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Abstract: Intelligent Reflecting Surface (IRS), with
the potential capability to reconstruct the electromag-
netic propagation environment, evolves a new IRS-
assisted covert communications paradigm to eliminate
the negligible detection of malicious eavesdroppers
by coherently beaming the scattered signals and sup-
pressing the signals leakage. However, when multi-
ple IRSs are involved, accurate channel estimation is
still a challenge due to the extra hardware complex-
ity and communication overhead. Besides the cross-
interference caused by massive reflecting paths, it is
hard to obtain the close-formed solution for the op-
timization of covert commutations. On this basis,
the paper improves a heterogeneous multi-agent deep
deterministic policy gradient (MADDPG) approach
for the joint active and passive beamforming (Joint
A&P BF) optimization without the channel estima-
tion, where the base station (BS) and multiple IRSs
are taken as different types of agents and learn to en-
hance the covert spectrum efficiency (CSE) cooper-
atively. Thanks to the ‘centralized training and dis-
tributed execution’ feature of MADDPG, each agent
can execute the active or passive beamforming inde-
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pendently based on its partial observation without re-
ferring to others. Numeral results demonstrate that
the proposed deep reinforcement learning (DRL) ap-
proach could not only obtain a preferable CSE of legit-
imate users and a low detection of probability (LPD)
of warden, but also alleviate the communication over-
head and simplify the IRSs deployment.
Keywords: Covert Communications; Intelligent Re-
flecting Surface; Deep Reinforcement Learning

I. INTRODUCTION

With the rapid growth of wireless communications,
protecting the privacy of legitimate users becomes pro-
gressively challenging. To conquer the extra commu-
nication overhead incurred by the encryption in higher
layers, secrecy communications at the physical layer
have drawn significant research attention to achieve a
positive secrecy rate thus the information can be con-
veyed confidentially [1]. However, in some specific
military or financial scenarios, the communication en-
tity further seeks to shield the existence of itself.
Therefore, covert communications [2, 3], also referred
to as ‘low probability of detection (LPD) communica-
tions’ or ‘undetectable communications’, is proposed
as a methodology to shelter the presence of transmis-
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sions from vigilant adversaries while guaranteeing a
certain covert rate of legitimate users. Different from
secrecy communications which tend to protect legit-
imate transmissions from being wiretapped by mali-
cious eavesdroppers, covert communications focus on
a negligible detection probability of observant adver-
saries.

Recently, intelligent reflecting surface (IRS), com-
posed by abundant of low-cost passive reflecting meta-
surfaces, has been envisaged as a promising technol-
ogy for reconfiguring the wireless propagation envi-
ronment by passive beamforming (PBF) [4].

With the electromagnetic reconstruct capability of
IRS, reflected and non-reflected signals can be added
coherently at the covert users (CUs) while destruc-
tively suppressing the signaling leakage below the
noise (steer a mull) at the warden, which is practically
appealing in improving the performance of covert
communications [3, 5–8].

In specific, the research in [3] insights into the fun-
damental of how an IRS can be integrated to bene-
fit covert communications, and evaluates the impact
of the transmission power of base station (BS) and
the elements number of IRS on the system perfor-
mance. The research in [5] aims to maximize the
covert rate at both uplink and downlink of IRS-assisted
non-orthogonal multiple access (NOMA) systems by
the transmit power of BS and passive beamforming
optimization of IRS. The research in [8] investigates
the multi-input multi-output (MIMO) covert commu-
nications aided by IRS against a multi-antenna war-
den. It is worth noticing that the researches above as-
sume that the instantaneous channel state information
(CSI) including the transmitter-IRS and IRS-receiver
channels can be estimated at warden according to the
pre-known pilot signals, which is crucial to fully un-
leash the various performance gain brought by IRS
with covertness constraints [9]. However, obtaining
the instantaneous CSI is not always possible for the
following reasons:

• IRS generally does not have to transmit radio fre-
quency (RF) chain (receiving RF chain is still nec-
essary) to send pilot signals actively for channel
estimation.

• Although researches in [10, 11] suppose that IRS
only has a few active elements equipped transmit
RF chain to estimate channels by actively sending

pilot signals to simply the procedure, such pilot-
based channel estimation and CSI sharing scheme
yields huge communication overhead.

• A more crucial issue is that to hide the existence,
warden will not collude with either the BS or
IRSs, which makes it impossible to obtain the in-
stantaneous CSI.

With this in mind, in the research [12], the pas-
sive beamformers at IRSs are optimized through the
statistical CSI, and the transmit beamformers at BSs
are based on the instantaneous CSI of effective chan-
nels. Furthermore, researchers in [6, 13] take the joint
power control and phase shift design by exploiting sta-
tistical CSI. The research in [7] also illustrates that
even when only the statistical CSI of warden is avail-
able, the IRS-assisted system can significantly out-
perform the system without an IRS in the context
of covert communications. Despite of tremendous
achievements of existing researches, only the simple
scenario is considered yet without the cooperation of
multi-IRS and the active beamforming of BS. When
multiple distributed IRSs are involved in the system,
convex and other alternating optimization techniques
may be no longer feasible, because the variables are
coupled with each other and the optimization problem
is hard to be decoupled into the form of linear-program
(LP) or quadratically constrained quadratic program
(QCQP).

Recently, machine learning (ML) has been widely
used for the optimization in IRS-assisted communica-
tions for their powerful non-linear approximation ca-
pability, which makes it easier to solve the model-free
and complex problems by training neural networks,
especially in uncertain dynamic scenarios [14–18].

Inspired by this, the paper takes a more common
scenario into consideration that the propagation envi-
ronment is jointly shaped by multiple IRSs with the
existence of multiple CUs. Besides, facing the chal-
lenge of obtaining instantaneous CSI covertly without
using the traditional pilot-based channel estimation
methods, the machine learning based approach which
allows to estimate channels without explicit feedback-
/detection is worth exploring to devise feasible solu-
tions [3, 7]. The main contributions of the paper can
be summarized as follows:

• A challenging scenario is considered for IRS-
assisted covert communications in that the ac-
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Table 1. Comparison with existing literature.

Reference Objective Optimization Variables Constrain User NUM. CSI Methods

[3] Covert SE Passive beamforming Covert constrain † Single Perfect CSI Monte Carlo method

[5] Downlink/Uplink covert SE Transmission Power & Passive beamforming Covert constrain † & QoS rate NOMA pair Perfect CSI AO & Convex

[6] Covert outage Passive beamforming ‡ Covert constrain † Single Statistical CSI Convex

[7] Covert SNR Transmission power & Passive beamforming ‡ Covert constrain † Single Statistical CSI Convex approximation

[8] Covert rate Active ∗ and Passive beamforming Covert constrain † Singe Perfect CSI AO & Convex ⋆

Our work Covert SE Active ∗ and Passive beamforming Covert constrain † Multi-IRS Multi-CU Statistical CSI MADRL

†The summation of false alarm probability and miss-detection probability at warden.

‡Both the reflect phase shift and amplitude are jointly justified.

∗MIMO beamfroming for active transmission.

⋆SDR alternative solving for active and passive beamforming, and a low-complexity KKT solution is futher proposed.

tive MIMO beamforming of BS and the passive
reflecting beamforming of IRSs are jointly opti-
mized by the collaboration of multi-IRS to en-
hance the covert spectrum efficiency (CSE) while
suppressing the signal leakage at warden.

• To maximize CSE by the joint active and passive
beamforming (Joint A&P BF) optimization which
is a typical non-linear non-convex programming
problem, a heterogeneous multi-agent deep deter-
ministic policy gradient (MADDPG) approach is
adopted where BS and IRSs are taken as differ-
ent types of agents. Due to the ‘centralized train-
ing and distributed execution’ feature of MAD-
DPG, each agent is driven to learn to map its par-
tial observation to a proper action independently,
which greatly reduces the communication over-
head caused by the information sharing.

• Each agent can learn from its historical action by
simple scalar reward feedback from CUs, which
avoids the complex CSI estimation and simpli-
fies the hardware design. Numeral results demon-
strate that the proposed deep reinforcement learn-
ing (DRL) approach not only obtains a preferable
CSE with low detection probability at warden, but
also helps to facilitate distributive infrastructures
in IRS-assisted communication networks.

The differences between our work and the existing
literature are summarized in Table 1. The rest of the
paper is organized as follows. Sec. II presents the sys-
tem model for IRS-assisted covert communications.
The proposed multi-agent DRL (MADRL) approach
for the joint active and passive beamforming optimiza-
tion is detailed in Sec. III. The algorithm complexity is
described in Sec. IV. The numerical results are demon-
strated in Sec. V, and the paper is concluded in Sec. VI.

,i k
H

i
G

,i k,
H

CUkBS

IRS1

IRSi

Willie
CU1

w,i
H

k
Q

w
W

BS-IRS Link

IRS-CU&IRS-Willie Link

BS-CU&BS-Willie Link

IRS

Figure 1. System model for IRS-assisted covert communi-
cations.

Notation: Cx×y denotes the space of x×y complex-
valued matrix. ∥ · ∥ denotes the Euclidean norm of
a complex vector. GT,GH denote the transpose and
conjugate transpose of G, respectively. E {·} denotes
the statistical expectation. ⊗ denotes the Kronecker
product.

II. SYSTEM MODEL

As shown in Figure 1, an IRS-assisted covert com-
munications system that there are I numbers of IRSs
mounted on the exterior walls of buildings to assist
the covert communications between BS and K CUs in
the downlink which may be detected by a warden de-
noted as ‘Willie’ is considered. Assume that the BS
is equipped with an uniform linear array (ULA) with
N antennas, and each CU is equipped with a single
omni-antenna. Each IRS has an uniform planar array
(UPA) with Mh and Mv in horizontally and vertically
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respectively, i.e. M = Mh ×Mv elements in total.
The reflecting matrix of the ith IRS can be denoted

by Θi = diag[βi,1e
jθi,1 , βi,2e

jθi.2 · · ·βi,Mejθi,M ] ∈
CM×M , where θi,m ∈ [0, 2π) is the phase shift and
βi,m ∈ [0, 1] is the reflecting coefficient. In practice, it
is costly to implement independent controllers for the
amplitude and phase shift simultaneously [19]. The
phase shift is usually selected from a finite number of
discrete values from 0 to 2π for the ease of circuit im-
plement [20]. Assume that all channels experience the
quasi-static flat-fading and IRSs can be real-time re-
configured [1, 20]. The equivalent channels of BS-ith

IRS, ith IRS-kth CU and BS-kth CU are denoted by
Gi ∈ CM×N , Hi,k ∈ CM×1 and Qk ∈ C1×N , respec-
tively. Let sk ∈ C1×N be the transmitting data to the
kth CU, which is an identically distributed (i.i.d.) ran-
dom variable with zero mean and unit variance. Then
the received signals at the kth CU can be expressed as:

yk =

(
I∑

i=1

HH
i,kΘiGi +Qk

)
pksk︸ ︷︷ ︸

covert signals

+

(
I∑

i=1

HH
i,kΘiGi +Qk

)
K∑

j=1
j ̸=k

pjsj

︸ ︷︷ ︸
interference from other CUs

+ ωk , (1)

where pk ∈ CN×1 is the beamforming vector of BS
used to transmit the original signals sk, and ωk ∼
CN (0, δ2ω) is the noise following circularly symmet-
ric complex Gaussian (CSCG) distribution.

The total transmission power of BS should be lim-
ited by the maximum value Pmax, which leads to the
constraint:

K∑
k=1

∥ pk ∥2≤ Pmax . (C1)

For the kth CU, signals from others are taken as the
interference [21]. So the signal to interference plus
noise ratio (SINR) at the kth CU is:

SINRk =

|
(

I∑
i=1

HH
i,kΘiGi +Qk

)
pk|2

K∑
j=1
j ̸=k

|
(

I∑
i=1

HH
i,kΘiGi +Qk

)
pj |2 + δ2ω

. (2)

2.1 Binary Hypothesis Testing

In order to detect the possible covert communications,
Willie is required to distinguish the following two hy-
potheses:

• The null hypothesisH0 indicating that there is no
transmission of CUs.

• The alternative hypothesis H1 indicating that
there is an ongoing covert transmission from BS
to one specific CU.

In general, Willie takes power detection to determi-
nate the existence of covert communications. In spe-
cific, a radiometer is equipped as a detector and takes
an infinite number of signal samples for such binary
detection, which implies that the uncertainties of addi-
tive white gaussian noises (AWGNs) can be partially
eliminated [22].

Suppose BS-Willie and ith IRS-Willie channels be
Ww ∈ CN×1 and Hw,i ∈ CM×1, respectively. Ac-
cording to Eq. (1), the received power at Willie with
respect to the kth CU would be:

Tk =



∣∣∣∣ ( I∑
i=1

HH
w,iΘiGi +Ww

)
K∑

j=1,
j ̸=k

pj

∣∣∣∣2 + δ2ω , H0 .

∣∣∣∣ ( I∑
i=1

HH
w,iΘiGi +Ww

)
K∑

j=1,
j ̸=k

pj

∣∣∣∣2
+

∣∣∣∣ ( I∑
i=1

HH
w,iΘiGi +Ww

)
pk

∣∣∣∣2 + δ2ω ,

H1 .

(3)
Define D1 and D0 be the binary decisions in favor

ofH1 andH0, respectively. Then the decision strategy
embedded in the detector of Willie for the kth CU can
be expressed by:

Tk

D0

⋛
D1

τ , (4)

where τ is the detection threshold for Tk.
The detection performance of Willie can be further

normalized by the detect error probability, which is de-
fined as [6]:

ξ = PFA + PMD , (5)

where PFA ≜ P {D1|H0} and PMD ≜ P {D0|H1} are
defined as the false alarm probability and the miss de-
tection probability, respectively.

Willie is expected to optimize the detection thresh-
old τ to achieve the minimum value of ξ denoted as
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Figure 2. Definition of azimuth and elevation angles of IRS.

ξ∗. Thus, the covertness constraint can be written as:

ξ∗ ≥ 1− ϵ, ϵ ∈ [0, 1] , (C2)

where ϵ is a small value which implies the receiver op-
eration characteristic (ROC) curve lies very close to
the line of no-discrimination [23]. Note that to en-
sure LPD for a given covert communication, the key
idea is to artificially create the phase-shift Θi to induce
complex-valued random variable (RV) uncertainties at
Willie. As a result, Willie can not tell the change of
received power either due to the transmission of a spe-
cific CU or the interference from others.

2.2 Channel Model

In general, the position of BS and IRSs are pre-fixed,
and the mobile position of the kth CU in 3D can
be denoted by Ck = [cxk, cyk, czk]. Define the Eu-
clidean distance of BS-ith IRS, ith IRS-kth CU and BS-
kth CU be d0,i, di,k and d0,k, respectively. Then the
corresponding path loss can be calculated as υ0,i =√
ρ0d

−αBI
0,i , υi,k =

√
ρ0d

−αIU
i,k and υ0,k =

√
ρ0d

−αBU
0,k ,

where αBI, αIU and αBU are the corresponding path
loss exponents, and ρ0 is the path loss at 1 meter ref-
erence distance.

As shown in Figure 2, one IRS is deployed in the y−
z plane, and the array steering vector at the direction of
(ϕ, ϑ) is denoted by a(ϕ, ϑ), where ϕ0,k and ϑ0,k are
the azimuth and elevation angles to the normal vector
of UPA itself. For brevity, the azimuth and elevation
angles are defined in the local coordinate system of
each IRS or BS.

According to the 3D Saleh-Valenzuela channel
model, the line-of-sight (LoS) component of BS-ith

IRS, ith IRS-kth CU and BS-kth CU link can be ex-
pressed as:

GLoS
i = υ0,ia0,i(ϕ

AoD
0,i )aH

i (ϕ
AoA
0,i , ϑAoA

0,i ) , (6)

HLoS
i,k = υi,kai(ϕ

AoD
i,k , ϑAoD

i,k ) , (7)

QLoS
k = υ0,ka0,k(ϕ

AoA
0,k ) , (8)

where a0,i =
[
1, ej

2πd
′

λ
sinϕAoD

0,i , · · · , ej
2πd

′

λ
(N−1)sinϕAoD

0,i

]
is the steering vector of BS to the direction of the ith

IRS, ϕAoD
0,i is the azimuth angle-of-departure (AoD) of

BS to the ith IRS. There are similarly definitions for
a0,k and ϕAoD

0,k . Besides, λ is the carrier wavelength
and d

′
is the antenna space at BS.

Furthermore, ϕAoA
0,i and ϑAoA

0,i in Eq. (6) are the az-
imuth and elevation angle-of-arrival (AoA) from BS to
the ith IRS, and ai(ϕ

AoA
0,i , ϑAoA

0,i ) = av
i (ϕ

AoA
0,i , ϑAoA

0,i ) ⊗
ah
i (ϕ

AoA
0,i , ϑAoA

0,i ) is the steering vector of the ith IRS,
where av

i = [av
i,m] ∈ CMv×1 and ah

i = [ah
i,m] ∈ CMh×1

are the steering vector in vertical (z direction) and hor-
izontal (y direction). In Eq. (7), ai(ϕAoD

i,k , ϑAoD
i,k ) is de-

fined similarly.

av
i,m = ej

2πd
′

λ
(m−1)sinϑAoA

0,i , m = {1, · · · ,Mv} . (9)

ah
i,m = ej

2πd
′

λ
(m−1)cosϑAoA

0,i sinϑAoA
0,i , m = {1, · · · ,Mh} .

(10)
In general, mmWave channels consist of only a

small number of dominant paths with a LoS compo-
nent [19]. Due to the severe path loss, the transmit
power of twice or more reflections can be ignored.
In general, since IRSs are densely distributed in the
hotspot space, only LoS model is reasonable [20, 24].
Therefore, BS-ith IRS, ith IRS-kth CU and BS-kth CU
channels are modeled by Rician fading:

Gi =
√

K1

1+K1
GLoS

i +
√

1
1+K1

GNLoS
i , (11)

Hi,k =
√

K2

1+K2
HLoS

i,k +
√

1
1+K2

HNLoS
i,k , (12)

Qk =
√

K3

1+K3
QLoS

k +
√

1
1+K3

QNLoS
k , (13)

where K1, K2 and K3 are Rician factors, and each
non-line-of-sight (NLoS) element in GNLoS

i ∈ CM×N ,
HNLoS

i,k ∈ CM×1 and QNLoS
k ∈ C1×N is independent

and identically distributed (i.i.d.) with a zero-mean
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and unit variance.
Similarly, there are:

Hw,i =
√

K4

1+K4
HLoS

w,i +
√

1
1+K4

HNLoS
w,i , (14)

Ww =
√

K5

1+K5
WLoS

w +
√

1
1+K5

WNLoS
w . (15)

2.3 Problem Formulation

The problem can be formulated to maximize CSE at
downlink by the joint optimization of active beam-
forming of BS and passive beamforming of IRSs with
subject to the maximum transmission power of BS and
the detection error probability of Willie.

P1 : max
pk,Θi

min
k∈K

log(1 + SINRk) , (16)

s.t.
∑K

k=1
∥ pk ∥2≤ Pmax , (C1)

ξ∗ ≥ 1− ϵ, ϵ ∈ [0, 1] , (C2)

θi,m ∈ [0, 2π) . (C3)

Since the detection threshold τ has the effect on both
the false alarm and miss detection probability, the op-
timal value to minimize ξ should be the likelihood
ratio test to make them equal, which is commonly
adopted in the existing researches of covert communi-
cations [23, 25]. However, the resultant expression for
ξ∗ involves incomplete gamma functions, which is not
tractable for subsequent analysis and design. To over-
come the difficulty, according to Pinsker’s inequality,
a lower bound of ξ∗ is given as [25]:

ξ∗ ≥ 1−
√

1

2
D(PFA|PMD) , (17)

where D(PFA|PMD) is the Kullback-Leibler (KL) di-
vergence (also known as ‘relative entropy’) from PFA

to PMD:

D(PFA|PMD) =

[
ln
(
A+B

A

)
−B

A
+B

]
, (18)

where A = |
(∑I

i=1H
H
w,iΘiGi +Ww

)∑K
j=1,j ̸=k pj |

2
+

δ2ω and B = |
(∑I

i=1H
H
w,iΘiGi +Ww

)
pk|

2
.

Therefore, with algebraic manipulations of (C2) and
Eq. (17), P1 can be rewritten with a more stringent

constraint:

P2 : max
pk,Θi

min
k∈K

log(1 + SINRk) ,

s.t.
∑K

k=1
∥ pk ∥2≤ Pmax , (C1)

D(PFA|PMD) ≤ 2ϵ2 , (C2.a)

θi,m ∈ [0, 2π) . (C3)

It should be noticed that the objective function of
P2 is still non-convex with respect to Θi and pk [26],
and (C2.a) is also a non-convex constraint. Besides
the impossibility of obtaining the instantaneous CSI,
it is hard to solve the close-formed solution of P2 by
conventional convex methods in polynomial time.

To this end, a heterogeneous MADRL approach is
a novelty proposed to solve the Joint A&P BF opti-
mization problem where both BS and IRS agents can
be trained with a simple scalar reward feedback from
CUs, and learn to seek a strategy to maximize CSE
spontaneously. Even without the instantaneous CSI,
the model-free nature of DRL can resist the random
small-fast fading. Thus that IRSs can be freed from
the complex channel estimation and the information
sharing with BS can be greatly reduced.

Environment

....

Environment

Agent 0
... Agent I

state transition

Environment

Agent 0
... Agent I

Information

Sharing

(c) Multi-agent decentralized

execution each agent generates its

own individual action by its local 

observation

actions action action

Global Agent

(a) Single-agent centralized

execution: Global agent generate all

actions base on the global observation

(b) Multi-agent with networked

agent each agent generates its own

individual action based on sharing local 

observation via network

observation observationobservation

state transitionstate transition state transition state transition

g

gennnt gennnnnnnntttttt

Figure 3. Different execution schemes of DRL approaches.

III. MULTI-AGENT DRL BASED OPTI-
MIZATION OF TRANSMIT BEAM-
FORMING AND PHASE SHIFTS

3.1 Motivation of MADRL

As shown in Figure 3, there are three different execu-
tion schemes of DRL approaches [27].

• Figure 3 (a) known as the single-agent central-
ized execution, takes the whole system as a sin-
gle global agent and embeds a central controller
to aggregate all the related information for train-
ing. Although such centralized DRL scheme
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has achieved great success in computation vi-
sion [28], it may not be practicable for distributed
communication systems.

• Although there are multiple agents in the scheme
of Figure 3 (b), all the agents still need to share
their local information spreading across the net-
work, which will lead to a great amount of com-
munication overhead. So it belongs to a semi-
decentralized approach.

• The proposed learning approach for the
Joint A&P BF optimization takes the fully-
decentralized scheme shown as Figure 3 (c).
Once well trained, each agent can work individ-
ually by its local observation without any extra
information exchanging with each other.

It should be further noticed that there are two types
of agents with tailored action and state space in the
proposed heterogeneous MADRL approach, i.e., BS
agent and IRS agent. Each agent is trained to learn
the cooperation with others by a simple SINR reward
feedback from CUs. By introducing the distributive
architecture and heterogeneous agents to MADRL, the
complex channel estimation can be avoided and the
huge compunction overhead can be reduced.

3.2 Heterogeneous MADRL for Joint A&P BF

As shown in Figure 4, there are I + 1 agents (i.e., I
IRSs and one BS) involved in the system. Let ait, s

i
t, r

i
t

be the action, state, and reward of the ith agent at the
tth slot, respectively, where i ∈ I+ and I+ = 0 ∪ I
(i = 0 represents BS). To interact with the environ-
ment, each agent incrementally updates the reflecting
matrix Θi or the beamforming vector pk to pursue a
better reward. For notion brevity, the paper takes su-
perscript and subscript to denote the agent number and
the training episode, respectively.

• Action: When i = {1, · · · , I}, action ait = Θi[t]

is defined as the reflecting matrix of each IRS
agent. While when i = 0, action a0t = P[t] =

{p1, · · · ,pK} is the active beamforming vector
of BS agent. Action can be either continuous or
discrete, which depends on the quantization of el-
ements at IRS and RF chains at BS.

• State: State sit = {Ck[t], Cw}(k ∈ K) is the po-
sition of all CUs and Willie. State for all agents
including IRSs and BS is the same.

IRS1BS
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P 1
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0

Ñμ
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1
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I
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I
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Execution
Training

Figure 4. Learning architecture of heterogeneous MAD-
DPG.

• Reward: Since it is difficult for P2 to distinguish
the contributions of each agent, the reward for all
agents is uniformly defined as:

rit = min
k∈K

SINRk + η(2ϵ2−D(PFA|PMD)) , (19)

where η is the penalty factor that squeezes the net-
work to avoid violating constraint (C2.a). Since
constraints (C1) and (C3) are related to action,
they are easy to be satisfied by discarding the vi-
olated action during training.

By leveraging the non-linear approximation capabil-
ity of neural networks, BS and each IRS in MADRL
can be treated as a single agent and learn to map its
observation into a proper action by training network
parameters. As a result, they can make the immediate
passive and active beamforming without perfect CSI.

3.3 Learning of MADDPG

By extending deep deterministic policy gradient
(DDPG) into the multi-agent domain, MADDPG not
only eliminates the drawback of traditional Q-learning
or policy gradient methods that are inadequate for
multi-agent environments, but also reserves the great
advantage of DDPG that the action and state space can
be continuous rather than discrete. Thanks to the fea-
ture of ‘centralized training and decentralized execu-
tion’, each BS or IRS in MADDPG is trained as an
individual agent and learned by interacting with the
environment.

The global state and global action are defined as the
concatenation of each single agent, i.e. At = [a0t :
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ait],St = [sit] where i ∈ I+ andAt,St ∈ CN×K+M×I .
Reward is a simple scalar defined in Eq. (19). Each
agent in MADDPG has two networks, i.e., an actor
network and a critic network.

• Actor i, a policy-network denoted by πi, takes the
current state sit as the input with parameters µi and
outputs the action ait = π(sit|µi). It is updated by
µi
t+1 = µi

t+αµ∇µJ(µ), where αµ is the step size
for parameters updating. Each agent aims to learn
a policy to maximize the cumulative historical re-
ward, i.e., Ji(µ) = E[

∑∞
t=0 γ

trit], where γ is the
discount factor.

• Critic i, a value-network denoted by Qi, out-
puts the policy gradient ∇µJ(µ

i) for actor πi

to evaluate the fitness of action ait by a com-
prehensive consideration of the global state and
action. The network parameters ρi are updated
by minimizing the temporal difference (TD) er-
ror with Q-value of each global action-state pair
Qi(St,At|ρi), where ρit+1 = ρit + αρ∇ρQ

i, and
αρ is the step size for parameters updating.

During training, the deep coupling among agents
(BS and multi-IRS have to work together to enhance
CSE at downlink) can also be investigated by the net-
work. Each agent collects the action and state of other
agents to construct the global pair (St,At), and takes
SINRk measured at CU receivers to calculate the re-
ward according to Eq. (19).

During execution, the well trained agents can output
the best action Ai independently without resorting to
others. It is a great advantage to significantly reduce
the interaction between BS and IRS controllers.

Both the actor and critic network further have two
sub-networks, i.e., an on-line network and a tar-
get network for soft updating to overcome the over-
estimation [29]. Besides, there are M transitions
{St,At, r

i
t,St+1} randomly selected as the mini-batch

for training to avoid highly correlated action for suc-
cessive updating. The details of heterogeneous MAD-
DPG algorithm for Joint A&P BF optimization are
shown in Algorithm 1.

3.4 MADDPG Implementation on IRSs

Although passive IRSs do not have an RF chain, it
is not contradictory for them to be equipped with the
computing capability. The embedded controller of IRS
can be wirelessly connected with BS through an inde-

Algorithm 1. Heterogeneous MADDPG for Joint A&P BF Op-
timization

Input: Gi, Hi,k, Hw,i, Qk and Ww, the positions of
CUs, IRSs and Willie

Output: optimal action ai = {pk,Θi}
1: Initialization : experience replay memory O,

training actor network parameter µi, training critic
network parameter ρi, transmit beamforming ma-
trix pk, phase matrix Θi

2: for episode = 1→ max− episode do
3: Initialize a random process
4: Receive initial state S0
5: for t = 1→ T do
6: For each agent i, select action At w.r.t. the

current policy and exploration from the actor
network

7: Execute actions At = [a0t : ait] and observe
reward rit and new state St+1

8: Store (St,At, r
i
t,St+1) in replay buffer O

9: St ← St+1

10: for agent i = 0→ I do
11: Sample a random minibatch of M samples

from O

12: Set yi = rit + γQi′(St,A′
t|ρi

′
)

13: Update critic by minimizing the loss

14: ℓm = 1
ME
[
(yi −Qi(St,At|ρm))

2
]

15: Update actor network parameter by policy
gradient:
µi
t+1 = µi

t + αµ∇µJ(µ)

16: where αµ is the stride for parameter updat-
ing and∇µJ(µ) is the gradient of µi

17: Update target network parameters:
18: ρi

′

t+1 ← τρit + (1− τ)ρi
′

t

19: µi′
t+1 ← τµm

t + (1− τ)µi′
t

20: t = t+ 1

21: end for
22: end for
23: end for

pendent control channel, which is a general setup of
IRS and enough to enforce the neural network training
and execution [30, 31].

• The embedded controller of the IRS randomly
generates the phase shift as an action. As a con-
sequence, the reward related to the SINR of CUs
and the detection probability of warden can be in-
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ferred according to Eq. (19).

• The location of the warden can be detected from
the local oscillator power which is unintentionally
leaked from its radio frequency front end [32].
Therefore, the detection probability of warden can
be calculated by Eq. (18), and the SINR of CUs
can be feedback to BS through the independent
control channel of BS.

With the global action, state and reward, each IRS
can be taken as an independent agent to interact with
the environment and then update phase shift matrix.

IV. COMPLEXITY ANALYSIS

4.1 Computation Complexity

Since the heterogeneous MADDPG proposed in the
paper is distributive, each agent (no matter BS or IRSs)
has its own neuron networks which can be trained and
executed in parallel. In general, the complexity can be
estimated by the neural network configuration listed
in Table 2 in terms of the floating-point operations per
second (FLOPS).

Let ℓA,j be the number of neurons in the jth layer of
actor, and ℓC,l be that in the lth layer of critic, where
j ∈ {0, 1, · · · , J}, l ∈ {0, 1, · · · , L} and J, L are the
number of layers for the actor and critic networks, re-
spectively. For a fully connected layer with ℓj neurons
as the input and ℓj+1 neurons as the output, the dot
product of FLOPS from the jth to the (j + 1)th layer
should be (2ℓj − 1)× ℓi+1.

Table 2. MADDPG neural networks configuration

Agent Type Layer Neuron Number Activation
Function

Input 3*(K+E)† Relu

Actor Hidden 2 layers with 128 Relu

BS/ Output NK+IM‡ Sigmod

IRSs Input 3*(K+E)+NK+IM∗ Relu

Critic Hidden 2 layers with 128 Relu

Output 1⋆ /

†Actor input is St = {Ck[t], Cw} with the dimension of 3∗(K + E).

‡Actor output is At = [a0t : ait] with the dimension of NK + IM .

∗Critic input is {St +At} with the dimension of 3∗(K + E) +NK + IM .

⋆Critic output is the policy gradient value scalar. So the dimension of IRSs and BS are 1.

The neurons output is passed by a specific activation
function. For example, Sigmod function has κsigmod =

4 FLOPS because the function δ(z) = 1/(1 + e−z)

has four mathematical operations, i.e., division, sum-
mation, exponentiation and substation, and each of
them needs one FLOPS. Similarity, rectified linear
unit (ReLU) function has κReLU = 1 FLOPS.

Therefore, the time complexity for training is:

2
J−1∑
j=0

((2ℓA,j − 1)ℓA,j+1 + κjℓA,j+1)

+2
L−1∑
l=0

((2ℓC,l − 1)ℓC,l+1 + κlℓC,l+1)

= O(
J−1∑
j=0

ℓA,jℓA,j+1 +
L−1∑
l=0

ℓC,lℓC,l+1) .

The time complexity is reduced to
O(
∑J−1

j=0 ℓA,jℓA,j+1) during the distributive exe-
cution.

Space is needed to store the learning transition.
The memory for one fully connected network is a
(ℓj × ℓj+1) matrix and a ℓj bias vector. So the space
complexity is:

2
J−1∑
j=0

(ℓA,j + 1)ℓA,j+1 +

L−1∑
l=0

(ℓC,l + 1)ℓC,l+1 +M

= O(
J−1∑
j=0

ℓA,jℓA,j+1 +

L−1∑
j=0

ℓC,lℓC,l+1 +M) ,

where M is the size of mini-batch.
The space complexion is declined to
O(
∑J−1

i=0 ℓA,jℓA,j+1) for distributive execution.

4.2 Communication Overhead

As defined in Sec. 3.2, the global state S = [sit] and
the global action A = [a0t : ait] should be shared
among each agent, where st ∈ C3(K+E), a0t = P[t] ∈
CN×K and ait = Θi[t] ∈ CM . Thus the size of S and
A should be 3(K + E) and NK + IM , respectively.

Besides, a scalar reward will be feedback to each
agent during training, which leads to the communica-
tion overhead be 3(K+E)+(NK+IM)+K. Simi-
lar to the computation complexity, the communication
overhead is declined to 3(K + E) for both BS agent
and IRS agents during execution.

China Communications 9



Table 3. Simulation parameters

Parameter Description Value

I Number of IRS 2

K Number of CU 2

N Antenna number of BS 32

Mh Number of horizontal elements at IRS 5

Mv Number of vertical elements at IRS 5

M = Mh ×
Mv

Number of an IRS elements 5× 5

λ Carrier wavelength 0.125m

Pmax Maximum transmission power of BS 30dBm

ϵ Covertness constraint 0.001

δ2ω Variance of noise power -80dBm

αBI, αIU, αBU BS-IRS, IRS-CU, BS-CU link path
loss exponential, respectively [33]

2.2, 3, 6

αIW, αBW IRS-Willie, BS-Willie link path loss
exponential, respectively

3, 6

K1,K2,K3 BS-IRS, IRS-CU and BS-CU link Ri-
cian factors, respectively[34]

6, 6, 6

K4,K5 IRS-Willie and BS-Willie link Rician
factors, respectively

6, 6

ρ0 Channel gain at reference of 1 meter
distance

-30dB

γ Discount factor 0.95

η Penalty factor 5

O Size of Replay Buffer 20000

M Size of minibatch 256

V. SIMULATION RESULTS

Consider an IRS-assisted covert communications sys-
tem that there are I = 2 IRSs equipped with M =

5× 5 elements each between BS with N = 32 anten-
nas and K = 2 CUs detected by a warden. As shown
in Figure 6 (a), the position of BS, CUs, as well as
Willie is set as (0, 0), {(50, 0), (85, 10)} and (60, 20) in
meter of a two-dimensional plane, respectively. IRSs
are mounted at {(70, 30), (100, 30)} with the height
of 20m. On the basis, the path loss exponents of BS-
IRS, IRS-CU, and BS-CU links denoted as αBI, αIU

and αBU are set as 2.2, 3 and 6 respectively. The de-
tailed simulation parameters are provided in Table 3.

5.1 Algorithm Convergence

Figure 5 depicts the convergence of different ma-
chine learning algorithms in terms of CSE, i.e., Q-

Figure 5. Convergence of different algorithms.

learning, deep Q network (DQN), DDPG, multi-
agent deep Q network (MADQN) and MADDPG. The
weighted minimum mean square error (WMMSE) al-
gorithm [35] which is generally used for utility maxi-
mization problems is taken as the benchmark for com-
parison.

• Although the weight matrix is able to transform
the original problem to be a convex optimization
which can converge in limited iterations, the ob-
ject function will be monotone decreased by each
transformation. As a result, the covert spectrum
efficiency finally converges to a local optimum
which is far less than the value learned by DRL
based methods.

• Q-learning performs poorly in this scenario (ac-
tually it works well when there is only one IRS
equipped with 3*3 elements.). Since the lack of
global observation, channels state is time-varying
which makes the environment non-stationary.
Along with the system scale, the fast growing
size of Q-table makes the training difficult to er-
godic all possible statuses, and agents are pre-
vented to use past experience to replay in straight
forward [36].

• All the other four DRL based algorithms can be
converged along with the training episodes. How-
ever, since DQN and MADQN are value-based
learning methods like Q-learning, they are de-
feated by the policy-based DDPG and MADDPG.
Without the critic network, DQN and MADQN
can only generate the action from their experience
in a discrete space. On the contrary, DDPG and
MADDPG learn to generate a deterministic ac-
tion from the distribution of state, which implies
that each agent is able to infer a better action even
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when one state has not been experienced during
training.

• Compared with centralized learning approaches,
i.e., DQN and DDPG, the multi-agent learning
scheme, i.e., MADQN and MADDPG can further
stimulate agents to obtain a better reward due to
the fact that each agent can be trained distribu-
tively to maximize its own reward rather than the
global value.

5.2 Visualization of SINR Map

Table 4. Algorithm execution time comparison†

IRSs size Time 2IRSs,2CUs 3IRSs,3CUs 4IRSs,3CUs

3×3 UPA training 1359.942s 1510.467s 1544.883s

execution 0.000256s 0.000346s 0.000367s

5×5 UPA training 1476.827s 1708.033s 1927.322s

execution 0.000292s 0.000352s 0.000388s

7×7 UPA training 1702.583s 2016.760s 2203.481s

execution 0.000328s 0.000391s 0.000404s

8×8 UPA training 1768.496s 2082.822s 2208.843s

execution 0.000354s 0.000576s 0.000631s

†The algorithm training and execution time are calculated on the platform with Intel
Core(TM) i5-11400 2.60GHz CPU and 8GB memory.

Figure 6 further demonstrates the scalability of
MADDPG based Joint A&P BF optimization in more
complex scenarios by visualizing the SINR map of
each individual CU, i.e., 2 IRSs with 2 CUs, 3 IRSs
with 3 CUs and 4 IRSs with 3 CUs in (a)-(c) respec-
tively.

• SINR map provides insight into the quality of re-
ceived signals based on the position of CUs, by
which the level of interference and noise relative
to the desired signal strength can be observed.
The higher the SINR value, the better the com-
munication quality.

• Obviously, SINR of each CU can only be signif-
icantly enhanced in a directed manner at a ded-
icated position. While the extremely low SINR
value indicates that the system is robust against
unauthorized access and ensures the confidential-
ity of legitimate communications. Those phe-
nomenons serve as a strong validation of the ef-
fectiveness of the proposed approach in achieving
targeted signal enhancement for individual user.

• Table 4 presents the training and execution time
of the proposed heterogeneous MADDPG algo-
rithm for the Joint A&P beamforming optimiza-
tion. Since the global status and action sharing are
inevitable to evaluate the fitness of actors which
map the local state to a proper action, the train-
ing process is time-consuming. However, thanks
to the ‘centralized training and distributed exe-
cution’ feature of MADDPG, once well-trained,
each agent can work independently and immedi-
ately without interacting with others.

• Even though the different scenarios, the system
scale has little effect on the effectiveness of the
algorithm and the conclusion of all simulations.
To save space and avoid too many curves in each
figure, we just take the scenario of 2 IRSs with 2
CUs as an example for the following simulations
without discussing the scalability anymore.

5.3 Impact of IRSs Size

Figure 7 (a) and (b) demonstrate the impact of IRSs
size on both the spectrum efficiency of CUs and the
channel power gain received at Willie, respectively.
The IRSs size is changing at the set of {3 × 3, 5 ×
5, 7× 7, 8× 8}. The A&P BF-only (No-IRS) scenario
is taken as the benchmark that there is no IRS working
between BS and CUs.

• As the increment of IRSs size, CSE will be grad-
ually enhanced while the channel power gain
received at Willie is suppressed simultaneously,
which reveals the potential of IRSs in covert
communications. In specific, the KL diver-
gence is a monotonically increasing function of
|
(∑I

i=1H
H
w,iΘiGi +Ww

)
pk|2, which reduces

along with the IRSs size. As a result, CUs are al-
lowed to take a higher transmission power without
violating the covertness constraint.

• It is reasonable that CSE also improves when BS
enhances the transmission power. Although the
larger channel power gain received at Willie limits
the transmission power of CUs to satisfy the more
rigorous covertness constraint, the strengthened
signals quality of BS helps to effectively over-
come the signal attenuation and interference dur-
ing the transmission which finally makes a posi-
tive effect on the system performance.
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Figure 6. SINR map with more IRSs and CUs in the system.

Figure 7. System performance along with IRS size.

5.4 Impact of Covertness Constraint

The covertness constraint also plays an important role
on the system performance.

• Figure 8(a) compares CSE under different
levels of covertness constraint, i.e., ϵ ∈
{0, 0.01, 0.005, 0.001}, along with the transmis-
sion power of BS. According to (C2) (i.e., ξ∗ ≥
1 − ϵ), ϵ is a small value used to restrict the in-
formation received by Willie. When ϵ = 0, CUs
intend to achieve the perfect concealment, which
implies a 100% probability of false detection and
missed detection (i.e., ξ∗ = 1). IRSs must contin-
uously adjust the phase shift to prioritize the secu-
rity and privacy of CUs and minimize the amount
of information leaked to Willie. As the value of ϵ
increases, the more relaxed requirement for con-
cealment (e.g., when ϵ = 0.01, ξ∗ = 0.99; when
ϵ = 0.001, ξ∗ = 0.999) allows each agent in
MADDPG to obtain a better reward.

• Figure 8(b) further details the minimum value of
ξ∗ in the present of A&P BF-only, IRS1-only,
IRS2-only and IRS1&2 respectively when ϵ =

0.001. Without the action of IRS, the covertness
constraint can not be satisfied anymore when the
transmission power of BS is larger than 20dBm.
Easily understood, there will be a more optimal
value of ξ∗ when two IRSs work together. Inter-
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Figure 8. System performance along with covertness con-
straint.

estingly, the value of ξ∗ by IRS1-only is better
than that of IRS2-only. That is because IRS2 is
more far away from the base station. Thus, sig-
nals passing through IRS2 will become relatively
weak due to the free space path loss.

5.5 Impact of NLoS Component

Most existing literature related to IRS-assisted covert
communications holds a common assumption that the
small-scale fading is the same in current environments,
i.e., BS-IRS, IRS-CU, and BS-CU channels share the
same Rician K-factor [1, 21, 34] .

Since the K-factor represents the ratio of LoS sig-
nals power to the scattered multi-path signals power
in Rician fading channels, Figure 9 tends to discuss
the covert spectral efficiency when the K-factor is
set at different values. The larger the K-factor, the
greater the dominant component of LoS. In particu-
lar, the channel model degrades to LoS channel when
‘K-factor → ∞’ or Rayleigh fading channel when
‘K-factor = 0’ [20].

• Along with the value of K-factor increases,
LoS gradually becomes the dominant component

Figure 9. System performance along with K-factor.

which results in stronger and more reliable signal
reception and thus a better spectrum efficiency.
On the other hand, the multi-path components be-
come more significant when K-factor is at a small
value. The severe signal dispersion and potential
interference will inevitably degrade the channels
condition and the system performance.

• Note that even when more NLoS components are
in the propagation, CSE is still satisfying. The
reason can be interpreted that MADDPG works
depending on the actual feedback reward rather
than the channel estimation which is generally
difficult to be obtained due to the time-varying
multi-path delay spread and the resultant convo-
lutions time-domain channel responses.

5.6 Performance Comparison with PBF-only
Scenario

Figure 10 compares the system performance with
PBF-only (i.e., the transmission power of BS is set at
a fixed value) and Joint A&P BF schemes.

• No matter PBF-only or Joint A&P BF scheme, the
spectrum efficiency of each CU as well as the to-
tal value can be greatly enhanced when both IRS
1&2 are deployed together. As aforementioned,
since IRS1 is located geographically close to BS,
it reflects more energy in a larger range, which
leads to less radio spatial dissipation and better
CSE.

• Compared with PBF-only, not only the spectrum
efficiency of each CU can be further improved,
the fairness among CUs can also be guaranteed by
Joint A&P BF. That is because when BS works
as an independent agent by Joint A&P BF, it is
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Figure 10. CSE comparison of PBF-only and Joint A&P
BF.

driven to balance the transmitting power to com-
pensate different path loss caused by attenuation.
Besides, multiple IRSs can also cooperate beam-
forming for remote CUs.

VI. CONCLUSION

Different from the existing researches that do not
consider the cooperation of multi-IRS and the active
beamforming of BS, the paper focuses on tackling the
Joint A&P BF optimization problem for IRS-assisted
covert communications with low detection probability
at warden. Facing the challenge of obtaining instanta-
neous CSI covertly by traditional pilot-based channel
estimation methods, the machine learning based ap-
proach is adopted where each agent can learn from its
historical action by a simple scalar reward feedback
from CUs, which helps to avoid the complex CSI esti-
mation and hardware design. Besides, the distributed
execution feature of MADDPG further reduces the
communication overhead caused by information shar-
ing.

Although the paper only discusses the joint beam-
forming for covert communications in downlink, such
approach can also be applied in uplink for IRS-assisted
time-division duplexing (TDD) MIMO systems due to

the uplink-downlink channel reciprocity. With respect
to the frequency-division duplexing (FDD) systems,
the approach can also be taken into action with the
scalar reward feedback from BS instead.
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