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Abstract: - The effects of foot injuries regarding bilateral asymmetry and gait dynamics are still poorly 
understood. Previous work discussed rehabilitation, postural control, and asymmetry, with the models being 
mainly validated for upper body translations and no or minimal assessment on rotation. The aim of this study 
was to assess the effect of foot injury on gait dynamics. For this, a wearable sensors system for data collection 
of the key variables of the of human movement was considered. The dynamics of motion – recorded in the 
plane of motion using a laser sensor – was assessed using a new projective method which considers the axial 
rotations, translation, and in-plane rotation patterns for normal human gait vs. simulated gait pathologies. A 
nonlinear timeseries analysis, along with a Poincare map, phase space, time delay, Lyapunov exponents, and 
false nearest neighbors (FNN) method have been considered in order to convey the periodicity of the data 
collected for a healthy individual with and without a simulated injury. The Lyapunov exponents which quantity 
the degree of separation of nearby trajectories are used to differentiate between the chaotic and non-chaotic 
behavior. The positive sign of the largest Lyapunov exponents for all data indicated “the exponential separation 
of nearby trajectories as time evolves”, that is, the chaotic behavior of the system. 
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1 Introduction 
The use of wearable sensors [1,2] and motion 
capture having reflective markers [3] has proved to 
be viable solutions in the dynamic analysis of gait 
and postural control. Force plates can also be used 
to collect data of a small number of strides [4], 
however this approach requires expensive force 
plates which are adequate to measure the ground 
contact point and contact force for a static 
simulation, but not for a dynamical approach. 
Inertial measurement units (IMUs) using 
accelerometers and gyroscopes although ideal to 
capture human are unable to maintain long-term 
accuracy due to sensor drifting issues [6].  The 
influence of some other sensors such as camera 
calibration and markers size on the performance of 
video-based motion capturing systems was reported 
in [5].     

A new symmetry angle (SA) index has been 
considered in [10] as a substitute for the symmetry 
index (SI) in assessing asymmetry. Joint bracing 
was considered to assess movement differences of 
limb joints for an asymmetric gate dynamics [11]. 
Inflated ground reaction forces and symmetry index 
(SI) values have been reported by Herzog et al. [12] 
in the assessment of gait asymmetry as a result of 
dividing a reference average by a very small (close 
to zero) reference value.  
The physical constraints in fast and low speed 
running have been analyzed in [14] by evaluation of 
body energy storage and transfer. A musculoskeletal 
approach of connected links [7] representing 
different parts of the body evaluated the associated 
length, mass center position, and moment of inertia 
using regression equations [31]. Gait assessment 
due to injury causing one-sided affection has been 
discussed in [16] by objective measurements of gait 
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quality and gait function or self-reported function. A 
combined gait metric (CGAM) that can be regarded 
as a benchmark to evaluate and differentiate 
kinematic and kinetic parameters has been presented 
in [17]. The newly developed CGAM metric 
successfully distinguish between multiple 
asymmetry differences at different walking 
velocities. 
A ratio index (RI), as well as a statistical approach 
has been considered in [9] to assess gait asymmetry. 
The study [8] discussed the use of various 
coefficients such as symmetry index (SI), ratio 
index (RI), SA and GA, and their consistency in 
assessing gait.  
Unstable and stable, asymmetric and symmetric, 
periodic motions have been observed in [22], and 
chaotic trajectories have been detected in [23] using 
a bifurcation analysis of the upper part of the body. 
A nonlinear time-series analysis was considered in 
[32] asses dynamic walking. Nonlinear behavior of 
a walking model has been concluded in [24], and 
chaotic dynamics of a bipedal model in [25]. The 
chaotic dynamics observed in [25] could be part of 
an interdisciplinary research for diagnosing gait 
pathologies [4].  
Actual recommendations for assessing asymmetric 
and symmetric periodic or chaotic motion have been 
reinforced in [8] due to missing standards and 
establish criteria to differentiate between relatively 
similar or contradictory results. Therefore, new 
investigations to better assess gait dynamics while 
overcoming the limitations of previous studies 
should be considered.  
This paper presents the effects of foot injuries on 
asymmetry and gait dynamics. For this, a wearable 
sensors system including, 
- a foot-mounted pressure sensors that records the 
ground contact time, contact point and contact force  
- a laser pointer (attached to the subject) to project a 
laser spot in the plane of motion 
- a high-speed camera that records the laser spot 
motion related to dynamics of the human gait in the 
plane of motion.  
have been used.  
A nonlinear timeseries analysis, including Poincare 
map and Lyapunov exponents have been considered 
for the assessment of the data. The evaluation of key 
variables in the assessment of gait dynamics - based 
on a new projective method which considers the 
axial rotations, translation and in-plane rotation 
patterns of the gait in the plane of motion - is 
performed by analyzing the trajectory of the motion 
in Matlab. 
 

 

 

 

2 Materials and Methods 

 
2.1 Variables to be measured. 
Following a review of the literature regarding 
human gait dynamics a list of key variables to be 
measured such as ground contact time, contact 
force, trajectory, and associated devices have been 
considered [1, 2, 7, 30]. The dynamics have been 
assessed in the plane of motion with respect to the 
sagittal plane that divides the human body into right 
and left sides, taking into account the axial rotations, 
translation and in-plane rotation patterns of the gait. 
 
2.2 Summary of equipment 
Once the variables to be measured have been 
considered, i.e., ground contact time, contact force, 
and trajectory, a range of devices have been selected 
to allow data collection. A brief description of the 
equipment used, including the manufacturer details. 
is presented in Table 1. 

Table 1 
Outline of the equipment including manufacturer 

name and details of the devices 

Description Manufacturer Details 

Flexiforce 
WB201 
Sensor 

Tekscan Trimmable 3-pin male 
connector sensor in 
three force ranges 

Wireless Flexi 
Force WELF 2 

Tekskan Wireless Economical 
Load & Force 
Measurement System 
2 (WELF™ 2) 

Digital JVC  
GC-PX100 
camcorder 

JVC 12.8 MP Camcorder - 
1080p (record 500 
frames per second) 

Laser Pointer GBBG Light rechargeable 
Laser 303 pointer 

Camera 
Tripod 

Vantage M10 Nest Vantage M10 
Video Camera Tripod 
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Treadmill PRECOR TRM885 Treadmill 
with ITF technology 

 

2.2.1 Laser Sensor Pointer 

Since the walking is to be assessed in the plane of 
motion with respect to the sagittal plane the 
trajectory of the laser spot is fundamental in the 
understanding of the dynamics of the system.   To 
address this, the laser pointer (Fig 1c) was attached 
to the back of the subject (at the intersection of the 
sagittal and transverse plane as shown in Fig 3) via a 
special type of clamp collar device attached to the 
belt.  

The laser pointed was firmly clamped the collar 
as such it can only move with the body. In the initial 
position (before start walking or running) the laser 
spot projected by the laser pointer on the ground is 
located behind the subject on the line defined by the 
intersection of the sagittal plane and the plane of 
motion (running belt surface) at a distance of 30 cm 
from the coronal plane.  

The laser pointer - made by hard aluminum withe 
an anodized black surface treatment - has the 
working voltage of 3.7V, wavelength of 532nm, 
range of 500m-1000m, and an adjustable focus and 
an APC line circuit control. The setup of the 
displacement sensor, i.e., laser pointer, can be seen 
in Fig. 3b. 

 

     
(a)      (b) 

                
   (c)    (d) 

Fig. 1.  Summary of equipment (a) Wireless Flexi 
Force WELF 2 handle, (b) Flexiforce WB201 

Sensor, (c) Laser sensor (pointer), and (c) Digital 
camcorder – JVC GC-PX100. 

 
2.2.2 Ground Force Sensor - Flexiforce A201 

Sensor 

To build up a more accurate image of the gait 
dynamics device it was necessary to better 
understand the ground contact point and contact 
force for a simulated lower leg injury versus a 
healthy uninjured leg. The lower leg injury was 
simulated by placing a pebble stone inside the shoe. 
The dimensions and shape of the pebble stone is 
shown in Fig. 4. The sensors chosen for this task 
were piezo-resistive devices of a printed 
construction from Tekscan, Inc as shown in Fig. 1b. 
These units are flexible, and are having a thickness 
of 0.208 mm, a length of 197 mm, a width of 14 
mm, and an active sensing area of 9.53 mm 
diameter. The units made by polyester have 3-pin 
Male Square Pin (center pin is inactive) connectors 
with the pin spacing at 2.54 mm. The typical 
performance as presented in the FlexiForce™ 
Wireless Economical Load & Force Measurement 2 
(WELF™ 2) datasheet has the linearity < ±3 of 
full scale, repeatability < ±2.5, hysteresis < 4.5% 
of full scale, and drift < 5% per logarithmic time 
scale. The force sensor has been inserted between 
the insoles and the foam of the trainer sole, thus 
protecting the sensors from direct contact with the 
ground.  

 

Fig. 2. Equipment setup including the Precor 
TRM885 Treadmill with ITF technology, Star 75 

Camera Tripod with attached JVC GC-PX100 
camcorder. 

 

The Wireless ELF 2 system comes with three 
WB201 FlexiForce sensors (one in each of the three 
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available force ranges), that is, WB201-L: Low (0-
25 lb; 111 N), WB201-M: Medium (0-150 lb; 667 
N), and WB201-H: High (0-1000 lb; 4450 N). For 
this study the WB201-H sensor was used, i.e., it was 
inserted inside the running trainer between the 
insoles and the foam of the trainer sol and connected 
to the battery-operated WiFi transmitter shown in 
Fig 1a. 

 

2.2.3 Battery operated WiFi transmitter 

To capture the data being generated by the sensor, a 
Tekscan Wireless ELF 2 handle (Fig 1a) operating 
under Windows system was considered. The device 
is capable of transmitting data at two selected 
frequencies, a low 200 Hz frequency transmitting 
data at maximum 65 m distance named WELF 2 - 
basic system, and a high 6000 Hz frequency 
transmitting data at maximum 25 m distance named 
WELF 2 - High Speed system. The WELF 2 – basic 
system could support up to 16 transmitters for a 
maximum distance of 50 m, while the WELF 2 - 
High Speed system could support up to 8 
transmitters for a maximum distance of 25 m. 

The Tekscan Wireless ELF 2 device (Fig 1a) having 
the dimensions 46.4mm x 26.7mm x 95.3mm, is 
small and lightweight enough (95 grams) to be 
placed above the ankle. The device contains its own 
batteries (3 AAA alkaline batteries) and can be in 
operation for up to 3 hours at the selected frequency. 
To ensure repeatability the state of charge i.e., 
output voltage, of the batteries has been checked at 
the start of each test. 

 
2.3 Equipment setup 
The equipment was set up in a simple way that can 
be easily replicated. A picture of the setup including 
the Precor TRM885 Treadmill with ITF technology, 
the Star 75 Camera Tripod, and the JVC GC-PX100 
camcorder is shown in Fig. 1.  The tripod/camcorder 
was placed at 3 m from the end of the treadmill, and 
the orientation of the camera was 40 degrees with 
the vertical direction as shown in Fig. 1.  
 
All of the attached equipment i.e., force sensor (Fig 
1b), battery operated WiFi transmitter (Fig 1a), and 
laser pointer (Fig 1c and Fig 3b) was fitted in a non-
invasive manner not to affect or significantly 
influence the use of the foot and the recording of the 
data, i.e., the trajectory of the laser spot on the 
treadmill running belt surface (Fig 3a). The total 

mass of the sensor system, i.e., force sensor and 
battery-operated WiFi transmitter, attached to the 
foot was found to be 148 grams. 
 

 

(a) 

 

(b) 

Fig. 3. (a) Recorded trajectory of the laser spot for a 
30 second time period (approximately 20 – 27 

strides) for the gait at 2 mp, (b) Participant walking 
on a treadmill having the laser pointer attached 

 
 
2.4 System Testing 
Following The system was tested with a healthy 
individual - a 52-year-old male with a height of 1.80 
m and a mass of 97 kg - who did not suffer from any 
pathology that might adversely affect running style 
or repeatability.  The selection of the participant and 
testing was conducted following the Bournemouth 
University ethical approval including the use of 
Participant Agreement Form and Participant 
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Information Sheet provided in advance to the 
participants. 
The study required walking/running at 3 different 
speeds on a Precor TRM885 Treadmill in order to in 
order to assess some key variables such as the foot 
ground reaction force and trajectory of motion. A 
laser sensor (pointer) was attached to a belt around 
the participant waist (Fig 4.) and the spot of the 
laser pointer was projected on the treadmill running 
belt (Fig 3 and Fig 4).  The study consisted in 
recording data related to dynamics of the participant 
(trajectory of the laser spot) captured in the plane of 
motion (on the treadmill running belt). The session 
lasted approximately 60 minutes.  
 
            

 

Fig. 4. Pebble stone used to simulate a lower leg 
injury 
 
The participant was informed about the devices to 
be used and questioned if the walking and running 
on the treadmill was comfortable. He was allowed 
15 to 30 minutes to warm up by choosing his own 
pace and cadence at which he felt most comfortable 
and get used to the device to ensure that the setup 
and the additional mass of the instrumentation 
would not cause any issues. Healthy participants 
have been considered for this preliminary study, 
while disable individuals (lower limb amputees) will 
be considered in further studies. 
 

 

3 Results 
The investigation of chaotic behaviour in medical 
science and engineering represents essential aspects 
of research emphasizing the effect and significance 
of chaos (random and unpredictable behaviour in 
systems in which “uncertainties increase at an 
exponential rate”) within these disciplines [32]. 
There are various techniques to determine chaos in 
dynamical systems related to biology and medicine. 
Some of the most well-known techniques namely 
phase space analysis, power spectrum, trajectory 
tracing or bifurcation diagram are qualitative 
analysis approaches requiring the interpretation of 
the results. On the other side, the Lyapunov 
exponents technique is a quantitative analysis 
approach offering some significant advantages over 
the previous mentioned techniques. To name some, 
Lyapunov exponents can  

a) be computed from time series obtained from 
experimental data 
b) reveal the stability of a system  
c) identify the existence of chaos  
c) indicate the exponential separation of nearby 
trajectories 
f) be robust to noise, change in data, and increase of 
sample size 
In this section, the dynamic evolution of the system 
is investigated using the Lyapunov exponents 
method.  
Data from an exercise trial on a treadmill has been 
collected for normal human gait (healthy individual) 
and simulated gait pathology, i.e., healthy individual 
with a simulated leg injury. The data represents the 
trajectory of the laser sensor recorded for a 30 
second time period (approximately 20 – 29 strides) 
for the gait at 2 mph, 4 mph and 6 mph as shown in 
Fig. 3.  
The trajectory of the laser spot displacement 
gathered for the gait at 2 mph for a healthy 
individual and for a healthy individual with a 
simulated injury is shown in Fig 5. 

 
(a) 

 
(b) 
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Fig. 5. Trajectory of the laser spot gathered for the 
gait at 2 mph for, a) healthy individual, and, b) 

healthy individual with a simulated injury. 

Figure 6a shows the phase plane portrait for the 
laser spot displacement data gathered for the gait at 
2 mph for a healthy individual while Fig. 6a shows 
the phase plane portrait for the laser spot 
displacement data for the same healthy individual 
with the lower leg simulated injury. The trajectory 
shown in Fig. 6 is associated with the motion around 
the attractor and shows the classical characteristics 
of nonperiodic motion [19]. It is visible in both 
cases that the phase trajectory does not close due to 
the nonlinearities in the system, that is, the system 
exhibits a complex dynamic such as chaos as seen in 
Figs. 6a and Fig. 6b. 

 

(a) 

 

(b) 
Fig. 6. Dynamical trajectories of the system in the 

phase plane for a) healthy individual, and b) healthy 
individual with a simulated injury 

 
From Fig. 6 it can be seen that the dynamical 

trajectory of the system does not converge with the 
increase in the number of interactions, while the 
associated trajectory of the simulated injury in phase 
plane resembles mostly a nonperiodic wobbly curve. 
The return map of the maxima (Poincare map) 
viewed as the cross section of the trajectory in state 
space provide an enhanced perspective of the 
system periodicity [20].  
Since a Poincare map detects the intersection points 
of the trajectory for a specific section when the 
intersection points of the previous section are 
known, i.e., describe how the points of a section get 
mapped back onto the section, the result helps to 
identify the type of the attractor.  
A finite set of points with the number of points 
corresponding to the period of the attractor define a 
periodic attractor, while a Poincare map with a 
closed orbit define a quasiperiodic motion. For the 
Poincare maps shown in Figure 7a and 7b the data is 
not periodic or quasiperiodic. The Poincare map of a 
chaotic attractor appears as a large/infinite number 
of randomly grouped and respectively ungrouped 
scatter dots, that is, the case in Fig. 7a and Fig. 7b.   
To assess the walking/running variations in the gait 
pattern i.e., the trajectory of the human gait captured 
in the plane of motion, the state space of the 
attractor was reconstructed using time delays  and 
nonlinear dynamics embedding dimension 
techniques [21].  The purpose of the delays 
embedding method was to unfold the state space 
projection of the observed gait trajectory back to the 
state space that represents the system.  

 

 

Fig. 7. The Poincare map. The dots dispersion 
indicates a chaotic and respectively a hyperchaotic 

time series. 
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For the reconstruction of the phase space, the time 
delay used as important information to certify that 
the delayed coordinates are not dependent on the 
initial data and the dynamical properties of the 
original system are preserved, is calculated as 
depicted in Fig. 8.  
The method of delay [21] was used to reconstruct 
the state space X(t) from the time series by 
𝑋(𝑡) = [𝑥(𝑡), 𝑥(𝑡 + T), 𝑥(𝑡 + 2T),… , x(𝑡 + 𝑚)T)] 
A proper time delay T is selected at first local 
minimum connecting the delayed time series and the 
original data, that is the average mutual information 
calculated for various time delays based on an 
iterative process [21].  

 

(a) 

 

(b) 

Fig. 8. The initial minimum average mutual 
information for a) healty individual data is located at 

the time delay T=17, and for b) healty individual 
with a simulated injury data is located at the time 

delay T=13 

The time delay determined by the difference 
between the actual and the delayed state of the 
system using the average mutual information as a 
function of time [26] is shown in Fig. 8. The time 
delay calculated for the trial in Fig. 8a, i.e., healty 
individual, is T=17, and for an helathy individual 
with a simulated injury (Fig. 8b) is T=13. 
The proper embedding dimension of the time series 
is determined from the false nearest neighbours 
(FNN) method by calculating the distance between 
neighbouring points in order to unfold the 
reconstructed walking/running attractor in a suitable 
state space. 
 
The FFN percentage was calculated at the highest 
embedding dimension defined by number of 
independent variables, until the dimension reached a 
zero percent  FFN [27]. From Fig. 9 it can be seen 
that the total FFN percentage declines and dE is 
chosen where this percentage approaches zero, that 
is, the embedding dimension dE=3. 
Selecting a minimum embedding dimension have 
been considered a key element for decreasing the 
noise associated the dynamical system. 

 

Fig. 9. The percentage of false nearest neighbours 
against the time series in Fig. 8a for the healthy 

individual data located at the time delay T=17 shows 
that dE=3. 
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The Lyapunov exponents which quantity the degree 
of separation of nearby trajectories are used to 
distinguish between the chaotic and non-chaotic 
behaviour in the state space, determine the nonlinear 
structure of the attractor, and analyze the local 
stability of the system [18,26]. 
The type of dynamical evolution of the system is 
best shown by the sign of the Lyapunov exponents 
[13], one positive exponent indicates and chaotic 
motion, more than one positive exponent indicate 
instability and hyperchaotic behavior, while 
negative or zero exponents indicate a periodic 
motion.  

 

 

Fig. 10. Largest Lyapunov exponents calculation 
for the gait at 2 mph for (a) healthy individual (blue 
plain circular dots), and (b) same healthy individual 

with a simulated injury (red empty circular dots) 

To determine the sign of Lyapunov exponents and 
to characterize the behavior of the system the 
computation method developed in [15,21] was used. 
The divergence of nearest neighbors in state space 
[21] is estimated as 

𝑑𝑗(𝑖) = 𝐶𝑗𝑒
𝜆(𝑖Δ𝑡) 

where λ is the largest Lyapunov exponent estimated 
as  

𝑦(𝑖) =
〈ln⁡(𝑑𝑗(𝑖))〉

Δ𝑡
 

with 〈⁡. 〉  representing the average over j.  
 Fig. 10 shows the values of the largest Lyapunov 
exponents calculated for the laser spot trajectory 

gathered for the gait at 2 mph, 4 mph, and 6 mph for 
the healthy individual (blue plain circular dots) and 
for the same healthy individual with a simulated 
injury (red empty circular dots).  
The value of the largest Lyapunov exponent 
quantifies the exponential divergence of the 
neighboring trajectories in the reconstructed state 
space and reflects the degree of chaos in the system. 
The sign of the largest Lyapunov exponents is 
positive for all data denoting the exponential 
separation of nearby trajectories as time evolves, 
that is, the system is characterized by chaotic 
behavior. So, one can conclude at this point the 
chaotic behavior of each system. 
The vertical ground reaction force is also an 
important factor in analyzing and understanding gait 
dynamics. The ground reaction force data from a 
treadmill trial has been collected for the healthy 
individual walking at 2 mph, 4 mph, and 6 mph.  
With respect to the magnitude of the vertical ground 
reaction similar conclusions to the one presented in 
[29] have been obtained, that is “that stride 
frequency, stride length and contact length” 
increased at higher speed by applying greater forces 
to the ground. The conclusion is also in good 
agreement with the one obtained in [28] showing a 
linear increase in ground force from 1.2 body 
weight (BW) during walking to approximately 2.5 
BW when running at 6.0 m/s. 
 
4 Conclusion 
This study provides new information about the 
effect of foot injury on gait dynamics. The approach 
was based on a new projective method which 
considers the axial rotations, translation and in-
plane rotation patterns of the gait in the plane of 
motion. Poincare map, phase space, FNN method, 
Lyapunov exponents and correlation dimension – 
which offer excellent quantifications for various 
characteristics of gait dynamics - have been 
considered to validate the assessment. The positive 
sign of the largest Lyapunov exponents for all data 
indicate “the exponential separation of nearby 
trajectories with time”, that is, the chaotic behavior 
of the system. 
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