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LETTER

Response to “Comment on: Machine 
Learning for Understanding and Predicting 
Injuries in Football”
Aritra Majumdar1*  , Rashid Bakirov1   and Tim Rees2   

Dear Editor,

We acknowledge the Letter to the Editor by Bullock and 
colleagues [1] regarding our article “Machine learning 
for understanding and predicting injuries in football” [2], 
and appreciate the opportunity to respond. In our Lead-
ing Article [2], we outlined the topics of sport injury and 
machine learning, before describing examples from the 
literature that had used machine learning to examine the 
workload-injury relationship in football. Our aim was to 
“aid readers both from sport science and machine learn-
ing communities in their understanding of sports injury 
articles employing machine learning” (p. 2) [2]. We 
concluded: “the myriad ways machine learning can be 
employed can also lead to difficulty in synthesising the 
current research evidence into an overall, unified, con-
clusion. Indeed, there remain questions as to the utility of 
these models for real-world application” (p. 8) [2].

Given the above, we were confused as to the content 
and purpose of the letter [1]. The letter either (a) raised 

points with which we have not disagreed, backed by cita-
tions to the letter authors’ own work, (b) made general 
observations about machine learning, or (c) countered 
points we never made—strawman logical fallacies.

The letter made five key points [1]. The first point—that 
we claimed the models that we reviewed in our Lead-
ing Article [2] were “quite sound”—is untrue. The letter 
authors [1] noted that the machine learning studies we 
reviewed were rated by them in a previous article [3] as 
having a “high or unclear risk of bias”. We made it quite 
clear [2] that the machine learning techniques employed 
were legitimate, but that “there is considerable variabil-
ity in study design and analysis” (p. 7), and “greater detail 
regarding the machine learning approaches employed 
would help any objective assessment of their contribu-
tion towards better understanding the workload–injury 
relationship” (p. 7). Thus, through our Leading Article 
[1]—not a systematic review—we arrived at roughly the 
same conclusion. Indeed, we wrote at length of our criti-
cisms of the studies we reviewed, which included a lack of 
detail regarding the machine learning processes followed, 
such that they “limit a systematic evaluation of findings 
and the drawing of a unified conclusion” (p. 1) [2].

The second point—that we claimed that machine 
learning studies demonstrate causality—is also untrue. 
Nowhere in the article did we discuss causality or try 
to unpick cause-effect. We consistently used the term 
workload-injury relationship. One wonders, then, why 
the letter authors felt compelled to deliver such a clichéd, 
stats-class admonition; for further discussions on this 
topic, see [4–6].

The third point—that we promoted data balancing and 
classification models—is similarly untrue. Rather than 
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“promoting”, we noted that data balancing is used in 
machine learning, describing in the highlighted papers 
where data balancing had been employed [2]. We would 
agree that data balancing can have unintended conse-
quences. Over-detection of medical conditions and sub-
sequent over-treatment is one obvious example. The 
above notwithstanding, data balancing methods may 
still be critical in such contexts; for example, two recent 
articles demonstrated that data balancing improved the 
performance of machine learning models in diagnosing 
patients with metabolic dysfunction-associated steato-
hepatitis [7] and cerebrovascular diseases [8]. We also 
noted (rather than promoted) that the papers highlighted 
in our leading article had used classification models. 
Despite the letter’s criticisms, many classification mod-
els also provide options to examine probability and risk 
scores [9].

The fourth point—that we advocated the use of some 
evaluation metrics at the expense of others—is also 
untrue. We did not state that certain metrics “should 
be used” [2]. We noted that many evaluation metrics 
are used, highlighting those metrics in the papers we 
reviewed, explaining their meaning, purpose, and limita-
tions. It is true that we did not explicitly highlight “cali-
bration”—something not mentioned in the papers we 
reviewed. More to the point, part of our Leading Article’s 
[2] purpose was to “highlight (and to an extent de-mys-
tify) the machine learning process” (p. 8) for non-experts. 
It was not designed as a treatise on machine learning. 
The argument that we did not mention calibration could 
be extended to wondering why we did not mention a host 
of other potentially important aspects of evaluation [10], 
such as the confusion matrix, Matthews correlation coef-
ficient, and threat score.

We agree with the letter’s fifth point—that the papers 
we reviewed in our Leading Article did not use external 
validation [2]. It is true that without “external validation 
for such models it is impossible to know whether or not 
they will be useful to practitioners with different clubs”. 
It is a moot point, however, whether external validation 
is always necessary, and whether a universally applicable 
model for all clubs is desirable or even a logical endpoint 
of such research. In fact, it is precisely because differ-
ent clubs use different training regimes, under different 
coaches, with different athletes, that a universal model 
would likely prove to be of little practical utility across 
all clubs. For example, a club may choose to play a dis-
tinctive, high tempo pressing style of football or a more 
strategic, defensive approach, potentially coupled with 
higher-than-average training volumes. To accurately pre-
dict injuries in such specific settings may mean devel-
oping predictive models that would not translate well 
to clubs with different styles of playing and training. 

Relatedly, we recently reproduced with our own data 
[11] the analysis strategies from two of the papers [12, 
13] highlighted in our Leading Article, observing sizeable 
discrepancies in the best models.

Finally, the letter noted, in passing, other issues that 
were not further expanded upon [1]. We shall thus not 
address these here, but again refer readers to our point 
that our article was not a treatise on machine learning.

Given the above, as a target for criticism, then, the 
choice of our Leading Article [2] seems strange. Although 
we welcome constructive peer review and the opportu-
nity to provide clarifications of our work, we stress the 
importance of paying attention to the specifics of the 
article content, and making factual and unbiased obser-
vations of others’ work.
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