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Abstract: Surface blending is an important topic in geometric modelling and is widely applied in
computer-aided design and creative industries to create smooth transition surfaces. Among various
surface blending methods, partial differential equation (PDE)-based surface blending has the advan-
tages of effective shape control and exact satisfaction of blending boundary constraints. However,
it is not easy to solve partial differential equations subjected to blending boundary constraints. In
this paper, we investigate how to solve PDEs analytically and develop an analytical PDE-based
method to achieve surface blending with C? continuity. Taking advantage of elementary functions
identified from blending boundary constraints, our proposed method first changes blending bound-
ary constraints into a linear combination of the identified elementary functions. Accordingly, the
functions for blending surfaces are constructed from these elementary functions, which transform
sixth-order partial differential equations for C? surface blending into sixth-order ordinary differential
equations (ODEs). We investigate the analytical solutions of the transformed sixth-order ordinary
differential equations subjected to corresponding blending boundary constraints. With the developed
analytical PDE-based method, we solve C? continuous surface blending problems. The surface
blending example presented in this paper indicates that the developed method is simple and easy to
use. It can be used to effectively control the shape of blending surfaces and at the same time exactly
satisfy C? continuous blending boundary constraints.

Keywords: surface blending; C? continuity; sixth-order partial differential equation; closed-form solution
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1. Introduction

Surface blending is very important in computer-aided design and geometric modelling.
It has a wide range of applications in various industrial sectors such design, manufacturing,
and creative industries.

Surface blending is the creation of a surface that smoothly connects two or more
separate surfaces together. The surface to be created is called a blending surface, and the
separate surfaces are called primary surfaces. The interfaces between primary surfaces and
the blending surface are called trimlines [1].

Depending on different continuities on trimlines, surface blending can be divided into
tangent curvature, curvature continuity, and higher continuity. Among them, tangent conti-
nuity and curvature continuity are widely met in industrial applications. Tangent continuity
can be achieved with C! continuity, and curvature continuity can be obtained with C? conti-
nuity. Unlike tangent and curvature continuities, which, respectively, keep the tangent and
curvature of primary surfaces and the blending surface the same on the trimlines, C! and
C? continuities, respectively, keep the first and second partial derivatives’ cross trimlines
the same on trimlines and are more stringent than tangent and curvature continuities.
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Some methods [1,2] have been developed to create blending surfaces. Among them,
rolling-ball blending methods [3] are the most popular. In addition, partial-differential-
equation-based surface blending [4] has also attracted a lot of attention.

Partial-differential-equation-based surface blending creates a blending surface by solv-
ing a vector-valued partial differential equation subjected to blending boundary constraints.
Compared with other surface blending methods, the advantages of partial-differential-
equation-based surface blending are effective shape control of blending surfaces and exact
satisfaction of blending boundary constraints.

However, solving partial differential equations subjected to blending boundary con-
straints is not an easy task. Usually, numerical or approximate analytical resolution methods
must be used. Especially for C? continuous surface blending, exact closed-form solutions
to partial differential equations have not been developed.

To tackle the above problem, this paper will propose a new method to obtain exact
closed-form solutions to sixth-order partial differential equations used for C? continu-
ous surface blending. By decomposing blending boundary constraints into elementary
functions and constructing blending surface functions from the decomposed elementary
functions, sixth-order partial differential equations are transformed into sixth-order ordi-
nary differential equations, and blending boundary constraints are decomposed accordingly.
After that, exact closed-form solutions to the sixth-order ordinary differential equations are
obtained and introduced into the constructed blending surface functions to obtain exact
closed-form solutions to sixth-order partial differential equations subjected to blending
boundary constraints.

The remaining parts of this paper are organized as follows. The related work is
reviewed in Section 2. The mathematical model for C? continuous surface blending is
formulated in Section 3, and the exact closed-form solutions to the mathematical model are
developed in Section 4. The application of the proposed method is investigated in Section 5.
Finally, the conclusions are drawn in Section 6.

2. Related Work

In existing work, surface blending has been extensively investigated. Various sur-
face blending methods have been developed. Comprehensive surveys of various surface
blending methods are reported in [1,2].

Among the various surface blending approaches, rolling-ball methods are the most
popular and have been widely used for rounding edges and corners of mechanical parts [2].
Rolling-ball methods consist of rolling a ball along two primary surfaces to create a blending
surface [3]. They can be divided into constant-radius and variable-radius rolling-ball blends.
In addition to rolling-ball methods, partial-differential-equation-based surface blending
also becomes an active topic due to its advantages in effectively controlling the shape of
blending surfaces and exactly satisfying blending boundary constraints.

Constant-radius rolling-ball blending methods were investigated in [3,5-8]. Rossignac
and Requicha proposed a new method to incorporate constant-radius blends, which is
achieved by rolling a sphere in contact with primary surfaces to be blended together [3].
Choi and Ju mathematically constructed rolling-ball blends through sweeping rational
quadratic curves and representing corner blends where three surfaces meet with a convex
combination of linear Taylor interpolants [5]. Farouki and Sverrisson investigated the
numerical methods of constant-radius blends to achieve prescribed-precision approxima-
tion and guarantee the satisfaction of specified tolerance [6]. Kos et al. discussed how to
determine the radius of rolling-ball blends from point data, which have been pre-processed
and segmented [7]. By applying the results of canal surfaces, Dahl and Krasauskas devel-
oped a general algorithm to parametrize fixed-radius rolling-ball blends of pairs of natural
quadrics [8].

Variable-radius rolling-ball blending methods were examined in [9-14]. Chuang et al.
calculated a parametric form of variable-radius spherical and circular blends by using the
derived spine curve and linkage curves [9]. Chuang and Hwang tackled the problems of the
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radius for variable-radius blending being difficult to specify and the spine curve being hard
to trace by introducing several geometric constraints to specify the variable radius and a
paradigm to implement the constraints of tracing the spine curve [10]. Lukacs et al. treated
variable-radius rolling-ball blending surfaces as the envelopes of one-parameter families
of varying-radius balls, which are special cases of discriminant sets [11]. Lukacs used the
theory of envelopes and discriminant sets to analyse variable-radius rolling-ball blending
surfaces, determine the differential geometric invariants of the surfaces, and characterize the
progressive and regressive points on the variable-radius rolling-ball blending surfaces [12].
Chuang and Lien presented two formulations to determine general blending between
parametric surfaces. The first formulation represents the blend as a sweeping surface
whose radii satisfy a specific one-parameter curve, and the second formulation also defines
the blend as a sweeping surface but whose radii satisfy a specific two-parameter surface [13].
Kés generalized the algorithms for reconstructing constant-radius rolling-ball blends to
reconstruct variable-radius blends [14].

Rolling-ball methods are simple and intuitive. They can exactly satisfy positional and
tangential continuities on trimlines. However, they are less effective at controlling the
shape of blending surfaces and cannot satisfy higher continuities on trimlines. In contrast,
PDE-based surface blending not only exactly satisfies blending boundary constraints of
Cl, C?,and C" (n > 2) continuities on trimlines but also effectively controls the shape of
blending surfaces.

Bloor and Wilson pioneered partial differential equation-based surface blending [4].
The challenge for partial differential equation-based surface blending is how to solve
partial differential equations in questions where they are subjected to blending boundary
constraints. Due to the difficulty in solving partial differential equations, some numerical
methods have been proposed. For example, the finite difference method was introduced
in [15,16], and the finite element methods were investigated in [17-20]. Besides numerical
methods, some approximate analytical methods have also been proposed. For example, an
approximate analytical solution to a vector-valued fourth-order partial differential equation
was obtained in [21] to achieve C! continuous surface blending, another approximate
analytical solution to a vector-valued sixth-order partial differential equation was presented
in [22] to create C? continuous blending surfaces, and a unified approach based on a
time-dependent approximate analytical solution to a vector-valued sixth-order partial
differential equation was proposed to tackle both time-independent and time-dependent
surface blending with C? continuity [23].

In nature, approximate analytical methods are numerical since the errors at many
collocation points are calculated and a system of linear algebra equations are solved to
numerically determine the values of the unknown constants used to define blending
surfaces. Since numerical methods require large computer resources and involve high
computational costs, they are not ideal for surface blending. Exact closed-form solutions
address this problem. In this paper, we will propose exact closed-form solutions to sixth-
order partial differential equations to achieve C? continuous surface blending.

3. Mathematical Model
According to [24], the boundary constraints for C? continuous surface blending can be
formulated as
u=20 9"t(u,0)/ou" = Btn+1(0)
u=1 9"two)/gu" = By, 14(v) (1)
(t=x,4,z,n=0,1,2)

where 1 and v are two parametric variables; t(u, v) stands for the three components, x(u, v),
y(u,v), and z(u, v), of a blending surface; B (v) and By (v) are the position components
of boundary curves at the boundaries u = 0 and u = 1, respectively; By (v) and Bs(v)
are the first partial derivatives and B;3(v) and By (v) are the second partial derivatives of
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the blending surface X(1,v) = [x(1,v) y(u,v) z(u,0)] T with respect to the parametric
variable u at the boundary curves, and

Ptup)/ou® = t(u,v)

(t=x1.2) ?

To satisfy the six equations in the blending boundary constraints (1), the solutions to
the partial differential equations for the x(u,v), y(u,v), and z(u, v) components should,
respectively, involve six unknowns. Since a sixth-order partial differential equation in-
volves six unknowns, the partial differential equations for the x(u,v), y(u,v), and z(u, v)
components can be taken to be

6 86 N 86 36 0
V36 Hauiaez T giza0r T Page)H 1 0) = 3)
(t=x,y,z2)

where ¥ # 0,7 # 0, A # 0, and p # 0 are called shape control parameters since they can be
used to control the shape of blending surfaces.

The mathematical model of C? continuous surface blending is obtained by putting
Equations (3) and (1) together. Its accurate analytical solution will be developed in the
following section.

The six equations for each component, t = x, y, z, in the blending boundary con-
straints can be decomposed into constants, dy,, (t = x, y, z; n =1, 2,---,6), and ele-
mentary functions. In this paper, we investigate the surface blending problems whose ele-
mentary functions have the differential property: the second derivatives of the elementary
functions are the same as the elementary functions themselves multiplied by a coefficient.

If we use the functions fy(v) (t = x,y,z,k =1, 2, 3,- - - ,K) to indicate the elementary
functions in the blending boundary constraints (1), the above differential property can be
formulated as below:

Pru0) — g, (o)

(4)
(t=xy,2zk=1,2,3,---,K)
where ¢y is the coefficient obtained from the differentiation operation
Introducing the functions fy (v) (t = x,y,z,k =1, 2, 3, ) into the blending bound-
ary constraints (1) and considering the constants dy,, (n = 1, 2 ,6), Equation (1) can be

changed into
u=0 9"two)/ou" =dyg 41 + Z i1 fc(0)

u=1 0"wo)/ou —dt0n+4+2k 1dtkn+4ftk( v) ®)
(t=xy,2n=0,12)

Since the blending surface should satisfy the blending boundary constraints at the
boundaries u = 0 and u = 1, the vector-valued blending surface function should (1) involve
the functions fy(v) and (2) have the functions of the parametric variable u only to satisfy
the constraints of the constants dyy,, (n =1, 2,- - - ,6) obtained from the boundaries u = 0
and u = 1. Therefore, the vector-valued blending surface function can be constructed
as below:

1(1,0) = Gua(w) + & Gu(0) i)
(t= x,yjz)

(6)
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Substituting Equation (6) into Equation (3), the partial differential equations in
Equation (3) are transformed into

K
761 () + L 76 () fao) + Gy ()i 0)
N 7
+AGH (W)fi) (0) + pGu () £ (2)] = 0 7
(t=xy,2)
where fs(l:") (v) = %’;}v) (m=2,4,6).

Considering the differential property (4), Equation (7) can be written as the following
ordinary differential equation:

6
Gt(o)(”) =0
a0Gye) () + aeGly () + aiGLY () + aps G (1) = 0 ®)
(t=xy,2k=1,23,--- ,K)
where
anp =7 apk = NGk
Ak = )\g%k agsk = P‘:?k )
(t=xy,2zk=1,2,3,---,K)

Substituting Equation (6) into the blending boundary constraints (5), the following
boundary constraints are obtained:

u=~0 "Gy (u) fou" = dtk,n+1
u=1 "Gy (u) /oun = dtk,n+4 (10)
(t=xy12k=01,223,---,K,n=0,12)

where
G (1) /9u® = Gy (u)

(11)
(t=x,y,2k=0,1,2,3,--- ,K)

After the above treatment, the mathematical model, i.e., Equations (3) and (1), is
changed into Equations (8) and (10), and the original problem of solving the partial differ-
ential equations in Equation (3) subjected to the boundary constraints (1) is transformed
into solving the ordinary differential equations in Equation (8) subjected to the blending
boundary constraints (10). In what follows, we will develop an exact analytical approach to
obtain the closed-form solutions to the partial differential equation in Equation (8) subjected
to Equation (10).

4. Closed-Form Solutions of the Mathematical Model

The first part of Equation (8) contains three ordinary differential equations; their exact
analytical solutions can be written as below:

5 .
Gro(u) = 'Zo Ctjpan/
]:
(t=xy,z)

(12)

Since the above analytical solutions have exactly satisfied the ordinary differential
equations defined by the first part of Equation (8), we use the blending boundary constraints
(10) to determine the unknown constants in Equation (12).
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Substituting Equation (12) into (10) and taking k = 0 in (10), we obtain the
following equations:

Cn =dop Cro =dyop 2C3 =dyo3
5 5 5
'Zo Cijit1 = dioa .21 JCijt1 = dro5 .22]' (j = 1)Cj1 = dioe (13)
j= j= j=
(t=x,y,z2)

Solving the six linear algebra equations in (13), we obtain the six unknown constants
Gy (j=1,2,--+,6). Substituting them back into Equation (12), the exact analytical solu-
tions for the ordinary differential equations defined by the first ODE of Equation (8) are
found to be

6
Gio(u) = 421 hi(u)dyj
]:

(14)
(t=x9,2)
where
hy(u) =1 —10u® + 15u* — 6u°
hy(u) = (1 — 6u? + 8u3 — 3ut)u
hs(u) = (0.5 — 1.5u + 1.5u — 0.5u3) u? 5)
hy(u) = (10 — 15u + 6u?)u®
hs(u) = (—4+7u — 3u?)u?
he(u) = (0.5 — u + 0.5u2)u’

The second part of Equation (8) also contains three ordinary differential equations. To
solve these three ordinary differential equations, we let their solutions Gy (1) (t = x, y, z)
have the form of

Gic(u) = et
(t=x,y, 2)

For clarity, we first use ag, a1, a2, and a3 to indicate ay, apk, apk, and a3 in
Equation (9), respectively. Then, we substitute Equation (16) into the second part of
Equation (8) and obtain the following nonlinear algebra equation:

(16)

rfk + a4rfk + a5r%k +a=0 (17)

where
ajy3 = a;j/ag
(1=1,273)

Equation (17) is a nonlinear algebra equation. In order to solve the equation, we write

(18)

itas
(’?k +birg + b2> (V?k + b3) =0 (19)

Comparing Equation (19) with Equation (17), the following equations, which relate by,
by, and b3 to ay, as, and a¢, are obtained below:

by + b3 =ay
by + b1bs = as (20)
bybs = ag

Using b3 to represent b; and b, in Equation (20), the three algebraic equations in (20)
are changed into one cubic equation below:

bg — a4b§ +asby —ag =0 (21)
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The cubic Equation (21) has three roots. Solving the equation, we obtain its three

roots below:
b3[1 = {14/3+ (S + T)

b2 =as/3~ [(S+T) ~iV3(S—T)] /2 22)
bss = as/3~[(S+T) +iv3(S—T)| /2

where the second subscript 1, 2, and 3 indicate the first, second, and third root, respectively;
i is an imaginary number; and

S=+vR++vD T=+R-+D
D=Q>+R> Q= (3a5—14a3)/9 (23)
R = (—9aas + 27a¢ + 2a3) /54

Substituting Equation (23) back into Equation (20), we obtain by ; and b, j, which
correspond to b3 ; (j = 1, 2, 3), respectively. Here, we take b3 1 as an example to demonstrate
how to determine b;; and by 1, as well as the corresponding solutions to the ordinary
differential equations defined by the second ODE of Equation (8).

Introducing the first part of Equation (22) into (20) and solving for b; and by, we obtain
by and b, below:

bl,l = 2{14/3 - (S + T)

(24)
byy = as — [2a2 +3a,(S+T) —9(S+T)?]/9

Once again, for clarity, we use by, by, and b3 to indicate by, by, and b3, in the
following mathematical derivations.
Equation (19) can be decomposed into two nonlinear algebra equations, which have
the forms of
r%k +b3=0

(25)
rfk + blrtzk +b,=0

Substituting b3 = b3 into the first part of Equation (25), we obtain the following
two roots (74 )1,2:
(rtk)l,Z = :|:q() for b3 <0

(ri)12 = £iqo  forbs >0 (26)

qo = /|b3]

Since f(v) has the differential property (4), a3 # 0 according to Equation (9), and
a¢ # 0 according to Equation (18). Therefore, b3 # 0 according to Equation (21).
Substituting by = by ;1 and by = by 1 into the second part of Equation (25) and solving

for rtzk, we obtain
(rfk)l = (—bl + /b2 — 4b2> /2 27)

The above equation has four roots; they can be obtained according to the three different
cases below.

4.1. Case 1: b = 4b,

For this case, (rgk)l,z = —by/2, and there are three different situations, i.e., b; < 0,
b1 =0, and b; > 0. According to b% = 4b, and Equation (20), we know b; = 0 will lead
to bp = 0 and a5 = a¢ = 0. From Equations (18) and (9), we know a5 = a¢ = 0 will lead
to A = p = 0, which changes the partial differential equations defined in Equation (3).



Mathematics 2024, 12, 3096

8 of 22

Therefore, by cannot be zero. The roots for the remaining two situations, b; < 0 and b; > 0,

can be summarized as
(r)3a56 = £q1 for by <0

(r)3456 = £ign  for by >0 (28)

q1 = /|b1|/2

From the two roots in (26) and the four roots in (28), we obtain the four different
solutions to the ordinary differential equations defined by the second part of Equation (8)
indicated below.

(1) For b3 < 0, b% = 4by, and by < 0, we have (75 )12 = 4o according to Equation (26)
and (75 )34,56 = £41 according to Equation (28). The solutions to the ordinary differential
equations defined by the second part of Equation (8) are

G (u) = Cppe™ + Cppre™ 10" 4 (Cyzp + Crart)eM" + (Cyspe + Crra)e 1" (29)

(2) For by < 0, b? = 4by, and by > 0, we have (rg)1,2 = £qo according to Equation (26)
and (74 )34,56 = +ig1 according to Equation (28). The solutions to the ordinary differential
equations defined by the second part of Equation (8) are

G (1) = Cprpe®™ + Cippe™ " + (Cyax + Cragit)cos(qru) +(Cys + Crertt)sin(qiu)  (30)

(3) For b3 > 0, b% = 4by, and b; < 0, we have (75 )12 = %igo according to Equation (26)
and (rs)3456 = £41 according to Equation (28). The solutions to the ordinary differential
equations defined by the second part of Equation (8) are

Guc(u) = Cugcos(qou) + Cppsin(qou) + (Cizp + Crartt)

(31)
e 4 (Cysp + Cygru)e 1"

(4) For by > 0, b2 = 4bp, and by > 0, we have (74 )12 = %iqo according to Equation (26)
and (74 )34,56 = +ig1 according to Equation (28). The solutions to the ordinary differential
equations defined by the second part of Equation (8) are

G (u) = Cppcos(qou) + Cppsin(qou) + (Cyzp + Craxtt)

. (32)
cos(qiu) + (Cisk + Crortt)sin(qiu)

4.2. Case 2: b? > 4b,

For this case, there are six different situations, i.e., —b; £ 4/ b% —4b, < 0, —b; £
\/b%—sz =0, and —by & /b? — 4b, > 0. It is obvious that —b; £ /b3 — 4b, cannot be
zero since —by =& 4/ b% — 4by = 0 will lead to b, = 0 and a¢ = 0 according to Equation (20).
Therefore, we only consider —b; = b% —4by < 0and —b1 + w/b% —4by > 0.

The roots of Equation (27) for the remaining four situations —b; & 4/ b% —4by < 0and

—b1 4/ b% — 4by > 0 can be summarized as

For by < —/b —4by, ()34 = %42 (ra)56 = 43

For — \/mbl < \/17%—7%2 (rik)as = 42 (rix)s6 = Eiqs (33)

For by > \/b} —4by, (re)34 = Figa (rik)s6 = *iq3
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where

QZ—\/’—51+\/52—4172‘/2
qs\/] b — /b3 — b 12

From the two roots in (26) and the four roots in (33), we obtain the six different
solutions to the ordinary differential equations defined by the second part of Equation (8)
shown below.

(5) For b3 < 0, b% > 4by, and by < —4/ b% — 4by, we have (74 )12 = g0 according to
Equation (26), and (74 )34 = £4q2 and (rg )56 = £g3 according to Equation (33). The solu-
tions to the ordinary differential equations defined by the second part of Equation (8) are

(34)

Gy (u) = Cppe®™ + Cppe™ 10" + Cgre™" + Cpgre™ 12" + Cispe" + Cgre” 1" (35)

(6) For b3 < 0, b% > 4by, and —, /b% —4by, <by < q/b% — 4by, we have (75 )12 = £4o
according to Equation (26), and (4 )34 = £4q2 and (r4)s6 = £iq, according to Equation
(33). The solutions to the ordinary differential equations defined by the second part of
Equation (8) are

G (1) = Cpe + Cppge™ 10 + Cype (36)
+Craxe” 2" + Cyspcos(qau) + Crersin(qsu)

(7) For by < 0, b% > 4b,, and b; > \/b% — 4by, we have (74 )12 = g0 according to
Equation (26), and (75 )34 = Fiq2 and (14 )56 = *igs according to Equation (33). The so-
lutions to the ordinary differential equations defined by the second part of Equation (8) are

G (u) = CpyeT" + Cppre™ 10" 4 Cyzicos(qou)

. ] (37)
+Craxsin(qau) + Cispcos(qau) + Cyepsin(qau)

(8) For b3 > 0, b% > 4by, and b < —w/b% — 4by, we have (rg )12 = +iqo according to
Equation (26), and (7 )34 = £4q2 and (rg )56 = £g3 according to Equation (33). The solu-

tions to the ordinary differential equations defined by the second part of Equation (8) are
Gi(u) = Cixeos(qou) + Craxsin(qou) + Care™"

(38)
+Cygpe” 1" + CygpeB! + Cygre B

(9) For by > 0, b3 > 4by, and —/b? — 4b, <by < |/b? — 4by, we have (rg)12 = =ig,
according to Equation (26), and (75 )34 = £42 and (s )56 = Fig; according to Equation (33).
The solutions to the ordinary differential equations defined by the second part of Equation (8) are

Gu(u) = Cpgcos(qou) 4 Cppsin(qou) + Cyzref2"

. (39)
+Crare™ P 4 Cyspcos(qau) + Cyersin(qau)

(10) For b3 > 0, b% > 4b,, and by > ,/b% — 4by, we have (rg)12 = %igp according to
Equation (26), and (74 )34 = %ig, and (rg )56 = Fiq; according to Equation (33). The so-
lutions to the ordinary differential equations defined by the second part of Equation (8) are

Gy (u) = Cpycos(qou) + Cipsin(qou) + Cyarcos(qau)

‘ . (40)
+Cragsin(qau) + Csrcos(qau) + Cygrsin(qau)
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4.3. Case 3: b% < 4b,

For this case, Equation (27) is changed into the following equation:

(rfk)u - (—bl +iy/4by — b%) /2 (41)

Depending on whether b; # 0 or by = 0, different roots can be obtained from the
above equation. In what follows, we investigate this.

431.b1 #0

In order to obtain the roots (7) 3456 for by # 0 from Equation (41), we transform
Equation (41) into
(rtzk) = r(cos@ + isind) (42)

where
r=/|b]

cosf = —|b1|/(2 yb2|) for by > 0
cosf = |b1|/(2~/|b2| for by < 0

)
sinh = \/‘r—b%/ (2\/@)

According to Equation (42), the four roots (ry)345,6 for by # 0 of Case 3 can be written
in the following form:

(r)3456 = {*/W{cos[(Q +2jm) /2] isin[(0 + 2jm)/2]}
(j=01)

= 0.54/2+/|ba| + |b
q4 \/ |ba| + |b1 ] (45)
Q5:0.51/2w/|b2|*‘b1|

(T1)34 = g5 L iqs
("tk)5,6 = —q5 F iq4

(43)

(44)

If we let

the four roots for b; > 0 are

(46)
and the four roots for b; < 0 are

(Ttk)34 = 94 £ ig5

. (47)
("tk)56 = —q4 F iq5

From the two roots in (26) and the four roots in (46) and (47), we obtain the
four different solutions to the ordinary differential equations defined by the second part of
Equation (8) shown below.

(11)For by < 0, b3 < 4by, and by > 0, we have (rg)12 = =£qo according to Equation (26),
and (rs¢ )34 = q5 £ iqs and (rg )56 = —g5 F iga according to Equation (46). The solutions
to the ordinary differential equations defined by the second part of Equation (8) are

Gsk(“) = Cslkeqou + Cs2keiqou + eqsu(cs3kcosq4 u—+ Cs4k Simﬂ”) (48)
+e™ 15" (Cyzcosqau + Cygp 5ingat)
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(12)For b3 < 0, b% < 4by,and by < 0, wehave (75 )12 = %o according to Equation (26),
and (rg )34 = qa £ ig5 and (rg )56 = —qa F ig5 according to Equation (47). The solutions
to the ordinary differential equations defined by the second part of Equation (8) are

Gsk(”) = Cslkeqou + CsZke_qou + eq4u(C53kCOSq5 u (49)
+Coaie singsu) + e 14 (Cyscosqsu 4 Cygp singsie)

(13)For by > 0,b% < 4by, and by > 0, we have (rg )12 = =i, according to Equation (26),
and (rg )34 = g5 £ iqs and (rg )56 = —g5 F igs according to Equation (46). The solutions
to the ordinary differential equations defined by the second part of Equation (8) are

Gsk(“) = Cs1k005(110u) + CSZkSin(qOL‘) + eqSH(CSBkCOS‘M u
. . (50)
+Csaie singau) + e~ 5% (Cysrcosqau + C gy Singau)

(14) For b3 > 0, b% < 4by, and by < 0, we have (rg)12 = *ig, according to
Equation (26), and (75 )34 = qa £ ig5 and (rsx)56 = —qa F ig5 according to Equation (47). The
solutions to the ordinary differential equations defined by the second part of Equation (8) are

G (1) = Cayicos(qou) + Csprsin(qou) + e74" (Cgzrcosqs u
. . (51)
+Cog singst) + e~ (Cyspcosqstt + Cygp singst)

432.b, =0

When b; = 0, we obtain b3 = a4 from the first part of Equation (20) and b, = a5 from
the second part of Equation (20). Substituting b, = a5 and b3 = a4 into the third part of
Equation (20) and considering Equations (18) and (9), we obtain yA = p<. Thus, by =0
presents a special case of yA = p7.

Substituting b; = 0 into Equation (41), we obtain

(r%k)l,z = +./|by| for b <0
(r%k)l,z =0forb, =0 (52)

(r?k)l,z = +i/]by for by >0

Considering the condition b% < 4b,, the case for b; = 0 and b, < 0 does not exist. For
the case of by = 0 and b, = 0, we have a5 = 0 from the second part of Equation (20) and
A =0 from Equations (18) and (9), which changes the partial differential equations defined
in Equation (3). Thus, we will not consider this case.

For by = 0 and b, > 0, the four roots can be obtained from the third part of
Equation (52), which has the form of

(rtk)3,4 = (1+1)q7
(rtk)5,6 =—(1+i)q7

1 4
7= "5V |2 (54)

(15) For b3 < 0O, b% < 4by, by = 0, and by > 0, we have (75)12 = g according to
Equation (26), and (rg )34 = (1 £1i)g7 and (rg)s6 = —(1 £ i)g7 according to Equation (53).
The solutions to the ordinary differential equations defined by the second part of
Equation (8) are

(53)

where

G (1) = Cppe®" + Cppe™ 10" + €774 (Cyzicosqyu + Cragsingzu) (55)
+e 77 (Cyspcosqyu + Cygrsingyit)
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(16) For by > 0, b% < 4by, by = 0, and by > 0, we have (rg )12 = %igo according to
Equation (26), and (¢ )34 = (1 £1)g7 and (rg)s56 = —(1 £1i)g7 according to Equation (53).
The solutions to the ordinary differential equations defined by the second part of
Equation (8) are

Gy (1) = Cppcosqou + Crgsingou + €17 (Cyzrcosqzu + Cpaysingzu) 56)
+e 74 (Cyspcosqzu + Cygrsingzut)

Substituting each of the Equations (29)-(32), (35)—(40), (48)—-(51), and (55)—(56) into
Equation (10), we can determine the six unknown constants Cyjx (Gj=12,---,6).

Introducing the obtained Gy(u) in Equation (14) and Gy (u) in one of the
Equations (29)—(32), (35)—(40), (48)-(51), and (55)—(56) into Equation (6), we obtain the
mathematical equations of t(u,v) (t = x,y,z) and use them to create blending surfaces.
In the following section, we will give an example to demonstrate the application of the
closed-form solutions developed in this section in surface blending.

5. Applications

In this section, we first use some of the solutions obtained in this paper to create
blending surfaces between primary surfaces. After that, we investigate how different shape
control parameters and their combinations affect the shape of blending surfaces.

For all the examples presented in the paper, the parametric equations for the top and
bottom primary surfaces are

X = ausin2mo

y = bucos2mtv (57)
z="h+ hzuz
and
X = cusin2smo
y = ducos27v (58)
z = —hyu®

Assuming that the top boundary, u = 0, of the middle blending surface is taken to
be at u = ug of the top primary surface, letting u = u( in Equation (57), we obtain the
following blending boundary constraints between the top primary surface and the middle
blending surface at the position u = uy:

u=20
X = aupsin2mv Yy = bugcos2to z=hy+ h2u%
ox __ ; Wy _ 0z __ (59a)
5, = —asin2mo 5 = —bcos2mv §5 = —2houg
Px _ Py _ Pz _
ouz 0 uz 0 uz 2hy

Assuming that the bottom boundary, u = 1, of the middle blending surface is taken
to be at u = u; of the bottom primary surface, letting u = u; in Equation (58), we obtain
the following blending boundary constraints between the bottom primary surface and the
middle blending surface at the position u = u1:

u=1
X = cuySin27mwo y = dujcos2mv  z = —h3u?

] 59b
9x = csin2mo a% = dcos2mv % = —3hyu? (59b)
o Py _ Pr__
oz =0 52 =0 92 = —6h3u
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The blending boundary constraints (59a) and (59b) indicate that the elementary func-
tions are fy1(v) = sin2mo for the x component, f,1(v) = cos27ov for the y component,
and constants for the z component. Substituting Gyo(u)= Gyo(u) = 0, fr1(v) = sin2mo,
fy1(v) = cos2mv, and Ky = Ky, = 1 for the x and y components and K; = 0 for the
z component into Equation (6), we obtain the following constructed functions of the
blending surface:

x(u,v) = Gyq (u)sin2mo

y(u,v) = Gy (u)cos2mov (60)
z(u,v) = Gyo(u)

With the method developed in the previous section, we obtain the unknown functions
Gx1(u), Gy1(u), and Gyo(u). Substituting them back into Equation (60), we obtain the
functions defining the blending surface.

The geometric parameters are taken tobea =2.6,b =4.5,c =h3 =5,d = h; = 2,
hy = 3, up = 0.35, and u; = 0.3. On average, the CPU time used to determine all
the unknown constants of a blending surface with the above closed-form solutions is
20 microseconds on a laptop with 2.5 GHz and 8 GB of RAM.

When users use the proposed approach to carry out surface blending tasks, they can
specify a combination of the shape control parameters «, #, A, and p. If the combination
satisfies the conditions of one of Equations (29)—(32), (35)—(40), (48)—(51), or (55)-(56) such
as the conditions of b3 < 0, b% < 4by, and by < 0, the blending surface is created. If the
combination does not satisfy the conditions of any equations, users can specify a new
combination of the shape control parameters to create a blending surface. Working in
this way can easily and quickly create blending surfaces. However, if users want to use
a specified equation from Equations (29)—(32), (35)—(40), (48)—(51), and (55)—(56) to create
a blending surface, it may be very difficult to find a combination of the shape control
parameters that satisfies the conditions required by the specified equation. This is because
the relationships between by, by, and b3 and the shape control parameters v, #, A, and p are
complex and cannot be explicitly presented as shown in Equations (21)—(24), (18), and (9).

In spite of the difficulty, we have found some combinations of shape control parameters
for the specified equations listed in Table 1 and show the obtained blending surfaces
in Figure 1.

Table 1. Shape control parameters used to create blending surfaces in Figure 1.

Shape Control Parameters Equation Figure
b nx (—4m?) Ax (1674 px (—647°) Number Number
1.0 ~1.2 x 10? 45x10° —5x 10* Equation (29) Figure 1a
1.0 9.0 x 10! 1.5 x 103 —25x10*  Equation (30) Figure 1b
1.0 8.8 x 10! —1.79 x 102 9.0 x 10! Equation (31) Figure 1c
1.0 —2.95 x 10! —1.0 x 10! —15x 10>  Equation (48) Figure 1d
1.0 —8.0 x 10! 2.37 x 103 —2.34 x 10*  Equation (49) Figure le
1.0 9.9 x 101 —9.7 x 10 3.0 x 102 Equation (51) Figure 1f

The method proposed in this paper provides a powerful tool for quickly creating
different shapes of a blending surface but still exactly satisfying given blending boundary
constraints. We will demonstrate this with some examples below. For all these examples,
the geometric parameters are same as above.

First, we fix the shape control parameters # = A = p = 1 unchanged but set the shape
control parameter y to 1, —0.9, —1.1, —1.3, —1.5, =1.6, —1.7, —1.75, and —1.8. We obtain
different shapes of the blending surface, which are depicted in Figure 2.
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When the shape control parameter y changes from 1 to —1.8, the shape of the blending
surface changes from concave to convex. At the value vy = —1.5, the middle part of the
blending surface becomes a straight cylinder with a uniform cross-section size. When the
shape control parameter oy changes from —1.5 to 1, the blending surface becomes more
and more concave. When the shape control parameter o changes from —1.5 to —1.8, the
blending surface becomes more and more convex with a symmetry plane at the middle of
the blending surface. Although different shapes of the blending surface are obtained by
different values of the shape control parameter 7, the same continuities at the two trimlines
are exactly maintained.

—
——

Figure 1. Blending surfaces created with different closed-form solutions.

(d)

Second, we set the shape control parameters ¥ = —1.8 and A = p = 1 and keep them
unchanged. Then, we set the shape control parameter 7 to 1.2, 1.4, 1.6, 1.8, 2.2, 3, 4, 4.6,
49,5,6,7,8, and 9. Different shapes of the blending surface are obtained and shown
in Figure 3.

According to Figure 3, the shape change of the blending surface can be divided
into four parts. The first part is Figure 3a—e. In this part, the value of the shape control
parameter 7 increases from 1.2 to 2.2, causing the blending surface to change its shape from
a convex one to a straight cylinder with a uniform cross-section size. The second part is
Figure 3e—g. In this part, the value of the shape control parameter 7 increases from 2.2
to 4, causing the blending surface to change its shape from the straight cylinder into the
frustum of a cone with the lower part of the frustum becoming smaller and smaller. The
third part is Figure 3g—j. In this part, the value of the shape control parameter # increases
from 4 to 5, which causes the following changes: (1) the lower part continues to become
smaller and smaller, and (2) the upper part changes from straight to convex with bigger
cross-section sizes. The fourth part is Figure 3k—n. There is a jump in the shape change
between the third part and the fourth part. In the third part, the blending surface has a large
cross-section size at the upper part and a small cross-section size at the lower part. After
the jump, the shapes of the blending surface in the fourth part show that the cross-section
size at the upper part becomes small, but the cross-section size at the lower part becomes
large. In the fourth part, the value of the shape control parameter # increases from 6 to 9,
which makes the lower part of the blending surface become smaller and smaller.
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r 4

@vri=n=A=p=1 (b)y1=-09n=21=p=1()y=-1Ln=A=p=1

L X

=-13n=1A=p=1 (&) y=-15n=14=p=1 ly=-16n=1=p=1

I3

(h)y=-175n=1=p=1 ) y=-18n=1=p=1
Figure 2. Different shapes of a blending surface determined by the shape control parameters

n = A = p = 1 and different values of the shape control parameter -.

For one given combination of the shape control parameters 7, #, and p, changing
the shape control parameter A can obtain different shapes of blending surfaces. For an-
other given combination of the shape control parameters v, #, and p, changing the shape
control parameter A can obtain more different shapes of blending surfaces. Here, we use
three different combinations of the shape control parameters 7, 17, and p to demonstrate this.

The first combination is the shape control parameters v = —1.8, 7 = 6, and p = 1
unchanged. We set the shape control parameter A to 5, 4, 3, 2, and 0.6. The obtained shapes
of the blending surface are shown in Figure 4.

It can be seen from Figure 4 that when the shape control parameter A reduces its value
from 5 to 0.6, the upper part of the blending surface become smaller and smaller. At A = 0.6,
the upper part of the blending surface becomes very small.

The second combination is the shape control parameters y = —1.8,7 =1,and p =1
unchanged. We set the shape control parameter A to 1.1,1.2,1.3,1.4,1.6,1.8,2.2, and 2.6.
The obtained shapes of the blending surface are shown in Figure 5.

The images depicted in Figure 5 indicate that this combination leads to convex shapes
with the biggest cross-section size at the middle of the blending surface. When the shape
control parameter A increases its value from 1.1 to 2.6, the blending surface becomes less
convex, and the cross-section size at the middle of the blending surface becomes smaller
and smaller.

The third combination is the shape control parameters vy = —1.8,77 = 4.6,and p = 1
unchanged. We set the shape control parameter A to 1.2, 1.4, 1.6, 1.8, and 2. The obtained
shapes of the blending surface are shown in Figure 6.
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)

(@) y=-18n=12,
A=p=1

L

(d) y=-18n=18, (e) y=-181n=22, f) y=-18n=3,

(c) y =-18,n=1.,
A=p=1

(g y=—-18n=4 (h) y =-1.8,n = 4.6, (i) y=-18n=49,
A=p=1
() y=-18n=5, O y=-18n=7,
(m) y=-18n=81=p=1 m) y=-18n=91=p=1

Figure 3. Different shapes of a blending surface determined by the shape control parameters
v = —1.8, A = p = 1, and different values of the shape control parameter 7.
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94

(@) y=-18n=6, =—18n—6 =—1817—6
A=5p=1 =4,p=1 =3p=1

d)y=-18n=61=2p=1 (e) y=—18n=61=06,p=1

Figure 4. Different shapes of a blending surface determined by the shape control parameters
7 = —1.8,7 =6, p = 1, and different values of the shape control parameter A.

£33

(@y=-18n=1, b)yy=-18n=1, (©)y=-18n=1,
A=11p=1 A=12,p=1 A=13,p=1

d)y=-18n=1, (e) y=-18n=1, (f)y——1817—1
A=14p=1 A=16p=1 A=18p=1

kA

(g y=-18n=1,1=22p=1 hyy=-18n=11=26,p=1

Figure 5. Different shapes of a blending surface determined by the shape control parameters
v = —1.8,1 =1, p =1, and different values of the shape control parameter A.

The images in Figure 6 indicate that for this combination and the different values of the
shape control parameter A, the upper shape of the blending surface is convex, and the lower
shape of the blending surface is concave. When the value of the shape control parameter
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A increases from 1.2 to 2, the upper part of the blending surface becomes more and more
convex, but the lower part of the blending surface becomes more and more concave.

Similarly, for one given combination of the shape control parameters 7, 7, and A,
changing the shape control parameter p can obtain different shapes of blending surfaces.
For another given combination of the shape control parameters v, 7, and A, changing
the shape control parameter p can obtain more different shapes of blending surfaces.
Here, we use two different combinations of the shape control parameters 7, #, and A
to demonstrate this.

y=-18,n=4.6, =—1877 4.6, (c)y——1817—46
A=12,p=1 A=14,p=1 A=16p=1
(d) y=-18n=461=18p=1 (e) y=-18n=461=2,p=1

Figure 6. Different shapes of a blending surface determined by the shape control parameters
v = —1.8, 7 = 4.6, p =1, and different values of the shape control parameter A.

The first combination is the shape control parameters v = —1.8andy = A =1
unchanged. Then, we set the value of the shape control parameter p to 1.15,1.2,1.25, 1.3,
1.35, and 1.4. The obtained shapes of the blending surface are shown in Figure 7.

(@ y=-18n=1=1, (b) y=-18n=21=1, () y=—-18n=1=1,
p =115

d y=-18n=1=1, (e) y=—-18n=21=1, f) y=-18n=21=1,
p=13 p =135 p=14

Figure 7. Different shapes of a blending surface determined by the shape control parameters
v = —1.8, 7 = A =1, and different values of the shape control parameter p.
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It can be observed from the images depicted in Figure 7 that the shape of the blending
surface is convex at p = 1.15, straight at p = 1.3, and concave at p = 1.4. When the value
of the shape control parameter p increases from 1.15 to 1.3, the blending surface becomes
less convex. When the value of the shape control parameter p increases from 1.3 to 1.4, the
blending surface becomes more concave.

The second combination is the shape control parameters y = —1.8,7 =6,and A =1
unchanged. Then, we set the value of the shape control parameter p to 0.1, 0.3, 0.5,0.7, 1.3,
and 2. The obtained shapes of the blending surface are shown in Figure 8.

adl

@)V——18n 6, —18n—6 @)y_—18n_6
A=1,p=01 p=03 A=1,p=05

(d y=-18n=6 (&) y=-18n=6, ) y=-18n=6,
A=1,p=07 A=1p=13 A=1p=2

Figure 8. Different shapes of a blending surface determined by the shape control parameters
v = —1.8,7 =6, A =1, and different values of the shape control parameter p.

The images shown in Figure 8 indicate that the upper part of the blending surface has
a different shape change in comparison with the lower part of the blending surface. When
the shape control parameter p increases from 0.1 to 2, the upper part of the blending surface
almost maintains a similar shape, but the lower part of the blending surface reduces its
cross-section size greatly until its front view shape changes from a convex curved one at
o = 0.1 into a straight one at p = 2.

From the above discussions, we can conclude the following: (1) the proposed closed-
form solutions are correct, easy to use, efficient, and powerful in shape control of blending
surfaces, (2) each of the four shape control parameters has a strong influence on the shape
of blending surfaces, (3) different combinations of the four shape control parameters
can create an enormous number of shapes from the same blending surface, and (4) the
four shape control parameters can be developed into a powerful shape control handles to
control the shape of a blending surface.

6. Conclusions and Future Work

In this paper, we have developed a new method to create C? continuous blending
surfaces. The method is based on three sixth-order partial differential equations, respec-
tively, for x, y, and z components subjected to C? continuous blending constraints. To solve
the sixth-order partial differential equations, we have decomposed blending boundary
constraints into elementary functions and constructed blending surface functions from
the decomposed elementary functions. By introducing the constructed blending surface
functions into the sixth-order partial differential equations and blending boundary con-
straints, we have transformed the sixth-order partial differential equations into sixth-order
ordinary differential equations and corresponding blending boundary constraints, solved
the sixth-order ordinary differential equations subjected to the corresponding blending
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boundary constraints analytically to obtain their closed-form solutions, and substituted the
obtained closed-form solutions into the constructed blending surface functions to solve C?
continuous surface blending problems.

We have applied the developed method to create blending surfaces and investigate
how different shape control parameters and their combinations affect the shape of blending
surfaces. The application indicates that the proposed method is simple and easy to use,
the obtained closed-form solutions are correct, and the shape control parameters and their
combinations are effective at controlling the shape of blending surfaces while C? continuous
blending boundary constraints are exactly satisfied.

With the approach proposed in this paper, blending surfaces are created from
Equation (6) and one of Equations (29)—(32), (35)-(40), (48)—(51), (55), and (56). Since
Equations (29)—-(32), (35)—(40), (48)—(51), (55), and (56) involve complicated mathematical
functions, finding the relationships between the shape of blending surfaces and the shape
control parameters is a challenge. Although this paper has presented many examples
to show how different shape control parameters and their combinations affect the shape
of blending surfaces, the intuitiveness of the shape control parameters still requires fur-
ther investigation. In our future work, we intend to address this issue by proposing an
optimization method outlined below.

First, users draw one or more profile curves to define the shape of the blending
surface that they want to achieve. For example, users draw one profile curve Cy(u) =

[Cxo(u) Cyo(u) Cuo(u)] Tatv = 0.0 to define the shape of a blending surface. Substitut-

ing v = 0.0 into X(u,v,7,1,A,p) = [x(u, v,7v1,Mp0) yuovvyApe) z(uo,y1, )\,p)}T de-
fined in Equation (6), we obtain the profile curve
X(u,0.0,7,1,A,p) = [x(11,0.0,7,17,A,0)  y(u,0.0,7,1,A,p) z(u,00,71,Ap)] T
Next, we calculate the squared difference between X(u,0.0,v,7,A,p) and Cop(u) and ob-
tain D(u,7,7,A,p0) = [X(,0.0,7,7,A,p) — Co(u)]*. After that, we minimize the differ-
ence and obtain 1,7, A, and p by solving the nonlinear equations dD(u, 7y, %, A,p) /0y =0,
oD(u,y,n,A,p)/0n =0,0D(u,v,1,A,p)/0A =0, and 0D(u,y, 1, A, p)/9p = 0. Finally, sub-
stituting the obtained shape control parameters into Equation (6), we obtain the blending
surface X(u,v), whose profile curve X(u,0.0) at v = 0.0 approximates the users” drawn
profile curve Co(u).

If users draw more profile curves, the above method is still applicable. For
example, if users draw four profile curves Cy(u) at v = 0.0, Cops(u) at v = 0.25,
Cos(u) at v = 0.5, and Cyz5(u) at v = 0.75, the squared difference can be formulated
as D(w,y,mAp) = [X(1,00,77Ap0)— Cou)+[X(u,025,7,1,A,0) — Cozs(u)]*
+[X(11,05,9,1,A,p) — C0,5(u)]2+[X(u, 0.75,7,1,A,p) — C0.75(u)]2. Then, oD(u,y,n,A,p)/0y =0,
oD(u,y,n,A,p)/0n =0, 0D(u,,1,A,p)/9A =0, and 0D(u, 7,1, A,p)/dp = 0 can be used to
obtain 1,7, A, and p and the blending surface X(u, v).

In this paper, we use position functions and first and second partial derivatives on
the isocurves u = uy and u = u; of primary surfaces to determine boundary constraints
of a blending surface. In some situations, a blending surface is required to smoothly
connect two primary surfaces at non-isocurves. In our following work, we will extend our
proposed approach to tackle surface blending problems in such situations. The basic idea
of extending our proposed approach is as follows.

First, we determine one trimline, which is a 3D non-isocurve, on one primary sur-
face and another trimline, which is also a 3D non-isocurve, on anther primary surface.
This can be achieved by manually drawing a 3D non-isocurve on a primary surface
or introducing u = f(v) into a primary surface S(u,v) to obtain a 3D non-isocurve.
Then, the two trimlines can be formulated as By(v) = [Bxo(v) Byo(v) Bzo(v)] T and
B3(v) = [Buw(v) By(v) Bs(v)] T respectively, where the subscript “0” indicates the
trimline on the first primary surface, and the subscript “3” denotes the timeline on the
second primary surface. After obtaining the trimlines By(v) and B3(v), we can use them
and the two primary surfaces to determine the first and second partial derivatives, respec-
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tively, crossing the trimlines By(v) and B3(v). The first derivative and second derivative
crossing the trimline By(v) can be formulated as B (v) and B, (v), and those crossing the
trimline B3(v) can be formulated as B4(v) and Bs(v). Substituting By(v), B1(v), ..., B5(v)
into Equation (1), we obtain the blending boundary constraints on non-isocurves of primary
surfaces. With the obtained blending boundary constraints and the approach proposed in
this paper, we can tackle the problems of blending primary surfaces on their non-isocurves.
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