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Abstract—Human motion prediction aims to forecast future
body poses from historically observed sequences, which is chal-
lenging due to motion’s complex dynamics. Existing methods
mainly focus on dedicated network structures to model the spatial
and temporal dependencies. The predicted results are required
to be strictly similar to the training samples with ℓ2 loss in
the current training pipeline. It needs to be pointed out that
most approaches predict the next frame conditioned on the
previously predicted sequence, where a small error in the initial
frame could be accumulated significantly. In addition, recent
work indicated that different stages could play different roles.
Hence, this paper considers a new direction by introducing a
model learning framework with motion guidance regularization
to reduce uncertainty. The guidance information is extracted
from a designed Fusion Feature Extraction network (FE-Net)
while knowledge distilling is conducted through intermediate
supervision to improve the multi-stage prediction network during
training. Incorporated with baseline models, our guidance design
exhibits clear performance gains in terms of 3D mean per joint
position error (MPJPE) on benchmark datasets Human3.6M,
CMU Mocap, and 3DPW datasets, respectively. Related code
will be available on https://github.com/tempAnonymous2024/
MotionPredict-GuidanceReg.

Index Terms—motion prediction, knowledge distillation, graph
neural networks

I. INTRODUCTION

Humans have an innate ability to predict how future evolu-
tion of actions could be extrapolated. Equipping machines with
the ability to anticipate human behavior remains a paramount
challenge, which has gradually garnered widespread attention
from researchers in recent years, particularly with the surge in
applications such as robotics, autonomous driving, and human-
computer interaction [1], [2]. The task of human motion pre-
diction can be described as predicting future possible human
action sequences based on the given human pose sequences
that already occurred. Anticipating the future movement of
the 3D human skeleton is a complex and challenging task
due to the complex spatial-temporal modality and the great
uncertainty of the future.

Early works have used statistical or probability models
for motion prediction such as nonlinear Markov models [3],
Gaussian process dynamic models [4], and restricted Boltz-
mann machines [5]. Many deep neural networks have also
been applied to tackle the problem. Recurrent Neural Net-
works(RNNs) [6], [7] have been employed since they are
naturally designed to handle temporally correlated sequences.
However, RNNs could meet gradient disappearance and gra-
dient explosion problems, which makes it ineffective in pro-
cessing long sequence data.

Recently, Graph Convolutional Networks (GCNs) [8]–[15]
have received widespread attention and research in this field,
since it is capable to model the spatial dependencies natu-
rally. These approaches regard each human pose as a graph
composed of joints and bones and use graph convolution to
model spatial information. Many complicated and sophisti-
cated GCNs have been designed to improve the model’s ability
to capture more various spatial-temporal relationships in the
motions. For instance, MSR-GCN [11] and MGCN [16] have
employed a coarse-to-fine strategy to learn more multi-scale
correlations of motion data. Transformers and attentions have
been combined with GCNs [17], [18] to model how human
skeletons evolve spatially and temporally over time.

However, the aforementioned work only focuses on ex-
ploiting the spatial and temporal relationships and designing
more complicated models, largely overlooking the study of
the uncertainty property of motion. The uncertainty of motion
prediction mainly refers to its challenging variation, especially
for non-periodic behaviors. We observe that most of the
existing models use the average loss form which counts the
error of each future frame equally. Actually, the uncertainty of
human motion is not equal in each future frame. Long-term
error accumulation has been recognized as one of the biggest
issues that bring performance degradation in motion prediction
problems. As most approaches predict the next frame condi-
tioned on the previously predicted sequence, a small error in
the initial frame could be accumulated significantly. Hence, it’s
essential to tackle the accumulation error issue for the motion
prediction task.

Latest methods such as PGBIG [14] employs a multi-
stage network structure, which conduct motion prediction as a
consecutive process composed of many round. Their work [14]
proves that a different initial pose could bring sharper per-
formance gains than an individual method. An intermediate
target is employed which is adopted through an Accumulated
Average Smoothing algorithm. Such manually designed in-
termediate target could introduce future information for early
stages but it is lack exploiting motion dynamics. The proposed
method considers a new direction by introducing a model
learning framework with motion guidance regularization to
reduce uncertainty. Our key insight lies in that the step-
by-step prediction could be improved through the guidance
regularization in a multi-stage pipeline. An encoder-decoder
structure is designed for the multi-stage prediction network.
The encoder uses the past sequence as input and includes
a set of self-attention blocks to extract high-dimensional
features. The guidance regularization information is extracted



from a designed Fusion Feature Extraction network (FE-Net)
while knowledge distilling is conducted through intermediate
supervision to improve the feature extracting of multi-stage
prediction network during training.

In order to evaluate the proposed method, extensive exper-
iments are carried out on H3.6M, 3DPW and CMU Mocap
datasets to study the impact of exploiting guidance regular-
ization information for the final performance. Incorporated
with baseline models, the results demonstrate that our method
achieves competitive performance in both short-term and long-
term motion prediction tasks. Besides, our prediction results
are more smooth and natural, achieve high quality without the
intractable shaking effects. In summary, the contributions of
this paper are the following:

1) A guidance regularization method is proposed to tackle
the issue of accumulation error of motion prediction
caused by motion uncertainty. The role of uncertainty
property in human motion prediction tasks has been
studied. We hope our work will encourage more studies
to rethink the value of uncertainty factors in motion
prediction problems.

2) A novel motion prediction work involving intermediate
supervision of guidance information is proposed. A
knowledge distilling framework is designed to conduct
intermediate supervision for the multi-stage prediction
network during training. Extensive experimental results
on the benchmark datasets validate our method outper-
forms competitors in most short-term prediction jobs and
achieve competitive performance in long-term prediction
jobs. The proposed method could bring more favorable
gains than existing methods.

3) We delve deeper into the intermediate supervision of
guidance information and carry out extensive experi-
ments to pursue the problem of how could intermediate
supervision affect the training and learning of the motion
prediction models. Fruitful insights are given out by our
ablation studies.

𝑥!"# 𝑥$%&' 𝑥()*

"𝑥$%&'

Prediction 
Model

• prediction error
• motion uncertainty

 

Time

Guidance  Regularization

Fig. 1. Training pipeline of proposed method. Existing approaches rely on
mapping the past sequences xobs to the future sequences xpred. Prediction er-
ror x̂pred could increase over time. To address this issue, auxiliary sequences
xaux are introduced to provide guidance regularization.

II. RELATED WORKS

Traditional motion prediction works have employed Hidden
Markov model [3], binary latent variables [5] or Gaussian
process [4] to model sequences. Since motion prediction was
often seen as a sequence-to-sequence task, many deep learning
methods such as RNN-based [6] and feed-forward neural
networks [19]–[23] have also been applied to the field

Recently, Graph Convolutional Networks (GCNs) have
achieved great success in motion prediction task. LTD [8] pro-
posed to model joint-wise trajectories by graph convolutional
layers to strengthen the spatial correlation as well as model
temporal information by DCT representations.

Such mechanism has been followed by lots of later work.
JDM [9] and MPT [10] have took velocity information as
input. Many works have tried to improve the graph represen-
tation for either scale [11], [24] or space-time separable [12],
[13], [25] strategy. In order to improve the learning pro-
cedure, PGBIG [14] performed muti-stage prediction whose
output corresponded to a smooth sequence in every stage and
gradually approached the true value. Knowledge distillation
is introduced into the prediction model in PKGCN [15].
Frequency decomposition and feature aggregation is used in
DMAB [26] to encode temporal dynamic within the frequency
domain. Prediction deviation is involved in DeFee [27] for
multi-rounds prediction. Meanwhile, Transformer was also
attempted for human motion prediction [17], [18], [28], [29].

Some stochastic approaches such as HumanMAC [30] and
BeLFusion [31] used diffusion model to generate more contin-
uous predictions. MotionMixer [32] and siMLPe [33] applied
simple MLPs to fuse spacial and temporal information, and
achieved reasonable performance.

III. METHODOLOGY

A. Problem Formulation

Human motion prediction aims to infer future motion se-
quences given past sequences. Inspired by existing methods,
we denote X1:N = {x1, x2, . . . ., xN} as the observed se-
quence with N consecutive human poses and XN+1:N+P =
{xN+1, xN+2, . . . , xN+P } as the predicted sequence with P
poses, where xi ∈ RJ×D, with J joints and D dimensions (D
is 3).

Traditional approaches typically focus on establishing a
mapping function that maps X1:N to XN+1:N+P to cap-
ture their spatial-temporal dependencies. However, as time
advances, prediction errors accumulate over time. In such
cases, we believe that the subsequent sequence can provide
accurate guidance regularization for prediction, thereby re-
ducing the uncertainty of actions and minimizing long-term
prediction errors, as illustrated in Fig. 1. Particularly, we intro-
duce the auxiliary sequence denoted as XN+P+1:N+P+K =
{xN+P+1, xN+P+2, . . . , xN+P+K} with K poses after the
predicted sequence in pre-training, and transfer its information
to the final prediction network to aid in the prediction process.
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Fig. 2. Overview of proposed model for human motion prediction. FE-Net is used to encode the fusion features of the observed and auxiliary sequences to
obtain the optimal feature representation. During the final prediction, DSP-Net distills the attention-enhanced feature to obtain guidance regularization from
the auxiliary sequences. Both DSP-Net and FE-Net employ the same multi-stage prediction network, with each stage consisting of an Encoder-Decoder pair,
whose output sequences are supervised by the ground truth and the smoothed results, enabling iterative optimization of the initial guess.

B. Network structure

The entire network structure is shown in Fig. 2. Both
the FE-Net and the DSP-Net employ a similar multi-stage
prediction network structure as described in III-C. Since the
auxiliary sequence should be unavailable during training, we
initially pre-train an FE-Net using the training data with its
corresponding auxiliary sequence. Then the FE-Net is fixed
as a teacher net while features of the observed sequence
are extracted. A knowledge distilling operation is conducted,
where the fusion feature from FE-Net is transferred through
intermediate supervision to the prediction network DSP-Net.

a) Fusion Feature Extraction Network (FE-Net): The
FE-Net fuses information from both the observed sequence
and the auxiliary sequence, denoted as MFE (·). Inspired by
[8], [34], we duplicate the last pose of observed sequence
P + K times (represented as Xpadd obs) and duplicate the
first pose of the auxiliary sequence forward N + P times
(represented as Xpadd aux). The FE-Net performs as below:

XFE out = MFE (Xpadd obs, Xpadd aux) (1)

where the output XFE out closely approximates the ground
truth, the FE-Net can learn the most comprehensive fusion
feature, which is then utilized as intermediate supervision for
the DSP-Net.

b) Dual-Supervision Prediction Network (DSP-Net):
The DSP-Net adopts similar multi-stage prediction network,

denoted as MDSP (·), which only receives Xpadd obs as input.
The DSP-Net performs as below:

XDSP out = MDSP (Xpadd obs) (2)

As depicted in the lower section of Fig. 2, the outputs of
each stage of DSP-Net are supervised by the ground truth and
the smoothed results. Through iterative backpropagation, the
predictions are continuously refined to converge towards the
ground truth. Additionally, we incorporate the fixed feature
representations from the FE-Net as intermediate supervision
through knowledge distillation, enabling the DSP-Net to re-
ceive guidance regularization simultaneously. Notably, we
have designed an attention mechanism that aligns the features
of both networks, facilitating effective information transfer.
Indeed, the former supervision plays a primary role, while the
latter serves as a supplementary aid.

C. Multi-stage prediction network

a) Overview: A multi-stage structure is employed to
construct the proposed prediction network inspired by [14],
which works as the backbone model for both FE-Net and DSP-
Net. The whole multi-stage structure contains T Init-Guess
stages described in III-D represented by S1, S2, . . . , ST , and
each stage adopts the structure of encoder-decoder (note that
the FE-Net’s first stage has two encoders to handle different
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Fig. 3. The encoder-decoder architecture employed in the stage block mentioned in Fig. 2. The encoder and decoder are composed of the smallest computational
units called GCL, as illustrated on the left side. Two GCLs make up a GCB. The encoder consists of a GCL, M residual GCBs, and a global residual structure.
The decoder comprises N residual GCBs, S-DGCN, T-DGCN, and a global residual structure.

inputs). The output X̂t of St can be defined as below ((3) for
FE-Net, (4) for DSP-Net):

X̂t =

{
St (Xpadd obs, Xpadd aux) , t = 1

St
(
X̂t−1

)
, t = 2, 3, . . . , T

(3)

X̂t =

{
St (Xpadd obs) , t = 1

St
(
X̂t−1

)
, t = 2, 3, . . . , T

(4)

b) Intermediate target supervision: For the FE-Net, our
goal is to reconstruct both the prediction sequence and
the auxiliary sequence, thus the initial guess should be
X̂t

N+1:N+P+K . For the DSP-Net, we only focus on the
prediction sequence, so the initial guess should be X̂t

N+1:N+P .
Our objective is to iteratively optimize the initial guess
until it closely approximates the ground truth. To achieve
this, we apply a multi-stage smoothing algorithm (MSA) to
the ground truth, generating the intermediate target X̃t

L ={
x̃t
N+1, x̃

t
N+2, . . . , x̃

t
N+L

}
with length L to the initial guess

of stage t. The MSA is defined as:

x̃T
l = MSA (XN+1:N+l) =

1

l −N

l∑
i=N+1

xi, l ∈ (N + 1, L)

(5)
To clarify, the position of a frame can be calculated as the
average of the positions of all previous frames. By recursively
applying this calculation, we can obtain the intermediate
targets for each stage.

D. Init-Guess stage

In each stage, the S-DGCN (Spatial Graph Convolutional
Network) and T-DGCN (Temporal Graph Convolutional Net-
work) are employed to capture the spatial-temporal depen-
dencies of human motion sequences. Based on the S-DGCN
and T-DGCN, we adopt an encoder-decoder architecture, as
illustrated in Fig. 3.

a) S-DGCN: S-DGCN is defined to capture the corre-
lations between joints. A learnable adjacency matrix AS ∈
RJ×J is defined to represent the strength of connections
between joints, where J is the number of joints. Given the
human motion sequence X ∈ RJ×T×F and a set of trainable
S-DGCN weights WS ∈ RF×F ′

, where T is the sequence

length and F is the numbers of the features, the output of
S-DGCN could be computed as follows:

X ′ = ASXWS (6)

Where X ′ ∈ RJ×T×F ′
.

b) T-DGCN: T-DGCN is defined to learn the dependen-
cies between the different trajectories. We defined a learnable
adjacency matrix AT ∈ RT×T , given a set of trainable T-
DGCN weights WT ∈ RF ′×F ′

, by reversing the first two
dimensions of X ′, the output of T-DGCN could be computed
as below:

X ′′ = AT (X
′)⊤WT (7)

Where X ′′ ∈ RT×J×F ′
, (·)⊤ represents the transpose opera-

tion. Then, we transpose the first two dimensions of X ′′ back
to obtain the final output Y ∈ RJ×T×F ′

.
c) GCL: The graph convolutional layer (GCL) includes

S-DGCN, T-DGCN, batch normalization, tanh activation and
dropout, as shown in the right portion of Fig. 3. Two GCLs
form a graph convolutional block (GCB).

d) Encoder: As shown in the middle portion of Fig. 3,
the encoder consists of a GCL followed by M residual GCBs.
The initial GCL maps the input from the action space of
RJ×T×D to the feature space of RJ×T×F , where F is 16,
while the residual GCBs extract spatial-temporal features in
the feature space. A global residual connection, implemented
through a 1 × 1 convolution, is added between the input and
output features, enabling the overall network to better learn
the mapping.

e) Decoder: As shown in the left portion of Fig. 3, the
decoder consists of N residual GCBs followed by S-DGCN
and T-DGCN. The residual GCBs operate in the feature space,
and the final S-DGCN and T-DGCN are used to map the pose
sequence back from the feature space to the action space.
Similarly, we employ a global residual connection using a
1×1 convolution that acts on the input features and the output
sequence.

E. Intermediate supervision

When the pre-trained FE-Net performs optimally, the output
feature Ht

FE ∈ RJ×T×F of stage t’s encoder contains the
fusion features from both auxiliary and observed sequences.
As mentioned in III-B, Ht

FE is employed as intermediate



TABLE I
COMPARISON OF SHORT-TERM PREDICTION FOR ALL ACTIONS AND AVERAGE ON HUMAN3.6M. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD, AND

THE SECOND BEST ARE MARKED BY UNDERLINE.

action walking eating smoking discussion
millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res-sup 29.4 50.8 76.0 81.5 16.8 10.6 56.9 68.7 23.0 42.6 70.1 82.7 32.9 61.2 90.9 96.2
LTD 12.3 23.0 39.8 46.1 8.4 16.9 33.2 40.7 7.9 16.2 31.9 38.9 12.5 27.4 58.5 71.7
MSR 12.1 22.7 38.6 45.2 8.4 17.1 33.0 40.4 8.0 16.3 31.3 38.2 12.0 26.8 57.1 69.7

PGBIG 10.2 19.8 34.5 40.3 7.0 15.1 30.6 38.1 6.6 14.1 28.2 34.7 10.0 23.8 53.6 66.7
DeFee∗ 10.2 19.9 35.5 42.5 6.7 14.8 30.7 38.3 6.5 14.0 28.8 35.6 10.0 23.8 54.5 68.1

Ours 10.1 19.3 33.2 38.6 7.4 15.2 30.6 37.8 6.9 14.1 28.2 34.7 10.3 24 53.6 66.5
action directions greeting phoning posing

millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Res-sup 35.4 57.3 76.3 87.7 34.5 63.4 124.6 142.5 38.0 69.3 115.0 126.7 36.1 69.1 130.5 157.1

LTD 9.0 19.9 43.4 53.7 18.7 38.7 77.7 93.4 10.2 21.0 42.5 52.3 13.7 29.9 66.6 84.1
MSR 8.6 19.7 43.3 53.8 16.5 37.0 77.3 93.4 10.1 20.7 41.5 51.3 12.8 29.4 67.0 85.0

PGBIG 7.2 17.6 40.9 51.5 15.2 34.1 71.6 87.1 8.3 18.3 38.7 48.4 10.7 25.7 60.0 76.6
DeFee∗ 6.9 16.7 39.6 50.2 16.4 32.8 68.8 82.5 11.4 19.8 40.8 49.7 14.8 28.3 64.8 80.5

Ours 7.6 17.9 40.8 51.2 15.8 35.1 72.1 87.4 8.6 18.3 38.5 48.1 10.8 25.9 60.1 76.7
action purchases sitting sittingdown takingphoto

millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Res-sup 36.3 60.3 86.5 95.9 42.6 81.4 134.7 151.8 47.3 86.0 145.8 168.9 26.1 47.6 81.4 94.7

LTD 15.6 32.8 65.7 79.3 10.6 21.9 46.3 57.9 16.1 31.1 61.5 75.5 9.9 20.9 45.0 56.6
MSR 14.8 32.4 66.1 79.6 10.5 22.0 46.3 57.8 16.1 31.6 62.5 76.8 9.9 21.0 44.6 56.3

PGBIG 12.5 28.7 60.1 73.3 8.8 19.2 42.4 53.8 13.9 27.9 57.4 71.5 8.4 18.9 42.0 53.3
DeFee∗ 16.6 32.5 67.6 80.6 14.0 23.3 47.5 58.7 9.8 29.1 61.8 70.2 7.8 16.9 37.1 47.7

Ours 12.8 29 60.4 73.5 8.8 19 42.1 53.6 13.8 27.8 56.7 70.7 8.6 18.8 41.8 53.1
action waiting walkingdog walkingtogether average

millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Res-sup 30.6 57.8 106.2 121.5 64.2 102.1 141.1 164.4 26.8 50.1 80.2 92.2 34.7 62.0 101.1 115.5

LTD 11.1 24.0 50.1 61.5 23.4 46.2 83.5 96.0 10.5 21.0 38.5 45.2 12.7 26.1 52.3 63.5
MSR 10.7 23.1 48.3 59.2 20.7 42.9 80.4 93.3 10.6 20.9 37.4 43.9 12.1 25.6 51.6 62.9

PGBIG 8.9 20.1 43.6 54.3 18.8 39.3 73.7 86.4 8.7 18.6 34.4 41.0 10.3 22.7 47.4 58.5
DeFee∗ 9.3 19.5 42.0 53.4 17.3 40.9 72.8 84.4 8.3 19.1 35.9 41.5 - - - -

Ours 9.1 20.3 43.7 54.3 19.1 39.6 74.2 87.1 8.8 18.4 34.6 41.2 10.6 22.8 47.3 58.3
∗The code is not publicly available, so the best reported results from the paper is used [27]. Furthermore, it only focused on short-term predictions, no SOTA
comparison of long-term prediction is included.

supervision for the output feature Ht
DSP ∈ RJ×T×F of stage

t’s encoder in DSP-Net, which enables DSP-Net to learn the
feature representation of the auxiliary sequences, while receiv-
ing guidance regularization during prediction. Additionally,
to enhance the spatial dependency within Ht

FE and facilitate
efficient information transfer to Ht

DSP , we have devised an
attention-based knowledge distillation approach. The attention
map αt ∈ RJ×J that represent relations between joints are
calculated as below:

αt = softmax(
σ(H)φ(H)⊤√

dk
) (8)

Where σ(·) and φ(·) are the mapping function to generate
query and key, dk is the dimension of key. The enhanced
feature is computed as follows:

Ĥ = ϕ(H)αt (9)

Where ϕ(·) is the mapping function to generate value. Ĥt
FE

is used to supervise Ĥt
DSP , and the closer they are, the

better we consider DSP-Net has obtained long-term guidance
regularization.

F. Loss function

a) Loss for FE-Net: We utilize the L2 loss to measure
the loss on the all outputs:

LFE =
1

T

T∑
t=1

∥∥∥X̂t
1:N+P+K − X̃t

1:N+P+K

∥∥∥
2

(10)

Note that FE-Net aims to simultaneously reconstruct both the
prediction sequence and the auxiliary sequence in pre-training,
the length of the loss should be N + P +K. When LFE is
minimized, the optimal representation of Ĥt

FE is denoted as
Vt.

b) Loss for DSP-Net: In the final prediction, we only
focus on the LDSP. Since the auxiliary sequence is unavailable
during this phase and our main objective is to generate the
prediction sequence with length N+P , the loss on all outputs
is determined as follows:

Ltarget =
1

T

T∑
t=1

∥∥∥X̂t
1:N+P − X̃t

1:N+P

∥∥∥
2

(11)

Moreover, it is desirable for the intermediate feature Ĥt
DSP

to learn from Vt, with the objective of maximizing their



TABLE II
COMPARISON OF LONG-TERM PREDICTION FOR ALL ACTIONS AND AVERAGE ON HUMAN3.6M. OUR METHOD OUTPERFORMS SOTAS IN MOST CASES.

action walking eating smoking discussion directions greeting phoning posing
millisecond 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000

Res-sup 81.7 100.7 79.9 100.2 94.8 137.4 121.3 161.7 110.1 152.5 156.1 166.5 141.2 131.5 194.7 240.2
LTD 54.1 59.8 53.4 77.8 50.7 72.6 91.6 121.5 71.0 101.8 115.4 148.8 69.2 103.1 114.5 173.0
MSR 52.7 63.0 52.5 77.1 49.5 71.6 88.6 117.6 71.2 100.6 116.3 147.2 68.3 104.4 116.3 174.3

PGBIG 48.1 56.4 51.1 76.0 46.5 69.5 87.1 118.2 69.3 100.4 110.2 143.5 65.9 102.7 106.1 164.8
Ours 46.3 54.8 50.1 74.4 46.4 68.4 86.7 117.3 69.2 100.5 109.7 142.2 65.7 101.6 106.5 164.5

action purchases sitting sittingdown takingphoto waiting walkingdog walkingtogether average
millisecond 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000

Res-sup 122.7 160.3 167.4 201.5 205.3 277.6 117.0 143.2 146.2 196.2 191.3 209.0 107.6 131.1 97.7 130.5
LTD 102.0 143.5 78.3 119.7 100.0 150.2 77.4 119.8 79.4 108.1 111.9 148.9 55.0 65.6 81.6 114.3
MSR 101.6 139.2 78.2 120.0 102.8 155.5 77.9 121.9 76.3 106.3 111.9 148.2 52.9 65.9 81.1 114.2

PGBIG 95.3 133.3 74.4 116.1 96.7 147.8 74.3 118.6 72.2 103.4 104.7 139.8 51.9 64.3 76.9 110.3
Ours 95.5 133.5 74.4 116.2 96.1 147.2 73.9 116.8 71.9 103.3 105.9 142.3 51.3 61.2 76.6 109.6

similarity. The formulation for calculating the distillation loss
is as follows:

Ldistill =
1

T

T∑
t=1

∥∥∥Vt − Ĥt
DSP

∥∥∥
2

(12)

Therefore, the total loss for DSP-Net is defined as below:

LDSP = Ltarget + λLdistill (13)

where λ is the weight of the distillation loss. In this paper, we
set it to 0.5.

IV. EXPERIMENTAL RESULTS

A. Datasets

a) Human3.6M (H3.6M): H3.6M is the most commonly
used dataset for motion prediction, consisting of 15 actions
(e.g., walking, sitting and posing) performed by seven actors
(S1, S5∼S9, S11). The actions are represented by 32 joints.
The sequences are downsampled to 25 frames per second,
like [13], [14], excluding global rotation and translation of
the pose. We use the data of S5 and S11 as test and validation
datasets, while the remaining datasets are used for training.

b) CMU-Mocap: CMU-Mocap dataset consists of 8 ac-
tion categories with 25 body joints. The division of training
and testing sets follows the method proposed in [14]. Addi-
tionally, Other details are similar to H3.6M.

c) 3DPW: 3DPW dataset contains indoor and outdoor
actions captured by 30Hz. A single pose has 23 body joints.
Official training, test and validation sets are employed in this
work.

B. Evaluation metric and baselines

a) Evaluation metric: Mean Per Joint Position Error
(MPJPE) is used as the evaluation metric that calculates the
ℓ2 distance between the predicted values and the ground truth
for each frame:

ℓMPJPE =
1

J(N + P )

N+P∑
t=1

J∑
j=1

∥x̂j,t − xj,t∥2 (14)

where x̂j,t denotes the predicted jth joint position in frame t,
and xj,t is the corresponding ground truth.

b) Baselines: We compare our work on these three
datasets with Res-sup [34], LTD [8], MSR [11], PGBIG [14]
and DeFee [27] which are the current state-of-the-art methods.
All evaluations are under the same conditions to ensure a fair
comparison. Besides, the code of DeFee is not published, the
best reported results from the paper are used [27]. Addition-
ally, DeFee [27] only focused on short-term predictions thus
no comparison of long-term prediction is included.

c) Implementation details: All implementations are con-
ducted on an NVIDIA GeForce RTX 3090 GPU using Adam
optimizer. The learning rate is set to 0.005 with a 0.96 decay
every two epochs. The length of the auxiliary sequence K
is 10. In the multi-stage framework, we set the number of
stages T is 4, and each encoder contains 1 GCB and the
decoder contains 2 GCBs. We firstly pre-train the FE-Net for
100 epochs with batch size of 256, then train the DSP-Net for
50 epochs with batch size of 16.

C. Comparison with the State-of-the-art Methods

To validate the prediction performance of the proposed
model, the quantitative comparison is conducted for both
short-term and long-term prediction on all benchmark datasets.

a) H3.6M: The comparison of short-term and long-term
prediction on H3.6M is reported in Table I and Table II respec-
tively. Our approach demonstrates particularly effective results
in long-term predictions, showing significant enhancements for
actions such as ”takingphoto” and ”walking”. We believe that
the introduction of guidance for these actions can enable better
understanding and prediction of the whole trajectory. Addition-
ally, our model outperforms other methods in most cases of
short-term predictions, showcasing competitiveness. However,
in extremely short-term predictions (e.g., 80ms and 160ms),
our method does not show much significant improvement.

b) CMU-Mocap and 3DPW: Experimental results on
CMU-Mocap and 3DPW are presented in Tables III and
Table IV respectively. Only average MPJPE at test-points(e.g.,
80ms, 160ms, 320ms, etc.) is listed due to space limitation.
The results on CMU-Mocap demonstrate similarities to those
achieved on H3.6M, highlighting the effectiveness of our
method in long-term predictions. Moreover, our approach ex-



TABLE III
COMPARISON OF PREDICTION FOR THE AVERAGE PREDICTION ON

CMU-MOCAP.

millisecond 80 160 320 400 560 1000
Res-sup 24.0 43.0 74.5 87.2 105.5 136.3

LTD 9.3 17.1 33.0 40.9 55.8 86.2
MSR 8.1 15.2 30.6 38.6 53.7 83.0

PGBIG 7.6 14.3 29 36.6 50.9 80.1
Ours 8.4 15.7 30.5 37.0 50.1 74.5

TABLE IV
COMPARISON OF PREDICTION FOR THE AVERAGE PREDICTION ON 3DPW.

millisecond 200 400 600 800 1000
Res-sup 113.9 173.1 191.9 201.1 210.7

LTD 35.6 67.8 90.6 106.9 117.8
MSR 37.8 71.3 93.9 110.8 121.5

PGBIG 29.3 58.3 79.8 94.4 104.1
Ours 25.9 52.9 74.0 89.6 100.5

cels on the challenging 3DPW dataset, outperforming various
baselines in both long-term and short-term predictions.

D. Ablation study

In this section, the result of ablation study is presented to
further analyze the proposed method. All experimental results
are obtained on the H3.6M dataset.

TABLE V
ABLATION STUDY OF ARCHITECTURE ON H3.6M.

millsecond 80 160 320 400 560 1000 ave
w/o ItSup 10.2 22.8 48.1 59.4 78.1 111.1 55.0

with ItSup

feature
-based

w/o att 10.3 22.5 47.5 58.3 76.8 110.1 54.3
λ=0.4 10.1 22.3 47.6 58.9 77.6 110.6 54.5
λ=0.5 10.6 22.8 47.4 58.3 76.6 109.6 54.2
λ=0.6 10.3 22.5 47.4 58.5 77.2 110.4 54.4
λ=1.0 11.0 23.2 47.8 58.8 76.6 109.4 54.5

response-based 10.3 22.8 48.1 59.3 78.1 111.7 55.1

a) Architecture: A multi-stage prediction network has
been adopted as an baseline model while several additional
modules are introduced.

1) Intermediate supervision (ItSup). The average MPJPE
for baseline decreases when intermediate supervision is
introduced. For instance, the average MPJPE is 55.0
at 1000ms for baseline and decreases to 54.3 with
intermediate supervision, with a significant improvement
of 1.0 at 1000ms. These results further validate our
hypothesis that intermediate supervision can enhance
long-term prediction performance.

2) Attention module. After the inclusion of the attention
module, we observe a further reduction in the average
MPJPE. This finding highlights the necessity of the
attention module in learning the spatial joint structure
effectively. By incorporating attention mechanisms, our
model can focus on important joints and capture relevant
information.

3) Loss function weight.We vary the weight of Ldistill (i.e.
λ) from 0.4 to 1 and observe that as λ increases, there
is a slight improvement in long-term prediction perfor-
mance. However, the short-term prediction performance
is noticeably affected. This indicates that intermediate
supervision can only serve as auxiliary predictions.

4) Knowledge type for distillation. To investigate the
effectiveness of distillation, additional experiment using
response-based knowledge distillation is conducted. In
this experiment, each stage’s output sequence of DSP-
Net is learned from the sequence predicted by FE-Net.
We use ℓ2 loss to measure the difference between them.
The results indicate that distilling knowledge in the fea-
ture space outperforms distillation in the 3D space. This
further validates the effectiveness of our encoder and
attention module in capturing and transferring essential
knowledge across the network.
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Fig. 4. Comparison of performance gains with different auxiliary sequence
length on H3.6M.

b) The length of the auxiliary sequence: To investigate
the impact of the length K of the auxiliary sequence on the
the model, we conduct experiments with K values of 1, 5,
10, 15 and 20, comparing them with the results when K is 0
(i.e., without intermediate supervision). Fig. 4 illustrates the
results of this ablation experiment. We find that introducing
longer auxiliary sequences leads to better long-term prediction
performance. However, as mentioned earlier, it also comes
at the expense of weakened short-term prediction accuracy.
Moreover, the introduction of excessively long auxiliary se-
quences can lead to redundant guidance regularization, thereby
diminishing the overall accuracy.
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Fig. 5. Comparison of performance gains with different stage number on
H3.6M.

c) The number of stages: The ablation study on the
number of stages of baseline is conducted showing as Fig. 5.



Number of stages T is varied from 1 to 6, and the best
performance gain is obtained when T is 4.

V. CONCLUSION

To sum up, a novel motion prediction framework with
guidance regularization regulation is presented in this work.
A knowledge distilling design is proposed where an FE-Net is
designed as a teacher. During training, the guidance regulariza-
tion information is extracted from FE-Net and then translated
through intermediate supervision to improve the multi-stage
prediction network DSP-Net. The proposed method has been
evaluated on benchmark datasets H3.6M, 3DPW and CMU
Mocap to evaluate the prediction performance. The results
have shown that the proposed method outperforms state-of-
art methods in both short-term and long-term prediction jobs.
Extensive ablation studies have been carried out to present
fruitful insights into the field. We believe this new perspective
of guidance regularization could inspire other researchers and
facilitate the prediction related work both in academics and
industries in the future.
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