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Abstract
Point cloud generation aims to synthesize point clouds that do not exist in supervised datasets. Generating a point cloud with
certain semantic labels remains an under-explored problem. In this paper, we propose a formulation called DiffusionPointLa-
bel, which conducts point-label pair generation based on DDPM generative model (denoising diffusion probabilistic model).
Specifically, we use a point cloud diffusion generative model and aggregate the intermediate features of the generator. On top
of this, we propose Feature Interpreter that transforms intermediate features into semantic labels. Furthermore, we employ
an uncertainty measure to filter unqualified point-label pairs for a better generated point cloud dataset. Coupling these two
designs enables us to automatically generate annotated point clouds, especially when supervised point-labels pairs are scarce.
Our method extends the application of point cloud generation models and surpasses state-of-the-art models.

CCS Concepts
• Methods and Applications → Point-Based Methods;

1. Introduction

In recent years, Deep Neural Network has dominated point
cloud processing and understanding tasks, such as object detec-
tion [YZK21], robot manipulation [YKH∗19], depth estimation
[WCG∗19], and semantic segmentation [JST∗21]. Though substan-
tial progress has been made, point cloud application based on mod-
ern deep learning suffer from a practical limitation. It usually re-
quires large amounts of annotated data to optimize all parameters
of the network.

Unfortunately, creating point cloud datasets with point labels
such as semantic or instance segmentation is labor-intensive and
expensive. This is because labeling a complex shape usually in-
volves the help of a human auxiliary to rotate and look through
different angles to identify an object from incomplete or occluded
point cloud data. In this scenario, creating a point cloud dataset of
the scale as we desire is still a challenge [QYW∗19].

One solution is to build generative models [MWYG20,
GBZCO21,YWZJ21,SPK19] to synthesize expressive point clouds
while having control of the structure. In these methods, point clouds
and point-wise semantic labels are bred from key structural points.
However, due to the irregular distribution and high complexity of
3D point clouds, existing generative models often struggle with ex-
plicit structural controllability and realistic-looking shape. Our ap-
proach goes beyond existing solutions, in that it generate point-wise
labels without holding up the shapes generation results, because the
semantic information is obtained from the intermediate feature of
the generator.

Recently, Denoising Diffusion Probabilistic Models (DDPM)

emerging as a new class of generative models and have
achieved impressive performance on point cloud generation [LH21,
LKX∗21]. DDPM defines a consecutive point-wise mapping be-
tween two point clouds in the diffusion process and characterizes
it as a Markov chain. Our approach is motivated by the observa-
tion that the generator of diffusion model primarily recovers the
structure of the point cloud at the early stage of the diffusion pro-
cess, while gradually enriching surface details at the later stage.
However, the output of the generator alongside the diffusion pro-
cess should be a set of independent and identically distributed ran-
dom variables. Based on this observation, we assume that the dis-
criminability of point representations of the diffusion model varies
along the diffusion process.

Driven by this assumption and inspiration of [BRV∗21], we in-
vestigate the intermediate features of the point cloud diffusion gen-
erative model to figure out how the discriminability changes and
whether it has semantically interpretable potential. On top of that,
we aggregate the intermediate features of the diffusion generator
and conduct a simple MLP, called feature interpreter, to transform
the intermediate features into point-wise semantic labels. Under
this design, our paradigm enables point-wise label annotation with-
out affecting the quality of point cloud generation. Although our
approach can generate plausible annotated point clouds, we find
that it still generates some unqualified point-label pairs. To elimi-
nate this error, following the setup of [ZLG∗21], we adopt an uncer-
tainty measurement to estimate the quality of annotated point-label
pairs. Specifically, we train a committee of feature interpreters and
compute uncertainty score for point-label pairs via the entropy of
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this committee of feature interpreters. Then uncertainty score can
be used to filter unqualified point clouds.

The main contributions of our work can be summarized as fol-
lows.

1. Different from previous point cloud generation methods that
focus on structure-aware point cloud generation or breeding point
labels from key structural points, we are the first to propose a point-
label pairs generation framework based on point cloud diffusion
generative model, termed as DiffusionPointLabel. Our method can
simultaneously generate point cloud and the corresponding point-
wise semantic labels.

2. We experimentally exhibit that the intermediate features of
the point cloud diffusion generative model are interpretable at the
semantic level and have the potential to help 3D understanding.

3. Experimental results demonstrate that the proposed method
has great advantages in efficiency and effectiveness to obtain anno-
tated point clouds, especially when the supervised labeled exam-
ples are scarce, which surpasses state-of-the-art performances.

2. Related Works

In this section, we briefly describe the existing research lines rele-
vant to our work.

2.1. Learning Representations on Point Cloud

Deep representation learning has been developed for many years.
Since point cloud data has irregular structure, [MS15a, WSK∗15,
ROUG17, MS15b] quantized the 3D space and transformed points
into regular voxels so that the convolution neural network can pro-
cess 3D data. However, since the 3D point cloud is a sparse and
discretely distributed representation, convolution operators are in-
efficient and computationally expensive for 3D data.

Qi et al. [QSMG17] proposed PointNet, a notable landmark
for point-based deep learning work, which works by leverag-
ing weight-shared multi-layers perceptrons and a point-wise max-
pooling layer to learn the features of the point cloud. The max-
pooling layer can address the irregular structure of the point cloud,
while it may neglect local information. Subsequent works have
been proposed to tackle this issue. PointNet++ [QYSG17] defined
a hierarchical architecture, which is effective for capturing local
features of increasing contextual scale point set and improved se-
mantic segmentation performance. Its design includes a deformable
convolutional kernel to adapt to the local geometry and be robust
to varying densities. Following them, [LCL18, ZJFJ19, WSL∗19a]
adopted a wider neighborhood to enhance local region features;
[WQF19, TQD∗19] designed a flexible kernel-based convolution
operator and [WSL∗19a, QLJ∗17, WHH∗19] regarded point cloud
as an undirected graphs to group points to enrich latent features.

Recently, random walks [MBST21,XZS∗21] have been used for
3D model representations and achieved the state-of-the-art perfor-
mance. Xiang et al. [XZS∗21] proposed to use shape curves to ana-
lyze point cloud feature, which is initialized based on a given set of
rules and heuristics. Mesika and Ben-Shabat [MBST21] presented

a technique that imposes structure on the point set by multiple ran-
dom walks to aggregate point features.

Following the recent success of Transformers [VSP∗17] in var-
ious vision tasks, there is some work that uses this network ar-
chitecture for point cloud understanding tasks. With the recent
success of applying Transformer [VSP∗17] in vision tasks, many
works [ZWL∗21, ZJJ∗21, GCL∗21, HJCX21, YTR∗21] have pro-
posed their transformer network frameworks for point clouds.
These models focused on reducing the cost of point cloud anno-
tation. But a point cloud dataset consists of point clouds and its
corresponding label. In this paper, we propose a pipeline that can
generate a point cloud dataset.

2.2. Generative Models for 3D Point Cloud

In the past few years, plenty of works have extended the generative
model to point clouds. Current point cloud generative works can
be generally classified into three categories: Autoregressive-based,
flow-based, and GAN-based.

PointGrow [SWL∗20] is one of the notable works of
Autoregressive-based methods. It estimates the probability of
samples one-by-one based on previously generated points. How-
ever, this method is restricted to generating a fixed-dimension point
cloud because it assumes a determinate order of point cloud.

GAN-based generative models explore adversarial learning to
train the shape generator with the help of a discriminator. Shu et al.
[SPK19] combined tree-structure and graph to perform convolution
on the point cloud. It demonstrated that tree-GAN can edit point
clouds on the semantic level without prior knowledge, but the pre-
cision of the label falls short of expectations. Gal et al. [GBZCO21]
extended it into multi-roots version. The node of the mutil-roots can
generate and control different parts of point cloud. But there is no
clear classification boundary between different parts, that is they
do not have clear semantic definition. Wang et al. [YWZJ21] draw
inspiration from S2-GANs and proposed using enhance controlla-
bility and point-level label accuracy. However, the label accuracy
will inevitably be affected because the semantic label of a point is
inherited by the structure points. Compared with the above GAN-
based approaches, we incorporate a pre-trained generator and use
its intermediate features to generate point-wise label, which im-
proves the accuracy.

For Flow-based generative models [KLK∗20,YHH∗19,KBV20,
HXX∗20], the basic idea is to train an invertible parameterized
transformation that can characterize the distribution of samples.
This transformation can output a target shape by moving points
from a prior distribution at one time.

Recently, denoising diffusion probabilistic models have shown
superior performance in terms of generative fidelity and diversity
in 2D dataset generation [GRS∗20]. For 3D generation, Luo et
al. [LH21] applied a diffusion model to point clouds and achieved
competitive results compared to state-of-art. Zhou et al. [ZDW21]
used conditional DDPM for point cloud completion by training a
point-voxel CNN. Lyu et al. [LKX∗21] applied a diffusion model
to point clouds completion task. It proposed an adaption network
architecture for point cloud and added a denoise module, which en-
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hances the precision of results. However, existing point-based gen-
erative approaches mainly focus on 3D geometry while neglecting
the implicit feature information that is complementary to 3D un-
derstanding.

More recently, SetVAE [KYLH21] learned to generate set-
structured data such as point clouds with a tree-structure. However,
its latent variable are not explicitly trained to segregate semantic
part.

3. Methodology

Figure 1 shows the structural details of our method. Given a ran-
dom latent code z ∼ N (0, I) and a random noise of point cloud
X ∈ RN×3 ∼N (0, I), we aim to generate a point cloud X ∈ RN×3

and its corresponding semantic labels SL ∈ RN×4. To this end,
firstly we extract the intermediate features of X in different layers of
the diffusion generator θG at certain time steps t = {ti|i = 1, ..,T}.
Formally, Ci, j ∈ RN×Couti denotes the intermediate feature of the
i-th layer at time step t = j. We concatenate several Ci, j as C∗. Fi-
nally we use a feature interpreter to transform C∗ into point-label
pairs.

We revisit the point cloud diffusion generative model in Section
3.1. In Section 3.2, we analyze how discriminability of interme-
diate features of the diffusion model changes along the diffusion
process. We use K-means to verify our assumption that the inter-
mediate features of the diffusion model are interpretable at seman-
tic level. Then in Section 3.3, we introduce the feature interpreter
which transforms the intermediate features of the diffusion genera-
tor into the point-wise label. In Section 3.4, we propose assembling
a set of feature interpreters as a committee to compute the uncer-
tainty score of annotated point clouds which can be used to filter
unqualified point-label pairs.

3.1. Denoising Diffusion Probabilistic Models for Point Cloud

Denoising Diffusion Probabilistic Model regards the process of
point cloud generation as a Markov chain. The parameterized
Markov chain maps noise (i.e. 3D Gaussian) to shape by recur-
sively perturbing the input point cloud. The forward diffusion pro-
cess transforms shape to noise in an unconditional way. The re-
verse process generates the desired shape from Gaussian noise that
is conditioned on a latent variable of global shape. Both processes
have a fixed time step, denoted by T . Ho et al. [HJA20] utilized
variational inference to solve the parameterized diffusion process.

The Diffusion Process. We use superscript to denote the diffu-
sion step t. The forward diffusion process q transforms shape X0 to
noise XT ∼N (0,1). We assume pdata(X

(0)) to be the distribution
of the point cloud X in the ground-truth dataset. Given N points in
a point cloud X = {xi|i = 1, ..,N} ∈RN×3, the distribution of each
point in forward diffusion process can be formulated to:

q(x(1:T )
i |x(0)) :=

T

∏
t=1

q(x(t)i |x(t−1)
i ),

where q(x(t)|x(t−1)) :=N (x(t);
√

1−βtx(t−1),βtI)

(1)

where the

According to [HJA20], the hyperparameter βt is a fixed mono-
tonic increasing list.

Note that in the forward diffusion process, the shape sample X0

gradually loses its geometric features as the time step t. Eventually
when T → ∞, XT is equivalent to an isotropic Gaussian distribu-
tion.

The Reverse Process. The reverse process p is to predict a 3D
shape from a latent code z. Conversely to forward process, points
are recursively moved from a prior noise distribution p(x(T )i ) to

approximate q(x(0)i ). We use a network θ to estimate the denoise
movement of every point at time step t. This process can be formu-
lated as:

pθ(x
(0:T )|z) := p(xT )

T

∏
t=1

pθ(x
(t−1)|x(t),z)

pθ

(
xt−1 | xt ,z

)
:=N

(
xt−1;sθ

(
xt , t

)
,Σθ

(
xt , t

)) (2)

Since the points in a point cloud are independently sampled from
a distribution, the probability of the whole point cloud is simply the
product of the probability of each point:

q(X(1:T )|X0) =
N

∏
i=1

q(x(1:T )
i |x(0)i )

pθ(X
(0:T )|z) =

N

∏
i=1

pθ(x
(0:T )
i |z)

(3)

Training. Training objective can be simplified by optimizing the
variational bound on negative log-likelihood:

L=Eq[
T

∑
t=2

DKL(q(X(t−1)|X(t),X(0))∥pθ(X
(t−1)|X(t),z))

− log pθ(X
(0)|X(1),z)+DKL(qφ(z|X(0))∥p(z))]

(4)

Ho et al. [HJA20] showed that the training objective of the diffu-
sion model θ can be simplified in a closed-form by a parameteriza-
tion trick. Let αt = 1−βt , ᾱt = ∏

t
1αi, then the training objective

becomes:

L(θ) := Et,x(0),ε∥ε− εθ(
√

ᾱ(t)+

√
(1− ᾱ(t))ε, t)∥2 (5)

where t is uniform distributed between 1 and T , ε ∼N (0, I), εθ

is a point cloud diffusion generative network that predicts injected
noise ε at each time step. DDPM does not require CD or EMD loss
in training, because it defines a consecutive and invertible point-
wise mapping. Note that the network is non-autoregressive, its pre-
diction is only determined by the predecessor.
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Figure 1: Illustration of the proposed point-annotation pairs generation method.

3.2. Intermediate Feature Analysis

The point cloud generation process based on the diffusion genera-
tive model is shown in the top row of Figure 2. As shown in Equa-
tion 5, the output of the diffusion generator at each step should be
independent and identically distributed random variables. However,
in the early and later stages of the diffusion process, the change
tendency of the point cloud is different: structural features in the
former and surface details in the latter. Therefore, we assume that
the point representation of the diffusion generator has different dis-
criminability alongside the diffusion process.

To prove our assumption, we use the K-means cluster to ana-
lyze the intermediate features of the diffusion generator at different
time steps. In practice, we freeze a diffusion model θ and take a
point cloud X ∈RN×3 and a time step t as the inputs of θ. Then we
extract the intermediate features of one layer of the generator θG.
Because the generator we used is an MLP, the intermediate features
of every layer at each time step t can be denoted by Ci,t ∈ RN×out i .
We use the K-means clustering algorithm to estimate the cluster la-
bel of each point from the intermediate features of X and visualize
the results, as shown in the bottom row of Figure 2. In K-means
clustering, we use the number of ground truth labels as the clus-
ter number. For example, the airplane in Figure 2 has 4 semantic
parts and then we set K-means cluster number as 4. The results
of K-means demonstrate that the discriminability of intermediate
layer features gradually increases with decreasing time steps and is
interpretable at the semantic level.

To further determine which layer of features we should extract
or at which time steps, we quantitatively compute the results of K-
means clustering. If the K-means clustering effect is very good (the
cluster labels of the close points are very similar, and the cluster
labels of the distant points are not the same), it means that the dis-
criminability of this intermediate feature is very high, otherwise it
is very low and cannot be used for further learning. We extract and
cluster the intermediate features of each layer of θG from time t = 0

to T . We compute the clustering results with the Calinski-Harabasz
Index algorithm [CH74] and the results is shown in Figure 3. The
Calinski-Harabasz Index algorithm is used to measure the quality
of the cluster model without the ground-truth label. The Calinski-
Harabaz score is defined as the ratio of between-group dispersion
to within-group dispersion, and be formulated as:

s =
SSB

k−1
/

SSW

N − k
(6)

where k denotes the number of clusters, N denotes the number of
all data, SSB denotes the variance between different clusters, SSW
denotes the variance between one cluster. The lower the score, the
better the clustering effect of K-means.

As shown in Figure 3, this Calinski-Harabasz Index score in-
creases abruptly around t = T/4, so we only extract intermediate
feature at t < T/4 in experiments. It is worth mentioning that this
score becomes stable at t → T . The attribution of it is that the dis-
criminability of intermediate features tends to be consistent at this
time, all point features represent the category or overall shape in-
formation of the airplane.

3.3. Feature Interpreter

The feature interpreter takes the intermediate features as the in-
put, aiming to generate explicit semantic labels for generated point
cloud. An MLP is implemented to realize the label prediction. Sim-
ilar to K-means clustering process, we freeze a diffusion model θ

and take a point cloud X ∈RN×3 and a time step t as the inputs of θ.
Based on the analysis in section 3.1, we sample C0,t across different
time steps, where t < T/4. Then the intermediate features C0,t of
the θG are upsampled and concatenated to form C∗ ∈ RN×1024. In
practice, we use a three-layers MLPs to predict the semantic label
for each point from the C∗. The feature interpreter is optimized by
cross-entropy loss.
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Figure 2: Visualization of the diffusion process and corresponding K-means cluster of intermediate features. The top row represents the
effect of point cloud diffusion in the time variable. The bottom row represents the evolution of corresponding point-wise K-means features
based on the diffusion model.

Figure 3: Calinski-Harabasz Index of feature space cluster. The
score represents the quality of cluster. Different colors represent
different layers of the θG

3.4. Uncertainty Measurment

We found that the point cloud generative models occasionally gen-
erate meaningless point clouds in experiments. Since we don’t
want to involve any human labor in this task, we need to filter
these point clouds out before we collect the final dataset. Follow-
ing [ZLG∗21, GRS∗20], we adopted the Jensen-Shannon (JS) di-
vergence [KHY∗18] to compute the uncertainty measure for each
point-label pair. Specifically, we train a committee of feature inter-
preters in the same way. And then we estimate the label likelihood
LS ∈ RN×4 for the point cloud X ∈ RN×3. Formally, the uncer-
tainty measurement is denoted by JS ∈ RN . The computation can
be formulated as:

JS = H(
1
N

N

∑
i

LSi)−
1
N

H(LSi) (7)

where N denotes the number of feature interpreters in one commit-
tee; LSi denotes the label likelihood of the i-th feature interpreter
for point cloud; H denotes the entropy function. We use the top
10% of JS as the uncertainty score of each point cloud in the im-

plementation. The uncertainty score can be used to filter unquali-
fied point cloud.

4. Evaluation and Discussion

In section 4.1, we evaluate the effectiveness of our method in two
aspects: a) the usefulness of our generated dataset; b) the effective-
ness of the feature interpreter. In section 4.2, we discuss the dis-
criminability of intermediate features in three popular point cloud
autoencoder networks. In section 4.3, we compare our method with
a close generative model CPCGAN [YWZJ21]. We conduct an ab-
lation study of our methods in section 4.4.

Dataset and Implementation Details. We evaluate the pro-
posed method on ShapeNet-Partseg dataset [FSG17]. This dataset
includes 16881 shapes from 16 object categories. In our evalua-
tion, we mainly work with the "chair", "airplane", "guitar", "table",
"lamp", "car" and "bag" categories.

Our method was conducted on a pre-trained point cloud diffusion
generative model. We used the Luo et al. [LH21] as the backbone
of our method and trained the model θ according to their specifica-
tions. We trained the feature interpreter for 100 epochs with batch
size 128, starting with a learning rate of 0.02 which decayed by 0.5
every 10 epochs. Cross-entropy loss is minimized during training.

Evaluation Metrics and Baselines. 3D semantic segmenta-
tion is evaluated using mean Intersection over Union (mIoU) on
point and accuracy, refed to mIoU and mAcc. We include Point-
Net [QSMG17], PointNet++ [QYSG17], DGCNN [WSL∗19b] as
beselines that verify the useful of the generated dataset.

4.1. Validation of Generated Datasets and Feature Interpreter

In this section we evaluate our method in two settings.

The usefulness of the generated dataset: We first train a net-
work [QYSG17] for semantic segmentation using the train set of
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Figure 4: Examples of generated point-label pairs.

Figure 5: Comparison between our generated datasets and
ground-truth ones. Different colors denote different filter ratios.

ground truth dataset. After training, we use this network to validate
on our generated dataset and the ground truth test set separately.
When producing our dataset, we generated 10,000 point clouds for
each category, and then filtered samples based on their uncertainty
scores. Figure 5 shows the quantitative comparison of the generated
dataset produced by our method. Some examples from our gener-
ated dataset are visualized in Figure 4. For most categories, our gen-
erated datasets show competitive results compared to GT datasets.
For Lamp, the performance of our generated dataset is much lower
than the GT dataset. But the visualized results of Lamp are plausi-
ble. We attribute this result to the fact that because the Lamps in the
GT dataset are few, the segmentation network has not fully learned
the accurate features of the Lamps.

The effectiveness of the feature interpreter: We believe that one
of the future application scenarios of our method is to generate
point cloud datasets in a new category . Since the cost of point
cloud annotating is too high, we can use few-shot samples of point-
label pairs and generate large-scale point cloud datasets. There-
fore, it is important to verify that our method can still generate re-
sults with high segmentation accuracy when there are only a few
samples. We conduct few-shot segmentation to verify the effec-
tiveness of our method. We compare the evaluation results with
baseline [QYSG17] as shown in Table 1. The comparison results

demonstrate that our method is capable of generating compelling
semantic labels in a few-shot setting.

4.2. Validation of Representation Effectiveness

Since the intermediate features of our analysis and learning are ex-
tracted from a diffusion generative network that has an autoencoder
frame, we naturally question whether these learnable intermediate
features have nothing to do with the diffusion process, but only ben-
efit from the autoencdoer framework? Therefore, we conduct an
experiment to find out whether other methods capable of extract-
ing intermediate features from point clouds can achieve the same
effect. To the best of our knowledge, this is the first work to find
out the discriminability of intermediate features in a point cloud
generative model.

As in our method, we first collect and cluster latent feature space
of existing generative models: CapsNetwork [ZBDT19], PointFlow
[YHH∗19], and FoldingNet [YFST18]. The cluster effect is shown
in Figure 6.

The comparison results answer our question: the discriminabil-
ity of the intermediate features benefits from the diffusion process,
and not all point cloud autoencoders networks have similar discrim-
inability. The possible explanations could be that, (a) these model
use CD-Loss to optimize the parameter of network, which calculate
the overall structural similarity; (b) these model train the network in
a one-shot discriminative way. Therefore, their intermediate feature
space does not contain fine-grained information.

4.3. Comparing with Related Methods

The work most closely related to ours is CPCGAN [YWZJ21].
CPCGAN [YWZJ21], which proposed a two-stage GAN to gener-
ate point clouds in structure controllable manner, and can be trained
on ShapeNet-Partseg dataset as well. The first stage generator gen-
erates the key structural points and its label and the second stage
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Category Model k=1 k=3 k=5 k=10 k=16 k=32

Airplane
Baseline 20.9 47.2 29.4 43.3 59.6 64.6

Ours 58.1 62.8 63.9 64.8 66.0 67.2

Chair
Baseline 33.9 63.8 50.0 64.8 79.5 81.6

Ours 66.2 67.9 72.1 74.7 77.6 78.2

Table 1: Few-shot segmentation on the ShapeNet dataset. The number of samples is denoted by k for each category. Our method demonstrates
comparable performance to baseline when trained on a few samples.

Figure 6: Qualitative comparison of intermediate features based
on different baseline using K-means cluster.

Class Model mIoU%(↑) mAcc%(↑)

Chair
CPCGAN 57.1 83.6

Ours 72.0 86.3

Airplane
CPCGAN 67.8 82.6

Ours 74.2 89.2

Table 2: Comparison of point cloud and label generation perfor-
mance. mIoU and mACC is multiplied by 102

generator generates the point cloud by expanding the key struc-
tural points into complete point cloud. The semantic label is bred
from the first stage. Because it is hard to annotate ground truth la-
bel for a generate point cloud, following their setting, we train a
PointNet++ [QYSG17] for semantic segmentation task. We use this
pre-trained segmentation network to evaluate our generated dataset.
The quantitative comparison is shown in Table 2. From the results
shown in the table, we can see that our generated point cloud (air-
plane and chair) outperforms their method consistently on the two
evaluation metrics for both mIoU and mACC by a large margin.

Moreover, we visualized comparison results as shown in Fig-
ure 7. Here, we pick some random point clouds generated by both
methods and categorize the semantic labels by color, using the same
color for the same label across models. From these results, we can
see that the point clouds with semantic labels generated by our
method exhibit more accurate labels, whereas [YWZJ21] tends to
generate noisy semantic labels.

Figure 7: Visualized results of [YWZJ21] and ours.

C(0,0) Upsample C(0,0) C(2,0)
Airplane 75.7 76.0 72.8

Table 3: Evaluation of the different intermediate feature extraction
variations for part segmentation.

4.4. Ablation Study

Intuitively, there are two deterministic factors of representation dis-
criminability: The intermediate features with the highest dimension
have better discriminability because they may contain the most in-
formation. The second is that we tend to consider the features of
the shallow layer because the feature of the deeper layer is closer
to the estimated noise of the diffusion process, while the shallows
contain abstract information, such as semantics.

Then we compare it to the following settings: a), the features of
the shallow layers are upsampled to the highest dimension; b) the
features of the layer that has the highest dimension.

The results are proved in Table 3. The intermediate features
within the highest dimension slightly underperform than features
of the shallow layers. The experimental results confirmed that the
discriminability of the intermediate features of the shallow layer is
better.

5. Conclusions

To conclude, this paper presents a paradigm called DiffusionPoint-
Label which is a simple and useful method for point-label pairs
generation. A feature interpreter is applied to transform intermedi-
ate features of the point cloud diffusion generative model into the
semantic label. Uncertainty measurement is introduced to enhance
the quality of the generated point cloud dataset. We further show
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the effectiveness and efficiency of our method within scarced su-
pervised labeled examples. In the future, we plan to explore more
of the potential power of the point cloud generative model, such as
fine-grain point-label pairs generation.
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