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Abstract
Safety is a challenge in human machine collaboration despite of the advantages in achieving efficiency, cost reduction and 
productivity in a collaborative scenario between human and machine/robot. During collaboration with machines, the user 
might not be able to follow the collaborative tasks as expected due to the cognitive burden causing potential safety concerns 
such as collision. Addressing this challenge, the aim of this paper is to explore the potential of on-body sensing systems in 
study of user experience and the psychological condition during the collaboration between machines and human. As the 
psychological condition is reflected in physiological signals, sensing technologies and signal processing techniques to extract 
features from physiological signals are explored with applicability in human machine collaboration scenarios. An experiment 
is designed utilising an industrial collaborative robot arm while quantitative and qualitative data is gathered for this purpose 
exploring the problem to study user experience and impact of mental strain and cognitive workload on user performance 
and experience during human machine collaboration. Results show that an adaptive machine to user experience measured by 
on-body sensing systems during the collaboration has the potential to address safety in human machine collaboration while 
improving performance and user experience.
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1  Introduction

Human machine collaboration (HMC) in which human and 
machines share their skills in a collaborative setting is sup-
ported in Industry 4.0 aiming to achieve efficiency, cost 
reduction and productivity increase in automation; how-
ever, safety-related concerns in such collaborative environ-
ment would be a challenge. During HMC, machines/robots 
contribute from high levels of accuracy, speed and repeat-
ability, while human workers contribute from flexibility and 
cognitive skills perspectives (Villani et al. 2018). Utilising 
the mentioned advantages of HMC, there is need to con-
sider safety in the working environment. Physical or sensor-
based barriers are used to be utilised ensuring the user’s 
safety; however, in collaborative scenario, such barriers are 
eliminated due to the shared working environment, but other 

safety mechanisms could be used to prevent harming the 
human user or collaborator.

To regulate the safety of industrial robots, safety standards 
are in place to provide requirements and design guidelines 
including International Organization for Standardization 
(ISO) 10218 which has two parts. ISO 10218–1 is related 
to the robot manufacturers’ safety requirements addressing 
the design of robot and its controller while ISO 10218–2 
is intended for system integrators and defines the safety 
requirements for an industrial robot system (ISO 2011a; ISO 
2011b). The standard is adopted by the European Commu-
nity while the USA follows the American National Standard 
Institute/Robotic Industrial Association (ANSI/RIA) R15.06 
and Canada follows Canadian Standards Association (CAN/
CSA)-Z434 standard, which have been both updated with the 
two parts of ISO 10218.

In ISO 10218, four collaboration modes are identified 
including “Safety-rated Monitored Stop”, “Hand Guiding”, 
“Speed and Separation Monitoring” and “Power and Force 
Limiting” modes. For “Safety-rated Monitored Stop”, the 
human and robot work in a collaborative workspace but not 
at the same time; for “Hand Guiding”, the operator can move 

 *	 Roya Haratian 
	 rharatian@bournemouth.ac.uk

1	 Science and Technology Faculty, Bournemouth University, 
Poole, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s42454-024-00057-5&domain=pdf
http://orcid.org/0000-0002-4401-2420


104	 Human-Intelligent Systems Integration (2024) 6:103–114

the robot to teach the robot positions without the need for an 
interface whereas the robot programme will be interrupted 
and once the operator leaves the collaborative area the robot 
resumes previously interrupted program. For the “Speed 
and Separation Monitoring” mode, the human presence is 
allowed within the robot space through safety-rated monitor-
ing sensors enabling different operation speeds depending 
on the distance from the robot, the closer the distance the 
lower the speed. For the “Power and Force Limiting” mode, 
a human worker can work side-by-side with the robot while 
limiting motor power and force to handle collisions utilising 
force sensor to detect the contact (Villani et al. 2018).

Addressing safety in HMC scenarios, literature review 
reports the need to consider the cognitive workload of the 
user as there could be mental strain caused by close and long 
interaction with the robot during a collaborative robotic sce-
nario (Landi et al. 2018). Mental strain and cognitive work-
load during the collaboration with the robot could cause the 
user not to be able to follow the collaborative tasks leading 
to potential safety concerns such as collision. Therefore, by 
considering the user experience into the robot control modes 
during the collaboration, an adaptive interaction will be ena-
bled leading to less mental strain and better user experience.

User experience, which is closely related to the user’s 
psychological condition, is reflected in physiological sig-
nals, and can be predicted through analysing such bio-sig-
nal changes (Landi et al. 2018). For example, physiologi-
cal arousal is used to measure attention, alertness, anxiety, 
frustration, stress and cognitive processing which is repre-
sented in bio-signals. The changes in bio-signals includes 
increase in blood pressure, respiration rate, constricted blood 
vessels, elevated body temperature, muscle spasms, raised 
blood flow to muscles and decreased blood flow to the skin 
(Matthews et al. 2020). Therefore, such parameter changes 
inform studies for the purpose of user experience recognition 
in interactive systems through detecting changes in arousal. 
The user’s physiological signals have the potential to be col-
lected through the embedded sensors in wearable devices or 
the devices that the user commonly interact through them 
with the machine. Utilising wearable sensors to collect 
physiological signals for this purpose has the advantage of 
no need for camera or dependency to laboratory setup. In 
addition, the signals provide information for more reliable 
prediction of user psychological aspects in comparison to 
the other modalities such as facial expressions and body 
gesture and posture, which are commonly used in literature 
as social masking through these signals is impossible. For 
this purpose, wearability feature imposes the need for the 
weight and the size, which is required to be kept low and 
small, respectively (Haratian et al. 2016).

The aim of this paper is to explore the potential of 
on-body sensing systems in study of user experience 
addressing safety of human robot collaboration. For this 

purpose, the related safety mechanisms and standards 
were reviewed and how safety would be impacted by user 
experience including mental strain and cognitive work-
load during human robot collaboration were discussed. 
To study user experience closely related to psychological 
condition, which is reflected in physiological signals, dif-
ferent bio-signals of human body system will be reviewed 
along with the relevant sensor technologies to measure 
them with the potential to be utilised for addressing safety 
of HMC. The study includes a review of the relevant bio-
signal processing techniques and the related features. A 
HMC scenario is designed to study impact of mental strain 
and cognitive workload on user performance and user 
experience in addressing safety during HMC informed by 
the background review of the study while quantitative and 
qualitative data are gathered for this purpose exploring the 
problem. The study shows that an adaptive machine to user 
experience measured by on-body sensing systems during 
collaboration has the potential to address safety in human 
machine collaboration while improving performance and 
user experience.

In this paper, after exploring the background regarding 
the sensor technologies in collecting physiological signals 
within the context of a human machine collaboration, the 
signal processing techniques to extract the features related 
to user experience are discussed in Sect. 2. Later, in the 
Methodology section, the approach to collect physiological 
signals and user experience in a designed human machine/
robot collaboration scenario is explored. The collected quali-
tative and quantitative data regarding the collaboration sce-
nario are analysed and discussed in the Result section and 
the paper is concluded in Sect. 5 summarising the findings.

2 � Background of on‑body sensor 
technologies and signal processing 
techniques

Human body’s signals (bio-signals) are collected and pro-
cessed through various  sensor technologies and signal 
processing techniques which are studied in this section in 
order to measure mental strain, and user experience with 
application in human machine collaboration. Psychologi-
cal condition and experiences of the user interacting with 
machines including cognitive burden and distress are 
reflected in physical and physiological signals of body organ 
systems including nervous, cardiovascular, muscular, integu-
mentary and respiratory system. To study the mutual interac-
tion of psychological condition and physiological changes, 
there is need to consider the bio-signal changes related to 
each body organ system and how to measure them through 
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appropriate sensor technologies and signal processing tech-
niques which are explored in this section.

2.1 � Nervous system

The nervous system collects, processes and transfers infor-
mation from different body parts that includes the central 
nervous systems (CNS) and the peripheral nervous systems 
(PNS). CNS comprises the brain and spinal cord whereas the 
brain signals are collected through electroencephalography 
(EEG). EEG signals, which are electrical potentials at the 
surface of the brain or outer surface of the head, are collected 
through electrodes attached to the scalp. Electrical potentials 
of brain can also be measured through inserting electrodes 
into the brain using catheter whereas the approach is intru-
sive, risky and expensive due to the need for professionals to 
perform it in operation rooms or laboratories. Surface mount 
electrodes to measure EEG signals for the purpose of user 
experience recognition during human machine collaboration 
which requires to be wearable and non-intrusive could be 
considered as being wearable but cumbersome and might 
interfere with the user activities. EEG signals have com-
monly known features such as power spectral density (PSD), 
differential entropy (DE), differential asymmetry (DASM), 
rational asymmetry (RASM), asymmetry (ASM) and differ-
ential causality (DCAU) features. Specifically, PSD is com-
puted using Short Time Fourier Transform (STFT); DE is 
equivalent to the logarithmic power spectral density for a 
fixed length EEG sequence; DASM and RASM features are 
the differences and ratios between the DE features of hemi-
spheric asymmetry electrodes; ASM features are the direct 
concatenation of DASM and RASM features.

Further to the CNS in nervous system, the PNS comprises 
the nerves outside the brain and spinal cord and includes the 
autonomic (ANS) and the somatic nervous systems (SNS). 
The ANS operates between the CNS and various internal 
organs, such as heart, lungs, viscera and glands while SNS 
is associated with the voluntary control of body movements. 
Psychological conditions reflected in physiological signals 
are mainly in response to the CNS and the ANS of human 
body which is connected to different body organ systems 
including the cardiovascular, muscular, integumentary and 
respiratory systems (Saltzman 2015) which are studied in 
the following sub-sections.

2.2 � Cardiovascular system

Cardiovascular system including heart and blood ves-
sels circulates blood in the human body while psychologi-
cal conditions could have impact on its operation reflected 
in the related physiological signals including heart signal 
and blood pressure. Traditionally, stethoscope is used to lis-
ten to the beating heart and sphygmomanometer is used to 

estimate the blood pressure within the body vessels which 
are requiring a skilled operator to worked with them. Heart 
functionality can be monitored using electrocardiography 
(ECG) to measure electrical potentials produced by cardiac 
muscle. The signal can be measured invasively by inserting 
recording electrodes mounted on a catheter into the heart 
which is dependent to laboratory and skilled professionals. 
Electrocardiography provides a non-invasive and reliable 
method to measure the cumulative cardiac electrical activity 
using skin electrodes attached to the body surface capturing 
the external currents around cardiac muscle cells. The ECG 
waveform is displayed as voltage and is a function of time 
that is analysed in segments comprising a waveform called 
PQRST wave: a small P wave, a short Q delay, a large QRS 
wave, a second delay and a small T wave whereas the phases 
of the cardiac cycle are correlated with the structure of the 
wave. Collecting ECG signals within the context of user 
experience recognition during human machine interaction 
could be considered due to wearability of the system but 
needs to consider that the surface mount probes could be 
uncomfortable to wear on the chest and might interfere with 
the user activities (Saltzman 2015).

Blood pressure, which is systolic pressure over diastolic 
pressure, provides information about the cardiovascular 
system. Systolic pressure is the maximum pressure exerted 
on the arterial walls during contraction of the ventricles of 
the heart while diastolic pressure occurs during the relaxa-
tion of the ventricles. It can be measured directly through 
catheterisation within a blood vessel by inserting catheter to 
transduces the atrial pressure to an external pressure trans-
ducer. The method is invasive and dependent to laboratory 
or operation room requiring highly skilled operator. Com-
monly blood pressure is measured using sphygmomanometer 
whereas an air-filled cuff is wrapped around the arm or wrist 
and the sound regarding systolic and diastolic phases are 
monitored either using stethoscope or microphone. Pressure 
sensors such as strain gauge or piezoelectric sensors placed 
in the cuff can detect fluctuation as the cuff is deflating. 
Within the context of user experience recognition during 
human machine collaboration, blood pressure measurement 
could be an option due to the wearability of the system but 
needs to consider that the cuff could be uncomfortable to 
wear on the arm and might interfere with the user activities.

Heartbeat rate can be measured through blood volume 
pulse using photoplethysmography (PPG), which estimates 
artery volume using light. The sensor radiates light onto the 
skin and  the reflected light is detected by a photodiode. The 
amount of light that is reflected back depends on the volume 
of arteries near the skin’s surface in response to the blood 
pulsation. Red and infrared light moves through the skin 
easier leading to more in-depth penetration; however, blue 
light does not travel well into the body therefore reaching 
the small blood vessels at the surface where the pulse wave 
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is at its weakest. Green light moves through the skin better 
than blue light, but worse than red which provides a better 
contrast signal which is easy to detect and is less sensitive 
to motion errors than red light. Within the context of user 
experience recognition during human machine collabora-
tion, heart rate measurement using PPG could be considered 
due to wearability of the system and being comfortable to 
wear with less chance of interfering with the user activities.

Electrocardiogram (ECG) which is a measure of heart 
activity has features including heart rate (HR) and heart rate 
variability (HRV). (Raez et al. 2006) Heart rate is indicator 
of the number of times per minute that the heart contracts 
or beats whereas heart rate variability (HRV) is the varia-
tion between consecutive heart beats over time period and 
dependent on the regulation of the heart rate. It indicates 
the heart’s ability to adapt to the changing circumstances by 
detecting and quickly responding to unpredictable stimuli 
(Landi et al. 2018). The R peak of heart signals as the marker 
of each beat is denoted by Rk as the instant of occurrence 
of the kth heartbeat, whereas the RR series is derived from 
RRk = Rk+1 − Rk, k = 1,2, …. A low HRV can indicate a state 
of relaxation and an increased HRV can indicate a potential 
state of mental stress or frustration (Raez et al. 2006). Blood 
Volume Pulse (BVP) as a measure of blood flow and heart 
rate increases with negative valence emotions such as anxi-
ety and fear.

HRV analysis is studied in time domain and frequency 
domain. In time domain, the features are RR mean value, 
standard deviation (SDRR), root mean square of the dif-
ferences between consecutive RR intervals (RMSSD) and 
the percentage number of consecutive (normal) intervals 
differing more than 50 ms in the entire recording (pNN50) 
whereas under mental distress, RR, SDRR and RMSSD are 
decreased. In the frequency domain, the features are power 
spectral density (PSD) for different frequency bands includ-
ing very low frequency (VLF, 0–0.04 Hz), low frequency 
(LF, 0.04–0.15 Hz) and high frequency (HF, 0.15–0.04 Hz). 
The most common frequency domain parameters include the 
powers of VLF, LF and HF bands in absolute and relative 
values, the normalised power of LF and HF bands, and the 
LF to HF ratio whereas under mental distress LF is reduced 
in mental stress condition, while HF is increased.

2.3 � Muscular system

Muscular system is in charge of body movement with mus-
cles and the electrical activity of body muscles can be meas-
ured using electromyography (EMG). The EMG measures 
electrical currents generated in muscles when contracted 
representing neuromuscular activities. EMG signal shows 
muscle response to neural stimulation since a muscle fibre 
depolarises as the signal propagates along its surface and the 

fibre contracts. It follows by a movement of ions generating 
electric field near each muscle fibre whereas EMG signal 
is correlated to the amount of muscle contraction and the 
number of contracted muscles.

To monitor muscular system activity, EMG setup requir-
ing placing EMG probes to the skin providing robust infor-
mation and even to detect invisible muscular activities. EMG 
has the potential to be used in portable and wearable systems 
with no need to be dependent to laboratory environment 
and is a non-invasive approach (Raez et al. 2006). Facial 
expressions are generated by the muscular activity of the 
face which is either visible or non-visible and such muscu-
lar activities have the potential to be recorded by EMG. In 
addition to EMG monitoring, the visible muscle activities 
including facial expressions, gesture and posture could be 
video recorded to recognise useful pattern and information 
from them. Within the context of user experience recogni-
tion in human machine collaboration, the signals related to 
muscular system could be reflected in gesture, posture and 
facial expressions which can be observed using a camera 
which is not wearable but inertial sensors could be utilised 
as wearable sensing devices to monitor gesture and posture. 
In addition, EMG could be used for this purpose as well as 
facial expressions; however, wearing the EMG probes on the 
face could be uncomfortable to wear.

Muscle activity and electromyography, EMG, as a meas-
ure of muscle activity correlate with negative valence emo-
tions. EMG analysis is studied in time domain and frequency 
domain. In time domain, to extract the amplitude informa-
tion, the linear envelope (LE) is used. Root mean square 
(RMS) amplitude of EMG signal is another feature which 
reflects the mean power and amplitude of signal. Such fea-
tures are increased when subject to the fatigue or mental 
distress. In frequency domain, the power spectrum density 
(PSD) is used whereas the frequency is between 20 and 
450 Hz for normal human muscles. Under mental distress, 
there is a shift of power towards lower frequencies which is 
quantified by mean frequency (MNF) and median frequency 
(MDF). MNF is sum product of the EMG power spectrum 
and frequency, divided by a total sum of spectrum intensity 
while MDF is frequency value at which the EMG power 
spectrum is divided into two regions with an equal inte-
grated power computed (Muñoz et al. 2018).

2.4 � Integumentary system

Integumentary system is forming the outermost layer of 
body and includes skin. Skin conductivity or galvanic skin 
response (GSR) is measured as a bio-signal changing based 
on the human psychological condition. Electrodermal activ-
ity (EDA) sensors are measuring skin surface resistance or 
conductivity by passing a microcurrent of electricity through 
a pair of electrodes located near one another, amplifying 
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and registering current variation. This variation is possible 
as the skin resistance depends on skin humidity (sweating), 
the thickness of the outer layer of the skin (epidermis) and 
vasoconstriction, among other things. Sweating behaviour 
is sensitive to emotional stimulation due to the sweat glands 
being controlled by the autonomic nervous system (ANS), 
which controls the body’s other physiological responses 
such as heart rate, temperature and pupil diameter (Sanchez-
Comas et al. 2021). The physiological response of the ANS 
can increase in the presence of stress and multiple stimuli. 
The higher the sweat response, the higher the conductivity 
and the lower the resistance. This physiological response 
behaviour links the galvanic skin response to measures of 
emotional valence, facing pleasant (positive valence) or 
unpleasant (negative valence) stimuli. In human machine 
collaboration, for the purpose of user experience recogni-
tion, electrodermal activity sensor has the potential to be 
utilised by attaching the probes to the skin which is wearable 
and less likely to interfere with the user activities.

Electrodermal activity (EDA), which is electrical changes 
on the skin surface receiving innervating brain signals, anal-
ysis is considered from tonic and phasic components. The 
tonic level or skin conductance level (SCL) relates to sweat 
gland activity and is the baseline for resting level of the EDA 
signal. The phasic component or galvanic skin response 
(GSR) includes episodes of sudden increases of conductance 
caused by purely sympathetic arousal generally generated by 
an external stimulus. GSR increases linearly with a person’s 
level of overall arousal or stress. In the events of experi-
encing emotional activation, increased cognitive workload 
or physical exertion, the brain sends signals to the skin to 
increase the level of sweating. The changes can be measured 
in many ways electrically including skin potential, resist-
ance, conductance, admittance and impedance while the unit 
of measurement for conductance is microSiemen (μS).

2.5 � Respiratory system

Respiratory system including the lungs  is in charge of 
breathing and the level of oxygen in blood depends on its 
functionality. Blood oxygen is the level of oxygen content 
in blood expressed as percentage of O2 saturation: %SpO2 
which is measured by pulse oximeter. Pulse oximeter also 
monitors the heart rate or pulse in fact measurement of pul-
sation of blood. The device consists of a light emitter probe 
coupled with a photodiode which measures the difference in 
light absorbance at two wavelengths including the red por-
tion of the visible region and another in the infrared region. 
The measurement provides information on the ratio of oxy-
haemoglobin (haemoglobin [Hb] bound to oxygen) to deoxy-
haemoglobin (Hb without oxygen). Red light is not absorbed 
well by oxygenated blood, but IR light is absorbed, properly. 
By using photodiode to produce small light beams at these 

two wavelength and detectors to measure the fraction of each 
light beam that passes through the tissue, the device calcu-
lates the ratio of red to IR absorbance during pulsation that 
is correlated to the %SpO2. The device displays %SpO2 with 
the pulse rate and the ratio of red to IR of 0.5 is correlated 
to 100% SpO2. Such approach for measuring blood oxygen 
is easy to wear and has the potential to be utilised in human 
machine collaboration scenarios.

Respiration rate which is the rate of breathing is meas-
ured by counting the number of times that the chest is rising 
per minute. Respiration rate can be calculated directly or 
indirectly whereas in the direct approach the movement of 
the chest is measured using inductance plethysmography, 
capnography, piezoelectric or bioimpedance-based sensors. 
However, such approach requires wearing strap around the 
chest. Respiratory rate can be measured directly using acous-
tic sensors; however, the performance can be affected by 
environmental noise. Monitoring the chest skin stretching 
during breathing using a pair of wearable photodiode and 
photo detector is suggested in Singh et al. (2020). Respira-
tory rate can also be indirectly extracted from electrocar-
diography (ECG) or photo-plethysmograph (PPG) signals. 
However, these methods can suffer from accuracy issues 
despite advancements in signal processing techniques and 
being not easy to wear within the context of human machine 
collaboration. Respiration rate as a measure of breathing 
speed where slow and deep breathing indicates a relaxed 
resting state; irregular rhythm, corresponds to more aroused 
emotions and stress can affect and lead to lower oxygen lev-
els in the blood. Regarding the related signal processing 
techniques, literature shows wavelet-based signal features 
and decomposition into sub-bands (SBs), and from each of 
SBs, extracted Shannon entropy (SE) as a measure of dis-
order, uncertainty or randomness in the given information 
(Sharma et al. 2022). Time domain features include mini-
mum, maximum, mean and variance of SPO2 signals as well 
as the same for first, second and third derivatives, area under 
the dip level of SPO2, deviation of mean and median values 
from the maximum and minimum values of SPO2 which are 
studied in Koley and Dey (2014).

To summerise, bio-signals which are captured signals 
from body organs represent a physical variable of interest 
that has the potential to be measured and processed through 
various sensor technologies and processing techniques 
in studying user experience within the context of human 
machine/robot collaboration. As user experience is reflected 
in physiological parameter changes, the bio-signals related 
to different body organ systems are explored along with the 
sensor technologies to capture such changes. To process 
the signals, features from bio-signals are extracted in time 
domain, frequency domain or combination of both whereas 
the method of extraction could be periodically over fixed 
or adaptable moving windows, but some cases could have 
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triggered based feature extraction method. Feature normali-
sation is required when each feature values is different in 
range and distribution to normalise their baseline and ampli-
tude ensuring each feature contributing equally. The features 
are commonly either time or frequency domain whereas the 
time domain features are signals’ mean, standard deviation, 
minimum, maximum, mode, variance and range while the 
frequency domain features are spectral energy and entropy, 
mean, standard deviation and variance regarding the shape 
and amplitude of features. Feature selection methods to 
identify an optimal feature subset have wide range which 
are influencing the quality of data interpretation. Data win-
dow size is influencing the time frame the feature values are 
referred to and the required processing. The larger the time 
window the longer the execution time to extract features 
while the time window length is commonly set a priori but it 
could be adaptive based on the variance of previous feature 
values (Gravina et al. 2017). The captured and processed 
bio-signals are correlated with the user experience which 
can be studied through the discussed sensor technologies 
and signal processing techniques in this section.

3 � Methodology

Addressing safety in human machine/robot collaboration, the 
methodology used in this paper considering the background 
review is to study the user experience and impact of men-
tal strain and cognitive workload on user performance and 
experience during the collaboration and how it is reflected 
in physiological signals. To study user experience during a 
collaborative scenario with machines in which the speed of 
operation is changing, subjective and objective metrics are 
explored. Therefore, in this section, the experiment design 
procedure is present and the performance metrics consider-
ing objective and subjective ones are explored.

3.1 � Experiment design

To study user experience during human machine collabora-
tion and how it is reflected in physiological signals, a human 
robot collaboration scenario is designed. In this experiment, 
a human is collaborating with a robot arm in a pick and place 
scenario whereas the robot operational speed is changing 
during the collaboration. The robot is in charge of hand-
ing over a number of objects from an assumed inaccessible 
location to the user who is in charge of cognition and sorting 
the objects based on the colour. Such scenario simulates a 
simplified industrial collaborative task in which the operator 
is required to work with an industrial robot.

In this experiment, the objects are test tubes filled in with 
five different coloured liquid (green, blue, red, yellow, pur-
ple), six for each colour, making total of thirty test tubes 

randomly placed in a container in three rows of ten test 
tubes. The user is supposed to pick the test tubes from the 
robot arm and sort them out based on the colour and locate 
them in a container which is in 2.0 m distance from the robot 
as shown in Fig. 1 while the experiment was conducted in a 
quiet room with a standard room temperature of 21.0 degree 
centigrade.

During the designed collaborative scenario, the physi-
ological signals of the user are collected through two differ-
ent wristbands, one on right and the other on the left hand, 
which are EmotiBit and Empatica E4. Emotibit is a wearable 
sensor module for capturing physiological, and movement 
data with wireless data streaming or direct data recording 
to the built-in SD card with a fully open-source software 
(Emotibit 2022). Empatica E4 is equipped with sensors 
designed to gather high-quality data to combine EDA and 
PPG sensors, simultaneously enabling the measurement of 
sympathetic nervous system activity and heart rate (Empat-
ica 2022). The use of the two wearable sensor modules is to 
be able compare and validate the results. After the experi-
ment, each participant will answer a series of quantitative 
questions about their experience during the experiment and 
performance of the collaboration is measured through a 
series of objective and subjective metrices.

The robot arm utilised in handling the experiments is 
from ST robotics which is a 6-axes robot arm with high 
power micro-stepped hybrid stepping motors with reach of 
500 mm in any direction and 360-degree waist rotation. The 
repeatability is 0.1 mm and the payload is of nominal 400 g 
whereas the maximum speed is approximately 800 mm/s. 
Maximum torque for pitch or yaw is 1 Nm and maximum 
torque for 6th axis roll is 0.25 Nm. The robot weight is 
13.0 kg and controller is 11.0 kg while the required electri-
cal power is 110/240v ac with noise approximately equal to 
40–50 dB at 1 m (Robotics 2022).

In this experiment, 15 participants (4 females, 11 males) 
were involved age 22.5 ± 0.5 years old. The participants were 
informed about the experiment procedure through partici-
pant information sheet, and they signed consent form to take 
part in the experiment. Bournemouth University (BU) Ethi-
cal approval is in place and both the participant information 
sheet and the consent form are accepted by BU Ethics Panel 
with Ethics ID of 47085.

Each subject wore the wristbands while ensuring they are 
comfortably fitted and physiological signals are collected 
as expected. In this stage, subjects were in a resting state 
with minimum physical or mental activity. Then, the human 
robot collaboration experiment was started which lasts 5 min 
while the robot was handing over the randomly placed col-
oured test tubes to the subjects and for the subject to place 
them in a container which is in 2.0-m distance and sort them 
out based on the colour. During the experiment, the speed of 
robot increased whereas the robot would start with an initial 
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speed at the start to pick the ten test tubes in first row and 
then the speed would be doubled to pick the ten test tubes 
in second row and speed would be triple of the initial one 
to pick the rest of ten test tubes in the last row (Fig. 1). By 
the end, a questionnaire was given to the subjects to collect 
their experience qualitatively as well as the quantitative data 
collected through the wristbands.

3.2 � Performance metrics

Objective and subjective metrics were considered to assess 
the human machine/robot collaboration performance. 
Objective metrics consisted of performance-related indexes 
measured during the experiments by counting the number 
of mistakes occurred while carrying out the procedure by 
the machine/robot; the user mistakes include not picking 
the test tubes safely and sorting them out incorrectly while 
the machine mistake includes not picking and handing over 
the test tubes, correctly. The amount of the time needed to 
perform the task is also considered in the literature as a per-
formance metrics (Villani et al. 2022) but the experiment 
duration is fixed in this paper. Subjective metrics consist 

of user experience questionnaire including physical work-
ing conditions, psychosocial working conditions and ethical 
aspects, as well as user’s satisfaction with the HMC sce-
nario, including health and safety issues. The user experi-
ence questionnaire was designed based on the questionnaire 
designed and validated in Villani et al. (2022) in study of 
subjective metrics for an adaptive human machine interac-
tion scenario.

The examples of the questions asked include “Do you 
think the physical working condition was appropriate” to 
consider the assessment could be influenced by some other 
external factors present in the environment, “Did you feel 
safe while interacting with the machine?” to address expe-
rienced safety, “Did you feel more distress while the robot 
speed was increasing over the time?” to address psychoso-
cial working conditions and ethical aspects, and “Do you 
think experiencing distress during the interaction affected 
your performance to complete the task without mistake?” 
to address user’s satisfaction. Questions to understand 
user’s expectations and the desire to use the technological 
developments are “Do you think if the machine’s function-
ality is adjustable to your experience, you would feel less 

Fig. 1   Human robot collaboration experiment setup
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distress?”, “Do you think if adjustability to the user experi-
ence in machine functionality is developed, you would feel 
comfortable to use from ethical perspective?”, “Do you think 
if adjustability in machine functionality is developed, you 
would feel safer in the collaboration scenario?”, “Do you 
think if adjustability in machine functionality is developed, 
there would be less mistakes in the collaboration scenario?”, 
“Do you think it would be helpful if the machine’s function-
ality could be adjustable based on your experience?” and 
“Do you think wearing the wristband enabling the machine 
to predict your experience leading to adjusting its func-
tionality is something that you would consider in a human 
machine collaboration scenario?”.

The approach in study of user experience has some limi-
tations as user experience is subjective, and users could have 
different experiences during similar condition. Different 
parameters could have impact on user experience in addition 
to controlled one such as noise (conducting the experiment 
in a quiet room), temperature and humidity (controlled and 
fixed by an air conditioner) such as past experiences, knowl-
edge, training, health status and competence. To address 
these limitations, both qualitative and quantitative data are 
gathered in having more informed study as represented in  
Figs. 2, 3 and 4 as well as Table 1.

4 � Results and discussion

To study the user experience, the monitored physiological 
signals during the experiment are heart signal and electro-
dermal activity (skin conductivity) collected by Empatica 
and Emotibit wristbands. The data is time normalised to be 
able to show the experiment time in percentage on horizon-
tal axes. For heart signals, the extracted feature is the aver-
aged heart rate over a fixed window size. The heart rate sig-
nal from Empatica is the average heart rate values computed 
in spans of 10 s with sampling frequency of 1 Hz while the 
signal from Emotibit is the average heart rate with sampling 
frequency of 25 Hz and window size of 150 samples. As it 
is shown in Fig. 2 for different subjects, it is evident that 
both the two wristbands represent similar trend in terms 
of changes in heart rate; however, the differences could be 
due to wearing the wristband on dominant or nondominant 
hand, the difference in processing speed of the wristbands 
and sampling rate, the difference in window size of the mov-
ing average, etc. The collected data shows that for subject 10 
the Emotibit reading is not valid over the experiment time 
and the same applies for subject 14 that the data collection 
by Emotibit failed. Looking into the trend of the collected 
data, it can be seen that for some subjects the heart rate has 
increased during the experiment such as subject 8 but for 
some it is fluctuating such as subjects 1, 6, 9, 12 and 13. 
Such variation could be due to different experiences that 
the subjects had during the experiment; for some it might be 

Fig. 2   Heart rate mean value collected during the human machine collaboration scenario through Empatica and Emotibit wristbands for subject 
1 to 15
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more distressing when the speed was increased and for some 
they could adapt themselves with the changes in the speed 
after each step of increase in speed causing less distress 
after the adaptation. Electrodermal activity or galvanic skin 
response (GSR), which is electrical changes on the skin sur-
face receiving innervating brain signals, is reflecting general 
changes in autonomic arousal. GSR signals collected from 
Empatica and Emotibit during the experiment are shown in 
Fig. 3 Sampling frequency for Emotibit is 15 Hz, and for 
Empatica, it is 4 Hz; therefore, the data is time normalised 
to be represented as percentage over the experiment time 
duration. The GSR data range could vary from 0.01 to 100 
microSiemens, and to have readings, there is need to have 
coupling of the electrodes with the skin which could take 
around 10 to 15 min and influenced by the material of the 
electrodes, the position of the electrodes on the body and the 
environmental conditions during the recording (temperature 
and humidity of the room).

As shown in Fig. 3, it appears that the collected signals by 
Emotibit has not captured the electrodermal activity changes 
which could be due to lack of enough time for coupling of 
the electrodes with the skin which could be around 10 to 
15 min. Therefore, for future experiments, a warmup and 
baseline period are needed to be considered. Looking into 
the trend of data, the figure also shows for some subjects  
there is increase in electrodermal activity such as subject 5, 
12 and 15 but for some there are fluctuations which could be 
due to the different experiences that the subject had during 

the experiment. It can be observed that subjects had differ-
ent experiences during the collaboration; therefore, different 
needs. Some found it stressful initially due to the inexperi-
ence and for some it was stressful when the speed increased 
and found it harder to organise the colours.

To assess the user performance, the considered metrics 
for the human machine collaboration performance includes 
objective ones such as performance-related indexes meas-
ured during the experiment by counting the number of 
mistakes occurred while carrying out the procedure by 
the machine/robot to pick the test tubes; the user mistakes 
include not picking the test tubes safely and then placing 
and sorting them out incorrectly. Such objectives are repre-
sented in Table 1 as “Robot Pick Success Rate” for the 30 
test tubes, “Subject Pick Success Rate” for the successfully 
handed over test tubes by the robot, “Subject Place and Sort 
Success Rate” for the successfully placed and sorted test 
tubes for each subject and in average for the overall experi-
ment. Table 1 shows that the robot had 99.5% success rate 
in handing over the test tubes whereas there were 93.2% 
success rate from the participants in collecting the test tubes 
from the robot with 99.5% success in placing the test tubes 
colour sorted.

To study user experience through the qualitative 
approach, subjective metrics consist of user satisfaction 
questionnaire including physical working conditions, 
psychosocial working conditions and ethical aspects; and 
user’s satisfaction with the HMC, including health and 

Fig. 3   Electrodermal activity or GSR mean value collected during the human machine collaboration scenario through Empatica and Emotibit 
wristbands for subject 1 to 15
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Fig. 4   Responses (in percentage) to the questionnaire by the subjects attended the experiment
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safety issues. Looking into the questionnaire responses, 
80% of participant perceived the physical working condi-
tion appropriate and 80% felt safe to a large extent and 
more while interacting with the machine. A total of 66.7% 
of participants felt more distress somewhat and more while 
the robot speed was increasing, and 33.3% of participants 
perceived the experienced distress affected their perfor-
mance somewhat and more. When asking about whether 
they would feel less distress if the machines’ functionality 
was adjustable to their experience, 80% of participants 
agreed to somewhat and to a large extent while 86.7% of 
participants expressed that they would feel comfortable to 
use the system from ethical perspective to a large extent 
and more. Also, in response to if such feature developed 
80.0% expressed, they would feel safer in the collabora-
tion scenario to a large extent and more. A total of 86.7% 
mentioned if such feature developed, there would be less 
mistakes in the collaborative scenario and 86.6% of par-
ticipants think such feature would be helpful to a large 
extent and more. Eighty percent of participants mentioned 
that they would consider to a large extent and more wear-
ing a wristband to add adjustable functionality of machine 
feature  (see Fig.  4). The subjects stated that they felt 
stressed when not being able to see the robot consistently 
and found it harder to organise the colours when the robot 
speed increased and took them time to adjust to the speed 
of the robot. They stated that “as the speed increases it 
felt more pressured which leaded to more mistakes and 
was more physically demanding” and some felt “confused” 
in the process of sorting out the colours when the speed 

increased. There were cases that the subjects stated once 
the rhythm of collaboration was found it was easier to 
perform the task while more stressful initially due to the 
inexperience. Some expressed that during the experiment, 
they wanted the robot speed to be decreased as felt tired 
and stressed. Furthermore, considering the responses, it 
appears if an adaptability feature based on user experience 
for the machines would be developed, the users could feel 
safer, and less distressed with more success rate in com-
pleting the task.

5 � Conclusion

In this paper, the on-body sensing technologies and related 
signal processing techniques were explored in address-
ing safety in human machine collaboration in study of 
user experience and impact of mental strain and cognitive 
workload on user performance and experience. Consider-
ing cognitive burden during interaction with robots and 
its reflection in physiological signals, a human machine 
collaboration scenario was designed in which the robot 
was handing over coloured objects from assumed inac-
cessible location to the user to sort and place them in a 
predefined location while the speed of robot operation was 
increasing during the operation. The collaboration perfor-
mance was measured through qualitative and quantitative 
approaches whereas the results showed that the users had 
different experiences during the experiments and different 
speed preferences potentially due to the different skills 
that they had. By increase in the speed of collaboration, 
some experienced more distress and more cognitive bur-
den which could potentially lead to collision and safety-
related concerns. However, some subjects preferred higher 
speeds of collaboration which means different users have 
different preferences; therefore, a mechanism adaptive to 
the user experience during collaboration would be helpful 
in improving user performance and experience which is 
the follow-up work.
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Table 1   Success rate in the collaborative scenario for human and 
robot

Subject number Robot pick 
success rate

Subject pick 
success rate

Subject place 
and sort success 
rate

1 30/30 29/30 29/29
2 30/30 27/30 27/27
3 29/30 26/29 26/26
4 30/30 21/29 21/21
5 29/30 28/29 28/28
6 30/30 27/30 27/27
7 29/30 27/29 27/27
8 30/30 29/30 29/29
9 30/30 27/30 27/27
10 30/30 28/30 27/28
11 30/30 30/30 30/30
12 30/30 29/30 29/29
13 30/30 29/30 29/29
14 30/30 30/30 29/30
15 30/30 29/30 29/29
Total average % 99.5% 93.2% 99.5%
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