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The relations expressed in user queries are vital for cross-modal information retrieval. Relation-focused cross-
modal retrieval aims to retrieve information that corresponds to these relations, enabling effective retrieval
across different modalities. Pre-trained networks, such as Contrastive Language-Image Pre-training networks,
have gained significant attention and acclaim for their exceptional performance in various cross-modal learning
tasks. However, the Vision Transformer (ViT) used in these networks is limited in its ability to focus on image
region relations. Specifically, ViT is trained to match images with relevant descriptions at the global level,
without considering the alignment between image regions and descriptions. This article introduces VITR, a
novel network that enhances ViT by extracting and reasoning about image region relations based on a local
encoder. VITR is comprised of two key components. Firstly, it extends the capabilities of ViT-based cross-modal
networks by enabling them to extract and reason with region relations present in images. Secondly, VITR
incorporates a fusion module that combines the reasoned results with global knowledge to predict similarity
scores between images and descriptions. The proposed VITR network was evaluated through experiments
on the tasks of relation-focused cross-modal information retrieval. The results derived from the analysis of
the Flickr30K, MS-COCO, RefCOCOg, and CLEVR datasets demonstrated that the proposed VITR network
consistently outperforms state-of-the-art networks in image-to-text and text-to-image retrieval.
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1 Introduction

Due to the escalation of multi-modal multimedia data [43, 52], cross-modal information retrieval
has gained significant prominence. Relation-focused cross-modal information retrieval focuses on
extracting information that aligns with the relations expressed in user queries, and it is particularly
relevant for the development of next-generation search engines. Such capability will result in
improved retrieval and ranking performance since the results will be more relevant to the user’s
query than when relations are not considered. Consider, for example, Figure 1, which shows a
description query containing relations, such as ‘person holding food’. A system that considers
relations of image regions will rank images (e.g., Figure 1(a)) featuring a person holding food as
more similar to the query than images (e.g., Figure 1(b)) depicting people and food separately.

Current works use Visual-Semantic Embedding (VSE) networks to embed image—-description
pairs in a shared latent space and calculate similarity scores for retrieval tasks [15]. Pre-trained
VSE networks have recently gained popularity in various cross-modal tasks [5, 6, 30, 47], with
the Contrastive Language-Image Pre-Training (CLIP) network [36] achieving state-of-the-art
performance in cross-modal information retrieval. CLIP employs a pre-trained Vision Transformer
(ViT) and a transformer-based text encoder to encode images and descriptions into a shared
embedding space. ViTs use the self-attention mechanism from transformers, allowing the model
to capture long-range dependencies and intricate patterns in the input data, resulting in a rich
contextual understanding of the visual modality and improved cross-modal understanding [34].

ViTs have been extensively studied for cross-modal information retrieval, but there is still room
for improvement, particularly in relation-focused tasks. ViTs divide images into small blocks [29],
which can result in a loss of local information compared to Convolutional Neural Networks
(CNNss) [44]. This limitation becomes apparent when applying ViT-based pre-trained VSE networks
to relation-focused tasks, as the models exhibit weak local perception abilities for images and have
limited capacity to align image regions with corresponding descriptions. Additionally, the ViT used
in contrastive learning [36] connects with a convolutional layer, its primary design objective is to
capture global image features rather than aligning image regions with corresponding descriptions
[12, 34]. Modifying the internal structure of the transformer to enhance ViTs ability for capturing
local image information may result in potential drawbacks in cross-modal tasks, such as the risk of
losing global context.

To address the limitations of ViTs in relation-focused cross-modal information retrieval tasks, this
article proposes a novel network named ViT-Relation-Focus (VITR). VITR provides relational
reasoning of image regions that are extracted by a local encoder and fuses these relations into
the pre-trained ViT for relation-focused cross-modal information retrieval tasks. In this article,
relational reasoning involves extracting relevant relations between image regions and generating
relation-focused local representations of the image to improve cross-modal information retrieval
performance. The contributions of this article are as follows:

—The proposed VITR network extends the capabilities of pre-trained networks for focusing on
the relationships between image regions and their corresponding descriptions. VITR incorpo-
rates a ViT encoder and a text encoder to obtain pre-trained global representations of images
and descriptions, along with a CNN-based local encoder for capturing local representations of
images. VITR employs a fusion module that integrates the global and local representations of
images and descriptions to predict the similarity scores of image and description pairs. While
the foundational concepts of relation-focus are rooted in the vision-language domain, VITR
significantly extends and innovates upon these ideas by introducing the fusion module. The
fusion module enhances the ViT’s ability to capture and reason about image region relations
based on fused local and global information.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 9, Article 220. Publication date: October 2024.



Augmenting ViTs with Relation-Focused Learning 220:3

Fig. 1. A retrieval system that considers region relations will rank the image (a) of ‘a person holding food’ as
more relevant to the query description than the image (b) of just ‘people and food’.

—VITR leverages a new type of relational reasoning module that first models an image’s regions
and their relations using a relational graph, then generates local representations aligned with
the image’s description. Incorporating relation-focused local image representations into VITR
improves cross-modal information retrieval performance.

—Inspired by the pre-ranking-reranking strategy, this article develops a module for VITR, named
turbo, which selects the top N relevant candidates for the query and sends the necessary
candidate embeddings or global representations to relevant modules for further ranking
finalisation. The turbo module results in reduced computation time for VITR.

—Extensive experiments were conducted to evaluate VITR on the benchmark datasets Flickr30K
and MS-COCO, as well as on RefCOCOg and CLEVR, which involve relation-focused descrip-
tions. VITR outperformed various other state-of-the-art networks, namely CLIP, VSRN++,
and VSEco, in both image-to-text and text-to-image cross-modal information retrieval tasks.

The rest of the article is organised as follows: Section 2 summarises the related work, Section 3
elaborates on the proposed VITR, Section 4 demonstrates the experimental results, Section 5
presents the visualisation results, and Section 6 concludes our work.

2 Related Work
2.1 VSEs

Faghri et al. [11] unveiled VSE++, an elevated VSE architecture that incorporates a fully connected
neural network to generate the representations of image features extracted by a faster R-CNN [37]
and a Gated Recurrent Unit (GRU) network [7] to generate the representations of descriptions.
Wang et al. [41] introduced a rare-aware attention network, which aims to address the long-tail
effect in image and text matching by exploring and exploiting rare textual content. Lee et al. [19]
introduced an attention network designed to unveil the complete latent alignments between image
regions and their respective descriptive words. Li et al. [24] introduced the Visual Semantic Rea-
soning Network (VSRN), designed to augment image features using image region relationships,
these relationships being extracted via a Graph Convolutional Network (GCN) [49]. Later,
Li et al. [25] improved the VSRN by upgrading it to VSRN++, which replaces the word2vector
embeddings with pre-trained BERT [9] embeddings. Chen et al. [2] proposed a variant of the VSE
network, VSEco, which leverages a generalised pooling operator to discern the most effective
strategy for pooling the representations of images and descriptions. Diao et al. [10] introduced a
Similarity Graph Reasoning (SGR) network for constructing and reasoning with a graph from
attention results, and the Similarity Attention Filtration network for isolating crucial information
within these results.
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2.2 Pre-Trained Networks for VSEs

The development of pre-trained networks for cross-modal information retrieval has progressed
significantly in recent years [5, 6, 13, 30, 47, 51]. Chen et al. [5] presented UNITER, a model
that serves as a universal image-text bridge, meticulously pre-trained on four distinct image-text
datasets. This network accommodates a diverse array of vision-and-language tasks, generating
joint multimodal embeddings through four dedicated pre-training tasks. Yu et al. [47] put forth a
methodology that leverages structured knowledge from scene graphs to boost joint representation
learning in tasks that intersect vision and language. Lu et al. [30] proposed a novel collaborative two-
stream vision-language pre-training approach for image-text retrieval that enhances cross-modal
interaction through instance-level alignment, token-level interaction, and task-level interaction.
Recently, Radford et al. [36] proposed the pre-trained CLIP which applies contrastive learning to
align the global visual representations and textual representations from a dataset including 400
million image—description pairs. The architecture of CLIP involves (1) a text encoder which aims to
embed the description as a dimension-reduced representation; (2) an image encoder, commonly
using ViT, which aims to embed the image as a representation with the same dimension as the
description representation. CLIP has been applied in many tasks recently, such as e-commerce
image retrieval [31], video-text retrieval [32], and text-image generation [38]. However, the pre-
trained networks, especially CLIP, still lack the ability to effectively match local information in
images to their descriptions in cross-modal information retrieval tasks.

2.3 State-of-the-Art Two-Stage Pre-Trained VSE Networks

Li et al. [23] introduced a contrastive loss to Align the Image and Description Representations
Before Fusing (ALBEF) them through cross-modal attention, which creates coherent and grounded
multi-modal representations. Li et al. [26] proposed a Multi-Level Semantic Alignment Network
for Vision-Language Pre-Training (MVPTR) that enhances semantic alignment across multiple
levels by incorporating high-level concepts and a two-stage learning framework, improving per-
formance on image-text retrieval tasks. Zhang et al. [48] presented a Refined Vision-Language
Modeling (RVLM) network that leverages a homonym sentence rewriting algorithm for token-
level supervision and refined contrastive and matching tasks, enhancing multi-modal alignment
without object annotations. Li et al. [22] implemented a multi-modal mixture of encoder-decoder,
Bootstrapping Language-Image Pre-Training (BLIP) network, which utilises noisy data from
the web by bootstrapping the descriptions of images, where a captioner generates synthetic de-
scriptions and a filter removes the noisy ones. While the above networks employ transformer
architectures to apply cross-attention between image regions and descriptive words, they do not
fully explore the relational reasoning within images.

2.4 Relational Reasoning Methods

Graphs are invaluable for representing and analysing relations [17, 18, 35]. In recent years, graph-
based methods have shown an efficient way of reasoning with relations [3, 39, 40, 45, 50]. For a
scene graph generation task, Lin et al. [27] explored the atom correlation-based graph propagation
which incorporates prior knowledge in a more stable and comprehensive way, and Cuiet et al.
[8] proposed a framework for visual relationship detection that uses word semantic and visual
scene graphs to capture global context interdependency among object instances. For cross-modal
information retrieval, Cao et al. [1] introduced a graph-based relation-aware attention module to
weigh image fragments based on the pairwise relations of the fragments, and Li et al. [25] applied a
GCN to extract relations between image regions and used the extracted relations to enhance image
features. Chen et al. [4] proposed a Two-Stream Hierarchical Similarity Reasoning (TSHSR)
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network for image-text matching, utilising hierarchical similarity reasoning and a two-stream
architecture to enhance matching by exploiting multi-level hierarchical similarity information and
decomposing the matching into image-to-text and text-to-image levels.

3 Proposed VITR Network

Overview. The proposed VITR network is illustrated in Figure 2. Given an image I and a description
D, VITR aims to embed the pair (I, D) into the shared latent space for predicting its similarity score
s(I, D). VITR comprises: (1) A text encoder which encodes the description D to incorporate pre-
trained language knowledge. (2) A ViT encoder and a CNN-based local encoder which encode the
image I and its regions as a global representation and a set of features respectively. (3) A relational
reasoning module that represents image regions in relations and generates local representations
of the image regions based on their descriptions. (4) A fusion module that predicts the similarity
score s(I, D) based on fusing the results of VITR’s relational reasoning module and pre-trained
knowledge using a sequence-optimised graph network.

3.1 Encoding the Description

VITR utilises a pre-trained text encoder (e.g., CLIP’s text encoder [36] or pre-trained BERT [2]). This
module encodes the description D as a global representation vector u8°® € R% and a collection
of word embedding vectors U = {uy, ..., u,}, where n is the number of words in the description
and u; € R% is the jth word embedding vector with dimension d;. The output of this module is
(U, uglob).

3.2 Encoding the Image

VITR encodes the image using two components. The ViT encoder utilises a pre-trained ViT network
based on cross-modal learning, such as the image encoder of CLIP’s ViT model. This module encodes
an image I as a global representation vector v8°" € R% . The local encoder utilises a pre-trained
CNN to encode the image I into a set of regional representations:

CNN(I) =V ={oy,...,0},

where each feature v; € R% encodes a salient region of the image and k is the total number of
regions. The output of this module is (V, v8!°P). Examples of such CNN networks include the image
encoder of CLIP’s ResNet model [36] or the ResNet backbone of Faster-RCNN [37].

3.3 Proposed Relational Reasoning

This section presents the methodology of the relational reasoning module. The comprehensive
relational reasoning process within the module is visually represented in Figure 3. Firstly, the
relational reasoning module aims to generate a relational matrix based on the pairwise relationships
of image regions through the graph neural network. Then, the relational matrix subsequently weighs
the features of the image regions, aiming to enhance the regions in relation. Finally, the alignment
of the image regions with descriptive words ensures that only those image regions and their
relationships associated with the descriptions are enhanced. The details and equations of the
relational reasoning module are described as follows.

For further computation with crossing modalities, the elements of V and U are projected into a
unified dimension d3 as follows:
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Fig. 2. An overview of the proposed VITR. VITR consists of: (1) a pre-trained text encoder that provide
pre-trained language knowledge of an image’s description; (2) a pre-trained ViT encoder that encodes an
image as a global representation, and a CNN-based local encoder that extracts features from image regions;
(3) a relational reasoning module that models the relations between regions in an image and generates local
representations of the regions based on their descriptions; and (4) a fusion module that fuses the outputs
from relational reasoning and pre-trained knowledge through a sequence-optimised graph network, and
outputs the similarity score between the image I and description D.
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Fig. 3. Diagram of the relational reasoning module, where ‘Cat’, ‘Cov’, and ‘T’ denote the operations of
concatenation, convolution, and transposition, respectively.

where the weight parameters W° and W* are both the fully connected layers with ds output
neurons. Here, v} € R% is the projected vector corresponding to the ith region. Similarly, u; € R
is the jth embedding vector for the jth word in the description. Finally, set V* = {0},...,0;} and
U'={u],...,uy}.

The regions of an image and their relationships are represented using a multi-layer graph neural
network. Let R € R**¥ be a matrix of relations of regions and computed whose element (i, [), for
any 1 < i,/ <k, is

[Rliz = W (0]) "W (v)), (1)
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where the weight parameters W?! and W' are both fully connected layers with ds output neurons.
From this, a matrix of pairwise relations of regions is computed as

RPY = o(WRi (cat[RT, R])),

kxk

where cat denotes row-wise concatenation and ¢ denotes the tanh activation function. The weight
parameter WX is a One-Dimensional convolutional layer (kernel size 1; k output channels). Addi-

tionally, let R™™ = (ri““, ces r;cnn) € R¥ hold the inner information for each vector in V*:

rm = o(WR (o)) € R,

where the weight parameter W* is a fully connected layer with one output neuron. Merge RP™
and R™ into R® as

R* = o(WR (cat[RPY, R™])),
kx1

where cat now denotes column-wise concatenation; the weight parameter W= is a fully connected
layer with one output neuron. A collection of representation vectors V* = {0f,..., 07} for the k
regions is then obtained as

of = sigmoid([R"],)o} € R%, @

where [R?]; is ith element of R?. Finally, Equations (1) and (2) can be recursively repeated g; € N*
times (g; = 4 in this article). In this case, the output V? from the repetition forms the input V*.

Since not all visual vectors in the set V? are relevant to the description, the visual vectors are
weighted to generate local representations of the image that are aligned with the descriptive words,
denoted V™2 = {v{ela, ...,0"2} Here, the newly generated image local representation vector
aligned with the jth word is given by

k

rela _ A
o)t = Z a;,jo;,

i=1
where
exp(ySi;)
Gj= g 3)
=1 €xp(ysr ;)
are weights that are specified through a softmax function with inverse temperature parameter
Y > 0 (set to y = 12 by this article). Here,

[Scs(v?a u;)]+
JZpealses (0312

with [x]; = max(x, 0) is a normalised and thresholded version of the cosine similarity s¢. In
summary, the output of the relational reasoning module is (V' U*).

§i,j =

5

3.4 Proposed Fusion Module

This module predicts the similarity score s(I, D) for the image-description pair by fusing the results
of the relational reasoning module and the global representations of the image and description.
The process is described as follows.

The local and global image-description representations are combined and embedded in the same
low-dimensional latent space (intended to reduce computational complexity) for fusion processing.
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More formally, a vector z8°" for joining a global image-description representation pair (v8°°, y&l°b)

and vectors 2/ for joining local image—description representation pairs (v;ela, u}) are computed as

J

Zglob — (uglob _ z)glob)Z’

1 lay 2
Z;ea — (u;‘ _U;ea) ;

where (-)? is applied element-wise. Furthermore, define the vectors (in R%):
Z{')oin — ngob(zglob),
ziom = Wrela(zf-ela), fori=1,...,n,

where the weight parameters W™ and W#°" are both fully connected layers with d, (e.g., 128)
output neurons.
To ensure that z]jom contains sufficient contextual information, it can be treated as a node for

constructing a graph. The edge matrix E = R(*1)*("*1) js obtained (for any 1 < j,I < (n+ 1)) as
[E]j0 = W (2™ w2 (27", @

where the weight parameters W? and W#: are both fully connected layers with dy output neurons.
Then the information among the joined vectors is fused as

n+l

f f . . joi
7/ = Z W€ (sigmoid( [E]jjl)zjjom), (5)
I=1
where the weight parameter W€ is a fully connected layer with d, output neurons. The jth fused
representation, z"¢, is computed by aggregating weighted sums of the jth joined representation,

J
zjjom, and the sigmoid-activated elements of the edge matrix E. Finally, set Zfs¢ = {z{“se, ., Ziuse)

> Znt
Equations (4) and (5) can be recursively repeated g, € N* times (g, = 2 in this article), where the
output Z¢ from the last time is taken as the input for the next time. A sequence optimiser is
utilised to dynamically capture and incorporate the temporal dependencies among the elements of
Zfuse This allows the module to generate a rich and complex combined representation of Zfs¢ as

{h;}11] = GRU(Z™*),

where {h; }7;“11 are the hidden states of a GRU layer, and only h; is taken as the combined represen-
tation of Zfuse,
Finally, the similarity score s for a pair (I, D) is predicted as

s(I, D) = sigmoid(W" (hy)),
where the weight parameter W" is a fully connected layer with one output neuron.

3.5 Training VITR

The pre-trained models—text, ViT, and local encoders—constitute an integral part of the VITR frame-
work. The remaining parameters within VITR undergo a collaborative training process facilitated by
LSEH [14]. LSEH, which serves as an advanced version of the hard negatives loss function, focuses
on learning the distances between image—-description pairs [11]. Consider {(I}, D1), ..., (Im; Dm) }
as a training dataset consisting of image-description pairs. Each image I, is associated with its
corresponding relevant description D, where p denotes the pair index and m represents the total
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number of pairs in the training set. Given a relevant image-description pair (I, D,), the result of
LSEH only takes the max from the irrelevant pairs as

L(I,, D) =rr115ax[a + Ases(D,, D) +5(Ip, Dp) = s(Ip, D)+
P

+ max[a + 1 SCS(D;,, D;,) +5(Dp, fp) = 5(Iy,Dp)]+,
Ip

where « is a margin parameter, A is a temperature parameter, and Dp and I}, are irfelevant images
and descriptions, respectively (from a mini-batch). The semantic factors A scs( D, D,) dynamically
adjust the margin « according to the cosine similarity between D and D for ﬂex1ble learning of
the network.

Let D;, and D;, represent the decomposition eigenvalues derived from D, and D,, respectively,
and D}, and D}, are obtained through the application of truncated Singular Value Decomposition
(SVD) to the constructed description matrix A. The specific operations are as follows: Define
the matrix A = cat[D],...,D}] € R™", where m is the number of descriptions in the training
dataset, w denotes the dimension of each description, and cat denotes row-wise concatenation.
Then truncated SVD is applied to A as follows:

A~X A Y, B=A Y,

mxw mxds dsxds dsxw mxds mxw wxds
. . . . ’ ’
where ds is the number of singular values. The m rows of matrix B consist of the vectors D, ..., D,, €
R%, representlng the decomposition elgenvalues derived from descriptions D;, ..., Dy,. Finally,

D and D are selected from the set {D ...,D ' }- As recommended by [14], this artlcle sets the
margm parameter a to 0.185 and the temperature parameter A to 0.025.

3.6 Proposed Turbo Module for Improving Retrieval Efficiency

Inspired by Li et al. [23], which presents a strategy for candidate selection to enhance the efficiency
of cross-modal information retrieval, this article extends this idea by proposing a turbo module.
Comprehensive experiments are planned to evaluate the turbo module’s impact on both retrieval
accuracy and computational speed, as detailed in Section 4.5. The global similarity was optimised
during the pre-training stage; therefore, VITR does not need to optimise it further. Consequently,
the turbo module (which is not for training) is based on using the global similarity. The turbo
module is shown in Figure 4.

Input. The turbo receives the images, the output of the ViT encoder (i.e., the global representation
of the images), and the output of the text encoder (i.e., the global representations of the descriptions).

Operation. The turbo ranks the descriptions based on the cosine similarities between the query
image’s global representation and the global representations of the descriptions for image-to-text
retrieval or ranks the images based on the cosine similarities between the query description’s global
representation with the images’ global representations for text-to-image retrieval. It then selects
the top N (N € N*) relevant candidates for the query based on the ranking results.

Output. For image-to-text retrieval, turbo sends the candidate descriptions’ word embeddings
and global representations to the relational reasoning and fusion modules, respectively, and the
query image and its global representation to the local encoder and the fusion modules, respectively.
For text-to-image retrieval, turbo sends the candidate images and their global representations to
the local encoder and the fusion module, respectively and the query description’s word embeddings
and global representation to the relational reasoning and fusion modules, respectively.

Finally, each module in VITR performs computations based on the received results from turbo to
finalise the ranking of candidate descriptions or images for the query. By using the turbo module,

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 9, Article 220. Publication date: October 2024.
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Fig. 4. The proposed turbo module for VITR selects the top N candidate descriptions or images for the query
and sends the necessary candidates’ embeddings or representations to the relevant modules for further
finalisation of ranking.

the computational complexity of the major components of VITR (involving the local encoder, and
the relational reasoning and fusion modules) is reduced by a factor of %, where length is the

length of the database and N is the number of candidates.

4 Experiments

The proposed VITR underwent evaluation using the Flickr30K [46], MS-COCO [28], RefCOCOg
[33], and CLEVR [16] datasets for image-to-text and text-to-image retrieval tasks. The performance
of VITR was then benchmarked against that of state-of-the-art networks.

4.1 Evaluation Measures and Datasets

The evaluation metric used for the cross-modal information retrieval experiments is Recall at rank
K (Recall@K), which measures the percentage of relevant items included in the top K retrieved
results [15]. The experiments aim to evaluate the network’s ability to retrieve at least one relevant
item from a given list of relevant items, and the average Recall is computed across the results of the
evaluated queries. The Flickr30K, MS-COCO, RefCOCOg, and CLEVR datasets are split as shown in
Table 1 and described as follows.

The Flickr30K [46] and MS-COCO [28] datasets are the commonly used benchmark for evaluating
the performance of VSE networks [2, 25, 36]. Each image in the datasets of Flickr30K and MS-COCO
is associated with five textual descriptions.

The RefCOCOg dataset [33] contains real-world images sourced from the MS-COCO dataset
[28], and their corresponding descriptions, provided by the University of Maryland, focus on the
relations between regions within the images. On average, each image in the dataset is associated
with four relevant descriptions. RefCOCOg is commonly used for referring expression tasks, and
it is also suitable for image-to-text and text-to-image retrieval tasks, especially when evaluating
networks that focus on the relations expressed in the queries. For image-to-text retrieval, an image
from RefCOCOg is used as the query to retrieve relevant textual descriptions. Conversely, for text-
to-image retrieval, a textual description from RefCOCOg serves as the query to retrieve relevant
images.
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Table 1. Dataset Split of Flickr30K, MS-COCO, RefCOCOg,

and CLEVR
Dataset Modality Train Validate  Test
FUisOk o e 15000 5000 5000
MSCOCO ot ons S66455 5000 250
RCOCOZ et sosrz  amos oot
CLEVR Images 30,000 1,000 1,000

Descriptions 98,345 3,136 3,121

The CLEVR dataset [16] consists of images depicting Three-Dimensional-rendered objects. Since
this dataset has not been specifically tailored for relation-focused cross-modal retrieval tasks, image
descriptions were formulated using the given relational annotations like ‘left’, ‘right’, ‘front’, and
‘behind’. The dataset was then split into train, test, and validation sets. On average, each CLEVR
image is associated with three relevant descriptions. An example description is ‘A large blue metal
cube is behind a large blue rubber sphere’.

4.2 Implementation Details

All experiments were conducted on a workstation with NVIDIA RTX3090 GPU with PyTorch
framework, and the source code files are provided in our GitHub repository.! The networks were
implemented as follows. Four CLIP baseline models were selected. These were the base ViT model
(‘ViT-B/16’ with dimension d; of 512), the large ViT models ("ViT-L/14’ and ‘ViT-L/14@336px’
with dimension d; of 768), where ‘ViT-L/14@336px’ is “ViT-L/14’ pre-trained at a high 336-pixel
resolution to enhance the retrieval performance, and the ResNet101 model (‘RN101’) denoted as
CLIPgy6, CLIPL14, CLIPL14px, and CLIPrNi01, respectively [36]. Each model was fine-tuned for each
dataset to present its best performance, and the hyperparameter settings follow each model’s
benchmark settings [36]. VITR was implemented using the ViT and text encoders from the fine-
tuned CLIPgy¢, CLIPL14, and CLIPy14p« models, this resulted in three models of VITR network,
namely VITRg, VITRy, and VITRy,, respectively. The image encoder of the fine-tuned CLIPrN101
was applied for encoding image regions for VITRg, VITRy, and VITRy,y, and it extracts 49 features
(with dimension d; of 2,048) of regions from each image. VITRg, VITRy, and VITRy,, underwent
training on each dataset for 20 epochs, with a set batch size of 128. The learning rate was fixed at
0.0004 and was subjected to a decay rate of 0.1, commencing at the 5th epoch. This training process
made use of the Adam optimiser.

4.3 Comparison of Cross-Modal Information Retrieval Performance on Benchmarks
This section focuses on the comparison of VITR with various state-of-the-art networks on the
benchmark datasets Flickr30K and MS-COCO. The results on the Flickr30K and MS-COCO datasets
are shown in Table 2. VITRy,, achieved a Recall@1 of 96.4% for image-to-text and 86.3% for text-to-
image retrieval on Flickr30K. On MS-COCO, VITRy,,’s Recall@1 was 77.9% for image-to-text and
60.3% for text-to-image retrieval. The comparison with other networks is summarised as follows.
(1) Compared to ALBEF, VITRy,’s Recall@1 was higher by 0.5% for image-to-text and by 0.7%
for text-to-image retrieval on Flickr30K, and by 0.3% for image-to-text retrieval on MS-COCO. The

Thttps://github.com/yangong23/VITR
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Table 2. Average Recall@K (R@K) Values (%) of Cross-Modal Information Retrieval Networks on the Test
Sets of Flickr30K and MS-COCO

Flickr30K MS-COCO

Network #Parameters Image-to-Text Text-to-Image Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
VSE++ [11] - 529 805 872 396 701 795 413 711 812 303 594 724
PFAN++ [42] - 701 918 961 527 799 870 51.2 843 892 414 709 79.0
TSHSR [4] - 763 930 958 566 812 89 574 - 91.4 414 - 81.2
SGRAF [10] - 77.8 941 974 585 83.0 88 578 916 419 813
VSRN++ [25] - 792 946 975 606 856 914 547 829 909 420 722 827
Unicoder [20] - 86.2 963 99.0 715 909 949 623 871 928 467 760 853
UNITER [5] 303M 873 980 992 756 941 968 633 870 931 484 767 859
ERNIE-ViL [47] 88.7M 98.0 992 767 936 964 - - - - - -
ViSTA-L [6] - 895 984 996 758 942 969 639 871 930 474 750 84.0
VILLA [13] - 87.9 975 988 763 942 968 - - - - - -
CLIPgN101 120M 883 982 994 729 926 962 669 878 93.6 48.6 754 844
VSEeo [2] - 887 989 998 761 945 971 681 902 952 527 802 883
CLIPgy6 150M 91.2 989 994 770 941 974 70.0 907 954 530 805 887
COTS' [30] - 91.7 990 999 783 949 972 706 91.0 953 537 802 878
CLIPLy4 428M 92.6 992 996 778 952 977 746 923 958 573 816 889
CLIPL 4px 428M 949 996 998 839 974 988 758 927 963 583 824 894
ALBEF [23] 223M 959 998 1000 856 975 989 776 943 972 60.7 843  90.5
MVPTR [26] - 952 997 100.0 840 968 985 773 936 969 60.1 840 90.7
RVLM [48] - 95.6 99.8 100.0 857 976 988 795 951 979 631 856 919
BLIP [22] 446M 97.4 998 999 876 977 990 824 954 979 651 863 918
VITRp 246M 937 991 998 808 957 979 727 910 954 552 802 88.0
VITR, 524M 94.7 997 999 825 967 983 764 932 964 588 82.6 89.6
VITRypx 524M 96.4 99.8 1000 863 977 991 779 937 969 603 836 90.2

COTS' denotes the ensemble results of two models.
The @ symbol in the table represents the Recall at a specific value of K (R@K).

metric where VITRy,, performed lower than ALBEF was in text-to-image retrieval on MS-COCO,
with a decrease of 0.4%.

(2) VITRyp, outperformed MVPTR’s Recall@1 by 1.2% and 2.3% for image-to-text and text-to-
image retrieval, respectively, on Flickr30K, and by 0.6% and 0.2% for image-to-text and text-to-image
retrieval, respectively, on MS-COCO.

(3) In comparison to RVLM, VITRy,,’s Recall@1 was higher by 0.8% for image-to-text and by
0.6% for text-to-image retrieval on Flickr30K. On MS-COCO, VITRy,,’s Recall@1 was lower than
RVLM’s by 1.6% for image-to-text and by 2.8% for text-to-image retrieval, respectively.

(4) VITRyp,’s Recall@1 is close to BLIP’s, being lower by only 1.0% for image-to-text and 1.3%
for text-to-image retrieval on Flickr30K, and by 4.5% and 4.8% for image-to-text and text-to-image
retrieval, respectively, on MS-COCO. Despite VITRy,’s lower performance in cross-modal infor-
mation retrieval compared to BLIP, it achieved faster retrieval time. In tests of image-to-text and
text-to-image retrieval across 1,000 images and 5,000 descriptions (using the Flickr30K test set),
BLIP required 1,430.4 s to complete the tasks. In contrast, VITRypy, without the turbo module and
hence no re-ranking strategy, needed only 116.7 s.

4.4 Further Analysis of VITR on Extended Datasets

Section 4.3 compared VITR with state-of-the-art models on the commonly used benchmark datasets
Flickr30K and MS-COCO. This section provides a further analysis of VITR’s performance on
extended datasets, specifically the relation-focused RefCOCOg and CLEVR datasets. VSRN++,
VSEoco, and CLIP were selected as the baseline models. The results are shown in Table 3.
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Table 3. Average Recall@K Values (%) of Cross-Modal Information Retrieval Networks on the Test Sets of
RefCOCOg and CLEVR

RefCOCOg CLEVR

Network Image-to-Text Text-to-Image Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@!1 R@5 R@10
VSRN++  20.0 449 573 138 346 478 643 969 994 585 910 96.1
VSEoo 31.1 583 697 195 428 552 67.8 997 999 708 99.0 995
CLIPrnio; 363 613 712 208 442 567 654 981 998 618 957 98.1
CLIPg;s 393 643 750 238 484 604 668 986 1000 655 97.8 995
CLIPL, 424 655 751 252 489 604 656 994 999 652 97.6 99.1
CLIP iqpx 440 67.8 769 274 517 634 696 99.6 999 678 98.6 99.4
VITR; 429 682 792 279 535 656 833 997 1000 794 994 99.8
VITR, 452 711 805 295 551 668 907 99.9 999 793 995  99.8
VITRypx 487 729 816 306 557 671 938 999 100.0 863 99.5 99.8

(1) Results on RefCOCOg. VITRy« reached a Recall@1 of 48.7% for image-to-text and a Recall@1
of 30.6% for text-to-image retrieval. Observing the performance of the networks using the Recall@1
metric, VITRy,y outperformed CLIPL14py by 4.7% and 3.2% for image-to-text and text-to-image
retrieval, respectively and also outperformed VSEco by 17.6% and 11.1% for those tasks, respec-
tively. VITRp reached a Recall@1 of 42.9% and 27.9% for image-to-text and text-to-image retrieval,
respectively and outperformed CLIPg¢ by 3.6% and 4.1% for those tasks, respectively.

(2) Results on CLEVR. For VITRy, Recall@1 reached 93.8% for image-to-text and 86.3% for
text-to-image retrieval and outperformed CLIPy4px by 24.2% and 18.5% for those tasks, respectively.
VITRyp,’s Recall@1 also outperformed VSEco’s Recall@1 by 26.0% and 15.5% for image-to-text
and text-to-image retrieval, respectively. The Recall@1 values of VITRg were 88.3% and 79.4% for
image-to-text and text-to-image retrieval, respectively. The Recall@1 values of VITRg outperformed
that of CLIPg¢ by 21.5% for image-to-text and 13.9% for text-to-image retrieval, respectively.

4.5 Results of VITR Using the Turbo Module

Comparison of Retrieval Time between VITR with and without Turbo. Table 4 compares the retrieval
times of VITR, with and without the turbo module, when these are applied to the RefCOCOg test
set. Here, N is the number of selected candidates by turbo (see Section 3.6), in the table. For retrieval
of relevant descriptions from a pool of 9,582 using a single query image, the average retrieval time
of VITRy, with turbo (N = 200) is 0.3 s, which is 13.7 s faster than that without turbo and 10.5s
faster than that of UNITER. For retrieval of relevant images from a pool of 2,600 using a single
query description, the average retrieval time of VITRy, with turbo (N = 200) is 0.1s, which is 1.7s
faster than that without turbo and 4.6 s faster than that of UNITER. Compared to the one-stage VSE
network CLIPy 14, VITRy without turbo is 13.05s and 1.76 s slower in image-to-text and text-to-image
retrieval, respectively. However, VITRy, with turbo (N = 200) is only 0.25s and 0.06 s slower than
CLIPL14 in image-to-text and text-to-image retrieval, respectively. VITRy, with turbo outperforms
CLIPy 4 in cross-modal information retrieval performance with acceptable time efficiency.

The Retrieval Performance of VITR with Turbo. This section evaluates the impact of the proposed
turbo module on the retrieval performance of VITR using the RefCOCOg test set. Table 5 shows
that, for image-to-text and text-to-image retrieval, the retrieval performance of VITR using turbo
with N set to 200 and 500 is the same as that of VITR without turbo. When N is set to 100, VITR
with turbo underperformed VITR without turbo with a difference of 0.2% for image-to-text retrieval
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Table 4. Comparison of the Retrieval Time of Different Models, Including VITRy, with and without Turbo,
and UNITER, Using the RefCOCOg Test Set

VITRy, VITRy, VITRy,

Task CLIPr1g (Turbo N = 200) (Turbo N =500) (Without Turbo) UNITER
Image-to-Text ~ 0.05s 03s 0.8s 14.0s 10.8 s
Text-to-Image  0.04s 0.1s 0.3s 1.8s 4.7s

Table 5. Results of VITR, with Turbo for Cross-Modal Information Retrieval on the RefCOCOg

Test Set
Turbo N Image-to-Text Text-to-Image
Recall@1 Recall@5 Recall@10 Recall@l Recall@5 Recall@10
100 45.2 71.1 80.3 29.5 55.1 66.7
200 45.2 71.1 80.5 29.5 55.1 66.8
500 45.2 71.1 80.5 29.5 55.1 66.8
Without Turbo 45.2 71.1 80.5 29.5 55.1 66.8

Table shows average Recall@K values (%).

Table 6. Results of Ablation Studies on VITR’s Variant Networks for Cross-Modal Information Retrieval on
the RefCOCOg Test Set

Image-to-Text

Text-to-Image

Network Method
Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10

VSEco Baseline 31.1 58.3 69.7 19.5 42.8 55.2
CLIP14 Baseline 42.4 65.5 75.1 25.2 48.9 60.4
VITR VSE’s encoders 36.9 63.8 74.7 25.1 50.3 61.8
VITR-NoViT Remove ViT 36.1 61.6 72.2 24.3 49.1 60.8
VITR-NoRel Remove RR 43.1 66.7 76.9 25.3 49.3 60.4
VITR Original 45.2 71.1 80.5 29.5 55.1 66.8

Table shows average Recall@K values (%).

and 0.1% for text-to-image retrieval on Recall@10. The results in Table 4 and 5 suggest that VITR
with the proposed turbo (N > 200) achieved the same retrieval performance as VITR without turbo,
but in a faster retrieval time.

4.6 Ablation Studies on the Fusion

This section undertakes a series of ablation studies to assess the influence of integrating pre-trained
knowledge and the results of relational reasoning within the proposed VITR network. Experiments
were carried out by creating variants of VITR (VITRy, model) and applying those to the RefCOCOg
test set.

The first experiment aims to evaluate the performance of VITR when it does not utilise the ViT’s
image global representation, thereby assessing the impact of fusing the image global representation
using the fusion module on the network. For this experiment, a new variant of VITR was created,
namely VITR-NoViT, that removes the ViT encoder. As shown in Table 6, VITR-NoViT outperformed
VSEoco for image-to-text and text-to-image on Recall@1, with average improvements of 5.0% and
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Table 7. Average Recall@K Values (%) of the Ablation Studies on the Number of Graph Layers (g2)
in the Fusion Module of VITR for Cross-Modal Information Retrieval on the RefCOCOg Test Set

Number of Image-to-Text Text-to-Image

Layers Recall@1 Recall@5 Recall@10 Recall@1l Recall@5 Recall@10
g2=0 44.1 70.5 80.0 29.3 55.0 66.7

g2 =1 44.7 70.8 80.4 29.3 54.9 66.8

ga =2 45.2 71.1 80.5 29.5 55.1 66.8

4.8%, respectively. In addition, VITR-NoViT underperformed VITR by 9.1% for image-to-text retrieval
and 5.2% for text-to-image retrieval on Recall@1.

The second experiment aims to evaluate the performance of VITR when the relational reasoning
module is removed, thereby assessing the impact of excluding the results of relational reasoning
fusion on the network. For this experiment, a new variant of VITR was created, namely VITR-NoRel
that does not include the relational reasoning module. The relational reasoning module was replaced
by two GRUs, one for pooling the text and another for pooling the region features of images. As
shown in Table 6, the results of Recall@1 of VITR-NoRel outperformed that of CLIPy 4 by 0.7%
and 0.1%, respectively, and the results suggest that the observed improvement is a result of ViT’s
pre-trained global knowledge being integrated into the network along with the results obtained
from GRUs. Furthermore, it was observed that the performance of VITR-NoRel was worse than
that of VITR by 2.1% and 4.2% for Recall@1 in image-to-text and text-to-image retrieval tasks,
respectively.

The third experiment aims to evaluate VITR’s performance using the encoders from VSEco,
thereby assessing its adaptability with encoders from one-stage VSE networks beyond CLIP. For
this experiment, a new variant of VITR was created, namely VITR,,, which replaces VITR’s ViT
encoder and text encoder with VSEco’s image encoder and text encoder, respectively. As shown in
Table 6, the Recall@1 results of VITRco outperformed VSEco by 5.8% and 5.6% for image-to-text
and text-to-image retrieval, respectively. The results suggest that one-stage VSE networks such
as VSEco can enhance their cross-modal information retrieval performance due to fusing VITR’s
relational reasoning results.

The fourth experiment aims to verify the effectiveness of the proposed VITR with simpler designs.
The number of graph layers (g;) in the fusion module of VITR varied from 0 to 2 while keeping the
same input features (i.e., the global and local representations encoded by CLIP), as shown in Table 7.
For image-to-text retrieval, VITR’s Recall@1 increases from 44.1% when g, = 0 to 45.2% when g, = 2.
For text-to-image retrieval, VITR’s Recall@1 also shows a rise, starting at 29.3% for g, = 0 and
increasing to 29.5% for g, = 2. The progression in Table 7 suggests a positive correlation between
the number of graph layers (g;) in the fusion module of VITR and the Recall@1 performance.

The last experiment aims to verify the effectiveness of the proposed VITR with variations in
the number of image regions (k) used for processing. VITR was tested with setting k to 21, 28, 35,
42, and 49, respectively. The results, as shown in Table 8, indicate a progressive improvement in
Recall@1, Recall@5, and Recall@10 metrics for both image-to-text and text-to-image retrieval
tasks as the number of image regions increases. Starting from k = 21, with Recall@1 values of
42.6% for image-to-text and 26.8% for text-to-image, the performance steadily enhances, reaching
peak values of 45.2% for image-to-text and 29.5% for text-to-image at k = 49. The results of Table 8
suggest that VITR benefits from the richer representation provided by higher numbers of regions,
effectively leveraging the detailed spatial information to improve the alignment between textual
descriptions and visual content.
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Table 8. Average Recall@K Values (%) of the Ablation Studies on the Number of Image Regions (k)
Used by VITR for Cross-Modal Information Retrieval on the RefCOCOg Test Set

Number of Image-to-Text Text-to-Image

Image Regions Recall@1 Recall@5 Recall@10 Recall@l Recall@5 Recall@10
k=21 42.6 68.2 77.7 26.8 51.2 63.4
k=28 43.2 68.5 78.6 27.0 52.4 64.7
k=35 44.4 70.3 79.5 28.3 53.7 65.5
k=42 44.6 70.5 80.5 29.5 54.9 66.8
k=49 45.2 71.1 80.5 29.5 55.1 66.8

Red and gray skis sticking out of the snow. A woman in green shirt is holding a frisbee. An orange bus in between two other buses.

—

input result
©

A woman throwing a frisbee.

result input result

(d © ®

Fig. 5. Visually representing the relational reasoning performance of VITR. In this figure, given a textual
query and an input image, the visualisation is generated by highlighting the relevant image regions and
darkening the irrelevant image regions.

5 Visualisation
5.1 Visually Representing the Relational Reasoning Performance of VITR

CLIP does not explicitly model the relationships between image regions due to the lack of the
relational reasoning component. Consequently, this section only centers on showcasing the perfor-
mance of VITR’s relational reasoning module, illustrating the capabilities of VITR in understanding
and modeling image regions’ relationships. Figure 5 presents an example visualisation of relational
reasoning generated by the proposed VITR. In Figure 5, the heat map highlights the image regions
relevant to the textual query, and it is generated by the relational reasoning module as follows.

Set {aj1, ..., ain}, see Equation (3), holds the weights for the ith image region, so let d; denote the
average value the set. Let set {ay, ..., a } holds the values of all image regions, and let its min-max
normalisation result be {a}, ..., d;C} € [0,1]. Therefore, @; is used as the heat degree for the ith
image region.

The images from Figure 5(a)—(f) show that the image regions only received focus by the relational
reasoning module when they were mentioned in the query description. For example, in Figure 5(b),
the image regions relevant to (‘woman’, ‘holding’, ‘frisbee’) were the focus, while the other main
region ‘man’ in the image was ignored because it is irrelevant to the query description. The results
of Figure 5 visually show the relational reasoning performance in VITR.
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VITR: Mother zebra nursing its baby. v~ VITR: A terracotta pot with a cat in it.+"

VITR: A woman sitting next to a child eating VITR: Person on the beach carrying a
aslice of pizza. v~ ) o CLIP: A mother zebra. X CLIP: A white flower pot in front of the surfooard.
CLIP: A baby looking at pizza while being cat.x CLIP: Surfer boy with his arms down

carried by her mother. % waist level as he walks. x

v
" 4 : ]l W3
y & INZN 52
DAIRY DAL
VITR: A red double-decker bus in front of
another red double-decker bus.v"

CLIP: A maroon double-decker bus in
front of two other double-decker buses.X

VITR: An equestrian rider on top of the
horse. v~

CLIP: The horse in the front, with the
yellow part on his stirrups. X

VITR: The half of the sandwich nearest
the glass of juice.v”

CLIP: Forearms and hands of a person
wearing a silver watch that is preparing a
sandwich. X

(e) ® (2 ()

Fig. 6. A comparison of the top one results for image-to-text retrieval using CLIP and VITR. CLIP’s retrieved
descriptions including the details do not match the query image, while VITR’s retrieved descriptions concen-
trate on specific details of the image.

VITR: A man wearing black defending a
frisbee player in blue. v~
CLIP: Silver car behind players. x

Query: A man is catching a yellow frisbee.

Query: A green wine bottle is on the floor.

VITR v~ CLIP %

(a) (b)

Query: A girl is holding food.

VITR v~ CLIP X

d

Fig. 7. A comparison of the top one results for text-to-image retrieval using CLIP and VITR. None of CLIP’s
results align with the description, whereas VITR’s results are more relevant to the query description.

5.2 Visual Demonstrations of VITR’s Advancements

The experiments on the datasets RefCOCOg and CLEVR, as discussed in Section 4.4, have quantita-
tively shown that VITR outperformed CLIP in relation-focused cross-modal information retrieval.
This section provides examples to visually demonstrate the advancements that VITR has achieved
in the tasks of image-to-text and text-to-image retrieval.
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Image-to-Text Retrieval. Figure 6 presents eight examples of the top one image-to-text retrieval
results between CLIP and VITR. Typically, CLIP’s results offer a description of the image with
errors or missing details of relations, while VITR’s results concentrate on specific details. As seen in
Figure 6(b), the result of CLIP describes the image as ‘A mother zebra’ without mentioning relations,
while the result of VITR describes it as a relation-focused sentence which is ‘A mother zebra
nursing its baby’. Figure 6 highlights the limitations of CLIP in matching local image information,
particularly relations, during image-to-text retrieval, and the improvement of VITR.

Text-to-Image Retrieval. Figure 7 presents four examples of the top one results of text-to-image
retrieval between CLIP and VITR. As shown in Figure 7(c), the query aims to find an image of a white
car in front of a bus, but the result from CLIP includes errors in the relations between the car and
the bus, making the retrieved image less relevant to the query. On the other hand, VITR produces
more accurate results that are better aligned with the intent of the query. Figure 7 highlights the
limitations of CLIP in matching relation information between images and descriptions during
text-to-image retrieval, and the improvement of VITR.

6 Conclusion

This article presents an innovative network that combines the local representations of an image with
its global representation derived from the ViT model. The proposed network, VITR, is specifically
designed for enhancing cross-modal information retrieval tasks. VITR includes a relational reasoning
module that extends the capabilities of ViT by modeling the relations of regions in images for
relation-focused cross-modal information retrieval; a fusion module that fuses the image global
information from the ViT and the relation reasoned information of relational reasoning. Empirical
evaluations revealed that the proposed VITR network outperformed CLIP and other VSE networks
for both relation-focused and traditional cross-modal information retrieval tasks. When assessed
through the average Recall@1 evaluation metric for retrieval performance, VITR exhibited superior
results compared to CLIP. On the RefCOCOg dataset, VITR outperformed CLIP by 4.7% for image-
to-text retrieval and 3.2% for text-to-image retrieval. On the CLEVR dataset, VITR achieved a
substantial improvement of 24.2% for image-to-text retrieval and 18.5% for text-to-image retrieval.
While VITR may not significantly outperform vision-language pre-trained models across all standard
benchmarks, it shows notable improvements in relation-focused tasks. Additionally, VITR’s unique
relational reasoning and turbo modules enhance computational efficiency, making it particularly
advantageous in applications requiring precise relation-focused retrieval and faster processing
times. While the proposed VITR network is effective in image-to-text and text-to-image retrieval
tasks, its limitation is that it does not consider other similar tasks, such as image captioning and
Visual Question Answering. To overcome this limitation, future research could focus on extending
VITR’s capability to handle multiple tasks, thereby providing solutions for a broader range of
applications. Furthermore, future work aims to integrate the capabilities of large language models
into VITR and will conduct a comprehensive comparison with BLIP-2 [21].
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