
Citation: Jiang, D.; Chang, J.; You, L.;

Bian, S.; Kosk, R.; Maguire, G.

Audio-Driven Facial Animation with

Deep Learning: A Survey. Information

2024, 15, 675. https://doi.org/

10.3390/info15110675

Academic Editors: Nikolaos

Mitianoudis and Ilias

Theodorakopoulos

Received: 30 September 2024

Revised: 20 October 2024

Accepted: 22 October 2024

Published: 28 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Review

Audio-Driven Facial Animation with Deep Learning: A Survey
Diqiong Jiang 1,*, Jian Chang 1 , Lihua You 1, Shaojun Bian 2, Robert Kosk 1 and Greg Maguire 3

1 National Centre for Computer Animation, Bournemouth University, Poole BH12 5BB, UK;
jchang@bournemouth.ac.uk (J.C.); lyou@bournemouth.ac.uk (L.Y.); rkosk@bournemouth.ac.uk (R.K.)

2 School of Creative and Digital Industries, Buckinghamshire New University, High Wycombe HP11 2JZ, UK;
shaojun.bian@bnu.ac.uk

3 Belfast School of Art, Ulster University, Belfast BT15 1ED, UK; g.maguire@ulster.ac.uk
* Correspondence: djiang@bournemouth.ac.uk

Abstract: Audio-driven facial animation is a rapidly evolving field that aims to generate realistic
facial expressions and lip movements synchronized with a given audio input. This survey provides a
comprehensive review of deep learning techniques applied to audio-driven facial animation, with a
focus on both audio-driven facial image animation and audio-driven facial mesh animation. These
approaches employ deep learning to map audio inputs directly onto 3D facial meshes or 2D images,
enabling the creation of highly realistic and synchronized animations. This survey also explores
evaluation metrics, available datasets, and the challenges that remain, such as disentangling lip
synchronization and emotions, generalization across speakers, and dataset limitations. Lastly, we
discuss future directions, including multi-modal integration, personalized models, and facial attribute
modification in animations, all of which are critical for the continued development and application of
this technology.

Keywords: deep learning; audio processing; talking head; face generation

1. Introduction

Human speech is one of the most complex and expressive forms of communication,
involving a combination of phonetic sounds, intonation, rhythm, and emotion. It conveys
not only linguistic content but also the speaker’s emotional state, intent, and identity. Hu-
man speech is inherently bimodal, incorporating both auditory and visual components [1].
Auditory speech comprises the sound waves produced during speaking, which can be
captured and analyzed to convey linguistic content, emotional nuances, and emphasis
through variations in tone and pitch. Visual speech refers to the visible movements made
by the speaker during speech production. They include movements of the lips, tongue, jaw,
cheeks, and other facial muscles that accompany the vocalization of sounds.

Audio-driven facial animation is a technique designed to generate realistic facial
movements and expressions from an audio input, typically speech. At its core, it maps
auditory speech to corresponding visual speech patterns. The goal of this technique is
to automate the creation of facial animations that synchronize with the spoken content
and reflect the emotional tone conveyed by the audio. By enabling the creation of highly
realistic digital characters, avatars, and virtual humans, audio-driven facial animation
enhances user immersion across various fields, including virtual reality (VR)/augmented
reality (AR) [2], gaming [3] and human–computer interaction [2].

The importance of audio-driven facial animation lies in its ability to significantly
reduce the labor-intensive and expensive process of manual animation, which tradition-
ally requires skilled animators or complex motion capture systems. This is particularly
valuable in industries where real-time interactions with digital characters are becoming
more prevalent.
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As discussed above, audio-driven facial animation involves mapping audio features
to corresponding facial movements. This process can be broken down into two key com-
ponents: audio feature extraction and facial animation generation based on features. Ex-
tracting meaningful features from speech [4–13], such as phonetic content and emotional
cues, is fundamental for applications such as speech recognition, emotion analysis, and
audio-driven facial animation. Traditional techniques like MFCCs (Mel-Frequency Cepstral
Coefficients) [4] and LPC (Linear Predictive Coding) [5] focus on analyzing the frequency
and power spectrum of speech. Modern methods employ deep neural networks to ex-
tract richer audio features. Pre-trained models like Wav2Vec 2.0 [13], Whisper [10], or
VALL-E 2 [12] can capture both low-level phonetic details and high-level emotional or
prosodic patterns from the speech. This allows for a more dynamic and nuanced represen-
tation of speech audio, including rhythm, pitch, and tone, which are crucial for generating
realistic facial animation.

Once audio features are extracted, the next step is to generate the corresponding
facial movements, including lip sync, jaw movements, eyebrow raises, and other expres-
sions. The challenge at this step lies in translating these audio-derived features into 2D
images or 3D meshes. Recent deep learning approaches, such as Generative Adversar-
ial Networks (GANs) [14], Variational Autoencoders (VAEs) [15], diffusion models [16],
and Transformers [17], have significantly advanced the generation of fluid, realistic, and
emotionally rich facial animations. In terms of 3D mesh generation, techniques such as
3D Morphable Models (3DMMs) [18], Convolutional Neural Networks (CNNs), Graph
Neural Networks (GNNs) [19], and Neural Radiance Fields (NeRFs) [20] play a crucial
role. While the 3DMM provides a parametric space that ensures the controllability of facial
deformations, CNNs, GNNs, and NeRFs capture complex visual details required for lifelike
facial animations.

1.1. The Development of Audio-Driven Animation

The development of audio-driven facial animation is graphically shown in Figure 1. In
the early stages of audio-driven facial animation, the approach was based on linguistics [21].
It focused on the visual counterparts of phonemes, termed visemes [22], and integrated
complex coarticulation rules. Given the many-to-many mapping between phonemes and
visemes, later research [23] used hidden Markov models (HMMs) based on facial dynamics
observed in videos. Subsequent works improved trajectory sampling methods [24,25] and
replaced HMMs with Gaussian process latent variable models [26,27], hidden semi-Markov
models [28], or recurrent networks [29].
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Figure 1. The development of audio-driven animation.

In the early era of deep learning, end-to-end network structures were typically used
for facial regression, with the network architecture utilizing Recurrent Neural Networks
(RNNs) [30] or fully connected layers [31]. For speech feature extraction, MFCCs (Mel-
Frequency Cepstral Coefficients) and LPC (Linear Predictive Coding) were commonly
employed. This was primarily due to the limited adoption of powerful audio processing
and advanced frameworks like Transformers and GANs during that time.
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As speech feature processing became more sophisticated and the capabilities of GANs
were increasingly explored, the field has entered the advanced deep learning era. During
this phase, the fidelity, resolution, and robustness of face generation based on speech have
been significant improvements. The transition from simpler models to the adoption of
GANs and advanced deep learning techniques greatly enhanced the generalization ability
of these systems, allowing for more realistic and detailed facial animations driven by
speech inputs.

Currently, researchers are focusing on enriching input data and improving algorithms
to enhance expressive power. By integrating audio, video, and textual information, models
can more accurately capture and express emotions and micro-expressions. Some algorithms
also support secondary editing of the generated talking heads. Additionally, leveraging
deep learning technologies such as CNNs and RNNs improves the detail and realism
of facial animations. These advancements enable facial animations in applications like
virtual assistants, gaming, and digital avatars to not only accurately reflect spoken con-
tent but also convey deeper emotional nuances, thereby enhancing user immersion and
interaction experiences.

1.2. The Scope of This Survey

The main goal of this survey is to provide a comprehensive review of deep learning-
based methods and datasets used in audio-driven facial animation. By examining both
audio feature extraction and subsequent facial animation generation, this survey aims to
highlight the strengths, limitations, and future directions of current methodologies in the
field. The scope of this survey is shown in Figure 2 and briefly introduced below. Detailed
reviews will be given in the following sections.
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Figure 2. Scope of this survey.

Methods: This survey explores the methods used in both 2D video generation and
3D facial animation, classifies 2D video generation methods into landmark-based, encoder–
decoder, and 3D model-based ones, and categorizes 3D face animation approaches into
transformer-based and advanced generative network-based (diffusion model and NeRF)
ones, with a focus on their application in audio-driven animation. It provides a thorough
review of how deep learning techniques are employed to enhance the synchronization
of facial animations with audio input, outlining advancements and challenges in both
areas. Furthermore, the survey emphasizes the integration of emotional expression in
these animations.

Datasets: the survey offers an in-depth analysis of datasets used for training and
evaluating audio-driven facial animation models, with a focus on dataset diversity and
emotional content.
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Metrics and comparison: Metrics are essential for evaluating and comparing the
performance of different methods in audio-driven facial animation. This survey outlines
the key evaluation metrics currently in use and offers a comparison of leading deep learning
techniques for both 2D video generation and 3D facial animation. The emphasis will be
on evaluating the effectiveness of these techniques in producing realistic and emotionally
expressive animations driven by audio input.

1.3. Differences with Existing Surveys

This survey distinguishes itself from prior works by offering a comprehensive and
up-to-date analysis of the integration of emotion into audio-driven facial animation, par-
ticularly emphasizing advancements in audio-driven 3D facial animation. It explores the
application of modern deep learning techniques, providing an in-depth examination of how
these innovations are advancing audio-driven facial animation. Furthermore, it highlights
the emerging trends that are pushing the boundaries of what is possible in facial animation.

Kammoun et al. [32] conducted a review of Generative Adversarial Networks (GANs)
in the context of facial generation, covering their architectures, applications, semantics, and
evaluation methodologies. Siddharth et al. [33] investigated text-guided image generation
employing diffusion models, highlighting significant advancements in the synthesis of
images based on textual descriptions. In contrast, this survey offers a broader perspective
by covering all deep learning techniques relevant to audio-driven facial animation.

Liu et al. [34] provided a comprehensive review of audio-driven talking head synthesis.
Tolosana et al. [35] and Mirsky et al. [36] examined audio-driven facial animation through
the lens of deepfake technology, while Zhen et al. [37] approached the subject from a
human–computer interaction perspective. However, their studies primarily focused on 2D
video-based approaches and did not offer an analysis of 3D facial animation.

Sha et al. [38] and Gowda et al. [39] provided extensive reviews on talking head
synthesis. Meng et al. [40] advanced the discourse by offering a detailed investigation of
editing techniques and cutting-edge methodologies for incorporating diffusion models into
talking head synthesis.

This survey emphasizes the generation of facial expressions and 3D face animation.
We rigorously assess the application of cutting-edge technologies such as GANs and
diffusion models, evaluating their current capabilities and outlining their potential future
applications. Additionally, this work highlights the existing challenges within the field and
proposes clear directions for future research trajectories.

2. Two-Dimensional Video and Three-Dimensional Facial Animation
Generation Methods
2.1. Pipeline for Audio-Driven Facial Animation

Audio-driven facial animation aims to generate facial animations from audio input,
with the goal of producing realistic and emotionally expressive facial movements that
synchronize with spoken content. The pipeline outlines the problem formulation and task
description for audio-driven facial animation, including the key challenges and objectives
involved in the process.

The pipeline for audio-driven facial animation consists of three primary stages: audio
feature extraction, talking head generation, and talking head editing. The first two stages
are the core modules of audio-driven facial animation. The talking head editing stage
serves as an optional extension module, offering additional opportunities for refinement
and customization. Each stage is essential for ensuring that the final output is both visually
coherent and dynamically expressive.

Figure 3 illustrates the framework for deep learning-based generation of audio-driven
2D video and 3D facial animation. In this framework, the speech encoder corresponds to
the audio feature extraction module, the generative network aligns with the talking head
generation module, and the controller encoder and feature fusion represent the talking head
editing module. The following is an introduction to the functions of these three modules:



Information 2024, 15, 675 5 of 24

Information 2024, 15, x FOR PEER REVIEW 5 of 25 
 

 

and customization. Each stage is essential for ensuring that the final output is both visu-
ally coherent and dynamically expressive. 

Figure 3 illustrates the framework for deep learning-based generation of audio-
driven 2D video and 3D facial animation. In this framework, the speech encoder corre-
sponds to the audio feature extraction module, the generative network aligns with the 
talking head generation module, and the controller encoder and feature fusion represent 
the talking head editing module. The following is an introduction to the functions of these 
three modules: 

Audio feature extraction: the primary objective of audio feature extraction is to derive 
meaningful and informative features from the audio signal that correlate with facial move-
ments and expressions. 

Talking head generation: this stage generates facial animations that accurately repre-
sent the audio features, including lip movements, facial expressions, and synchronization 
with the speech. 

Talking head editing: this stage improves the quality and customization of the gen-
erated facial animations, ensuring they meet specific esthetic and functional requirements. 

 
Figure 3. Graphical illustration of deep learning-based generation of audio-driven 2D video and 3D 
facial animation. 

2.2. Two-Dimensional Video Generation 
Two-dimensional video generation from audio involves creating animated facial 

movements in a two-dimensional space. This section describes three primary methods 
used in this process: landmark-based methods, encoder-–decoder methods, and 3D 
model-based methods. 

2.2.1. Landmark-Based Methods 
Landmark-based methods focus on tracking and manipulating key facial points 

(landmarks) to generate facial animations. 
As illustrated in the Figure 4, landmark-based methods are typically divided into two 

modules: motion generation and texture generation. The first module, motion generation, 
converts the input audio into audio features, which are then used to deform the land-
marks. The second module, texture generation, utilizes an image-to-image framework 
that takes the generated landmarks and facial images as input to produce audio-driven 
facial animation. The design of these two modules is central to these methods. By lever-
aging the position and movement of facial landmarks, these approaches effectively syn-
chronize facial movement with audio input. This separation of lip sync and facial repre-
sentation allows for improved handling of various facial characteristics, addressing the 
limitations of other methods that struggle to generate realistic animations from speech on 
unknown faces due to their poor generalization capabilities. 

Figure 3. Graphical illustration of deep learning-based generation of audio-driven 2D video and 3D
facial animation.

Audio feature extraction: the primary objective of audio feature extraction is to de-
rive meaningful and informative features from the audio signal that correlate with facial
movements and expressions.

Talking head generation: this stage generates facial animations that accurately repre-
sent the audio features, including lip movements, facial expressions, and synchronization
with the speech.

Talking head editing: this stage improves the quality and customization of the gener-
ated facial animations, ensuring they meet specific esthetic and functional requirements.

2.2. Two-Dimensional Video Generation

Two-dimensional video generation from audio involves creating animated facial
movements in a two-dimensional space. This section describes three primary methods
used in this process: landmark-based methods, encoder—decoder methods, and 3D model-
based methods.

2.2.1. Landmark-Based Methods

Landmark-based methods focus on tracking and manipulating key facial points (land-
marks) to generate facial animations.

As illustrated in the Figure 4, landmark-based methods are typically divided into two
modules: motion generation and texture generation. The first module, motion generation,
converts the input audio into audio features, which are then used to deform the landmarks.
The second module, texture generation, utilizes an image-to-image framework that takes the
generated landmarks and facial images as input to produce audio-driven facial animation.
The design of these two modules is central to these methods. By leveraging the position and
movement of facial landmarks, these approaches effectively synchronize facial movement
with audio input. This separation of lip sync and facial representation allows for improved
handling of various facial characteristics, addressing the limitations of other methods that
struggle to generate realistic animations from speech on unknown faces due to their poor
generalization capabilities.

Suwajanakorn et al. [30] and Jalalifar et al. [41] introduce a method for synthesizing
video from audio, focusing on the mouth region, but it lacks the ability to generalize
to unseen individuals. Additionally, the approaches only regress key points around the
mouth, even though speakers exhibit significant facial movement when talking. In contrast,
subsequent works [42–45] extend this by regressing landmarks for the entire face using
audio input. Their approach enhances the model’s ability to generalize across different
speakers and corresponding audio inputs.

Recent works have improved both network architecture and editability. For example,
EchoMimic [46] not only generates portrait videos from either audio or facial landmarks
individually but also allows control over facial landmarks to achieve diverse expressions
and head movements. Additionally, Tan et al. [47] and Zhong et al. [48] replace the
traditional image-to-image network structure with a diffusion model, resulting in more
realistic generated animation.
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2.2.2. Encoder–Decoder Methods

The encoder–decoder method can be divided into the following modules: audio en-
coding, identity encoding, audio–identity fusion, and face generation. The most notable
difference from previous landmark-based methods is the introduction of the audio–identity
fusion module, which replaces the use of landmarks. Recent methods have added an
attribute encoding module to control additional facial animation properties, such as ex-
pression and pose, while the audio–identity fusion module has been enhanced to include
feature vectors for other attributes.

The audio–identity fusion in early methods [49–51] simply concatenated features of
the audio and identity encodings. In this architecture, the audio–identity fusion module
plays a crucial role, combining audio information (such as tone and rhythm) with identity
features (such as facial shape and expression) to generate dynamic facial animations that
match the speaker’s identity. Although the simple feature combination approach can
produce initial results, it lacks expressiveness and detail in handling complex scenarios.
Therefore, later research introduced more sophisticated fusion mechanisms.

X2Face [52] learns to map pixels from the target face to the generated frame.
Chen et al. [53] fuse audio- and identity-based features using duplication and concatena-
tion. They duplicate the identity feature along the frequency dimension at each time step.
Some works [54–57] utilize RNNs to incorporate both image and audio features within the
recurrent unit, effectively capturing temporal dependencies.

Zhu et al. [58] also present a method that connects the features of audio encoding and
identity encoding, enhancing the correlation between these features through Attentional
Audio–Visual Coherence Learning. Similarly, some works [59–62] train a powerful lip
sync discrimination model to obtain a pre-trained lip sync expert, strengthening feature
correlation. Their method enhances the generalization capability of audio-driven face
animation, allowing for the generation of animations for arbitrary identities.

Recent works [63–66] regress motion vectors from audio features and use these motion
vectors to control the mouth shapes and other attributes of the input video’s face by warping
the feature layers. For example, AniTalker [65] employs a multi-layer Conformer to regress
motion vectors from audio features. Some approaches [67,68] directly embed the audio
feature layers and identity features into the feature layers of the face generation network for
fusion. Compared to earlier methods, these approaches allow pixel-level control, resulting
in capturing more detailed facial movements.

Attribute Editing: Some papers [69–71] focus on attribute editing. For example, the
Expression-Tailored Generative Adversarial Network (ET-GAN) [67] aims to generate
expression-enriched talking face videos of arbitrary identities. The ET-GAN focuses on
enhancing facial animations with expression variations through attribute editing. Pose-
Controllable Audio–visual System (PC-AVS) [70] aims to achieve free pose control while
driving static photos to speak with audio. Zhao et al. [63] and Mittal et al. [72] disentangle
audio–visual representation, separating subject-related and speech-related information.
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2.2.3. Three-Dimensional Model-Based Methods

Three-dimensional model-based methods [73–80] for 2D video generation involve cre-
ating and manipulating detailed 3D facial models, mapping audio features to these models,
and projecting the resulting animations onto 2D planes. By leveraging 3D Morphable Mod-
els and advanced rendering techniques, these methods produce high-quality and realistic
facial animations synchronized with audio. Despite their advantages in detail and flexibility,
they face challenges related to computational complexity and real-time performance.

In 3D model-based methods, 3D facial models are used to replace facial landmarks
and feature vectors as inputs to the generation network. These 3D models can be broadly
categorized into two types: 3D Morphable Models (3DMMs) and non-3D Morphable
Models. Compared to other methods, such as landmark-based and encoder–decoder
approaches, 3D model-based methods inherently encode richer semantic information
about facial geometry and expressions. This allows for more precise control over facial
attributes, such as identity, expression, and pose, enabling more detailed and accurate facial
animation generation.

Yi et al. [75] propose a method that directly extracts facial expression and pose param-
eters from audio. By replacing the 3D Morphable Model (3DMM) parameters of the target
image, they generate facial expressions and poses corresponding to speech. Zhang et al. [76]
and Zhang et al. [77] expand the parametric model of the 3D face by introducing more
detailed controls, particularly on eye movements (e.g., blinking) and lip synchronization,
thereby enhancing the naturalness and realism of the generated facial animations. Addi-
tionally, other works [75,79,80] utilize facial keypoints as control mechanisms, allowing
for more fine-grained adjustments and control over facial expression details such as those
involving the lips, eyes, and eyebrows. These methods have significantly improved the
precision and detail representation in audio-driven 3D face generation tasks.

2.3. Three-Dimensional Face Animation

Early works [31,75,81–94] primarily utilized Recurrent Neural Networks (RNNs) or
fully connected layers to regress the 3D Morphable Model parameters or vertex coordinates
of the face. These methods take audio or other signals as input, predicting the 3D Morphable
Model parameters frame by frame or directly regressing the 3D coordinates of each vertex to
generate dynamic facial expressions synchronized with speech. Although these approaches
rely on the network to capture the relationship between facial movements and audio signals
over time, they may have limitations in handling complex expressions and faces of different
identities. Nevertheless, these early methods laid the foundation for subsequent research in
3D face generation, driving the development of more structured and modular generation
techniques in later studies. Recent works in audio-driven 3D face animation primarily
utilize Transformer and diffusion models. In the following subsections, we will explore
these two aspects in detail.

2.3.1. Transformer-Based Methods

Transformer-based methods [95–112] for audio-driven 3D face animation utilize self-
attention mechanisms, sequence-to-sequence architectures, and multimodal integration
to handle complex relationships and generate high-quality animations. These methods
effectively capture and translate audio features into dynamic and realistic facial movements.
However, they also face challenges concerning computational resources, data requirements,
and model complexity.

FaceFormer [96] encodes long-term audio context and the history of face motions
to autoregressively predict a sequence of animated 3D face meshes. It achieves highly
realistic and temporally stable animation of the whole face including both the upper
face and the lower face. Imitator [95] enhances the generation of facial animations by
integrating identity-specific information. EmoTalk effectively disentangles emotions from
spoken content by introducing the Emotion Disentangling Encoder (EDE) and an emotion-
guided feature fusion decoder. While EmoTalk [100] allows for control over the intensity of
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emotional expressions, it lacks the ability to differentiate between specific emotion types. In
contrast, EMOTE [101] systematically integrates the effects of both emotion and speech on
the resulting 3D animation through a novel emotion-content disentanglement mechanism,
enabling more nuanced emotional representations.

2.3.2. Advanced Generative Network-Based Methods

Diffusion model-based or NeRF-based methods [113–123] for audio-driven 3D face
animation offer a promising approach to generating high-quality and realistic facial anima-
tions from audio inputs. By leveraging the iterative denoising process of diffusion models,
these methods can capture complex data distributions and produce detailed animations.
However, they also face challenges related to computational demands, data requirements,
and model complexity.

Most diffusion model-based methods or NeRF-based methods are also based on
Transformer-based methods, but they replace the generation network with a diffusion
model. Compared to Transformer-based methods that generate 3DMM parameters, diffu-
sion models offer stronger facial expression capabilities and finer detail generation.

3. Comparison

In the field of audio-driven face animation, various methods have been developed to
create realistic and expressive facial animations from audio input. As discussed above, these
methods can be broadly categorized into five categories: landmark-based methods, encoder–
decoder methods, 3D model-based methods, transformer-based methods, and advanced
generative network-based methods. Each approach has its strengths, limitations, and
unique characteristics, which are essential to consider when evaluating their effectiveness.
This section provides a comparative overview of these methods.

Among the above five categories, landmark-based approaches are simpler and less
computationally demanding but may lack detail and expressiveness. Encoder–decoder
methods offer flexibility and detail but require substantial data and computational re-
sources. Three-dimensional model-based methods excel in realism and customizability
but involve complex integration and high data demands. Transformer-based methods
provide strong performance and handle long-range dependencies effectively, though they
are computationally intensive and complex. Advanced generative network-based methods
stand out for their ability to generate high-quality animations but also face challenges
related to training complexity and data requirements. The choice of method depends on the
specific requirements of the application, including the desired level of detail, computational
resources, and available data.

In this section, we will first introduce the datasets, then provide an overview of the
evaluation metrics, and finally present the results from some of the current state-of-the-
art methods.

3.1. Datasets

Various datasets used for deep learning-based 2D video and 3D facial animation
generation are summarized in Table 1. Below, we briefly introduce all of them.

Table 1. Summary of datasets.

Dataset Name Year Subjects Utterance Environment Language Emotions Emotion
Level Views Facial

Mesh Link

GRID [124] 2006 54 5400 Lab English Neutral - 2 views No [125]
CREMA-D [126] 2014 91 7442 Lab English 6 3 front No [126]

BIWI [127] 2014 14 1109 Lab English 2 - - Yes [128]
TCD-TIMIT [129] 2015 62 6913 Lab English Neutral - 2 views No [130]

MODALITY [131–133] 2015 35 5880 Lab English Neutral - - No [134]
MSP-IMPROV [135] 2016 12 8438 Lab English 4 - front No [135]

LRW [136] 2016 - ∼539 K Wild English - - - No [137]
LRS [138] 2017 - ∼118 k Wild English - - - No [139]

MV-LRS [140] 2018 - ∼500 k Wild English - - - No [139]
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Table 1. Cont.

Dataset Name Year Subjects Utterance Environment Language Emotions Emotion
Level Views Facial

Mesh Link

LRS2-BBC [141] 2018 ∼62.8 k ∼144.5 k Wild English - - - No [142]
LRS3-TED [143] 2018 9.5 k+ ∼165 k+ Wild English - - - No [144]

VoxCeleb [145–147] 2018 7 k+ 1 M+ Wild English - - - No [148]
RAVDESS [149] 2018 24 7356 Lab English 8 2 front No [150]

MELD [151] 2018 - 13 k Wild English 6 - - No [152]
VOCASET [86] 2019 12 480 Lab English - - - Yes [153]

HDTF [77] 2020 300+ 10 k+ Wild English - - - No [154]
MEAD [155] 2020 60 281.4 k Lab English 8 3 7 No [155]

CelebV-HQ [156] 2022 15,653 35,666 Wild English 8 - - No [156]
Multiface [157] 2022 13 299 k Lab English 118 18 150 Yes [158]

MMFace4D [159] 2023 431 35,904 Lab Chinese 7 - Front Yes [160]
MultiTalk [161] 2024 - 294 k Wild 20 Lan-

guages - - - No [162]

3.1.1. Audio–Visual Speech Data for Face Animation

These datasets are primarily designed for synchronizing facial animations with speech
and can be used to generate dynamic 3D facial movements from audio input.

• GRID: provides sentence-level audio–visual data ideal for animating lip movements
in speech-driven face animation.

• TCD-TIMIT: contains synchronized audio–visual recordings for audio-driven speech
animation tasks.

• VOCASET: specifically built for 3D facial mesh generation from speech audio, making
it highly suitable for audio-driven face animation.

• LRS: a sentence-level continuous speech dataset for speech-driven facial animation,
particularly for lip movement.

• LRS2-BBC: offers continuous speech data from BBC shows, useful for high-quality lip
sync and facial motion generation.

• LRS3-TED: provides diverse speech data from TED talks, valuable for training models
on varied speakers and expressions in audio-driven face animation.

• MultiTalk: a multilingual audiovisual dataset designed to enhance 3D talking head
generation across multiple languages.

3.1.2. Emotional Expression and Speech Synthesis

These datasets focus on emotion-driven face animation, where the facial expressions
are influenced by both speech content and emotional cues.

• CREMA-D: a multimodal emotional dataset useful for generating facial animations
that incorporate emotional expressions along with speech.

• MSP-IMPROV: ideal for creating expressive facial animations that respond to both
emotional and speech input.

• RAVDESS: combines emotional speech and facial expressions, facilitating models that
generate emotional facial animations from audio.

• MEAD: a large-scale dataset of emotional talking faces, perfect for generating facial
expressions and lip syncing with emotional variations in speech.

3.1.3. High-Resolution and Detailed Facial Data for 3D Animation

These datasets are focused on high-resolution 3D facial data, essential for generating
detailed and realistic face animations from audio signals.

• HDTF: high-definition 3D facial sequences useful for creating fine-grained facial
animations driven by speech.

• Multiface: captures facial landmarks and expressions, valuable for generating precise
facial animations synchronized with audio.

• MMFace4D: a 4D facial dataset that can be used for generating dynamic 3D facial
expressions driven by speech audio.
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3.1.4. Multimodal Data with Speech for Face Animation

This dataset offers multimodal data, including both audio and visual signals, for
complex animation tasks that require synchronizing facial movements with speech and
other modalities.

• MODALIT: a multimodal interaction dataset that can be adapted for audio-driven
facial animation, particularly for tasks involving synchronized speech and expressions.

3.1.5. General and Speaker Recognition Datasets with Potential for Face Animation

While not explicitly designed for facial animation, this dataset contains rich audiovi-
sual data that can be repurposed for tasks like speaker-dependent facial animations.

• VoxCeleb: a large-scale audiovisual dataset that can be adapted for generating person-
alized facial animations from speaker-specific audio.

Laboratory Dataset vs. Wild Dataset

Laboratory datasets, such as CREMA-D and RAVDESS, typically consist of thousands
to tens of thousands of samples collected in controlled environments with consistent
lighting and camera angles. This setup enables precise analyses of facial expressions and
lip synchronization, with datasets like MEAD providing detailed labels for emotions and
viewing angles, making them better suited for specific tasks. In contrast, wild datasets like
VoxCeleb contain over a million samples, offering diversity and realism but introducing
variability in data quality, which can complicate model training and evaluation.

Challenges and Considerations

Data Quality: high-quality and diverse datasets are essential for developing robust mod-
els. Poor data quality or limited diversity can lead to overfitting and reduced generalization.

Ethical and Privacy Concerns: when using personal data, it is crucial to address
ethical and privacy issues, ensuring that data collection and usage comply with relevant
regulations and respect individuals’ rights.

Dataset Size and Diversity: larger and more diverse datasets generally lead to better
model performance, but they also require more resources to collect, manage, and process.

Synthetic Data: in cases where real data are scarce, synthetic datasets generated using
3D modeling or simulation techniques can be used to augment training data.

Datasets are foundational to the development of audio-driven face animation tech-
nologies, providing the necessary data for training and evaluating models. The choice
of dataset—whether audio–video combined, 3D facial animations, or emotion-specific—
affects the performance and applicability of the resulting models. Addressing challenges
related to data quality, ethical considerations, and dataset diversity is crucial for advancing
the field and ensuring that models are both effective and ethically sound.

3.2. Evaluation of Audio-Driven Facial Animation Methods

Metrics are essential for evaluating the performance and quality of audio-driven face
animation systems. They help quantify how well a model generates realistic and expressive
facial animations from audio input. Below is a comprehensive overview of the key metrics
used in this field:

(A) Quantitative Metrics

The performance of deep learning-based 2D video and 3D facial animation systems
is typically evaluated using a range of quantitative metrics, as summarized in Table 2.
Each metric focuses on different aspects of the generated animation’s accuracy, realism, or
perceptual quality. MSE and PSNR assess pixel wise error and Signal-To-Noise Ratio, with
lower MSE and higher PSNR values indicating higher quality outputs. SSIM measures
structural similarity between images. Perceptual metrics, such as LPIPS, FID, and CPBD,
evaluate how human viewers perceive the similarity of generated animations to ground-
truth images and the sharpness and clarity of frames.
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Table 2. Summary of metrics.

Metric Compare Level Focus on Typical Range/Values

MSE Pixel wise Pixel wise error 0 (perfect) to ∞
PSNR Pixel wise Signal-to-Noise 20 dB (poor) to 40+ dB (excellent)

SSIM [163] Perception Structural details −1 (poor) to 1 (perfect)
CPBD [164] Perception Sharpness and clarity 0 (excellent) to 1 (poor)
LPIPS [165] Perception Perceptual similarity 0 (perfect) to ∞

FID [166] Perception Distribution similarity 0 (perfect) to ∞
LMD [53] Pixel wise Landmark position error Varies based on dataset, ideally < 5 pixels
LRA [57] Perception Lip synchronization 0 (poor) to 1 (perfect)

WER [167] Perception Word errors 0 (perfect) to 1 (poor)
EAR [168] Pixel wise Openness of the eyes 0 (closed) to 1 (fully open)
ESD [169] Perception Emotion similarity 0 (different) to 1 (same)
LVE [89] Vertex wise Lip vertices error Varies based on dataset, ideally < 2 mm
FDD [99] Perception Facial dynamics 0 (no motion) to ∞ (extreme motion)
BA [170] Temporal wise Temporal difference 0 (poor) to 1 (perfect)

LSE-D [59] Temporal wise Lip synchronization 0 (perfect) to ∞, ideally < 2
LSE-C [59] Temporal wise Lip synchronization Varies based on dataset, ideally > 8

Temporal metrics like LSE-D and LSE-C focus on lip synchronization accuracy, while
LRA and EAR measure aspects like synchronization of facial movements and eye blink
detection. Other metrics like LVE capture vertex wise lip error, crucial for 3D mesh accuracy.
By combining these metrics, researchers are able to conduct a more comprehensive evalua-
tion of animation fidelity across various facets such as motion, appearance, synchronization,
and emotion conveyance. Below, we briefly introduce all of them.

3.2.1. Pixel Wise Metrics (Direct Comparison of Pixel Values)

These metrics measure errors or differences at the pixel level, directly comparing the
generated image to a reference.

• MSE (Mean Squared Error): Measures the average squared difference between the
predicted and ground truth facial animations. Lower MSE values indicate better
accuracy in reproducing facial movements.

• PSNR (Peak Signal-to-Noise Ratio): Evaluates the quality of generated facial anima-
tions by comparing them to reference animations. Higher PSNR values indicate better
visual fidelity and less distortion.

• LMD (Landmark Distance Error): LMD quantifies the accuracy of lip movement gen-
eration by calculating the distance between predicted and actual landmark positions
on the lips during animation. This metric is vital for assessing the fidelity of facial
animation systems that generate lip movements, ensuring that they closely match the
intended expressions.

• EAR (Eye Aspect Ratio): EAR is a quantitative measure used to assess the openness of
the eyes by analyzing the geometric relationships between specific facial landmarks
around the eyes. It is primarily utilized in computer vision and facial recognition
applications to detect eye blinks and monitor eye movement.

3.2.2. Perception-Based Metrics (Visual Quality and Realism)

These metrics evaluate the perceptual quality, realism, and visual similarity of gener-
ated outputs, focusing on how humans would perceive the result.

• SSIM (Structural Similarity Index): Assesses the similarity between generated and real
facial animations by comparing structural details such as luminance, contrast, and
texture. SSIM provides a more perceptually relevant measure of quality than MSE
or PSNR.

• CPBD (Cumulative Probability of Blur Detection): Cumulative Probability of Blur
Detection (CPBD) is an effective metric for assessing the sharpness and clarity of
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images. By leveraging a probabilistic model that evaluates edge sharpness, CPBD
provides a comprehensive measure of image quality that aligns well with human
visual perception.

• LPIPS (Learned Perceptual Image Patch Similarity): LPIPS (Learned Perceptual Image
Patch Similarity) is a metric designed to evaluate the perceptual similarity between
images, focusing on how humans perceive differences in visual content. Unlike
traditional metrics such as MSE or PSNR, which rely solely on pixel wise comparisons,
LPIPS leverages deep learning to assess image quality in a manner that aligns more
closely with human perception.

• FID (Fréchet Inception Distance): FID measures the distance between the distributions
of generated images from a Generative Adversarial Network (GAN) and real images,
based on feature representations extracted from a pre-trained Inception network. It is
commonly used to evaluate the quality of GANs, particularly under a two-time-scale
update rule, as it helps determine convergence towards a local Nash equilibrium in
the training process.

• LRA (Lip-Reading Accuracy): Conventional metrics such as PSNR, SSIM, and LMD
are inadequate for accurately evaluating the correctness of generated lip movements.
To enhance the assessment of lip synchronization, LRA (Lip-Reading Accuracy) is
analyzed through a cutting-edge deep lip-reading model trained on real speech videos.
This method has demonstrated effectiveness in providing a more precise evaluation of
lip synchronization quality.

• WER (Word Error Rate): WER is calculated by comparing the predicted words gen-
erated from the audio input against a reference transcription of the spoken content.
Specifically, WER quantifies the number of errors by assessing the minimum num-
ber of word insertions, substitutions, and deletions required to align the predicted
transcription with the ground truth.

• ESD (Emotion Similarity Distance): ESD is a metric designed to quantify the similarity
of emotional features extracted from video data. ESD is grounded in the concept of
cosine similarity, which measures the cosine of the angle between two non-zero vectors
in a high-dimensional space.

• FDD (Upper-Face Dynamics Deviation): FDD measures the variation in facial dynam-
ics (the changes in motion over time) of the upper face by comparing the generated
motion to the ground truth motion. Upper-face movements are less directly tied to
speech, meaning they exhibit more subtle and complex dynamics. These dynamics are
influenced by emotion, intention, and personal speaking style. Therefore, FDD helps
assess whether the generated facial motions capture this complexity by comparing
how well the motion variations match the ground truth.

3.2.3. Vertex Wise Metrics (Geometric Comparisons at Mesh Level)

• LVE (Lip Vertex Error): LVE refers to the difference between the actual and pre-
dicted positions of vertices on the lips in a 3D facial model during animation or
synchronization tasks.

3.2.4. Temporal Wise Metrics (Time-Based Evaluation)

• BA (Beat Align Score): a metric commonly used in the context of evaluating the
alignment between audio signals (such as speech or music) and their corresponding
visual representations.

• LSE-D (Lip Sync Error—Distance): LSE-D evaluates lip synchronization by measuring
the distance-based error between predicted lip movements and the ground truth over
time. It focuses on the degree of mismatch in lip movement positions relative to the
audio, assessing how well the generated animation aligns with the timing of speech.

• LSE-C (Lip Sync Error—Confidence): LSE-C assesses lip synchronization but focuses
on the confidence of the synchronization rather than just positional differences. It eval-
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uates how confidently the system can predict lip movements based on the input audio,
aiming to capture the reliability of the synchronization across the animation sequence.

(B) Qualitative Metrics

In audio-driven face animation, qualitative evaluation plays a significant role in
assessing the overall performance of the generated animations, focusing on aspects such
as realism, naturalness, and synchronization. Unlike quantitative metrics that provide
numerical evaluations, qualitative testing relies on subjective human judgment and expert
evaluations. Below are the common qualitative evaluation methods used in audio-driven
face animation:

(I) Visual Realism and Naturalness: evaluates how visually realistic and natural the
generated facial animations appear to human observers.

• Human Subjective Evaluation: Human evaluators are asked to rate the realism, natu-
ralness, and smoothness of the generated animations. This is often carried out through
surveys, where participants watch animated clips and rate them based on various
criteria (e.g., 1 to 5 scale).

• Expert Evaluation: Professionals in animation, gaming, or film industries may be asked
to evaluate the quality of the facial animations based on their experience. This often
focuses on the accuracy of facial expressions, lip sync, and overall animation quality.

• Comparative Realism: evaluators compare the generated face animations with real
video recordings to assess how closely the animated faces resemble human behavior.

(II) Lip Synchronization Accuracy: evaluates how well the lip movements of the animated
face are synchronized with the audio input.

• Visual Lip Sync Test: Evaluators watch the animated face and determine whether the
lip movements are in sync with the speech audio. The key criteria include whether
the lip movements match the speech phonemes and whether the transitions between
visemes are smooth.

• A/B Comparison: human evaluators are shown side-by-side comparisons of the
generated animation and the ground truth (real video) and asked which one has better
lip sync accuracy or if they are indistinguishable.

(III) Expression Realism and Emotional Consistency: focuses on how well the animated
face conveys emotions and expressions that are consistent with the content of the audio.

• Expression Realism Rating: Human evaluators rate how realistic and appropriate
the facial expressions are based on the context of the spoken words. They may be
asked whether the expressions match the emotional tone of the speech (e.g., happiness,
sadness, surprise).

• Emotional Consistency Test: Evaluators assess whether the generated facial expres-
sions are consistent with the emotion implied by the audio (e.g., if happy speech leads
to a ng face). They can also evaluate how smoothly emotional transitions occur during
the animation.

• Contextual Appropriateness: evaluators judge if the facial expressions are contextually
appropriate, i.e., whether the animation expresses the right emotion or expression for
the specific dialogue or speech content.

(IV) Temporal Smoothness and Continuity: assesses whether the generated animations are
temporally coherent and visually smooth over time.

• Smoothness Evaluation: Evaluators focus on how smoothly the facial movements
transition from one frame to the next, particularly in areas like the mouth, eyes, and
eyebrows. Jerky or unnatural transitions can lead to lower ratings.

• Temporal Coherence: human evaluators examine the overall temporal continuity of
the animation, checking for any glitches, jitter, or sudden changes that disrupt the
natural flow of expressions and movements.
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• Emotion Transition Smoothness: when emotions change throughout the speech
(e.g., neutral to happy), evaluators assess how naturally the facial expressions transi-
tion from one emotion to another.

(V) Overall Perceptual Quality: combines several aspects (lip sync, realism, expressions)
to give a general assessment of the perceived quality of the animation.

Perceptual Survey: a broad survey where participants evaluate various aspects of
the face animation—such as naturalness, expression, lip sync, and overall realism—and
provide holistic feedback on the quality of the animation.

• Immersiveness and Engagement: Evaluators rate how engaging and immersive the
animation feels. In applications like gaming or virtual assistants, a higher sense of
immersion means the animated faces feel more believable and human-like.

• Consistency with Personality or Identity: Evaluators assess whether the generated
face animations are consistent with the identity of the character or speaker. This
is particularly important for applications where maintaining a character’s distinct
personality through facial expressions is crucial.

(VI) User Experience and Acceptance Tests: these tests focus on how end-users perceive
the system in real-world applications, especially in interactive environments like
virtual assistants or video games.

• User Interaction Feedback: end-users interact with the system and provide qualitative
feedback on how well the animated face corresponds to the speech, its responsiveness,
and whether they find the system engaging and easy to use.

• Task-Based Evaluation: in applications like virtual tour guides or digital assistants,
users are asked to complete tasks while interacting with the animated face and then
rate their overall experience, focusing on the responsiveness and believability of the
facial animations.

• Naturalness in Social Interaction: Evaluators are asked how natural the face animations
are during conversations or social interactions. This is especially relevant in digital
human or virtual assistant applications, where natural interaction is crucial.

3.3. Results

As illustrated in the Table 3, FaceDiffuser outperforms all other methods in both LVE
(Lowest Vertex Error) and FDD (Facial Dynamics Deviation), achieving the lowest values
of 4.2985 mm and 3.9101 × 10−5 m, respectively. Following closely are CodeTalker and
FaceFormer, which also demonstrate strong results in generating accurate and dynamic
facial animations.

Table 3. Objective results computed over the BIWI dataset.

Method LVE (mm) FDD (×10−5 m)

VOCA [86] 6.7155 7.5320
MeshTalk [89] 5.9181 5.1025

FaceFormer [96] 4.9847 5.0972
CodeTalker [99] 4.7914 4.1170

FaceDiffuser [115] 4.2985 3.9101

When evaluating methods for generating facial animations, the Lowest Vertex Error
(LVE) is a key metric. Ideally, the LVE should be less than 2 mm, which indicates that the
generated animations have very little difference from real facial movements. Values below
this threshold suggest excellent lip synchronization, effectively aligning with the audio
input. Within an acceptable range, the LVE should be below 5 mm, and values within this
range are generally sufficient to ensure good lip synchronization performance.

Although FaceDiffuser has an LVE of 4.2985 mm, which is slightly above the acceptable
upper limit, it still demonstrates strong generative capabilities, indicating its advantage in
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producing dynamic facial animations. However, to further enhance its lip synchronization
performance, it is recommended to optimize the algorithm to lower the LVE value to below
the ideal threshold of 2 mm. This would not only improve the realism of the generated
animations but also enhance the user’s immersive experience.

Ideally, FDD should be less than 2 × 10−5 m, but values below 5 × 10−5 m can still
be acceptable. In contrast, VOCA shows the highest LVE at 6.7155 mm, reflecting a less
precise alignment of lip movements with audio input compared to the other methods. This
highlights the strengths of FaceDiffuser, CodeTalker, and FaceFormer in maintaining better
lip synchronization in their generated animations.

3.3.1. Lip Synchronization

As shown in Table 4, wav2Lip achieves the highest scores for lip synchronization
using LSE-C (10.08/8.13), demonstrating its excellence in generating highly synchronized
lip movements with audio input. A score of LSE-C greater than 8 is considered good,
indicating Wav2Lip’s strong performance. In contrast, MakeItTalk has the lowest lip sync
scores, reflecting weaker synchronization compared to other methods.

Table 4. Comparison with the state-of-the-art methods on HDTF and VoxCeleb dataset. The data
presented in the table are in the order of HDTF/VoxCeleb.

Method
Lip Synchronization Motion Diversity Image Quality

LSE-C Diversity Beat Align FID PSNR SSIM

Wav2Lip [59] 10.08/8.13 - - 22.67/23.85 32.33/35.19 0.740/0.653
MakeItTalk [45] 4.89/2.96 0.238/0.260 0.221/0.252 28.96/31.77 17.95/21.08 0.623/0.529
SadTalker [74] 6.11/4.51 0.275/0.319 0.296/0.328 23.76/24.19 35.78/37.90 0.746/0.690
DiffTalk [62] 6.06/4.38 0.235/0.258 0.226/0.253 23.99/24.06 36.51/36.17 0.721/0.686

DreamTalk [78] 6.93/4.76 0.236/0.257 0.213/0.249 24.30/23.61 32.82/33.16 0.738/0.692

3.3.2. Motion Diversity

As shown in Table 4, SadTalker leads in motion diversity with scores of 0.275/0.319,
indicating its ability to generate more varied facial movements. MakeItTalk and DreamTalk
follow closely, while Dif-fTalk shows the lowest motion diversity, suggesting more con-
servative or uniform facial motions. A Beat Align score above 0.3 is considered good,
highlighting SadTalker’s superior capability in this aspect.

3.3.3. Image Quality

As shown in Table 4, SadTalker excels in image quality as well, achieving high PSNR
(35.78/37.90) and SSIM (0.746/0.690) scores, which indicate better structural similarity
and sharpness of the generated images. Although Wav2Lip has relatively high PSNR
values, it has slightly lower FID and SSIM scores than SadTalker, reflecting good but less
detailed visual quality. Conversely, MakeItTalk records the lowest PSNR (17.95/21.08) and
SSIM (0.623/0.529) values, indicating weaker image quality overall. For reference, a PSNR
above 40 and an SSIM above 0.9 are considered good, underscoring SadTalker’s strong
performance in image generation.

Wav2Lip excels in lip synchronization, making it suitable for tasks that require precise
audio–visual alignment. SadTalker stands out for motion diversity and image quality,
providing more varied and visually appealing animations. DiffTalk performs well across
all categories but is slightly conservative in terms of motion diversity.

However, it is important to note that there are currently no absolute metrics to define
ranges for bad, acceptable, good, and very good performance, as these values can vary
depending on the dataset used.
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3.3.4. Impact of Language on Animation Quality

As shown in Table 5, differences in phonemes and pronunciation between languages
may affect the accuracy of facial animations. For example, the pronunciation features of
Italian and Greek differ significantly from those of English and French, potentially leading
to discrepancies in the quality and expressiveness of the generated animations.

Table 5. Quantitative comparison to existing methods. We compare existing methods on the test split
of the MultiTalk dataset on 4 languages: English (En), Italian (It), French (Fr), and Greek (El).

diffMethod
LVE (mm)

En It Fr El

VOCA [86] 1.95 2.78 1.93 2.18
FaceFormer [96] 1.82 2.56 1.78 1.99
CodeTalker [99] 1.98 2.56 1.99 2.09

SelfTalk [110] 1.99 2.59 1.98 2.11
MultiTalk [161] 1.16 1.06 1.39 1.26

This indicates that training models on specific language datasets may influence their
generalization capabilities in other languages.

4. Conclusions and Future Directions

Audio-driven face animation methods have advanced significantly, leveraging a vari-
ety of techniques to produce realistic and expressive facial animations from audio inputs.
Landmark-based methods offer a straightforward approach but may lack detail and expres-
siveness. Encoder–decoder methods provide flexibility and detail but require substantial
data and computational resources. Three-dimensional model-based methods excel in re-
alism and customizability but involve complex integration. Transformer-based methods
handle long-range dependencies effectively, while advanced generative network-based
methods achieve high-quality outputs but face challenges in training complexity and
data requirements.

These diverse methods have applications across various fields, including entertain-
ment, virtual and augmented reality, digital assistants, education, social media, and acces-
sibility. For example, landmark-based methods can enhance user experiences in mobile
applications by providing engaging facial animations that respond dynamically to audio.
In contrast, more resource-intensive methods can be leveraged in enterprise applications,
such as film production or sophisticated animation projects, where higher accuracy and
complexity are crucial.

The future of audio-driven facial animation research is set for remarkable progress,
emphasizing realism, emotional depth, and user engagement. Key areas of focus include
the integration of nonverbal elements, such as paralanguage and silence, which are vi-
tal for conveying complex emotions and enhancing character authenticity. Advances in
synchronization and temporal consistency will likely improve lip sync accuracy and expres-
sion transitions, aided by innovative sequence-to-sequence models and diverse linguistic
datasets to tackle cross-lingual challenges. Moreover, the trend toward personalization will
enable users to create unique avatars reflecting their individual expressions, enhancing
immersion. By addressing these aspects, future research can significantly boost the expres-
siveness and realism of digital humans, expanding their applications in interactive media
like games and virtual assistants.

4.1. Nonverbal Elements and Silence

“Nonverbal elements”, such as “paralanguage”, including laughter, sighs, and other
sounds, play a crucial role in conveying emotional depth and enhancing the realism of
animated characters. Research indicates that these elements can significantly improve the
emotional expressiveness and interactive quality of virtual characters. Additionally, the
importance of how moments of silence convey complex emotions deserves attention, as
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this aspect remains underexplored yet is essential for creating more nuanced animations.
Furthermore, establishing standardized evaluation metrics that encompass both verbal and
nonverbal cues will be vital for advancing the field and facilitating comparisons between
different methods. By focusing on these areas, future research can greatly enhance the
expressiveness and authenticity of digital humans, ultimately benefiting their application
in interactive media such as games and virtual assistants.

4.2. Synchronization and Temporal Consistency

Further advancements are expected in improving synchronization and temporal dy-
namics, particularly in achieving more accurate lip sync and natural transitions between
facial expressions. Researchers will explore enhanced sequence-to-sequence models and
temporal consistency techniques to meet these goals. Supporting cross-lingual and multilin-
gual animation is also a critical future direction, with models trained on diverse linguistic
datasets to account for differences in phonetic and prosodic features across languages.

4.3. Generalization and Customization

The future of facial animation will increasingly involve personalization and adaptability.
Models will need to be capable of adjusting to individual facial characteristics and expres-
sions, creating personalized avatars. Additionally, providing users with tools to customize
expression intensity and style will enable more interactive and immersive experiences.
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