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Abstract
Image up-scaling and super-resolution (SR) techniques have been a hot research topic for
many years due to its large impact in the field ofmedical imaging, surveillance etc. Especially
single image super-resolution (SISR) become very popular because of the fast development
of deep convolution neural network (DCNN) and the low requirement on the input. They are
achieving outstanding performance. However, there are still problems in the state-of-the-art
works, especially from two perspectives: 1. failed at exploiting the hierarchical characteristics
from the input, resulting in loss of information and artifacts in the final high resolution (HR)
image; 2. failed to handle arbitrary-sized images; the existing research works are focused on
fixed size input images. To address these challenges, this paper proposed a residual dense
network (RDN) and multi-scale sub-pixel convolution network (MSSPCN) which are inte-
grated into a Collapsible Linear Block Super Efficient Super-Resolution (SESR) network.
The RDNs aims to tackle the first challenge, carrying the hierarchical features from end-to-
end. An adaptive cropping strategy (ACS) technique is introduced before feature extraction
targeting at the image size challenge. The novelty of this work is extracting the hierarchi-
cal features and integrating RDNs with MSSPCNs. The proposed network can upscale any
arbitrary-sized image (1080p) to×2 (4K) and×4 (8K). To secure ground truth for evaluation,
this paper follows the opposite flow, generating the input LR images by down-sampling the
givenHR images (ground truth). To evaluate the performance, the proposed algorithm is com-
pared with eight state-of-the-art algorithms, both quantitatively and qualitatively. The results
are verified on six benchmark datasets. The extensive experiments justify that the proposed
architecture performs better than other methods and upscales the images satisfactorily.
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1 Introduction

Generating the high resolution image (HR) from its equivalent low resolution (LR) is a dom-
inant research topic in computer vision and image processing applications. This piece of
work is known as image up-scaling or super-resolution (SR). The major application includes
HDTV, satellite imaging, face recognition,medical imaging, surveillance andmobile applica-
tions. In the context of SR, LR data is previewed as a low pass filtered or downscaled version
of HR data. During this process, there is a chance of loosing high-frequency data makes
upscaling as an ill-posed problem. In addition, the SR operation are basically one-to-many
mapping that can have many solutions. The major key assumption in all SR technique is that
the high-frequency data is redundant and can be generated from low frequency components.
As a result SR is an inference problem.

A fewSRmethods have usedmultiple images of the same scene to generate theHR images.
It can be called as multi-image SR method. They take advantage of explicit redundancy (due
to overlapping) by attempting to invert the downsampling process. Moreover, these methods
required complicate computation such as image restoration and fusion. If the user’s focus
is on quality, the network will require more computations. Less computations will lead to
degraded image. Therefore, most of the time, the user needs to find a trade-off between
quality and computational complexity.

Another side, single-image super-resolution techniques have been proposed. They learn
to generate the HR information from implicit redundant data of LR image. These methods
requires prior information and the generating time is inversely proportional to the image
redundant information. This technique does not require multiple images. In practice, it is
difficult to capture the multiple images of the same scene, especially when there are moving
objects. Therefore most of researchers preferred single image super resolution techniques.
Hence we employed single-image strategy. We adopted the collapsible linear blocks model
integrated with residual dense networks, multi-scale sub-pixel convolutional layers and an
adaptive cropping strategy. The key contributions and advantages of our model is as follows:

• A residual dense network with feed forwarding the input is adopted in our design. It
will exploit the hierarchical features from LR to HR space, resulting in producing the
artifact-free image.

• Multi-scale sub-pixel convolutional layer is used as an up-sampler in our model. It pro-
vides multi-range contextual information for image super-resolution.

• The adaptive cropping strategy is employed for up-scaling any arbitrary sized image
based on the scaling factor.

Compared to earlier SISR approaches, our method can achieve a superior result.

2 State-of-the-art

To solve the problem of SR, numerous approaches based on deep neural architectures [1, 7]
have been developed and produced satisfactory results. Firstly, Dong et al. [8, 9] proposed a
3-layer convolutional neural network (SRCNN) to generate HR images from LR but failed
at generating the different-sized up-scale images. Motivated by the VGG (ImageNet classi-
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fication) model [3], Kim et al. [7, 11] developed a very deep convolutional neural network.
It enhances the quality but difficult to train. They have tackled this problem using deeply-
recursive convolutional network (DRCN) [6]. The parameters of this model are reduced
significantly compared with existing algorithms. However, it failed at preserving sensitive
image information such as depth, texture, and edges. Later, Wang et al. [10] proposed a
deep network framework based on the new technique called sparse prior coding to achieve
satisfactory results at higher scaling factor (×4, ×8..). The network architecture is also deep
and complex.

To overcome the complexity issue, Tai et al. [12] developed a deep recursive residual
network (DRRN) with memory networks (MemNet) [14]. The MemNet eliminates the prob-
lem of complexity. This technique is designed based on recursive learning to optimize the
model parameters. But, MemNets suffered from long-term dependency problems because
of the huge number of memory blocks utilized. Furthermore, this algorithm is only suitable
for LR-HR image pairs and not suitable for generating new images. It also required a longer
running time, heavy computational cost, and large graphics memory during the training and
testing phase.

Later, based on mapping techniques Shi et al. [15] proposed sub-pixel convolutional net-
work. They upsample the features at the end of the main architecture. But it take more time
for generation. Dong et al. [16] proposed FSRCNN that used learnable upsampling layer
to achieve post-upsampling super resolution and suffered from long-term dependency. The
Laplacian pyramid SR network (LapSRN) was proposed by Lai et al. [17]. Based on this net-
work, MS-LapSRN [20] and ProSR [21] networks are proposed and achieved better results
than LapSRN, but failed at preserving texture information. Next, EDSR [18] achieved a
considerable improvement in SR and won the NTIRE 2017 competition [19]. To get better
outcomes, the authors have eliminated some of the redundant modules in the SRResNet [22].
Such framework required high-computational cost because the most of CNN operations are
performed in the HR space. In addition to residual block in EDSR, Zhang et al. [23] added
densely connected block and constructed residual dense network called RDN. Later, they
proposed Channel attention mechanism to implement very deep residual attention networks
(RCAN). Recently, Zhang et al. [23] developed the residual non-local attention network
(RNAN) [24] for various image restoration tasks by adding spatial attention (non-local mod-
ule) to the residual block. Even though the residual blocks performed well, the upscaled
image did not enhance up to a satisfactory level.

Later, some researchers have focused on developing the algorithms on resource-
constrained devices for real-time applications. Unfortunately, the above methods are difficult
to deploy due to their operating speed (training and testing) and computational complexity.
In [25]-[28], they suggested that linearly over-parametrization techniques are helpful for fast
processing with less computational cost. Hence, such techniques are suitable for implemen-
tation on resource-constrained devices. Arora et al. [25] demonstrated theoretically that the
linear over-parameterization with fully connected layers can accelerate the training of deep
linear networks by acting as a time-varying momentum and adaptive learning rate. Recent
work on ExpandNets [28] and ACNet [27] propose to overparameterize a convolutional layer
and show that it accelerates the training of various CNNs and enhances image quality. Since
the real-time SR algorithms are working with fewer computations, the generated HR image
will become degraded. Therefore, it is necessary to enhance the quality of upscaled image.
Hence, we proposed a model to generate HR data from LR feature maps and enhance the
resolution from LR to HR at the very end of the network. To achieve this, we adopted a
multi-scale sub-pixel convolution layer.
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The rest of this paper is structured as follows. Section 3 describing the motivation from the
literature. Section 4 presenting the detailed explanation of proposedmodel. The experimental
setup and results analysis briefly demonstrated in Section 5 and at last, conclusions & future
scope are drawn in Section 6.

3 Motivation

The majority of deep CNN-based SRmodels [1, 8, 9, 13] perform poorly because they do not
fully exploit the hierarchical features such as edges, corners, and structure of the image from
the original low-resolution (LR) images. Therefore, we provide a unifying framework for SR
on high-quality images using residual dense networks (RDNs). The RDNs aremade to enable
direct connections from the state of the previous RDN to every layer of the current RDN and
to extract an enormous number of local features through densely connected convolutional
layers [29]. All of the hierarchical characteristics from the initial LR images are fully used
by the network. This RDNs required a special memory to store the read state from the
previous RDN called Contiguous memory (CM). Later, this hierarchical features from all
RDNs in the LR space will be adaptively fused using the global feature fusion mechanism.
This mechanism is used to produce the global dense residual features from the original LR
images, by combining the shallow and deep features. In this way, the hierarchical features
can be exploit from the LR to HR images.

According to Osendorfer et al. [31], the size of the image gradually increases at the mid-
dle of the network. Increasing the resolution at the network’s first layer or earlier is another
strategy [9, 32]. But this strategy has a number of shortcomings. Firstly, the computational
complexity is increased by increasing the resolution of the LR pictures before the image
enhancing process. It not only affects the training time of convolutional networks but also
extremely degrade the picture quality. Moreover, this strategy required interpolation tech-
niques and did not provide any new information to generate the HR image.

Contrary to other research, we proposed a newmodel to generate HR data from LR feature
maps and enhance the resolution from LR to HR at the very end of the network. To achieve
this novelty work, we adopted a multi-scale sub-pixel convolution layer [34]. We directly
takes the hierarchical features in the form of depth maps from residual dense network (RDN)
and feed into the multi-scale sub-pixel convolution layer with a varying factor 2. This way
we preserved the detailed information of the image.

The major advantages of using multi-scale sub-pixel convolution layer in our method are

• The final network layer in the proposed model is responsible for upscaling. Firstly,
LR image’s (1080x1920) information is supplied directly to the network, and depth-
maps extraction takes place using 32-residual dense networks (RDNs) in LR space. We
employed a smaller sized filters (3x3) to combine the same information while preserving
a specific contextual region due to the reduced input resolution. The major advantage of
employing small sized filters is extracting the detailed, smaller complex information of
the image.

• Instead of learning from a single small sized upscaling filterwith L layers, we have trained
nL−1 upscaling filters for the nL−1 depth-maps. The typical values of L=32 and nL−1=31.
We did not use any explicit interpolation filters. However, the network implicitly picks up
the processing information required for SR. In contrast to a single fixed filter upscaling
at the first layer, the network can learn a better and more intricate LR to HR mapping.
As a result, generation accuracy of the model will be improved further.
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4 Enhanced collapsible linear block super resolution (ECLB-SR)

Figure 1 depicts the proposed network (ECLB-SR) architecture. It consists of aCollapsible
Linear Blocks (CLBs) with a novel multi stage residual dense connections and an up-sampler
with multi-scale sub-pixel convolution layer. Adaptive cropping strategy(ACS) is another
technique used for handling the arbitrary sized images, which will be discussed in detailed
in Section 4.2. Initially, ACS blocks takes the input LR image. If the image dimensions are
divisible by four the proposed model works normally. If it is not divisible by four can be
called an arbitrary image. When it happens the entire image is divided into four equal parts,
and then process each patch independently in the main network. The main network consist
of sequence of linear convolutional layer blocks (LB) and multi Scale Sub-pixel Convolution
Layer (MSSPCL). The linear convolutional layer blocks are responsible for exploiting the
hierarchical features from LR to HR space, resulting in producing the artifact-free image.
At last, multi scale sub-pixel convolution layers upscaling the LR image to a desired level
resulting in HR image.

The collapsible linear blocks are sequence of linear convolutional layers that can be
mathematically reduced at inference time to single or narrow convolutional layer (in terms
of input/output channels). For example, with x input channels, y output channels can be
produced with the help of k×k and 1×1 linear blocks as shown in Fig. 2. It can be done as, a
k×k linear block with x input channels firstly expand to p intermediate channels using a k×k
convolution (p >> x). Then, a 1×1 convolution is used to project the p intermediate channels
to y final output channels. Since no non-linearity is used between these two convolutions
blocks, they can be analytically collapsed into a single narrow convolution layer at inference
time, hence, the name Collapsible Linear Blocks (CLB). All these block connected together
with residual dense networks (RDNs).

The structure of a residual dense network (RDN) is shown in Fig. 3. The RDN have
dense connected layers and local feature fusion (LFF) with local residual learning (LRL).
The LFF extracts the features like patterns, shapes and depth information of the images. The
LR input image I , which is passed through conv and ReLU layers resulting in produce the
F−1 features. The output of each stage is passed to another stage along with input image
(I ) through connected layers. This process is called as contiguous state pass. This process
repeats until the deep hierarchical features are extracted. At the final stage, all the RDN
states are concatenated. In parallel to this process, the LRL extracts multi-level local dense
features by adaptively preserving the information. Moreover, LRL allows a very high growth
rate by stabilizing the training of a wider network. After extracting multi-level local dense
features, we have conducted a global feature fusion (GFF) technique for capturing the region
of interest (ROI) features. The mathematical analysis of this approach is given below:

Fig. 1 Architecture of proposed method
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Fig. 2 Collapsible linear blocks

The f=64Conv layers are used to extract the features from input low resolution image(ILR)
and denoted as

I = 5 × 5 × f × 1 × ILR (1)

The I is used for further shallow feature extraction and global residual learning. It can be
denoted as

F−1 = σ (HSFE1 (I )) (2)

Where σ is an activation function typically ReLU and HSFE1(.) denotes convolution
operation. F−1 is the output of preceding residual dense network. Similarly we have n = 32
residual dense network with outputs of F0..., Fn respectively is given by

F0 = σ (HSFE2 (F−1, I )) (3)

Fn = σ
(
HSFEn

[
I , F−1, F0, F1...Fn−1

])
(4)

After extracting hierarchical features with a set of RDNs, we further conduct local feature
fusion (LFF) and global feature fusion (GFF). LFF makes full use of features from all the
preceding layers and can be represented as

Fd,LF = Hd
LFF

([
I , F−1, F0, ...Fn

])
(5)

where Fd,LF output feature maps in the LR space. These features together with LR image
are fed to the up-sampler resulting in ISR .

ISR = upsampler (FD) (6)

Fig. 3 Residual Dense Network
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where, FD = I + Fd,LF .
This up-sampler works based on the multi-scale sub-pixel Convolution layer technique.

The

4.1 Multi scale sub-pixel convolution layer

Existing techniques have adopted interpolation technique to upscale the LR imageswithin the
LR space. They used a fractional stride of 1

r (r=1,2,3...), followed by a convolution with stride
1 in the HR space. This procedure involves a lot of convolution operations and computational
complexity, r2. An innovative technique is proposed to tackle this problem by employing a
convolution stride 1

r in the LR space with a filter Ws having a size ks and weight spacing
1
r . It will be activated in different parts of Ws for convolution. The weights between these
pixels are not activated therefore no need to compute them and the total number of activated

parts are r2. During this time
(
ks
r

)2
number of weights are activated. These activated parts

are periodically changed across the image depending upon sub-pixel location during the
convolution operation. Eventually, the number of computations are reduced.

The super resolution of the image (I ) using sub-pixel convolution layer can be defined as

I SR = f L
(
I LR

)
= PS

(
WL ∗ f L−1

(
I LR

)
+ bL

)
(7)

where I SR , I LR are the high resolution, low resolution images respectively. f L−1 is the
neural network with L − 1 layers, where L=64. PS(.) is a periodic shuffling operator that
rearranges the pixels of H × W × C .r2 image (LR) to r H × rW × C image (HR). WL

represents the convolution operator has a shape nL−1×r2C×kL ×kL . The value of kL = ks
r

and mod (ks, r) = 0 it is equivalent to sub-pixel convolution in the LR space with the filter
Ws .

In practical, the training set consisting of HR images I H R
n n = 1....N , and corresponding

LR images I LRn n = 1....N . We have used pixel-wise mean square error (MSE) as an
objective function to train the network:

ι (W1:L , b1:L) = 1

r2HW

rH∑

x=1

rW∑

x=1

(
I H R
x,y − f Lx,y

(
I LR

))2
(8)

This network is log2 r
2 times faster than deconvolution layer and r2 times faster compared

to other upscaling before convolution. We further enhanced the speed of operation of this
network by applying multiple depth maps with up-scaling factor 2 at each stage. These
depth maps are directly taken from the residual dense blocks hence they carried the detailed
information of the input image. Thus, we can easily preserve the detailed information in the
upscaled image.

An input LR image having a height (H), width (W), and multiple feature maps then its
multi-scale sub-pixel convolution feature map can be defined as,

Pn× = PS

(
H

([
P2n×, B

22n×
2n×, B

23n×
2n×, ..., B32×

2n×
]))

nε {1, 2, 4, 8}
(9)
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Here,

[
P2n×, B

22n×
2n×, B

23n×
2n×, ..., B32×

2n×
]
are the input feature maps. H(·) represents the con-

catenation of all the feature maps through convolutional layers to make the reconstruction of
upscaled high quality image.

4.2 Adaptive cropping strategy

The adaptive cropping strategy (ACS) is another novel technique proposed to upscale any
arbitrary sized image. If the image dimensions are divisible by four the proposedmodel works
normally. If it is not divisible by four can be called an arbitrary image. When it happens the
entire image is divided into four equal parts, and then process each patch independently in
the main network. The overlapped patches data will be eliminated at the final stage.

For example the Fig. 4 depicts the arbitrary sized image with four equal patches. Consider
the first patch in the top left corner having a height and width

(⌊ H
2

⌋ + �IH
)
,
(⌊W

2

⌋ + �IW
)

respectively. The �IH and �IW are the overlapped height and width to make the patch
size divisible by 4. The below (10) represents fundamental principle of the image patch
dimensions of the adaptive cropping technique

(⌊
H

2

⌋
+ �IH

)
%4 = 0

(⌊
W

2

⌋
+ �IW

)
%4 = 0 (10)

The amount of extra added patch (�lH ,�lW ) sizes can be calculated as

�IH = padH −
(⌊

H

2

⌋
+ padH

)
%4

�IW = padW −
(⌊

W

2

⌋
+ padW

)
%4 (11)

where padH , padW are used for presetting the additional lengths. In general, these values
can be set by

padH = padW = 4k k ≥ 1 (12)

Fig. 4 Adaptive cropping strategy
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where k is an integer. Once these patches are processed from the main network, the extra
increments (�IH and �IW ) are eliminated.

5 Experimental setup and results

Wevalidate of our algorithmwith six different datasets namely Set5 [36], Set14 [37], BSD100
[38], Urban100 [39], Manga 109 [40] and DIV2K [41]. We also compared with state-of-the-
art algorithms in qualitatively and quantitatively. This framework is implemented on a desktop
computer with Intel i7-11800H@ 2.30GHz CPU, 32GB RAMwith NVIDIA GeForce RTX
3070GPU (8GBRAM) for the any arbitrary image resolution to 4K (×2) and to 8K (×4). The
following techniques are proposed: an adaptive cropping strategy to handle arbitrary-sized
images, instead of PReLU a residual dense block, and a highly efficient multi-scale sub-pixel
convolutional network before feature extraction during the upscaling. We used mean square
error (MSE) as loss function between high quality (Ground Truth) and generated image. The
network is trained by ADAM optimizer with a parameter β1 = 0.9. For training efficiency,
we take a random crops of size 64×64 and arbitrary size from each image; The reason behind
choosing an image size 64×64 is that it can divisible by 4 and it is a minimum-sized image
that humans can see and analyze easily. We considered 300 epochs and each epoch conducts
1600 training steps.

5.1 Preparing dataset

We train our models on the DIV2K training dataset with 800 HR images. The validation
sets are Set5, Set14, BSD100, Urban100, and DIV2K. All these datasets are commonly used
in super resolution techniques. The LR images are obtained using the MATLAB R2023a
and bicubic kernel function of HR images. Based on [42], humans are more sensitive to
luminance changes. We also considered the luminance channel(Y) in YCbCr colour space
to evaluate performance of our model. For each upscaling factor (×2 and ×4), we train a
specific network.

5.2 Quantitative analysis

Table 1 present the comparison of state-of-the-art algorithms for ×2 super resolution. We
compared PSNR, SSIM and the total number parameters utilized by the networks. Based
on the parameters the networks are divided into three types. A network with 25K or less
parameters is small network, between 25K to 100K is medium network and having more
than 100K parameters are called large network.

In the case of the small network category, we compared our proposed network with six
state-of-the-art techniques Bicubic, FSRCNN [43], MOREMNAS-C [44], SESR-M3, M5
and M7 [42]. The proposed ECLB-M3 network achieved significantly better PSNR and
SSIM values for all the datasets except Set5. But, the number of parameters utilized by
our model are little higher. When compared with SESR-M3, our method utilized around
1.67K extra parametres. Since the goal of this research is to further improve the quality of
SESR architecture [42]. It can achieve by ACS, multi-scale sub-pixel convolution layers, and
replacing the pooling layers with RDN’s blocks. These extra added layers have contributed
more parameters.
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Table 3 Training time efficiency of the ECLB networks

Model ECLB-M3 ECLB-M5 ECLB-M7 ECLB-M11 ECLB-XL

Avg. training time (in Sec) of 300 epochs 28 37 45 63 90

In the case of medium network, we compare against the most recent super resolution
technique called TPSR-NoGAN [45] network and SESR-M11. It is clearly indicates that the
M11-proposed network performs better in all datasets.

For the large network category, we compared against VDSR [46], LapSRN [47], BTSRN
[48], CARN-M [19], MOREMNAS-B [50] and SESR-XL [42] networks. All the network’s
performances are closer to each other. But, the proposed network achieved better PSNR/SSIM
values than others. 0.61K excess parameters are required in the proposed network compared
with SESR-XL and can be negligibly small.

Similarly, Table 2 presents the performance of the proposed network at ×4 resolution.
In case of small complexity network, FSRCNN model utilizes fewer parameters than other
methods. The proposed M3 method and SESR-M3 method required the equal number of
parameters. Whereas, the outstanding performance of the ECLB-M7 method is indicated
with PSNR/SSIM values. In the case of medium complex networks, the proposed model
is compared with SESR-M11 and TPSR-No GAN. The proposed model performs well and
1.64K excess parameters are required compared with the SESR-M11 method. Similarly,
for large complexity network category 0.76K extra parameters are needed compared with
SESR-XL. Even though, the proposed network achieved better PSNR/SSIM values in the
datasets.

To further analyze the performance of the proposed method we have performed a visual
comparison analysis (Qualitative Analysis) as follows:

5.3 Qualitative analysis

Figures 5 and 6 shows the qualitative analysis of the proposed method at various scales ×2,
and ×4 respectively. The comparisons are done on small, medium, and large networks, with
the state-of-the-art networks of FSRCNN and SESR’s three methods. We directly took the
results of SESR and FSRCNN from their papers and compared with our results.

From the each dataset we have randomly selected one image to show the efficiency of
our method. From Set14 dataset PPT3 and lenna images, From Set5 dataset baby image,
from DIV2K dataset 0808 image, from urban100 dataset img_096 are selected for visual-
ization purpose. It is clearly showing that our algorithm outperforms existing algorithms
(FSRCNN, SESR-M5,M11 and XL). The quality of the baby and img_096 images in FSR-
CNN is degraded and blurred. But, ECLB-XL and ECLB-M11 tackle these images easily and
produce enhanced images. The minor details (eyelid and pupil) are preserved satisfactorily.
At sharper edges, the SESR methods failed, and images 210088 and PPT3 became blurred.
Whereas, ECLB-M5, M11, and XL images are close to ground truth. Additionally, if LR
images are corrupted with noise it is hard to recover back. However, our algorithm can not
only handle such cases but also recover the noiseless details. Lenna image is an example for
such cases, it can be observed that the quality of the proposed network (ECLB-XL) is more
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PPT3 in SET14 FSRCNN SESR-M5 SESR-M11 SESR-XL

ECLB-M5 ECLB-M11 ECLB-XL Ground Truth

Baby in SET5 FSRCNN SESR-M5 SESR-M11 SESR-XL

ECLB-M5 ECLB-M11 ECLB-XL Ground Truth

0808 in DIV2K FSRCNN SESR-M5 SESR-M11 SESR-XL

ECLB-M5 ECLB-M11 ECLB-XL Ground Truth

Fig. 5 Qualitative comparison on ×2 SISR

closer to the ground truth. Since, the hierarchical features are generated from the residual
dense block, the network can easily recover sharper, clearer edges and more faithful to the
ground truth.

This results indicating that collapsible linear blocks with additional residual dense block
network and multi scale sub-pixel convolution layer outperforms existing methods.
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Lenna in SET14 FSRCNN SESR-M5 SESR-M11 SESR-XL

ECLB-M5 ECLB-M11 ECLB-XL Ground Truth

Img 096 in Urban100 FSRCNN SESR-M5 SESR-M11 SESR-XL

ECLB-M5 ECLB-M11 ECLB-XL Ground Truth

210088 in BSD100 FSRCNN SESR-M5 SESR-M11 SESR-XL

ECLB-M5 ECLB-M11 ECLB-XL Ground Truth

Fig. 6 Qualitative comparison on ×4 SISR

Benefits of residual dense block network In general RDNs are specially designed for
carrying hierarchical features from LR to HR space. The architecture of original dense layer
is modified to achieve better results. We removed the pooling layers since they discard some
pixel-level information and degrades the final features. Instead, we employed a multi-scale
setup (combination of Conv, ReLU and input image) for producing better features, i.e., the
output of the (d − 1)th RDN layer has direct connections with dth and (d + 1)th layers
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along with input image. This way the sensitive information like edges, textures and hair can
preserved. The Fig. 5, baby image clearly proven that edge and sensitive information (eyelid
and pupil) restored successfully.
Benefits of multi-scale sub-pixel convolution layer The existing methods used fractional
stride 1

r . Hence, the complexity increased. But, our method takes multiple depth maps and
which contains hierarchical depth maps. The consecutive depth maps are separated with
a scaling factor 2. The depth maps are combined at each stage and removes the redundant
information at final stage. Resulting in, producing the high-quality image at higher resolution.
Eventually, The computational complexity significantly reduced. Image 0808 in Fig. 5 and
img_096 in Fig. 6 are the best examples to show the qualitative efficiency of this module;
the finer details, sharp edges and depth information are recovered satisfactorily.

5.4 Training efficiency of ECLB

Table 3 presents the training cost of proposed ECLB networks. We trained our four networks
with standard input image size 1080p resolution. The average of 300 epoch’s training time is
calculated in Seconds. This timing efficiency is verified on GeForce RTX 3070 GPU (8GB
RAM). It is observed that the network ECLB-M3 have less number of parameters hence it
took less training time of 28s. The parameters such as number of convolution layers and
residual dense networks are utilized by this network are 64 and 32 respectively. These 32
hierarchical features are transferred from LR to HR space. The total number of multi-scale
sub-pixel convolutional layers are utilized by this network are 64. The number of parameters
are increasing with the technology used to generate the HR image. The less number of
parameters are utilized for ECLB-M5, M7 and M11 networks and training time of 37,45
and 63 seconds required respectively. During 8K image generation the linear blocks were
collapsed into sub blocks and then perform the upscaling operation, resulting in the model
ECLB-XL’s an average training time is 90 Sec. It is showing that the model is well trained.
Hence, it produces satisfactory results during the validation.

Even though the proposed ECLB network consumedmore parameters, with the advantage
of collapsible linear blocks the training and validation efficiency is satisfactorily better.

6 Conclusions and future scope

We have successfully developed a quality enhanced image super resolution technique based
on collapsible linear blocks with RDNs, multi-scale sub-pixel network and adaptive cropping
technique. The RDN’s successfully forwarded the hierarchical features to preceding blocks.
All the depth-maps and features were trained with nL−1 up-scaling filters. In addition, adap-
tive cropping strategy (ACS) helped up-scaling any arbitrary sized image to a desired quality.
Themulti-scale sub-pixel convolutional layers successfully upscaled the given LR image into
HR.The proposed algorithm is verified across six benchmark datasets quantitatively and qual-
itatively. The results demonstrated that proposed algorithm outperforms all the baselines on
previous state-of-the-art algorithms.

We did not intend to design this algorithm for resource-constraint devices. We will be
done it in the future.
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