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A B S T R A C T

Recent advancements in node and graph classification tasks can be attributed to the implementation of
contrastive learning and similarity search. Despite considerable progress, these approaches present challenges.
The integration of similarity search introduces an additional layer of complexity to the model. At the same time,
applying contrastive learning to non-transferable domains or out-of-domain datasets results in less competitive
outcomes. In this work, we propose maintaining domain specificity for these tasks, which has demonstrated
the potential to improve performance by eliminating the need for additional similarity searches. We adopt
a fraction of domain-specific datasets for pre-training purposes, generating augmented pairs that retain
structural similarity to the original graph, thereby broadening the number of views. This strategy involves a
comprehensive exploration of optimal augmentations to devise multi-view embeddings. An evaluation protocol,
which focuses on error minimization, accuracy enhancement, and overfitting prevention, guides this process
to learn inherent, transferable structural representations that span diverse datasets. We combine pre-trained
embeddings and the source graph as a beneficial input, leveraging local and global graph information to
enrich downstream tasks. Furthermore, to maximize the utility of negative samples in contrastive learning, we
extend the training mechanism during the pre-training stage. Our method consistently outperforms comparative
baseline approaches in comprehensive experiments conducted on benchmark graph datasets of varying sizes
and characteristics, establishing new state-of-the-art results.
1. Introduction

The benefit of graph data is the ability to model complex data
relationships that are deeply structured to suit inferences about indirect
facts and indirectly related information. Edges are just as influen-
tial and complex as vertices/nodes, making graphical representation
learning emerge as a practical approach to graph data exploration in
recent years. It has been significant in the transition of graph vertices,
edges, or subgraphs to low-dimensional dense embeddings [1] that
maintain the structural features and attributes of the graphs. The
retained embeddings can then serve as input to standard machine
learning models for downstream tasks. Therefore, graph data has be-
come increasingly widespread based on the neighborhood aggregation
task [2], inspired by recent advances in deep learning [3,4]. Fur-
thermore, multiple works in graph-based studies use GNN variants to
predict linkages, nodes, and graphs for link prediction [5], node classifi-
cation [6–9], graph classification [10–12], and have shown remarkable
state-of-the-art performance.

∗ Corresponding author at: College of Computer Science and Technology, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China.
E-mail addresses: madjeisah@bournemouth.ac.uk (M. Adjeisah), zxz@zjnu.edu.cn (X. Zhu).

However, GNN research has faced obstacles as a result of the
very limited data sizes of traditional graph datasets after several
years of development. Such impediments include overfitting and over-
smoothing [13–15], unrealistic and arbitrary data splitting,
non-rigorous evaluation metrics, and, in general, the neglect of vali-
dation sets [16–18]. Recalling the standard GCN for node classification
reveals that they are usually superficial, limiting the number of layers
to 2 [7]. Therefore, an attempt to go deeper is still ingrained in these
impediments. Most recently, several works have proposed research on
the development of deep GNN models [9,13,19,20] for node classifica-
tion, ranging from node sampling [21–23], layer sampling [8,24,25],
and subgraph sampling [26,27]. Nevertheless, such research still falls
in graphs’ highly limited data sizes, leading to graph data augmentation
such as adversarial perturbation [28–31] and node and structural
perturbation [1,2,32], all other methods. Multi-view representation
learning is well established for deep neural networks, as the operation
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is frequently used in Computer Vision (CV) and Natural Language
Processing (NLP) [33]. Therefore, the critical topic is that the operation
should be adopted in the GNN structure to improve performance.
However, in contrast to other data, where the structure is encoded
by position, the structure of graphs is encoded by intermittent node
connectivity [7] and is usually characterized by a non-euclidean space.
Thus, various nodes are influenced by each other due to the links
built by the edges. Consequently, it produces unwanted outcomes,
such as intractable augmentation volumes and somewhat modified
ground-truth labels [34].

Various augmentation strategies have emerged for multi-view con-
struction; however, finding a suitable method for learning better repre-
sentations of various graphs is still under exploration. The hypothesis
is that the most beneficial pairs of augmentation types can be data-
specific [35]. For example, for node classification tasks, adding nodes
poses challenges in labeling and assigning features and connectivity of
new nodes, while removing nodes reduces the data available. It is also
well known that some augmentation strategies benefit social networks
but damage some biochemical molecules [35].

Present work. Inspired by the above-listed, and graph augmenta-
tion strategies, we study the potential of contrasting multi-views to
enhance performance. We generate relatively more views and collec-
tively search for the best-view representation for various datasets. The
idea is to perturb the graph structure to form positive pair embeddings
given various input graphs. In particular, the structure of a paired
augmented is similar to the original graph, increasing the view. For
pre-training tasks, Hu et al. [36] performed a similarity search in data
that are not transferable to out-of-domain data, nevertheless, it yielded
low competitive results in various tasks. GraphCL [2] and MVGRL [37]
are similar to our approach but different in implementation. Instead
of pre-training GNN on different datasets [2,38] from the dataset for
classification to obtain correlated views, we used a fraction of the same
dataset during pre-training.

Also, MVGRL and other works assume that a particular augmen-
tation pair works for all datasets. In our case, we collectively search
for the best-view representation to learn the intrinsic and transferable
structural representations on a particular dataset. Furthermore, the
MVGRL mechanism transforms a sample of the source graph into a
correlated view based on two dedicated GNNs, limiting the default view
to two. Our work is not limited to the number of view generation.
Nevertheless, significant view representations are data-specific, hence;
the search for the best duo of views during pre-training. We present
multi-view construction based on self-supervised learning for graph
classification tasks. It composes different augmentations to generate
additional structural views of a sample graph that engage contrastive
loss to estimate mutual information (MI) to group the embeddings
of the positive pair while simultaneously pushing the negative ones
away [39]. The pre-trained embeddings and the source graph are finally
fed into GNN variants for downstream tasks, as shown in Fig. 1.

The major contributions of this work are as follows:

• We present a novel Graph Contrastive multi-view learning using
a Pre-training framework (GCP). The method takes the source
graph 𝑠 and the pre-trained embeddings ((𝑎)𝑡 and (𝑏)𝑡 ) as input
to evaluate a downstream task..

• We hypothesize that keeping the task domain-specific alleviates
the extra similarity search in the non-transferable to the out-of-
domain tasks and can benefit downstream tasks.

• With the prolonged training mechanism for more negative sam-
ples of each sample, our approach relatively balances the small
information-to-noise ratio in high-order neighbors for a more
varied split of total datasets, avoiding over-smoothing.

• Extensive experiments on benchmark graph datasets of different
sizes with distinct characteristics show that our approach out-
performs the compared baselines. The source code is available
online1 for reproducibility.

1 https://github.com/Madjeisah/GCP
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The rest of the paper is as follows. Section 1 introduces our work
and problem statements and highlights the main contributions. Var-
ious related works on Graph Data Augmentation (GDA) and graph
contrastive learning and their core functions in GNN are thoroughly
discussed in Section 2. While Section 3 focuses on the GCP framework,
Section 4 presents various graph datasets, experimental analysis, and
visualization of results. Finally, we conclude this work in Section 5.

2. Related works

2.1. Graph data augmentation

Depending on the difference in the various graph augmentation
strategies, graph augmentation can be divided mainly into two cat-
egories [40], including the topology-based method (GCA [1], GAUG-
O [6], AdaEdge [19], DropEdge [20]) and the feature-based augmenta-
tion method (NodeAug [34], FLAG [41], G-GNN [42], LA-GNN [43]).

The former usually perturbs A to generate different graph structures.
For example, AdaEdge Adaptive Edge Optimization AdaEdge [19]
adapts the graph topology by iteratively adding the intra-class edges
and removing the inter-class edges during training. DropEdge [20]
randomly removes a substantial proportion of the edges of the input
graph by generating different random distorted copies of the original
graph. GAUG-O [6] engages in a dual step, which is to obtain edge [44]
probabilities for all potential and existing edges via the edge predictor
function followed by adding/removing new or existing edges utilizing
the predicted edge probabilities to construct a modified graph to serve
as input to a GNN node classifier. GCA [1] proposes a joint adaptive
GDA strategy at the topology and node attribute level, i.e., edge
disturbance and attribute masking by specifying essential edges and
feature dimensions through prominent criteria.

The latter focuses on exploiting the influential nodes X by placing a
probability on the trivial ones to improve classification performance.
G-GNN [42], which preserves global information learned, is known
for its performance, easy implementation, and theoretical understand-
ing. It constructs the global information as the global structure and
global attribute features to each node and pre-trained them for a final
parallel GNN-based model to learn distinct characteristics from the
pre-trained and original features. Local augmentation for GNN (LA-
GNN) [43] preserves the locality of node representations by their
subgraph structure. Node-Parallel Augmentation (NodeAug) [34] of-
fered three distinct augmentation methods by (1) adjusting the node
attributes, (2) the graph structure, and (3) introducing a subgraph
mini-batch training for resourceful execution. The GraphANGEL [45]
framework presents an adaptive and structure-aware essential intrinsic
connection-based subgraph sampling between random walk and graph
convolution. The approach exploits the unique feature of random-
walk that combines time and diverse structural efforts of the nodes
to propose a lightweight component to flexibly assess the appropriate
depth of neighborhood exploration for the target nodes. Observably,
the technique adaptively embeds the structural prerogative information
of a node and its vital neighborhood simultaneously for more accept-
able structure-aware graph representation learning. Free Large-scale
Adversarial Augmentation on Graphs (FLAG) [41], Graph Adversar-
ial Training (GraphAT) [46], and Batch Virtual Adversarial Training
(BVAT) [31] have recently performed remarkably on graph data.

2.2. Contrastive multi-view learning

Most recent research has focused on finding appropriate augmen-
tation techniques to understand adequate representations for various
graph applications through contrastive learning [47–49]. However, the
unfastened query is how to develop a graph contrastive learning model
from scratch for graph representation tasks [50]. Qiu et al. [38] pro-
posed a self-supervised GNN pre-training framework that captures the
topological properties of universal networks across multiple networks.

https://github.com/Madjeisah/GCP
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Fig. 1. The proposed model for GCP. We engage a GNN encoder to generate pre-trained embeddings by composing different augmentations 𝛷 and 𝛺 for additional structural views
(𝑎)
𝑡 and (𝑏)

𝑡 from a source graph 𝑠. A contrastive loss (infoNCE) estimates the mutual information between the positive information from augmented data and all the negative
information in the mini-batch. The positive embeddings are paired into a single data object and pre-trained 𝑝. Finally, the source graph 𝑠 and the pre-trained embeddings 𝑝
are engaged for downstream tasks.
The approach engages pre-training tasks such as random subgraph
sampling instance discrimination in and across networks, leveraging
graph contrastive learning to empower GNN to learn the intrinsic and
transferable structural representations. The authors hypothesize that
representing universal and transferable structural patterns of graphs
across networks can achieve competitive and somewhat better per-
formance than its task-specific and trained-from-scratch counterparts.
You et al. [2] systematically study the various combinations of graph
augmentation for GNN pre-training to address data heterogeneity chal-
lenges by obtaining correlated views. For the representation invari-
ant to specialized perturbation and comprehended for various graph-
structured data [51], the method leverages contrastive graph learning
for pre-training. The approach examines whether and when the applica-
tion of different data augmentation aids contrastive learning [52] with
a detailed observation summary and derived insights.

Hassani & Khasahmadi [37] introduce a self-supervised approach
to learning representations at the node and graph level by contrasting
the structural views of the graphs. The work mainly focused on en-
gaging diffusion and node sampling augmentation strategies to learn
better representations. They established that feature-space augmenta-
tions could be problematic as many benchmarks do not carry initial
node features, degrading performance. DSGC [53] took advantage of
hyperbolic and Euclidean space to perform graph contrastive learning
among views generated in both spaces to represent graph data in
the embedding spaces. SimGRACE [54] observed that graph data can
preserve their semantics well during encoder perturbations; therefore,
the perturbed version of an input graph is used as two encoders to
generate two correlated views.

The node attribute and topology contain extensive and various in-
formation about the structure, respectively, and are equally paramount
for definitive performance in many circumstances. Furthermore, the
negotiation between augmented information sources in various works
benefits intrinsic data structure learning. However, finding the right
augmentation strategies for better multi-view representation learning
in various graph applications is pivotal in GNN. Therefore, applying
appropriate augmentation for best-view estimation and the original
graph can infuse the corresponding priors on the data distribution,
3

aiding the downstream performance. Also, regarding the significance
of negative samples in contrastive learning, our approach prolongs
the training process with more epochs for more negative samples for
each sample during pre-training to make the split of total datasets
more varied. More significantly, such operations enhance performance,
provide better generalizable features, and avoid over-fitting. While
MVGR [37] engaged in an end-to-end approach with two dedicated
graph encoders, one for each view, limiting the views to two by default,
we generated multiple views with various augmentation techniques
using the upstream (pre-train) method. Finally, in contrast, we elimi-
nate the extra effort for similarity search [38] by using a fraction of
the dataset during pre-training for primary structural similarity and
transferability.

2.3. Graph pre-training

Some machine learning applications require a model to accurately
make predictions on test sets that are different from the training
distribution in an insufficient task-specific domain. An effective con-
ceptualization of this situation is to pre-train a model on abundant
task-related data and then fine-tune it on a downstream task of interest.
Pre-training has proven to be an important infrastructure capability
that can support many different use cases in CV, and NLP, such as clas-
sification, and generation. It has recently been adopted to enhance the
power of GNNs. Many self-supervised pretext tasks seldom notice the
integral training objective between the pretext and downstream tasks
because of the universal encoding of graph representation. Therefore,
fine-tuning for adapting the pre-trained model to downstream problems
is often cost-effective.

Hu et al. [36], developed strategies using self-supervised methods
to train an expressive GNN at the level of the respective nodes and
the entire graphs to simultaneously learn transferable local and global
knowledge. GPPT [55] adopted the masked edge prediction to first
pre-train GNNs and proposed a graph that prompts the functionality
to modify the standalone node into a token pair, and perceptually
reformulate the downstream node classification task as edge prediction.
Ziniu Hu et al. [56], factorized the probability of graph generation
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into attribute and edge generation by modeling both components to
capture the inherent habituation between node attributes and graph
structure during pre-training. To capture intrinsic patterns underlying
the graph structures, Pengyong Li et al. [57] proposed an effective
self-supervised representation [58] strategy to expressly pre-trained
GNN at both the node level and the graph level. Pairwise Half-Graph
Discrimination (PHD) can overcome the challenges of transferability
and can generalize well to different GNN tasks. The L2PGNN [59]
approach attempts to learn how to fine-tune during the pre-training
process with transferable prior knowledge by encoding both local and
global information in the prior using a dual adaptation mechanism at
node and graph levels.

3. Methodology

3.1. Problem formulation

Given a source graph 𝑠 and a target graph 𝑡, the graph pair aims
to store multiple graphs in a single data object to ensure the correct
batching behavior across all those graphs. Similarly, the approach can
be extended to the composition of different augmentations with the
GNN encoder from the original graph and pair them into a single
data object. Generally, assume  = ( , ) is an undirected graph, with
vertices or node set  = {𝑣1,… , 𝑣𝑛} and edge set  . The adjacency
matrix of  is the 𝐀 ∈ R𝑛×𝑛 matrix such that:

𝐀𝑖𝑗 =

{

1, if (𝑣𝑖, 𝑣𝑗 ) ∈  ;
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(1)

Thus binary matrix A in a graph with edges of n nodes is such that, if
there is an edge between node i and j, then 𝐀𝑖𝑗 = 1, else 𝐀𝑖𝑗 = 0. Hence
A is also written as 𝐀 = [𝐀𝑖𝑗 ]. The attribute matrix X is represented as
𝐗 ∈ R𝑛×𝑞 , where the 𝑖th row denotes 𝑣𝑖’s attributes and q denotes the
total amount of the attributes.

One exemplary procedure in this work is that we generate multi-
views on a fraction of a given source graph with self-supervised learn-
ing composing different augmentation strategies, e.g., edge perturba-
tion and diffusion. We then estimated the mutual information between
the source and augmented graphs. The positive samples of the aug-
mented graph are then stored/paired in a single data object to ensure
the correct batching behavior across the graphs and finally pre-trained.
Finally, we engage the pre-trained embeddings and the source graph
as input, whereby a classifier head is fine-tuned for downstream task
evaluation. Notably, the model constitutes two modules; the lower
module (pre-training stage) and the upper module (downstream stage).

3.2. Detailed approach

This section details our proposed GCP model as shown in Fig. 1.
Specifically, we illustrate the modules of GCP by explaining the multi-
view establishment for the graph encoder, presenting the self-supervised
contrastive learning, elaborating on how to get the positive and nega-
tive samples, and finally a description of the overall training procedure.

3.2.1. Generating multi-view
Assuming that graph 𝑠 is the source graph with label 𝐿, we can

generate views via augmentation strategies to get (𝑎)𝑡 and (𝑏)𝑡 , the first
and second target augmented graph to label 𝐿, respectively with;

𝛷,𝛺(𝑠) ∶= (𝛷,𝛺(
(𝑎)
𝑡 ),𝛷,𝛺(

(𝑏)
𝑡 )), (2)

where 𝛷 and 𝛺 are some augmentation parameters. The approach is
similar to other works [2,51,60–62], however, while the other works
limit the number of augmentations, our model allows for various
choices of augmentation strategy without restrictions. Similarly, the
encoder framework allows for various choices of the GNN architecture
4

using the Deep InfoMax approach [63].
Algorithm 1: The algorithm for multi-view generation
Input: The source graph 𝑠
Params: Augmentation parameters 𝛷,𝛺(⋅), epoch 𝛼, pre-training

sample size 𝛽, InfoNCE loss.
utput: 𝑝

nitialize 𝛷,𝛺, 𝛩
or each 𝛼 do
if 𝛽 is set then

// Generate views via augmentation
(𝑎)𝑡 ← 𝛷,𝛺(𝑠) // Eq. (2)
(𝑏)𝑡 ← 𝛷,𝛺(𝑠) // Eq. (2)

// View estimation
Get READOUT anchor of 𝑠
Get READOUT positives of (𝑎)𝑡 , and (𝑏)𝑡
Estimate {𝑠, 

(𝑎)
𝑡 , (𝑏)𝑡 } as {(0), (1), (2)}

// Get views after estimation
Get {(0), (1), (2)} after view estimation

// Compute Mutual Info (MI)
Compute MI for estimated views
Update the InfoNCE objective function
Repeat the process until convergence
Pair views (1) and (2) into 𝑝

end
nd
eturn 𝑝

3.2.2. Multi-view estimation
The GNN encoder aims to find the density ratio to estimate the

mutual information between these graphs to generate pre-train em-
beddings. With a non-linear learned mapping, the aim is to obtain
the READOUT anchor and positive information to maximally preserve
the mutual information between graphs 𝑠, and (𝑎)𝑡 , and 𝑠 and (𝑏)𝑡 .
Notably, the GNN READOUT operation aggregates the features of all
the nodes in the graph to produce a single, fixed-size vector that
summarizes the entire graph. This vector serves as a fixed point that
captures the overall structure of the graph. To obtain such similarities
between these graphs, we use the function 𝐼(𝑠;

(𝑎)
𝑡 ,(𝑏)𝑡 ) which allows

s to detect the number of similar points employing conditional and
oint probability as:

(𝑠;
(𝑎)
𝑡 ,(𝑏)𝑡 ) =

∑

𝑡,𝑡′ ,𝑠
𝑝(𝑡, 𝑡′, 𝑠)log 𝑝(𝑡, 𝑡

′
|𝑠)

𝑝(𝑡, 𝑡′)
, (3)

where 𝑠 ∈ 𝑠, 𝑡 ∈ 𝑡 and 𝑡′ ∈ (𝑎)𝑡 , respectively, and 𝑝(⋅) is a conditional
probability function. By maximizing mutual information between en-
coder representations, we extract the underlying latent variables that
the inputs have in common [64]. To this end, we find the density
ratio that preserves mutual information between 𝑠 and between 𝑡, and
between 𝑠 and 𝑡′ and concatenates them. Approximately, we can define

𝑓 (𝑠, 𝑡, 𝑡′) =
𝑝(𝑡, 𝑡′|𝑠)
𝑝(𝑡, 𝑡′)

, (4)

where 𝑓 denotes the density ratio. To efficiently estimate mutual infor-
mation between views, we train the GNN encoder using the InfoNCE
objective function.

3.3. View pairing

During MI estimation, the anchor gap and the positive have the
same identity information, but the negative has different information.
The contrastive loss  function minimizes the anchor and positive
𝑁𝐶𝐸
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Fig. 2. Accuracy of different augmentation pairs for multi-views on the biochemical molecules (Top) and social network (Bottom) datasets. Warmer colors indicates best accuracy
and empty space signifies out-of-memory (OOM) resources.
gap while maximizing the gap between the anchor and negative ones.
Thus, multiple views are generated, of which the one identical to the
given data point constitutes the positive part, and other views far
from the data point are considered negative. While the contrastive loss
function forces the embeddings of positive views to cluster within a
high-order neighbor, the model simultaneously forces the embeddings
of negative views away [65]. For simplicity, we adopt a utility function2

to return a pair of positive samples from the augmented graphs (𝑎)𝑡 and
(𝑏)𝑡 . In particular, the augmented graph (𝑎)𝑡 and (𝑏)𝑡 are passed through
the same encoder, resulting in two embedding matrices (1) and (2)

that are adaptively fused into 𝑝. The algorithm for our multiview
generation is shown in Algorithm 1.

To understand which views contain augmented-rich information, we
pair augmentation methods such as edge perturbation, diffusion, at-
tribute masking, node dropping, and random walk subgraph extraction
for view generation. We then engaged a standard evaluation protocol
of the embeddings concerning model training uncertainties based on
accuracy, error rate, over-fitting, over-smoothing, and computation for
quality representation learning. We used parameters such as the pre-
training sample size 𝛽 within the range of 10, 20, 30, and 50% with
augmentation parameters 𝛷 and 𝛺 on several runs. Eventually, GCP
augments graph data with evaluation protocol as guidance, preserving
semantics during augmentation and achieving better generalization
because of the search-based evaluation protocol. Detailed experimental
results are shown in Section 4.4.

4. Experimental results

This section begins by presenting the datasets and the experimental
setup utilized in this work. We then conduct extensive experiments on
graph classification tasks to evaluate the preeminence of the proposed
GCP and compared it with previous state-of-the-art works to exhibit
the model’s effectiveness. Finally, we rationalize performance investi-
gations to further verify the significance of composing views relatively
more than the original graph and its augmentation.

The aim of this work is to answer the following research questions
(RQ) to instantiate each component in GCP:

• RQ1: Can pre-trained embeddings preserve local and global in-
formation to improve structural similarity and transferability?

• RQ2: Considering the importance of negative samples in con-
trastive learning, how effective is the prolonged training in GCP?

2 https://pytorch-geometric.readthedocs.io/en/latest/notes/batching.html
5

Table 1
Statistics of graph classification benchmarks.

Graphs Nodes Edges Classes

NCI1 4110 29.87 32.30 2
PROTEINS 1113 39.06 72.82 3

Biochem. D&D 1178 284.32 715.66 89
ENZYMES 600 32.63 64.14 3
MUTAG 188 17.93 19.79 2

COLLAB 5000 74.49 2457.78 3
IMDB-M 1500 13.00 65.94 3

Social IMDB-B 1000 19.77 96.53 2
networks REDDIT-M 4999 508.82 594.87 5

REDDIT-B 2000 429.63 497.75 2

• RQ3: How significant are the GCP default views, and does increas-
ing the views beyond that introduce any helpful information?

• RQ4: Can the model extend its layer beyond the usual 2-3 layers
without over-smoothing?

• RQ5: How efficient is GCP in terms of training time and memory
cost?

4.1. Datasets and experimental setup

We use 10 publicly available graph datasets. NCI1 [66], PRO-
TEINS [67], D&D [68], MUTAG [69], which contains mutagenic com-
pounds, and ENZYMES [70] are biochemical molecular graph net-
works. For graph social networks, we use; COLLAB, IMDB-BINARY, and
IMDB-MULTI, connecting actors/actresses (nodes) based on movie ap-
pearances (edges), REDDIT-BINARY and REDDIT-5K, connecting users
(nodes) through responses (edges) in Reddit online discussions [71].
Dataset statistics are summarized in Table 1.

4.2. Training and evaluation protocol

The ultimate idea is that the GNN pre-training concern is to learn
an operation that maps a vertex to a low-dimensional feature vector,
making it similar in structure and transferability. Thus, a function that
can map vertices with similar network topologies close to each other
in the vector space and compatible with vertices and graphs. [38].

We implemented our GCP framework using PyTorch3, PyTorch
Geometric4, and Deep Graph Library5 packages in all experiments. We

3 https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html
4 https://github.com/pyg-team/pytorch_geometric
5 https://www.dgl.ai/
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Table 2
Test accuracy on graph classification task. We performed 10 runs to evaluate the performance of the model and report the mean accuracy and standard
deviation. The best performances are highlighted in bold and underlined as the second best.

NCI1 PROTEINS D&D ENZYMES MUTAG

GCN 69.8 ± 2.2 72.8 ± 3.7 71.4 ± 4.5 65.2 ± 6.4 85.6 ± 5.8
DGCNN 76.4 ± 1.7 72.9 ± 3.5 76.6 ± 4.3 38.9 ± 5.7 –
DiffPool 76.9 ± 1.9 73.7 ± 3.5 75.0 ± 3.5 59.5 ± 5.6 –
ECC 76.2 ± 1.4 72.3 ± 3.4 72.6 ± 4.1 29.5 ± 8.2 –
GIN 80.0 ± 1.4 73.3 ± 4.0 75.3 ± 2.9 59.6 ± 4.5 –
GraphSAGE 76.0 ± 1.8 73.0 ± 4.5 72.9 ± 2.0 58.2 ± 6.0 –
InfoGraph 76.2 ± 1.1 74.44 ± 0.3 72.85 ± 1.8 – 89.01 ± 1.1
GraphCL 77.87 ± 0.4 74.39 ± 0.5 78.62 ± 0.4 – 86.90 ± 1.3
GCC – – – – –
MVGRL – – – – 89.7 ± 1.1
JOAO 78.07 ± 0.47 74.55 ± 0.41 77.40 ± 1.15 – 87.67 ± 0.79
Mixup 81.60 ± 0.41 74.03 ± 0.51 76.48 ± 0.58 – –
SimGRACE 74.0 ± 1.9 74.3 ± 3.5 76.8 ± 2.9 – –
TGNN – 71.0 ± 0.7 70.8 ± 0.9 – –

GCP+GCN 81.10 ± 0.1 80.56 ± 2.31 82.43 ± 0.25 58.33 ± 0.28 87.02 ± 0.04
GCP+GraphSAGE 82.86 ± 1.1 76.89 ± 1.36 85.63 ± 1.5 67.41 ± 0.17 89.76 ± 0.52
GCP+GIN 77.16 ± 0.08 72.26 ± 0.21 78.83 ± 0.21 57.10 ± 0.48 84.22 ± 0.51

COLLAB IMDB-M IMDB-B REDDIT-M5K REDDIT-B

GCN 70.2 ± 1.5 51.9 ± 3.8 74.0 ± 3.4 52.2 ± 1.5 50.0 ± 0.0
DGCNN 71.2 ± 1.9 45.6 ± 3.4 69.2 ± 3.0 49.2 ± 1.2 87.8 ± 2.5
DiffPool 68.9 ± 2.0 45.6 ± 3.4 68.4 ± 3.3 53.8 ± 1.4 89.1 ± 1.6
ECC OOM 43.5 ± 3.1 67.7 ± 2.8 OOM OOM
GIN 75.6 ± 2.3 48.5 ± 3.3 71.2 ± 3.9 56.1 ± 1.7 89.9 ± 1.9
GraphSAGE 73.9 ± 1.7 47.6 ± 3.5 68.8 ± 4.5 50.0 ± 1.3 84.3 ± 1.9
InfoGraph 70.65 ± 1.1 – 73.0 ± 0.8 53.46 ± 1.0 82.5 ± 1.4
GraphCL 71.4 ± 1.1 – 71.14 ± 0.4 55.9 ± 0.3 86.90 ± 1.3
GCC 81 52 75 53.0 87.8
MVGRL – 51.2 ± 0.5 74.2 ± 0.7 – 84.5 ± 0.6
JOAO 69.33 ± 0.36 – 70.83 ± 0.25 56.03 ± 0.27 86.42 ± 1.45
Mixup 77.0 ± 2.2 49.9 ± 3.2 – 57.8 ± 1.7 –
SimGRACE 74.74 ± 0.28 – – 53.97 ± 0.64 88.86 ± 0.62
TGNN 67.7 ± 0.4 42.9 ± 0.8 72.8 ± 1.7 43.8 ± 1.0 76.3 ± 1.3

GCP+GCN 78.34 ± 0.07 57.48 ± 3.10 76.41 ± 2.31 54.2 ± 0.04 86.7 ± 0.02
GCP+GraphSAGE 83.20 ± 0.21 59.48 ± 0.31 76.25 ± 0.93 54.2 ± 0.24 89.12 ± 2.07
GCP+GIN 75.8 ± 0.06 53.56 ± 0.03 71.86 ± 3.1 57.86 ± 2.3 89.97 ± 2.1
utilized the various augmentation techniques and adopted a utility
function to return a pair of graphs to ensure correct batching behavior
and pre-train them on a GeForce RTX 3090 GPU with 24 GB memory.
The dataset is divided into 70%, 20%, and 10% for the training,
validation, and test set, respectively.

4.2.1. Pre-training
Our goal of pre-training is to generate additional views based on the

learned knowledge, given a fraction of the input datasets, to facilitate
downstream tasks. Specifically, we first pre-train a GNN and use the
pre-trained embeddings and the original graph as input to initialize
models for downstream tasks. We used 20% of the train set during pre-
training and specified 3 layers for the graph encoder for both training
stages. At the same time, an ablation study of different data percentages
and layers was conducted. We train the model with 1000 epochs,
InfoNCE [64] loss to efficiently estimate mutual information between
views, Adam optimizer, a learning rate of 0.001, and a batch size of
64 epochs, as shown in Table Table 3. Engaging data augmentation
techniques such as diffusion and subgraph, we adopt a GNN variant
for our encoder model to obtain multiple views on all datasets. We
randomly select a subset of the data as the validation set.

4.2.2. Fine-tuning
Following GCC’s full fine-tuning strategy, we use the pre-trained

embeddings and the original graph as input, and a classifier head is
then fine-tuned for downstream task evaluation. We engage similar
parameters during pre-training except for Cross-Entropy loss since it is
a classification task with 200 epochs. To alleviate the adverse influence
of randomness, we replicate each experiment 10 times and report the
6

Table 3
Pre-training hyper-parameter settings: Loss (), Epoch (Ep),
Optimizer (Opt), Learning rate (Lr), Batch size (𝐵𝑠𝑖𝑧𝑒), Feature
dimension (𝐹𝑑𝑖𝑚) and number of layers (#L) The default number
of layers is set to 3; however, the best performance of each
dataset is achieved based on the depth (number of layers) of
the GCP model architecture as shown in Table 4.

Hyper-parameters settings

Pre-training Classification

 InfoNCE Cross-Entropy
Ep 1000 200
Opt Adam
Lr 0.001
𝐵𝑠𝑖𝑧𝑒 64
𝐹𝑑𝑖𝑚 128
#L 3

average values and the corresponding standard deviations on the test
set in Table Table 2. Detailed experimental results and analysis are
shown in Section 4.4.

4.3. Compared methods

We compared the GCP method with semi-supervised, unsupervised,
and self-supervised methods including GCN [7], Deep Graph Convolu-
tional Neural Network (DGCNN) [72], DiffPool [10], Edge-Conditioned
Convolution (ECC) [73], Graph Isomorphism Network (GIN) [74],
GraphSAGE [22], Infograph [35], GraphCL [2], GCC [38], MVGRL [37]
JOint Augmentation Optimization (JOAO) [75], Mixup [76], Sim-
GRACE [54] and TGNN [12].
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4.4. Results and analysis

The optimal combinations of augmentation types may vary depend-
ing on the specific dataset. Consequently, we conducted preliminary
experiments to generate additional augmentations and systematically
identify each dataset’s most effective view representations. To achieve
this, we created a heat map reflecting accurate results from the ini-
tial runs across all datasets. This approach provides an informative
overview of which views encapsulate augmentation-rich information
for each dataset. The best are selected for final execution, as shown
in Figure Fig. 2. After different runs, we observed that the position of
the augmentation method had no effect. Therefore, the results in the
lower half are similar to those in the upper half. Identical augmenta-
tions are not considered for this work (see Section Section 4.5.4), and
the empty space means out-of-memory (OOM) resources. Clearly, the
experimental analysis answers the research question (RQ1).

Table 2 presents the accuracy performance of GCP and other re-
lated methods in ten graph classification datasets. The results of other
methods from GCN to GraphSAGE are directly copied from Federico
Errica et al. [77], and the rest are from the corresponding works. The
results show that our GCP methods perform much better than most
compared methods due to the appropriate augmentation search for
multiple view generation. In general, attribute masking is performed
across various datasets. In particular, applying attribute masking, a
feature-space augmentation strategy, achieves better performance in
denser graphs [2]. For example, the accuracy of NCI1, PROTEINS, and
MUTAG is the result of combining the random walk and node attribute
masking from the initial experiment in Fig. 2 as such views show su-
perior performance. Similarly, edge perturbation combined with node
attribute masking and diffusion paired with random walk recorded the
highest score for the ENZYMES and D&D datasets. Regardless, such
views combination runs to overfitting on the corresponding dataset.
With random-walk and node attribute masking, the GCP model can
combat over-fitting.

Likewise, the initial experiment shows that the random-walk and
node attribute masking technique registered the highest accuracy for
COLLAB but ran into over-fitting, similar to previous cases. Engaging
edge perturbation and node attribute masking combat the over-fitting
issue. Overall, edge perturbation and node attribute masking work
satisfactorily for all social network datasets to generate the best-view
representation.

An observation is that diffusion paired with other methods for
view generation is computationally expensive, mainly when applied
to a large dataset that leads to OOM resources, as shown in Fig. 2.
For REDDIT-M, REDDIT-R, and D&D datasets, we can see that diffu-
sion paired with edge perturbation, node attribute masking, or node
dropping runs out of memory on GeForce RTX 3090 GPU. Also, node
dropping and subgraph on REDDIT-R. Therefore, the introduction of
a mini-batch subgraph training for creative execution in the NodeAug
model [34] is of great interest. Notably, graph mini-batch algorithms
are vital in training GNNs on large-scale datasets. Note that even
though the initial experiment serves as a guide for the GCP model,
we also pay attention to uncertainties such as over-fitting. Thus, se-
lecting the best-view representation depends on accuracy and model
performance in combatting over-fitting from initial runs. Furthermore,
the depth of our model architecture as shown in Table 4 plays a vital
role in improving the accuracy performance of various datasets. See
Section 4.5.5 for a detailed analysis.

4.5. Ablation study

4.5.1. Hyperparameter sensitivity
The essential hyperparameter for the GCP setup is lr. In general,

it controls the model’s response to the estimated error per model
weight update. Although optimization like the Adams optimizer has a
theoretical guarantee of convergence in many optimization problems,
7

Table 4
Depth of GCP model architecture based on the number of layers (#L)
in improving the accuracy performance on various datasets.

#L Three-Layer Four-Layer Five-Layer

Datasets

IMDB-B IMDB-M NCI1
REDDIT-M5K D#D PROTEINS
ENZYMES REDDIT-MB COLLAB
MUTAG

Fig. 3. GCN experiential training loss convergence of Adam optimizer in GCP on
datasets NCI1 and PROTEINS with different 𝛾 values.

Fig. 4. Fraction of training samples (10%, 20%, and 50%) with various view pairs
with GraphSAGE. Attribute masking and diffusion are OOM on D&D and REDDIT-M5K
datasets.

it remains an open challenge in contrastive learning. Especially, the
considerable beneficial pairs of augmentation varieties can be data-
specific. Therefore, we search for a hyperparameter (specifically lr) that
functions in various datasets. In our experiments, we investigate the
effects of lr on model performance. We performed a grid search on lrs
1e-1, 1e-2, and 1e-3 with 100 epochs for pre-training. Fig. 3 shows the
behavior changes for lrs 1e-1 and 1e-2, and their inability to learn in
the NCI1 and PROTEINS datasets. Therefore, the configuration of the
model indicates that a moderate lr of 1e-3 results in a satisfactory level
of empirical convergence across various datasets.

4.5.2. Effect of pre-training samples
Fig. 4 shows the performance of our model trained with various frac-

tions of training samples to estimate the error rate. Generally, during
pre-training, 10% of the training samples perform better on biochem-
ical molecules and can prevent overfitting in a self-supervised setting.
It relatively balances the small information-to-noise ratio in high-order
neighbors, preventing over-smoothing. For social networks, more train-
ing samples are required for better error estimation. The rationale is
that the semantics of molecular graphs are delicate. Therefore, we opt
for a 20% training sample for all datasets.

4.5.3. Training epochs and batch-sizes (RQ2)
Likewise, training longer with more epochs provides more negative

samples for each sample, making the split of the total datasets more
varied. Especially considering the importance of negative samples in
contrastive learning, we investigated the effects of various epochs
{100, 200, 300, 5000, and 1000} and batch sizes {64, 128, 256, and
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Fig. 5. GraphSAGE version of GCP performance with various epochs and batch sizes
on PROTEINS dataset.

Table 5
Effect of the number of views on graph classification task based on the
GCN. The bold highlight is the default view used in our model.

#V PROTEINS D&D COLLAB

2 72.35 ± 0.28 79.61 ± 1.12 75.63 ± 0.02
3 76.89 ± 1.36 85.63 ± 1.5 79.27 ± 0.15
4 75.12 ± 0.24 76.33 ± 1.02 73.78 ± 0.11

512} during classification, as shown in Fig. 5. Overall, a batch size of
64 performs uniformly with low error rate estimation across various
datasets. Therefore, we can further enhance the performance of GCP
with batch size = 64 when we train the epoch for a longer time.

4.5.4. Effect of number of views (RQ3)
Again, we investigate the number of views (#V) to evaluate perfor-

mance in a downstream task. During fine-tuning, we use three main
views by default. Thus, pairing augmentation techniques extend the
#Vs by anchoring the original view as pre-trained embeddings. We
use the pre-trained embeddings and the data’s original view to perform
the final classification task. To create more views, we further sampled
views for each training sample in each mini-batch for contrastive rep-
resentation. However, Table 5 indicates that extending the views does
not introduce useful information, affecting performance. Compared to
MVGRL [37], we can increase the number of views by default to three.
Similarly, identical views are ignored in our experiments, as they carry
similar information about the graph structure and do not lead to good
performance [38]. Instead, it causes over-smoothing by increasing the
noise in the small information-to-noise ratio in high-order neighbors.

4.5.5. Effect of number of layers (RQ4)
The standard GCN for classifying nodes and graphs reveals that they

are usually superficial and limit the number of layers to 2 [7]. However,
Bielak et al. [51] believe that the network layer can be extended on
a large dataset, where they extended their encoder model to a 3-layer
GCN model on some datasets. In this work, we can increase the number
of layers in our proposed model without over-smoothing because of
the structural similarity and transferability. Thus, using a fraction of
the dataset during pre-training has similar local network topologies in
the vector space, making it compatible with the vertices and graph
when fine-tuning. This approach saved us the extra effort to search
for similarity [38]. Table 6, shows the ablation performance of the
depth of the GCP model architecture by experimenting with 2, 3, 4,
and 5 layers. While a 3-layer most satisfactory benefits our proposed
method, increasing the number of layers beyond that degrades the
model’s performance and also overfits in various GNN models. Note
that performance on PROTEINS increases with the GCN model and
on NCI1 and COLLAB with the GraphSAGE architecture beyond 3
layers. Intuitively, this can be attributed to the immense value of edge
8

density in some datasets. When datasets are more densely connected,
their representations become indistinguishable when the model goes
deep [9]. Although there is an observable performance gain beyond
the 3-layer encoder, the training procedure shows inconsistency, with
numerous peaks in both validation loss and accuracy in some datasets.

Furthermore, the GCN model is known for its performance in trans-
ductive settings. In contrast, GraphSAGE is known for its generalized
aggregator, mini-batch training, and fixed-size neighbor sampling algo-
rithm to accelerate the training process, hence being more scalable in
the inductive setting. Although our model is not currently designed for
deeper GNNs, systematic observations highlight strategies to mitigate
overfitting. These insights will inform our future work, allowing us to
effectively utilize pre-trained embeddings and extend the depth of our
GNNs.

4.5.6. Efficiency of GCP (RQ5).
Table 7, shows a comparison of GCP performance with state-of-

the-art methods including GraphCL, JOAOv2 and SimGRACE in terms
of training time and memory overhead. The results of other methods
are directly copied from SimGRACE [54]. Training time refers to the
time of the pre-training stage, and memory overhead refers to the
estimated memory consumption of model parameters and all hidden
batch representations of GCP. Observably, SimGRACE runs faster than
our model, but the next competitive model for SimGRACE is GCP
compared to JOAOv2 and GraphCL. Similarly, in terms of memory
computation, our model is competitive in transductive settings, but not
enough for inductive tasks. In particular, while the GCP approach is
effective in improving the performance of graph classification tasks, it
requires more computational memory on large-scale social graphs, such
as COLLAB and REDDIT-B. It is important to state that the compared
models are executed on different GPU distribution systems and also as
layers increase, the more complex the model architecture becomes, the
greater the complexity.

5. Conclusion

This work systematically composes multi-views from a sample graph
engaging a pre-trained framework. Our approach collectively searches
for the best augmentation for building multi-views to learn the intrinsic
and transferable structural representations of the domain datasets.
The hypothesis is to keep the task within the domain dataset, which
equalizes the effort of similarity search in the nontransferable to the
out-of-domain tasks. Considering the importance of negative samples
in contrastive learning, we prolong the pre-training process for more
negative samples for each sample to obtain a more varied split of total
datasets, which relatively balances the small information-to-noise ratio
in high-order neighbors. Extensive experiments on ten graph classifi-
cation tasks demonstrate that our method outperforms the compared
baselines with new state-of-the-art results, making better generalizable
features and avoiding over-smoothing.

Future work: As a result of prolonged training for more negative
samples for each sample, our approach relatively balances the small
information-to-noise ratio in high-order neighbors. However, there is
no high information-to-noise ratio in low-order neighbors. Therefore,
increasing the network layer or going deeper can cause an interaction
between high-order neighbors to bring over-smoothing. The ultimate
question is; What are the trade-offs between a small information-to-
noise ratio in high-order neighbors and a high information-to-noise
ratio in low-order neighbors in fixing the interaction that brings over-
smoothing? Our future work will explore a regularization effect in
GNN models with deep probabilistic layers, as the functionality is well
known in NLP and CV. Second, there is no theoretical interpretability
to the information-to-noise ratio phenomenon and how to measure it
for context-rich information in GNN. We hope to expand our domain
to provide a more theoretical guarantee. Finally, another interest that
is worth focusing on includes devising our method for the scalability of
large-scale datasets.
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Table 6
Effect of the number of layers (#L) on graph classification task based on GCN and GraphSAGE. The default #Ls used in our model is highlighted in bold. The blue numbers
ndicate the improvement when the layer increases.
GCN GraphSAGE

#L NCI1 PROTEINS COLLAB IMDB-M NCI1 PROTEINS COLLAB IMDB-M

2 77.40 ± 0.15 71.83 ± 2.09 79.87 ± 0.11 56.30 ± 1.22 77.91 ± 0.08 73.51 ± 0.12 79.13 ± 0.02 58.22 ± 0.09
3 81.10 ± 0.1 73.71 ± 0.12 78.43 ± 0.07 55.19 ± 0.3 81.56 ± 0.12 76.89 ± 1.36 79.27 ± 0.15 56.22 ± 0.41
4 80.18 ± 1.08 76.88 ± 0.03 81.96 ± 1.02 57.48 ± 3.10 82.45 ± 0.14 73.71 ± 0.44 78.20 ± 0.14 59.48 ± 0.31
5 80.45 ± 0.18 80.56 ± 2.31 80.78 ± 0.11 55.63 ± 0.13 82.86 ± 1.1 61.61 ± 0.10 83.20 ± 0.21 56.81 ± 1.21
Table 7
Comparative analysis of model efficiency on three graph datasets. We engaged the
GraphSAGE model as a backbone for comparison. The best ones are emphasized in
bold and the underlined ones indicate the second best.

Dataset Method GPU Training time Memory

GraphCL 111 s 1231 MB
PROTEINS JOAO 4088 s 1403 MB

SimGRACE 32 GB V100 46 s 1175 MB
GCP 24 GB RTX3090 82 s 1179 MB

GraphCL – 1033 s 10199 MB
COLLAB JOAO – 10742 s 7303 MB

SimGRACE 32 GB V100 378 s 6547 MB
GCP 24 GB RTX3090 915 s 7483 MB

GraphCL – 917 s 4135 MB
REDDIT-B JOAO – 10278 s 3935 MB

SimGRACE 32 GB V100 280 s 2729 MB
GCP 24 GB RTX3090 724 s 5727 MB
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