stage 2 respectively. The “layers” hyper-parameter allows selecting which layers 

to train. Consequently, ‘heads’ denotes training the RPN, classifier and mask heads of the network( all layers but the 

backbone) for Stage 1 while ‘4+’ is equivalent to training Resnet stage 4 and up for Stage 2. The Mask R-CNN hyper-

parameter evaluation has been performed on a high performance computing (HPC) system. Varied values of Mask R-

CNN hyper-parameters such as loss weights ( _ _rpn class loss , _ _rpn bbox loss , _ _mrcnn class loss , 

_ _mrcnn bbox loss  and _ _mrcnn mask loss ), weight decay, learning rate, momentum,  backbone, steps per epoch 

need to be evaluated in parallel for obtaining optimum results on the training network. These values need to be chosen 

from a list for instance the _ _mrcnn mask loss is evaluated on a list of values [1, 1.5, 2]. Similar evaluations are 

performed by providing different set of hyper-parameters, in parallel.  

The Stage 1 comprises of analyzing the fishplate instance segments in their original view/ scale, and the Stage 2 

focuses on the fishplate instances upon cropping, along with Stage 1 dataset, for further analysis. The flowchart is 

depicted in Fig. 8 and the algorithm is discussed in Fig. 9. In the proposed algorithm 1Data  is obtained as input for 

Stage 1 training and Mask R-CNN model is computed, as discussed in Section 5.1. The fishplateloc is obtained for 

evaluation of imask
. The incorrect detections are observed on test images in Stage 1 training (discussed in Section 

5.1). Therefore 2Data is generated (discussed in Section 3.2.2) and computed upon by fine-tuned and training trick 

modified Mask R-CNN in the Stage 2 training (discussed in Section 5.2). This step outputs fishplateloc,
jmask and 

determines if there is a missed, false or no detection. The two stages of the architecture are as discussed in Section 5.1 

and 5.2 respectively. 

5.1. Stage 1 Training 

The flowchart for the proposed method FishTwoMask R-CNN is shown in Fig. 8. The three datasets used for datasets 

generation, as discussed in Table 2, are obtained under different railroad track environmental scenarios hence different 

distributions are considered. In Stage 1 the Mask R-CNN network, pre-fit on the COCO dataset, is used as a starting 

point and then the weights are tuned on Stage 1 fishplates instances 1Data
dataset using transfer learning. The Mask 

R-CNN loss weights 1w
, 2w

, 3w
, 4w

and 5w
 are initialized with default values of 1,1,1,1 and 1 respectively. The ‘heads’ 

“layers”, comprising of the RPN, classifier and mask heads of the network, is trained during this stage alongside other 

hyper-parameters as discussed in Table 3 for Stage 1. In Step 2 –Step 3 (Fig. 9) Stage 1 produces masks imask
 for 

fishplate instances in segments if fishplateloc is detected as a result. This indicates fishplate instances locations, using 

bounding boxes, might have been detected in segments. The evaluation of imask
 is then performed statistically and 

visually. The results of the evaluation are indicative of performance of Stage 1 training. To obtain these results the 

experiments have been performed and discussed in Section 6.1 for visual analysis, while metrics evaluation for Stage 

1 is discussed in Table 5 (Section 6.2). Incorrect detections are observed while trained model is tested on new test 

images, which are outside the distribution of the dataset images used in the training. It can be observed that the 

detections produce false alarms. Therefore, the resulting bounding boxes from this stage are used to crop the portions 

around the fishplate instances. These cropped images are then fed to the second stage for Stage 2 training. 

5.2. Stage 2 Training  

Assessment of the segmentation is performed upon evaluation of the performance of the Stage 1 model on the test set 

images. This is conducted through analysis of experiments and evaluation metrics values obtained in the Stage 1 as 

discussed in Section 6.1 and Table 5. This helps us determine if the extra steps of cropping the images alongside 

training another model (for Stage 2) are worth the effort. From the experiments discussed in Section 6.1 and evaluation 

in Table 5, it is observed that fishplate instances may not have been correctly detected by the network in Stage 1. In 

Stage 2, we are more focused about the correct localizations, no missed detections and the pixel-level identification. 

After the localization of the fishplate instances in Stage 1, the bounding boxes are used for cropping the fishplate 
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instances portions for the purpose of analysis in Stage 2 training. The padding with extra pixels is performed on each 

side of the bounding box before using it, in order to crop the image to get more information about the fishplate, for 

better analysis. The bounding box of the fishplate instances helps us access the accuracy of the localization in Stage 1 

and Stage 2.  

The Stage 1 network investigates the entire drone image segment in order to locate and segment around fishplate 

instances, as discussed in Section 5.1. For Stage 2, we primarily take into account Stage 1 fishplate instances dataset 

along with 1Data and 1fishinstdata  to form 2Data (discussed in Section 3.2.2). Therefore, for Stage 2, the loss weights 

are tuned on Stage 2 dataset 2Data . The Mask R-CNN in Stage 2 has also been pre-fit on COCO dataset for the 

starting point while the modified loss weights are then trained on Stage 2 dataset 2Data . To test the hypothesis, the 

weights associated with the bounding box and mask which are
4

w , and 
5

w respectively, as in Eq. 1, are increased to 

1.5 and 2.0 from 1.0 and 1.0 respectively while the remaining  1w
, 2w

, 3w
 weights are set to 1.0( default value). The 

bounding box weight 4w needs to be increased as the detection process requires precise and correct localization of 

fishplate samples in image segments with training ‘4+’ stage. The bounding box weight is increased as the detection 

process is dependent on finding the proper bounding box around the fishplate instance. Therefore, there is a slight 

increase in order to locate the bounding box and mask 
jmask   first before attempting the segmentation. It is 

hypothesized that fishplate samples are visually structurally similar across datasets and pixel level identification is 

important, so emphasizing on the mask loss weight 5w  while training would help in boosting model performance. The 

rest of the hyper-parameters for Stage 2 are as discussed in Table 3. In Step 6-Step 7 (Fig. 9) Stage 2 training model 

result 
jmask is evaluated visually through experiments that have been performed and discussed in Section 6.1 and 

statistically in Table 5 (Section 6.2). The visual results for Stage 2 in Fig. 11(Section 6.1) show promising detections 

and can hence be proved through statistical evaluation of Stage 2 trained model as shown in Table 5 (discussed in 

Section 6.2). 

The visual description for fishplate instance segmentation in proposed approach is as shown in Fig. 10. The fishplate 

instance segment dataset 1Data is inputted in Stage 1, Stage 1 training is conducted using initial weights as trained on 

this dataset (discussed in Section 5.1) and the located masks imask
,for fishplateloc, are obtained on the segment as 

shown in blue and red color. The experiments are then performed for evaluation of obtained masks in Stage 1 model. 

Upon evaluation it is observed that Stage 2 training is required hence the bounding boxes obtained from these Stage 

1 segments , are used for cropping fishplate instances segments, which along with 1Data
 are used to create 2Data

for 

Stage 2 (as discussed in Section 3.2.2). It is observed in Stage 2 that upon Stage 2 training (as discussed in Section 

5.2),  the 
jmask for fishplateloc is depicted in red color. Thus, we obtain the fishplate instance locations through 

masks in FishTwoMask R-CNN which can be used for final segmentation and further inspection of fishplate instance 

component. 

Table 3 Training hyper-parameters of Stage 1 and Stage 2 Mask R-CNN in Proposed architecture 

Parameters/ 

models 

Stage 1 Mask  

R-CNN 

Stage 2 Mask R-

CNN 

Learning rate 0.001 0.001 

Momentum  0.9 0.9 

Weight Decay  0.0001 0.0001 

Steps 1000 1000 

Loss weights [1,1,1,1,1] [1,1,1,1.5,2] 

Backbone/base Resnet101 Resnet101 

Train images 

Test images 

835 

206 

1794 

205 
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Table 4 Training hyper-parameters for Yolov5 and Faster R-CNN 

Parameters/ 

models 

Learning 

rate 
Momentum 

Weight 

Decay 

Train 

images 

 

Test images 

Yolov5 0.01 0.9 0.0005 1372 228 

      

Parameters/ 

models 

Learning 

rate 

Images per 

batch 
Steps 

Train 

images 
Test images 

Faster R-

CNN 
0.001 4 1000 

1360 

 
213 

 

 

6 Experimental Results and Discussion 

As discussed in Section 5, the detection and segmentation task of fishplate instances in FishTwoMask R-CNN 

comprises of two stages: Stage 1 is localizing the fishplate instances in the image segments and cropping these 

instances while Stage 2 takes as input the Stage 1 dataset and cropped images in order to determine the correct and 

precise fishplate instance locations. This two stage process in FishTwoMask R-CNN for fishplate instance detection 

process is as shown in Fig. 10.   The evaluation of the proposed method is as shown in Section 6.1 along with discussion 

on metrics in Section 6.2.  In Section 6.1 test images from new datasets, apart from existing test images, have also 

been considered for test purposes. The description for these datasets is provided in the respective experimental 

scenarios in Section 6.1.

6.1. Evaluation of proposed method  

The test images have been randomly selected from the image sets and the results are as depicted in Fig. 11. To a great 

extent the results reflect the field performance for Stage 1 and Stage 2 in the proposed architecture. The test images 

represent different scenarios with drone image segments extracted from DI captured at varied illumination scenarios, 

flight heights, and orientations. The training for Stage 1 and Stage 2 Mask R-CNN methods in the proposed  

architecture FishTwoMask R-CNN is as discussed in Section 5.1 and Section 5.2 respectively. To assess the 

performance of the proposed method, we have used three different evaluation metrics: Precision, Recall, F-1 score[33]. 

For the purpose of evaluation, test images from five different railroad environmental scenarios have been discussed 

in Section 6.1.1, 6.1.2, 6.1.3, 6.1.4, 6.1.5 respectively. The description of the new test images has been provided in 

the respective Sections (Section 6.1.2, Section 6.1.3 and Section 6.1.5). 

6.1.1. Experimental Scenario 1 

The test image Fig. 11a has been captured as per Scenario 1, discussed in Section 3.1, with the central 

latitude/longitude coordinates of 29°51’0.2884”N/ 77°52’52.8059”E respectively. The Stage 1 test image output 

indicates presence of fishplate at the correct location masked with blue color, along with two false detections for 

fishplate locations masked in green and red as shown in Fig. 11b. The two false detections are rail line areas having 

no fishplate instances. However, at Stage 2 in FishTwoMask R-CNN the test image output in Fig. 11c indicates 

elimination of false detections while outputting only correct fishplate location marked in red color.  

 

6.1.2. Experimental Scenario 2 

This test image in Fig. 11d has been captured dated 21-06-2017 at a height of 25.2 m with the central latitude/ longitude 

coordinates of 29°46’3.8871”N/ 78°0’35.2280”E respectively. The illumination scenario can be inferred as sunny. It is 

observed that the image contains no fishplate. Although, Stage 1 showcases false detection on rail line area masked as 
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fishplate location in red as shown in Fig. 11e however, Stage 2 test image output is correct as no fishplate is detected 

as in Fig. 11f which is as per ground truth observation.

 

6.1.3. Experimental Scenario 3 

The test image shown in Fig. 11g has been captured on 30-08-2017 at a height of 25 m with central latitude/longitude 

coordinates of 29°49’39.5516”N/ 77°55’30.0578”E respectively. The image has been captured on a bright sunny day. 

However, the track has been overshadowed by the train running on the rail lines in the railroad environment. The 

image has no fishplate and both The Stage 1 as well as Stage 2 test image outputs correctly regarding absence of 

fishplate as observed in Fig. 11h, 11i respectively. 

 

Fig. 10 Fishplate instance detection process in FishTwoMask R-CNN. The Stage 1 and Stage 2 in the 

architecture are depicted as marked Stage 1 and Stage 2 
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6.1.4. Experimental Scenario 4 

The test image in Fig. 11j has been captured as per Scenario 3 with the central latitude/longitude coordinates of 

29°46’3.3522”N/78°0’35.0221”E respectively. It is observed that both Stage 1 and Stage 2 test image output showcase 

correct fishplate location in red as per ground truth observation as shown in Fig. 11k, and 11l respectively. 

6.1.5. Experimental Scenario 5 

The test image in Fig. 11m is captured on 21-06-2017 at a height of 25.2 m with the central latitude/ longitude 

coordinates of 29°46’3.8871”N/ 78°0’35.2280”E respectively. The image comprises of one fishplate. However it is 

observed that even though Stage 1 test image output showcases correct fishplate location masked as red still four 

incorrect fishplate locations  masked as blue, green, yellow, pink can also be seen in Fig. 11n. The incorrect locations 

are rail line areas having no fishplate instances. The architecture at Stage 2 is unable to detect the fishplate in the test 

image as observed in Fig. 11o. 

6.2. Metrics evaluation and discussion  

The visual evaluation of the proposed method is performed as discussed in Section 6.1 and shown in Fig. 11 (c), 

(f),(i),(l),(o) which are Stage 2 (final) detection results. The fishplate test images undertaken for performing 

experimental results have been captured in different railroad environments at varied heights, locations and different 

dates/time. The purpose of statistical evaluation is in terms of computation of the metrics. The description of the 

metrics is as given in Eq. 6, Eq. 7, Eq. 8, and Eq. 9. 

In this work we assume, True Positive (TP) as number of correct fishplate instance matches, True Negative (TN) as 

no fishplate instances correctly rejected, False Positive (FP) as proposed fishplate instances that are incorrect and 

False Negative (FN) as matches that are not correctly detected. The metrics are computed as mean values on 80 test 

images (40 test images each for fishplate and no fishplate instances (absence of fishplate instance in the test image)), 

100 test images (50 test images each of fishplate and no fishplate instances), and 116 test images (58 test images each 

for fishplate and no fishplate instances). The values of TP, TN, FP, and FN are computed through Eq. 2, Eq. 3, Eq. 4 

and Eq. 5. 
fishTP denotes TP values for fishplate instances,

nofishTN denotes TN calculated on no fishplate instances 

while ,fish nofishFP FP denotes FP values calculated on fishplate and no fishplate instances respectively. 
fishFN  denotes 

FN values computed for fishplate instances respectively. The analysis results of various evaluations for mean values 

for 80 test images are represented in Table 5. The final Stage 1 and Stage 2 results have been highlighted in the red 

boxes. The Table 8 and Table 9 in Appendix I highlight metrics values for 100 and 116 test images respectively.   

Various evaluations have been performed with different sets of 
4

w ,
5

w  loss weights alongside different training 

“layers” in order to obtain best detection results for both stages. Few of these combinations have been listed in Table 

5. For Stage 1 the notations of 50W8E1.0L indicate 50.h5 weight file from 8th evaluation with 
4

w , 
5

w equal to 1.0., 

1.0 respectively , and 59W8E1.0L indicate 59.h5 weight file from 8th evaluation with 
4

w , 
5

w weight equal to 1.0.,1.0 

respectively. For Stage 2 60W32E1.5L indicates 60.h5 weight file from 32nd evaluation with 
4

w , 
5

w equal to 1.5. , 

1.0 respectively, 60W34E1.0L indicates 60.h5 weight file from 34th evaluation with 
4

w , 
5

w equal to 1.0., 1.0 

respectively, and 100W37E1.5L indicates 100.h5 weight file from 37th evaluation with 
4

w , 
5

w of 1.5, 2.0 

respectively. Upon critical analysis of the Stage 1 and Stage 2 metrics values , 59W8E1.0L and 100W37E1.5L  have 

been chosen for Sage 1 and 2 respectively. As observed the metrics values of Stage 2 are higher than those in Stage 1 

except that recall for Stage 1 is higher than recall for Stage 2.  
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Fig. 11 Fishplate instances detections depicted in test images captured under different environmental scenarios as 

discussed in Section 6.
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Table 5 Evaluation of metrics on 80 test images (40 test images each for fishplate and no fishplate 

instances) 

 

 

 

 

 

 

 

 

fishTP TP  

 

(2) 

nofishTN TN  

 

(3) 

fish nofishFP FP FP   (4) 

 

fishFN FN  

 

 

(5) 

6.2.1. Metrics Evaluation 

The metrics: Precision, Recall and F1 score are computed on the following previous algorithms for fishplate detection 

in DI: Normalized Correlation Coefficient-based Template Matching[31], Features-based template Matching[30] 

alongside Stage 1 and Stage 2 Mask R-CNN. In [31] the normalized correlation coefficient is evaluated on the image- 

pair while non-maximum suppression method is used for merging nearby fishplate detections in DI. A large number 

of false positives are observed in this method which is indicated, upon calculation, through the precision and F1 score 

values shown in Table 6. This is the case as these metrics are a function of FP, as depicted in Eq. 7 and Eq. 9. The 

work in [30] computes various feature descriptors and their respective Separability Index (SI)values, which is 

computationally intensive as it involves handcrafted feature extraction. As observed in Table 6 the precision, and F1 

score values are higher than the work in [31] but lower than respective Stage 1 and Stage 2 metrics values. However, 

recall values for [30] are observed to be lower than for [31] as well as from Stage 1 and Stage 2 in proposed approach. 

The comparative analysis is performed, through evaluation metrics, with the existing popular object detection 

algorithms: Yolov5, Faster R-CNN, alongside Stage 1 & Stage 2 Mask R-CNN in proposed approach FishTwoMask 

R-CNN, as shown in Table 7.  In this work Yolov5 has been trained using Tesla T4 with batch size, input image size, 

and number of epochs as 16, 416, and 100 respectively. The training hyper-parameters for  Faster R-CNN network 

along with rest of the hyper-parameters for Yolov5 are presented in Table 4. It is observed that during test image 

evaluations each of the metrics values for Stage 1 are much lower than corresponding Stage 2 values except recall 

values. In Table 7 it is observed that Faster R-CNN has obtained metrics values of precision, recall and F1-score 

higher than respective Yolov5 metrics values in this work. It can also be well observed that Mask R-CNN in Stage 1 

of the proposed approach achieves recall and F1-score higher than Faster R-CNN indicating that most of the fishplate 

50W8E1.0L 59W8E1.0L 60W32E1.5L 60W34E1.0L 100W37E1.5L 

Accuracy 0.504 0.530 0.444 0.466 0.868 

Precision 0.452 0.473 0.402 0.429 0.975 

Recall 0.840 0.860 0.820 0.796 0.780 

F1 score  0.587 0.610 0.539 0.557 0.867 

Note: Read stage abbreviation as below 

50W8E1.0L : 50.h5  W eight file from 8th  E valuation with bounding box  L oss equal to 1.0 

1st Stage 2nd Stage 
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instances have been located. The Stage 2 achieves higher metrics values than those for Faster R-CNN. Also, it can 

well be inferred that Mask R-CNN , at any stage, is an extension of the functionality of Faster R-CNN and very- 

 

efficient. The results for the proposed method FishTwoMask R-CNN have been depicted in blue in Table 7. The Stage 

2 of FishTwoMask R-CNN (proposed approach) has obtained higher metrics values as compared to Stage 1 Mask R-

CNN except for recall hence, the adaptation in the loss weights 4w and 5w , in Eq. 1,  from 1 and 1 to 1.5 and 2 

respectively is observed to have reflected the desired changes in the detection results. Also, the changes in the “layers” 

from ‘ heads’ to ‘4+’ along with reinforcement  of cropped fishplate instances in the Stage 2 dataset can be held 

accountable for the improvement and precise detection results.  

 

Table 6 Comparative analysis with previous methods through Metrics performance 

  Metrics Evaluation 

Models/Metrics Precision  Recall F1 Score  

Normalized Correlation Coefficient and 

Template Matching[31] 

0.011552 

 

0.670886 

 

0.022713 

 

Features-based Template Matching[30] 0.133 

 

0.641 

 

0.220 

Stage 1 Mask R-CNN 0.473 0.860 0.610 

FishTwoMask R-CNN 

(Proposed Approach) 
0.975 0.780 0.867 

 

Table 7 Comparative analysis with deep learning models through Metrics performance 

Metrics Evaluation 

Models/Metrics Precision Recall F1 score 

Yolov5 0.400 0.666 0.499 

Faster R-CNN 0.500 0.750 0.600 

Stage 1 Mask R-CNN 0.473 0.860 0.610 

FishTwoMask R-CNN 

(Proposed Approach) 
0.975 0.780 0.867 

 

6.3. Complexity Analysis 

 /Accuracy TP TN TP TN FP FN       (6) 

Pr / ( )ecision TP TP FP   (7) 

Re / ( )call TP TP FN   (8) 

1 2*Pr *Re / (Pr Re )F score ecision call ecision call   (9) 
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Fishplate instances are critical railroad track components essential to maintain railroad track safety and avoid mishaps, 

which are indicative of loss of life and property, as discussed in Section 1. Therefore, it is important to locate fishplate 

instances accurately even with comparable amount of computational overhead leading to increase in model 

complexity. As fishplates are tiny objects in the railroad track drone images, Stage 1 Mask R-CNN does not yield 

good results. Also, artefacts such as illumination, similar color rail lines deteriorate these metrics values for Stage 1. 

Alongside these challenges, problems posed for DI as discussed in Section 1, are also taken into consideration. 

Consequently, need for Stage 2 Mask R-CNN arises and the metrics are also indicative of good results marked in blue 

in Table 6 and Table 7. As the fishplate component is very small compared to drone image size as well as a critical 

component for safety therefore, this makes correct detections, with an overhead on time, as the foremost goal. The 

time complexity for the method during evaluation is calculated through computation on each of the test images which 

is  1310.312636s (Stage 1 with 11s/ image) and achieved   1286.798505s (Stage 2 with 10s /image). 

 

7 Conclusion 

In this paper, we have proposed a novel adaptive two-stage Mask R-CNN framework termed as FishTwoMask R-

CNN for fishplate instances detection and segmentation in drone images for further inspection of railroad track health. 

During the process of achieving our goal the following observations have been made: 

1. This framework is divided into two stages. The Stage 1 involves creation of fishplate instances dataset from segmented 

railroad track DI and training using these original images. However, it is observed this gives a precision and an F1-

score of only 47% and 61% respectively. In order to remove false detections and boost detection accuracy the cropped 

fishplate instances along with the original Stage 1 dataset are used for training purpose in Stage 2. It is observed that 

the framework then achieved a detection precision rate of 97% with an F1score of 86%. 

2.  The Stage 2 network in the proposed architecture is henceforth trained using different weights for loss function 

components. This helps in improving performance of the framework on different test datasets acquired from different 

distributions while indicating potential field applications in the future. 

3. The change in the “layers” hyper-parameter value from Stage 1 to Stage 2 also indicates potential improvements in 

the precision, recall and F1 score values in the proposed architecture. 

4. The work has been tested on different railroad track environmental scenarios and our algorithm has performed well 

on all of them thus, indicating the robustness of the proposed method. 

5. The fishplate instances detection in DI has been evaluated using other previously developed methods such as Features-

based Template matching[30] as well as  existing object recognition algorithms such as Faster R-CNN and Yolov5. 

The proposed algorithm is observed to achieve better detections as well as evaluation metrics values than the respective 

values in most of the aforementioned algorithms. 
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Appendix I 

Table 8 Evaluation of metrics on 100 test images (50 test images each for fishplate and no fishplate 

instances) 

 

 

 

 

 

 

Table 9 Evaluation of metrics on 116 test images (58 test images each for fishplate and no fishplate 

instances) 
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