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A B S T R A C T

Humans show an impressive ability to plan over complex situations and environments. A classic approach to 
explaining such planning has been tree-search algorithms which search through alternative state sequences for 
the most efficient path through states. However, this approach fails when the number of states is large due to the 
time to compute all possible sequences. Hierarchical route planning has been proposed as an alternative, offering 
a computationally efficient mechanism in which the representation of the environment is segregated into clus
ters. Current evidence for hierarchical planning comes from experimentally created environments which have 
clearly defined boundaries and far fewer states than the real-world. To test for real-world hierarchical planning 
we exploited the capacity of London licensed taxi drivers to use their memory to construct a street by street plan 
across London, UK (>26,000 streets). The time to recall each successive street name was treated as the response 
time, with a rapid average of 1.8 s between each street. In support of hierarchical planning we find that the 
clustered structure of London’s regions impacts the response times, with minimal impact of the distance across 
the street network (as would be predicted by tree-search). We also find that changing direction during the plan 
(e.g. turning left or right) is associated with delayed response times. Thus, our results provide real-world evi
dence for how humans structure planning over a very large number of states, and give a measure of human 
expertise in planning.

1. Introduction

Being able to plan for the future is a critical cognitive ability for 
humans. How humans might enact spatial planning has been the topic of 
a wide range of research (Brown & Chrastil, 2019; Chrastil et al., 2015; 
Ekstrom et al., 2018; Epstein et al., 2017; Hartley et al., 2003; Horner 
et al., 2016; Mattar & Lengyel, 2022; Fernandez-Velasco and Spiers, 
2024; Miller & Venditto, 2021; Newcombe, 2018; Patai & Spiers, 2021; 
Spiers & Gilbert, 2015; Weisberg & Newcombe, 2016). One common 
approach is to consider tree-search algorithms. Computationally, tree- 
search algorithms operate by repeatedly sampling different 

alternatives at each decision point according to some heuristic strategies 
and effectively compare entire sequences of decisions (Shannon, 1950; 
Daw, Niv, & Dayan, 2005; Huys et al., 2012; van der Ham & Claessen, 
2020). More recent approaches involve Monte Carlo tree-searches that 
randomly sample trajectories potentially guided by state evaluation 
functions (Browne et al., 2012), pruning strategies that eliminate 
unfavourable options (Huys et al., 2012), and reinforcement-based 
strategies that estimate the overall likelihood of a route being chosen 
(Botvinick et al., 2009; O’Doherty et al., 2015). These models have 
managed to describe quite closely human and animal trajectories in 
small-scale and virtual reality environments (Daw et al., 2011; De Cothi 
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et al., 2022; Miller & Venditto, 2021; Russek et al., 2017). Nevertheless, 
because the number of possible routes grows exponentially with each 
extra step to evaluate, tree-search becomes computationally intractable 
in large-scale environments such as most cities (Gershman et al., 2015).

A promising development that could measure up to the computa
tional demands of real-world navigation is hierarchical route planning 
(Bast et al., 2016; Botvinick et al., 2009; McNamee et al., 2016; 
O’Doherty et al., 2015; Tomov et al., 2020). Hierarchical models 
segregate the environment and represent it through smaller, distinct 
areas that contain local information about specific places. The distinct 
areas are referred to as clusters, and the specific places as states. Instead 
of involving the entire environment, computations are then restricted to 
a subset of clusters and states. Route planning is first carried out across 
clusters / subregions to select the relevant ones. Within each cluster, a 
particular route is planned using the limited number of states available. 
Ultimately, this results in multiple sequences of shorter routes. This 
makes intuitive sense when we consider that cities will lend themselves 
to clustering in the different regions that evolve within its layout 
(Farzanfar et al., 2023; Filomena et al., 2019; Lynch, 1964).

Empirical studies of human navigation in small regionalized virtual 
environments have provided evidence of hierarchical route planning 
(Balaguer et al., 2016; Wiener et al., 2004; Wiener & Mallot, 2003). 
Experimental work has also shown that humans decompose tasks in 
optimal ways for planning action sequences (Solway et al., 2014). Evi
dence for hierarchical route planning has also come from examination of 
reaction times of participants planning routes in a fictitious transport 
network, where the number of trainline interconnections, rather than 
the number of stations, has a significant impact on planning times 
(Balaguer et al., 2016).

Real-world evidence for hierarchically structured route planning, 
however, is scant. Taxi drivers in Paris have been studied to explore how 
they represent the city and plan routes (Chase, 1983; Pailhous, 1969). 
While this has shown evidence for use of the major street network to 
apply to planning routes (Pailhous, 1969) and greater overestimation of 
distances when two reference places were separated by neighbourhood 
boundaries (Chase, 1983), the studies do not provide an explicit test of 
hierarchical planning, such as has been used in lab studies (e.g. Balaguer 
et al., 2016).

One possible approach to exploring hierarchical planning is in the 
mental simulations of real-world routes, which have shown evidence of 
clustering of locations into regions and compressed representations of 
walking times or distances (Arnold et al., 2016; Bonasia et al., 2016; 
Brunec et al., 2017; Jafarpour & Spiers, 2017). Likewise, the duration of 
mental planning of real-world routes can indicate regional hierarchies in 
a spatial environment (McNamee et al., 2016). Nonetheless, these 
findings concern planning times for a route as a whole. What has not 
been obtained to date is evidence from step-by-step planning in real- 
world, ecologically valid settings. The importance of this lacuna 
comes to the fore when we contrast the small state-spaces employed in 
controlled experimental setups (e.g. Balaguer et al., 2016; Muhle-Karbe 
et al., 2023; Wiener et al., 2004; Wiener & Mallot, 2003) and large street 
networks of the real-world (Griesbauer, Manley, McNamee, et al., 2022). 
Lab experiments have used bounded spaces with artificially imposed 
accentuated hierarchies. Real-world cities, on the other hand, lack any 
straightforward segregation into clusters, often with no straightforward 
boundaries (Griesbauer, Manley, McNamee, et al., 2022). For instance, 
the subway network in the study by Balaguer et al. (2016) was designed 
so as to be hierarchically segregated, and human cognition apparently 
leverages this structure for planning. It remains unclear where similar 
response patterns would be evident for route planning in real large-scale 
urban environments that lack such sharp hierarchical segregation.

The lack of defined boundaries is one of three methodological 
challenges presented when testing for real-world evidence of hierar
chical route planning. The other two are the participants’ ability to give 
precise route descriptions, and familiarity. One can reliably expect 
participants to remember stops in a relatively small subway network and 

give clear descriptions of possible routes, but for an urban street network 
spanning tens of thousands of streets, there are very likely significant 
gaps in the spatial knowledge of typical residents. Finally, participants 
will have varying levels of familiarity with different regions of existing 
urban settings. Familiarity has been shown to affect performance in 
spatial tasks (O’Neill, 1992) and to distort representations of distances 
within an environment (Jafarpour & Spiers, 2017).

Here, we surmount these challenges by testing for hierarchical route 
planning in London licensed taxi drivers. Licensed London taxi drivers, 
also known as London cabbies (hereafter referred to as London taxi 
drivers), are famous for their thorough training on “The Knowledge of 
London”, which covers both main and secondary roads within the six- 
mile area around Charing Cross in central London, UK (see Griesba
uer, Manley, Wiener, & Spiers, 2022). Years of driving experience in 
London, accumulated during training, as well as post-qualification 
during work, make such taxi drivers excellent navigators of London, 
and in contrast to the general population, they are trained to recall 
routes in all areas of London by giving precise travelling instructions and 
specific street names for each step of a journey through London 
(Griesbauer, Manley, Wiener, & Spiers, 2022). In addition, taxi drivers 
have a familiarity with all areas of London. Previous research with 
London taxi drivers has provided insights into the dynamics of cogni
tion, neural plasticity and brain function during driving and navigating 
London (Maguire et al., 2000; Maguire, Woollett, & Spiers, 2006; 
Maguire, Nannery, & Spiers, 2006; Spiers & Maguire, 2007a,a,b,b,c, 
2008; see for review Griesbauer, Manley, Wiener, & Spiers, 2022). Here 
we probe their capacity for planning. Towards this, we use the bound
aries in London that are consistently recognised by London taxi drivers, 
e.g. Soho, Mayfair (based on Griesbauer, Manley, McNamee, et al., 
2022). Notably, many boundaries noted on official maps (eg. ‘The City of 
London’) were not consistently considered as boundaries. As a result, we 
were able to reliably segment London into different clusters that would 
be meaningful to this population.

We examined the response time to state the name of each street in the 
sequential planning of routes between a given origin and a destination 
pair (e.g. Kings Cross Station, to Paddington Station). If London taxi 
drivers employ hierarchical structures when planning routes, then 
response times should differ depending on the clusters they are planning 
over (streets on the boundary of regions vs other streets). If a tree-search 
is used to plan, the planning response time should be higher when there 
are more streets ahead to be evaluated as part of the plan. If they are 
exploiting boundary streets to plan they may be faster to respond when 
they need to select these streets as they would have been pre-selected in 
a hierarchical plan (McNamee et al., 2016).

The street network also contains additional features that may impact 
route planning. These include turning left or right, road classifications 
into main and minor roads, and Euclidean or path distance to the 
destination. Turns have been found to act as conceptual boundaries that 
have an impact on memory recall of route features (Brunec et al., 2020; 
Kuipers et al., 2003; Lloyd, 1989), on the estimation of path distances 
(Brunec et al., 2017; Hutcheson & Wedell, 2009; Sadalla & Staplin, 
1980), and on preferences towards routes with fewer turns (Broach 
et al., 2012; Elliott & Lesk, 1982; Venigalla et al., 2017). Thus, turns may 
likely lead to slower response times. As for major roads (e.g. UK ‘A 
roads’), they might be better remembered than minor roads due to 
increased familiarity, as was the case with Parisian taxi drivers 
(Pailhous, 1969), which would favour a faster recall. Alternatively, 
major roads are associated with higher betweenness centrality in the 
street network (Javadi et al., 2017) and thus more long-range potential 
options for a plan, leading to predicted slower response times. Past 
research indicates distortions in the representations of space when a 
path must circumnavigate a region leading to high circuity metrics in a 
path (e.g. long path distance to a destination, but a short Euclidean 
distance) (Brunec et al., 2017). Thus, it seems possible that response 
times may be impacted by the degree of circuity of routes (e.g. straight 
routes vs U-shaped routes).
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2. Methods

2.1. Participants

44 licensed London taxi drivers were tested after written informed 
consent. One participant displayed extremely unstructured route recalls 
that did not allow for a transcription of the routes, thus data from 43 taxi 
drivers (41 males, 2 females) was analysed. Their mean age was 53.82 
years (SD = 10.35; range: 34–75 years) and their mean experience 
driving a taxi was 19.61 years (SD = 15.69). 19 taxi drivers participated 
in the first round of data collection (all male, age = 52.94, SD = 9.81, 
experience = 19.97, SD = 16.52) and 24 taxi drivers at the second round 
of data collection (22 male, 2 female; age = 54.50, SD = 10.93; expe
rience = 19.30, SD = 15.32). All of the taxi drivers were native English 
speakers. Data was collected in two periods with an interval of six 
months between the collection times. The sample size corresponded to 
resource constraints that had to do with recruitment (Lakens, 2022). At 
the end of the first collection period, sample was judged (heuristically) 
to be too small for this type of real-world type of experiment, and a 
second cohort was recruited. All procedures were approved by the ethics 
committee (CPB/2013/150 and EP/2018/008).

2.2. Materials

The task for the first data collection consisted of 12 origin- 
destination pairs (e.g. from Chelsea harbour to London heliport). For 
the second data collection, two origin-destination pairs of the original 
set remained and 6 new pairs were added which increased the variety of 
route planning problems across London. From the two routes that 
remained the same, one origin location had to be updated (from Joe 
Allen’s restaurant to Bill’s) because the restaurant had moved location. 
The new origin (Bill’s) was a neighbouring restaurant to the original 
(Joe Allen’s restaurant). All pairs were chosen to vary in their 
geographical properties (e.g. path length, Euclidean distance, direction 
of travel; see Table S1). Euclidean distance was designed to be relatively 
decorrelated from the number of streets to the goal and potential 
boundaries that had to be crossed. This was to allow us to determine 
whether each type of distance impacted planning. For instance, route 7 
and 18 had a similar number of streets (8 expected streets for route 7 and 
7 streets for route 18), but varied in their planning distance (~11 km for 
route 7 and ~1.5 km for route 18). On the other hand, route 7 and route 
17 were similar in their planning distance (~11 km vs ~ 8.4 km) but 
varied in the number of streets that had to be recalled (8 streets vs 14 
streets). Similarly, the number of boundaries that we expected to affect 
routes varied across routes: Some routes did not cross any boundaries (e. 
g. route 4, 6 or 10), while other routes required at least partially to 
mentally travel along boundaries (e.g. route 7, 12 or 14) or crossing 
several boundaries (e.g. routes 1, 5, 13, 16 or 17). In collaboration with a 
London taxi driver training school (See Griesbauer, Manley, Wiener, & 
Spiers, 2022 for details), teachers provided feedback to ensure the val
idity of the selected route with regards to route planning properties. Two 
SONY ICD-PX240 Mono Digital Voice Recorders were used in this 
experiment. One of the recorders was used to replay pre-recorded in
structions and the route planning tasks. With the second recorder, the 
experimenters recorded the whole duration of the experiment, from the 
initial task presentation to the final route recall.

2.3. Experimental design

Licensed London taxi drivers were recruited in the area of Blooms
bury and the borough of Camden, London (UK). Before participating in 
the study, taxi drivers gave written consent and filled in a personal 
questionnaire to indicate age, gender, experience, whether they were 
native speakers, and whether they had taken part in this study on a 
previous occasion. After participating, taxi drivers received monetary 
compensation.

The group of taxi drivers who participated in the first study were 
verbally informed that they were to plan routes (runs) between origin- 
destination pairs (points) and that these routes would be presented 
through audio recordings. Specifically, participants were asked to “call 
out the run” between the origin and the destination. This terminology 
(“calling out a run”) is in line with the activity that taxi drivers undergo 
in their training, and it involves the quick recall of the street names and 
turns, in order, along the shortest route between the origin and the 
destination. Participants were asked to listen carefully to the in
structions, and they were warned that repeating instructions was not 
possible. If they did not understand or know either of the points, they 
could skip the route or carry it out where they perceived the points to be. 
In order to avoid interfering effects from obstructions unrelated to street 
network properties, participants were instructed to disregard possible 
congestion and any temporary obstructions in the street network. As 
some traffic rules can change in dependence of day and time, partici
pants were prompted to imagine they were carrying out the route 
planning task on a typical Monday morning around 11.00 AM, to keep 
conditions consistent. Finally, in order to avoid distractions from the 
planning process and to elicit a structured recall across all drivers, 
participants were instructed to focus on the route planning as if they 
were in a ‘knowledge examination’ situation (Griesbauer, Manley, 
Wiener, & Spiers, 2022) and to refrain from questions, comments or 
explanations.

Instructions to follow the structured recall as in the examination 
situation were given only before the first and the second route plan, but 
drivers received a reminder of day and time (i.e. Monday morning at 
11.00 AM) before each route. These reminders had been audio recorded 
and were presented together with the audio recordings of the twelve 
route planning in the following format: 

“Please remember to do this under appearance conditions. So, no 
questions or clarifications, when you hear the points. If you’re un
sure, start or go where you think it is, or skip the run.” (Before route 1 
and 2).

“Please remember, you’re doing the next run on a Monday morning 
around 11 am.” (Before each route).

“Please call out the run from [Point, Street] to [Point, Street].” (Task 
presentation).

Drivers listened to the set of instructions and then planned the route 
before moving on to the next set of instructions and route planning task 
(for an illustrative example of a recall block, see Fig. 1). The whole 
sequence from the first instruction to the final route recall was recorded 
on a second audio-recording device.

For the second group of taxi drivers, who were presented with a 
modified set of eight origin-destination pairs, the following additional 
modifications were put in place to improve the procedure: During the 
first period of data collection, several taxi drivers repeatedly asked for 
clarifications of the origins or destinations or could not remember which 
location was named. Thus, several routes were skipped by drivers. 
Therefore, ‘flashcards’ were provided stating the location and the cor
responding street for both origin and destination. These flashcards were 
shown to the drivers directly after they had listened to the audio 
recorded task and stayed visible during the entire route recall of a task. 
Additionally, after completing the first and second routes, drivers were 
asked for confirmation that the recalled route reflected what they would 
have done on a Monday morning at 11.00 am, which all taxi drivers 
confirmed.

2.4. Data transcription

The collected audio data of the recorded route recalls was tran
scribed in terms of street names and response times. Initial response 
times (i.e. the time between task instructions and the first street named) 
reflected route planning behaviour that included a variety of actions and 

E.-M. Griesbauer et al.                                                                                                                                                                                                                         Cognition 256 (2025) 106014 

3 



processes inconsistent across drivers or routes (e.g. affirmative questions 
concerning locations). These actions were not consistent across or 
within taxi drivers or routes, and could not be separated from each other 
analytically, because most planning was carried out silently to ensure 
natural planning behaviour of the drivers. Therefore, initial planning 
times have been excluded from the analysis of response times. In 
contrast, response times between streets (i.e. pauses between two consec
utively named streets) were part of the sequential recall of street names 
and reflected planning behaviour directly related to each point of the 
recall process, not leaving opportunities for unrelated planning actions 
(see Figs. 1 & 2).

The transcription of all response times was carried out with the free 
and open-source audio software Audacity, versions 2.2.2 and 2.3.1, 
which allowed for an accuracy of up to 0.1 s. The street names were 
transcribed and corrected for mistakes (e.g. “Townsend Rd” to “Town
mead Rd”) or unified (e.g. “Charles the 1st” to “Trafalgar Square”) to 
ensure comparability of response times at each street or place. The 
analysis of the complete dataset was carried out in R (version 4.0.2). To 
ensure the reliability of transcribed response times, an inter-rater reli
ability test was carried out for both studies. The intraclass correlation 
coefficient (ICC) for the first study (transcribed by two coders), was 
assessed through a two-way, mixed effects, absolute agreement, single- 
measures model. The ICC (ICC = 0.98, p < .001) was in the excellent 
range, suggesting a similar transcription of response times due to a high 
agreement between the two coders. For the second study (transcribed by 

four coders), a one-way random effects model with absolute agreement 
was used. The ICCs indicated a moderate range of agreement (ICC =
0.61, p < .001), which was considered acceptable for a rating involving 
four coders. A Wilcoxon Signed-rank test indicated no group differences 
between the two sets of taxi drivers for routes 7 and 8 for log- 
transformed (Mdn(S1) = − 0.22, IQR = 1.18, Mdn(S2) = − 0.16, IQR 
= 1.24, p = .252, r = 0.046) or z-standardised (Mdn(S1) = − 0.29, IQR =
1.11, Mdn(S2) = − 0.33, IQR = 1.24, p = .688, r = 0.016) response times 
between streets. Accordingly, the data from both instances of data 
collection was treated as one data set.

2.5. Data analysis

We used a linear mixed effects model to test the effect of street 
network variables on the log-transformed response times (c.f. Coutrot 
et al., 2018). Note that these are response times between streets, not 
overall response times. Taxi drivers and their routes were entered as 
random effects to account for individual differences and potential cor
relations between repeated measures. The fixed effects variables of the 
model were boundaries (B), turn actions (T), number of streets (N), road 
type (R) and Euclidean distance (E). Here, the boundaries reflected 
agreement rates across taxi drivers in percentages. This was based on a 
previous study (Griesbauer, Manley, McNamee, et al., 2022), in which 
taxi drivers were asked to indicate streets they considered as boundaries 
for London districts or dividing areas. The agreement on boundary 

Fig. 1. Example of one taxi driver’s plan for one of the eighteen origin-destination pairs probed. Taxi drivers received pre-recorded audio instructions of the origin 
and destination location and planned the route before being presented with the next route. All instructions and route recalls were audio recorded (top) and tran
scribed to extract response times and visualise planned routes (bottom right). The time between given instructions and the first recalled street was defined as the 
initial response time. Time between recalled streets of the route were defined as response times between streets. See Fig. 2 for all the routes taken for this origin- 
destination pair. This figure was generated using Open Street Map data and the osmdata package in R.
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streets (between taxi drivers) varied considerably, from some bound
aries providing almost no consensus to some boundaries consistently 
noted as boundaries (see Fig. 3). Here, we use the agreement rate for 
each boundary as a fixed effect variable.

The number of turns was extracted from the route recall, and corre
sponded to the number of turns on the route. Turns were coded cate
gorically as turn where a change in direction occurred between 
consecutive streets or as a forward action where streets continued 
straight without a change of direction. Note that taxi drivers are 
required in the exam (and in our experiment) to state either forward or 
turn. The number of streets to the destination was counted down, with the 
last street having the value 1 and the first street the value n, if a driver 
recalled n numbers of streets for a route. Road type was categorised as 
either a main road (either trunk roads or primary roads), or other roads 
(i.e. all remaining road types, such as secondary, tertiary, or residential 
roads). Here, data about road type classifications was extracted from the 
OS MasterMap Integrated Transport Network (ITN) Layer (2018). 
Euclidean distance to the destination was calculated from each 

intersection of two consecutive streets to the destination (i.e. this was 
the distance between the reported step on the route corresponding to the 
response time in the regression, and the destination, not between origin 
and destination). Data was extracted from OS MasterMap Integrated 
Transport Network (ITN) Layer (2018). These five fixed effects were 
decorrelated as all variance inflation factors were below 2.5. The basic 
model, which was used to describe log-transformed response times be
tween streets, had the following structure: 

Log (RTs)∿1+B+T+N+R+E+(1| Taxi Driver)+ (1| Route) (1) 

Model 1 was designed to provide an initial assessment of the data 
based on factors found in the literature. Follow up analysis was carried 
out to examine in more detail the effect of boundaries, and two alter
native models were considered. One alternative model (Model 2) 
replaced boundary streets with all the streets in the London district of 
Soho (S), including its boundaries. For each route, it is not about whether 
the route as a whole passes through Soho, but about the section of the 
route that passes streets in Soho. We chose to focus on Soho because it 
was the only district that conceptually appears as an ‘island’ with 
sharply defined boundaries in the central London street network 
(Griesbauer, Manley, McNamee, et al., 2022) and appears to be treated 
distinctly by London taxi drivers (Maguire, Nannery, & Spiers, 2006). In 
contrast, Mayfair and Belgravia are not entirely surrounded by other 
urban areas because they share boundaries with Hyde Park, a green 
space that is conceptually different from urban spaces. The second 
alternative model (Model 3) examined the impact of circuity, a similar 
concept to U-turn costs. This analysis was carried out because Balaguer 
et al. (2016) had found a cost of U-turns where participants had to head 
back along a subway line to reach the destination. Here, circuity was 
defined as the fraction of path distance to the destination divided by 
Euclidean distance to the destination, both calculated from each street. 
The closer the circuity value to 1, the more similar is the travelled route 
(path distance) to a straight line (Euclidean distance). The larger the 
circuity value, the more deviation there is of the path from a straight 
line. Since circuity and Euclidean distance to the goal were not inde
pendent from each other, Euclidean distance was replaced by circuity in 
Model 3. Hence, the two alternative models were (changed variable in 
bold): 

Log(RTs)∿1+ S+T+N+R+E+(1| Taxi Driver)+ (1| Route) (2) 

Log(RTs)∿1+B+T+N+R+C+(1| Taxi Driver)+ (1| Route) (3) 

S = Soho streets, replacing boundaries from Model1.
C = Circuity, replacing Euclidean distance in Model 1.

3. Results

3.1. Overview of the data

The data, which was collected from N = 43 licensed London taxi 
drivers (green badge holders), included the recall of 354 routes (first 
study: 173, second study: 181). The mean for initial planning times was M 
= 13.83 s (SD = 13.40; Table 1) over N = 315 routes. Data of some initial 
planning events had to be removed as drivers asked for clarifications and 
tried to engage in conversations. On average, taxi drivers recalled 9.1 
out of 12 routes during the first study, and 7.5 out of 8 routes during the 
second study.

There were a total of 3398 responses, with a mean response time be
tween streets of M = 1.82 s (SD = 3.24). The total response duration for 
routes, a measure to reflect the total planning duration based on re
sponses between streets per driver and route, was M = 17.53 s (SD =
16.47). See Fig. 2 for an example of the routes chosen for an origin- 
destination pair. See Fig. 6 for examples of actual routes where groups 
of taxi drivers took the same path to show the dynamics in response 
times. For the raw dataset, these response times between streets were 
skewed towards minimal response times (see Fig. S1). Log- 

Fig. 2. Overlay of the routes planned by all taxi drivers for a single origin- 
destination pair. Taxi drivers received pre-recorded audio instructions of the 
origin (Royal Oak tube station) and destination (Revolution, Clapham High 
Street) locations and planned the route. All instructions and route recalls were 
audio recorded and transcribed to extract response times and visualise planned 
routes (in yellow). Time between recalled streets of the route were defined as 
response times between streets. Larger circumferences on the map (in yellow) 
correspond to longer response times between streets. All the responses from all 
participants for a single origin-destination pair have been overlaid on the map 
of London. This figure was generated using Open Street Map data and the 
osmdata package in R. For a. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)
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transformation (using the natural logarithm) and z-standardisation 
provided a better fit with a normal distribution, with the exception of 
high density at minimal response times of the log-transformed data. This 
was also reflected across routes (see Fig. S2). Mean response times be
tween streets ranged from 0.7 s for route 10 to 2.8 s for route 9 and violin 
plots indicated skewness of raw data towards fast recalls between 
streets. These were ordered by ascending means of z-transformed data to 
allow for comparison across routes whilst accounting for individual 
differences between drivers. A high number of outliers for the raw and z- 
transformed data at each route highlighted slow responses between 
named streets with up to 60s. Log-transformed violin plots showed two 
high density peaks of data, one near fast response times around 0.1 s 
(log-values around − 1) and a second density peak near values of 1 s (i.e. 
log-values around 0). For this study, the high density of fast response 

Fig. 3. Overlay of boundaries. Adapted from Griesbauer, Manley, McNamee, et al. (2022). The process to generate the boundaries was as follows: The original paper 
drawings (a) were digitised in geoJSON.IO (b). A layover of all drawings (c) was created. Lines with higher opacity, e.g. boundaries around Mayfair and Soho (e), 
indicate a higher agreement across drivers on a boundary street than for streets with low opacity, e.g. City of London (d). Sources: (a) © Crown copyright and 
database rights [2021] Ordnance Survey (100025252); (b) Hanson & Seeger (2016); (c–e) Overlaid mapping created by Melda Salhab.

Table 1 
Variable Summary for recalled data.

N1 Mean SD Min Max

Initial Planning Time2 (sec) 315 13.83 13.40 1.00 102.00
Mean Response Times between 
Streets2 (sec)

3398 1.82 3.24 0.10 61.4

Total Response Duration2,3 (sec) 354 17.53 16.47 0.20 89.40
Total no of Streets Recalled 354 10.71 5.71 3.00 30.00

1 Number of occurrences in data set.
2 Minimum coding accuracy of response times: 0.1 s.
3 Mean of the sum across all response times between Streets per taxi driver and 

per planned route.
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times (around 0.1 s) was thus considered as a measurable lower bound 
on response times from the audio recordings. In contrast, deviations 
towards slower responses (i.e. second density peak of log- transformed 
data and outliers in the raw and z-transformed data set) were expected 
to convey information about spatial structures indicative of potential 
planning of new sequences (and therefore of hierarchical planning). 
Similar to response times between streets, the means of response times 
between streets by route, the total number of recalled streets per route, 
and initial response times were all left-skewed for raw data. After log- 
transformation and z- standardisation initial response times fit a 
normal distribution (see Fig. S1). No relation was found between raw or 
transformed initial response times and mean response times between 
streets. Thus, there was no evidence that those who engaged in longer 
initially thinking about the route were then faster at calling it out street- 
by-street.

3.2. Age and experience

We considered that with experience taxi drivers might improve with 

their navigation, and conversely with age they might decline (see e.g. 
Coutrot et al., 2018). Thus, we studied the relationship between age (M 
= 53.82 years, SD = 10.35) and experience driving a taxi (M 19.61 years, 
SD = 15.69) for the group of 43 taxi drivers (see Fig. 4). A Spearman 
correlation indicated a strong, significant positive relation of age and 
experience (rs (43) = 0.73, p < .001). No relation was found between 
means of log-transformed response times by route and experience (rs 
(40) = 0.08, p = .623) or age (r (37) = 0.13, p = .445) for the entire 
group of taxi drivers. Age and experience were decorrelated in a group of 
taxi drivers with 25 years of experience or less (r (24) = 0.23, p = .564). 
In that sub-group of taxi drivers there was also no relation between 
means of log-transformed response times by route and experience or age 
(experience: r (25) = − 0.11, p = .584; age: r (24) = − 0.11, p = .603). 
Thus, when separating age and experience, we find no evidence of 
decline with age and no gain with experience.

Fig. 4. Age-experience relationship. Age and experience across taxi drivers was strongly correlated for the entire group of participants (a), but decorrelated for a 
subset of drivers with 25 years of experience or less. Neither the entire group of taxi drivers (b, c) nor the subset of drivers with 25 years of experience or less (d, e) 
showed any relation to mean log-transformed response times between streets.
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3.3. Turns, boundaries and number of streets to the goal impact response 
times

Model 1 revealed that boundaries (b = − 0.082, p < .05, 95 % CI = −

0.047- -0.12), turns (b = 0.13, p < .001, 95 % CI = 0.17–0.093), number 
of streets to the destination (b = 0.011, p < .05, 95 % CI = 0.040 - 
-0.018), and main roads (b = 0.089, p < .05, 95 % CI = 0.12–0.054) but 
not Euclidean distance (b = − 0.038, p = .126, 95 % CI = 0.013–0.063) 
had significant effects on response times (Fig. 5). Coefficients of the 
model are reported in Fig. 5a, these parameters were additionally 
visualised individually in Fig. 5b-f. Thus, streets that required a turn 

into, or that were main roads, were associated with slower response 
times (Fig. 5). Streets classified as boundary streets had a faster call out 
than other streets (Fig. 5d). There was also a small but consistent effect 
that the greater the number of streets to the destination the slower 
response times (Fig. 5a,e). This difference in response speed was most 
evident for initial streets and final streets (Fig. 5e), but not strongly 
evident when the full range of streets was examined (Fig. 5f). Euclidean 
distance did not contribute to the outcome of the model. Thus, it is not 
the distance ‘as the crow flies’ that will determine planning speed, but 
rather the number of streets to be travelled. For the 3398 responses, the 
number of boundaries is 923, the number of turns is 1858, and the 

Fig. 5. Evidence for hierarchical planning revealed by faster responses on boundaries. Linear mixed model estimates (a) indicate a highly significant effect (* < 0.05, 
*** < 0.001) of turns, main roads, the number of streets to the goal and boundaries significantly impact on log- transformed response times. Euclidean distance does 
not reach significance, nor did circuity when used in the model (model 3 see methods). (b-d) Differences in the recall of turns and non-turns (b), main roads and 
minor roads (c) and boundary streets and non-boundary streets (d) are plotted to allow visualisation of the response patterns. Additionally, the position of the street 
along the sequential recall highlights differences between initial and final streets (e). The difference between the first and last street is plotted for individual responses 
for routes containing 3 to 30 streets, revealing little evidence of slowing when the route planned is extensive (e.g. 30 streets) vs when it is short (e.g. 3 streets). (f) The 
difference between the first and last street is plotted for individual responses for routes containing 3 to 30 streets, revealing little evidence of slowing when the route 
planned is extensive (e.g. 30 streets) vs when it is short (e.g. 3 streets).
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number of main roads is 2330. It therefore seems unlikely that there is 
an outsize effect from small numbers.

Next, we focused our analysis on the most consistent bounded region 
of London: Soho (Griesbauer, Manley, McNamee, et al., 2022). Model 2 
revealed significant effects of Soho streets (b = − 0.16, p < .05, 95 % CI 
= − 0.094 - -0.23), turns (b = 0.14, p < .001, 95 % CI = 0.17–0.11) and 
number of streets to the destination (b = 0.0095, p < .05, 95 % CI =
0.014–0.0052). The effect of main roads was marginally significant (b =
0.089, p < .05, 95 % CI = 0.95–0.029) and Euclidean distance was again 
not significant (b = − 0.037, p = .135, 95 % CI = − 0.012 - -0.061). We 
found the response times of streets recalled within Soho were faster than 
for the rest of the environment. All other fixed effects variables indicated 
similar results, except or main roads, which only reach marginal sig
nificance. The second alternative, Model 3, examining circularity 
revealed that this variable was not significant (b = 0.014, p = .272, 95 % 
CI = 0.026–0.001), see Fig. S3. In this model there was again a signifi
cant effect of boundaries (b = − 0.085, p < .05, 95 % CI = − 0.045 - -0.12), 
turns (b = 0.14, p < .001, 95 % CI = 0.17–0.11), number of streets to the 
destination (b = 0.0061, p < .05, 95 % CI = 0.0091–0.0032), and main 
roads (b = 0.084, p < .05, 95 % CI = 0.12–0.049). Thus, from our 
extended models we show that planning across a set of streets in a well 
known bounded region is faster compared to other streets (matching 
predictions) and that routes that include higher circuity were not slower 
to provide responses in planning (not matching predictions).

3.4. Streets with longer names did not have longer response times

We considered the possibility that it could take longer to recall the 
exact name of street names which are longer (e.g. ‘Stoke Newington 
Church Street’, is long, while ‘Oak Row’, which is much shorter). We 
found no relationship between the two normally distributed variables - 
short and long street names (see Fig. S5). A linear mixed model that 
additionally accounted for the number of characters as a fixed effect in 
the original model indicated no significant impact of the length of the 
street name (b = 0.0033, p = .410, 95 % CI = − 0.00071 - 0.0074). All 
other fixed effects variables were in line with previous model results 
(boundaries: b = − 0.082, p < .05, 95 % CI = − 0.12 - -0.042; turns: b =
0.13, p < .001, 95 % CI = 0.11–0.16; number of streets: b = 0.011, p < .05, 
95 % CI = 0.0062–0.015; road type: b = 0.087, p < .05, 95 % CI =
0.052–0.12; Euclidean distance: b = − 0.0384, p = .122, 95 % CI =
− 0.063 - -0.014). Thus, the length of street names did not impact re
sponses of the recall of individual streets.

4. Discussion

In this study, we asked licensed London taxi drivers to plan the route 
between a set of origin-destination pairs and recorded the time taken to 
state each street name (response time) they would use in the route. We 
tested the effect of spatially embedded street network variables on their 
response times using linear mixed effects models. Our results indicate a 
consistent pattern in modulations of response times in relation to spatial 
features, including the impact of hierarchical structures such as 
boundaries. We first discuss the impact of boundaries on response times 
and then consider the impacts of other variables, such as turns, circuity 
and number of streets in the planning process.

In contrast to prior studies of hierarchical route planning using 
artificial environments, which relied on visually distinct boundaries 
between districts / clusters in very small networks (e.g. Wiener & Mal
lot, 2009; Wiener et al., 2004; Schick et al., 2019), our study used 
boundary agreement rates for London districts to reflect the gradual 
differences in boundaries, characteristic of real-world cities (Cohen 
et al., 1978; Filomena et al., 2019; Griesbauer, Manley, McNamee, et al., 
2022; Manley, 2014). We found that taxi drivers were faster to select the 
next street when that street was a boundary rather than a non-boundary 
street. Our interpretation of these results is that faster response times 
correspond to the prioritization process in the pre-planning phase, 

before the taxi drivers start to describe the streets in the itinerary 
step-by-step. In other words, the boundary streets are faster to be 
recalled because they have already been processed in this preplanning 
phase (McNamee et al., 2016). This is different than ‘fine-to-coarse’ 
planning (with fine spatial information for the close environment and 
coarse spatial information for distant locations), in which a participant 
might plan up to a boundary and then decide the next actions within a 
region (Spiers & Maguire, 2008; Wiener & Mallot, 2003). In fact, our 
findings run contrary to a previous study in which participants navi
gated fictional subway networks, where responses were slower at sta
tions on the boundary between subway lines (Balaguer et al., 2016). A 
plausible explanation is that, in subways, boundaries and the number of 
options for next states are confounded, whereas in real-world city 
streets, boundaries can occur across sets of streets with no change in the 
number of path options.

There are some caveats regarding the generalization of these results 
to planning in non-expert populations. London taxi drivers learn the 
streets and regions of London in an idiosyncratic way, which might align 
with hierarchical planning processes (Griesbauer, Manley, Wiener, & 
Spiers, 2022). The best candidate for this potential training-performance 
connection is the method of spanning a string of cotton between a given 
origin-destination pair and then considering sub-goals along the route 
(Griesbauer, Manley, Wiener, & Spiers, 2022). This is specifically taught 
in London taxi driver training schools, and often such subgoals corre
spond to major roads, bridges, or boundary streets. Nevertheless, it is 
important to note that this is just one learning technique, and that taxi 
drivers also follow many learning techniques (e.g. mnemonics, mental 
simulation, method of loci…) that do not seem to rely on hierarchical 
segmentation (for a full list, see Griesbauer, Manley, Wiener, & Spiers, 
2022). It is also important to highlight that the boundary rates employed 
in our study were obtained from a previous experiment with taxi drivers 
(Griesbauer, Manley, McNamee, et al., 2022) and that London taxi 
driver training schools do not explicitly teach this set of boundaries to 
the trainees.

While the impact of boundaries provides support for hierarchical 
planning, our results do not negate a tree-search plan being deployed. 
Akin to Balaguer et al. (2016) we also found the number of states to the 
goal (in our case streets) was positively associated with response time. A 
tree-search approach to planning predicts slower responses (more op
tions to consider) for states with more states to the goal (Elliott & Lesk, 
1982; Miller & Venditto, 2021; Streeter & Vitello, 1986). Thus, our study 
provides both evidence for hierarchical and tree search planning. 
However, the impact of the number of streets to the goal was small. 
When we examined the response times as a function of the number of 
streets on the route (3 to 30) the impact was very minimal (for a visu
alisation, see Fig. 5f). Routes requiring responses with 30 states to reach 
the goal had similar response time differences between the first and last 
street as routes with 3 streets. If the taxi drivers needed to do a tree- 
search over 30 streets to the goal, they would be very slow on the first 
steps and then get quicker, and it they needed to do a tree search over 
just 3 streets, there should be very little difference between start and end 
response times. We see no such effect, so it suggests there is minimal tree 
search happening when the taxi drivers are planning routes. This result 
strongly supports hierarchical planning as the dominant means by which 
London taxi drivers compress their representations of London to aid 
planning, but further work is required to clarify the connection between 
hierarchical and tree-search planning.

4.1. Impact of road network structure and turning on planning demands

Our finding that turning left or right caused slowing in response 
times is consistent with results from previous studies exploring the 
impact of turns on spatial memory (Brunec et al., 2020). This slowing is 
consistent with taxi drivers visualising the route as they progress, 
because visualising a turn would plausibly be more demanding than 
continuing straight ahead. A previous study in which taxi drivers gave 

E.-M. Griesbauer et al.                                                                                                                                                                                                                         Cognition 256 (2025) 106014 

9 



Fig. 6. Routes where taxi drivers chose very similar routes. Taxi drivers planned routes between origin (O) and destination (D) pairs. A selection of three routes with 
a high agreement on the route across drivers is displayed to highlight differences in z-standardised response times between streets. Agreement was found for linear 
routes (a, b) and routes with two alternatives (c). Corresponding streets with faster (light blue) and slower (dark blue) than average recall speed are highlighted on 
the right. Note that in (b) only nine drivers planned to do a loop past Red Lion Square, the other 14 taxi drivers planned to go straight from Southampton Row to 
Kingsway. Map source: Mapbox. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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post-task verbal reports of their thought process indicated that many taxi 
drivers, years after initial training, visualise the different streets to the 
goal as part of the planning process (Spiers & Maguire, 2008). Our 
investigation of the training process revealed that visualising the route 
was one of the key methods used to train taxi drivers in their spatial 
memory and learning of London (Griesbauer, Manley, Wiener, & Spiers, 
2022). Notably, the response time for left and right turns is not trivially 
due to the additional delay that would be incurred by having to add the 
words “left into..” or “right into..” before street names; all responses 
required a statement about the direction, e.g. “forward into..” if there 
was no turn.

We found that taxi drivers were slower on average when a major 
road was the next step in the planned route. Major roads are associated 
with more long-distance connections than minor roads, as formalised by 
a higher betweenness centrality (for London, see Javadi et al., 2017). As 
such, this means the number of possible routes from such a street to 
other locations is substantially increased, driving a greater demand on 
planning. In contrast, an amnesic London taxi driver was able to navi
gate by such streets despite losing memory for minor roads (Maguire, 
Nannery, & Spiers, 2006), and Parisian taxi drivers have been previously 
reported to prioritise such streets for planning (Pailhous, 1969). We take 
it that there are two contrary effects at play here: major roads have more 
long-distance connections, but they are also more easily remembered. 
Generally speaking, one would expect major roads to be more memo
rable, as is reflected in the study of Parisian taxi drivers. There is a big 
difference, however, between London taxi drivers and taxi drivers in 
other cities such as Paris. In Paris (and in most other European capitals), 
taxi drivers are just required to learn the major roads of the street 
network. In London, taxi drivers are required to learn all streets across 
the city, not just major roads. This, we suggest, dampens the memora
bility of major roads for London taxi drivers, which, together with their 
higher betweenness centrality, corresponds to the slower response times 
associated for major roads that we find in our study.

The only spatial variables that had no significant impact on response 
times were Euclidean distance and circuity (i.e. path distance to the goal 
divided by Euclidean distance to the goal). For many real-world routes, 
Euclidean distance and number of streets to the goal are correlated. Here 
we designed routes that decorrelated these, helping to reveal the specific 
effect of ‘streets to the goal’ from ‘Euclidean distance to the goal’. The 
absence of an effect of Euclidean distance suggests that, while taxi 
drivers might visualise turns into new streets, or have higher demands in 
rotating travel in a mental model, they do not consistently create mental 
images of views along the entire real route to the goal. Rather, it would 
be consistent with a sequence of mental ‘snapshots’ of street-to-street 
views being used for planning. This again mirrors the training of taxi 
drivers in which they learn a visual view for each street and exploit this 
for planning (Griesbauer, Manley, Wiener, & Spiers, 2022). This sug
gests that at least some elements of route planning are done using an 
egocentric frame of reference (Török et al., 2014). Indeed, when first 
asked about a route, taxi drivers tend to feel directions between the 
origin and the destination (e.g. “As soon as he said Guy’s Hospital … I 
know Guy’s Hospital is there [subject points in the correct direction to 
Guy’s Hospital]”, in Spiers & Maguire, 2008). Here, the surprising 
absence of a circuity effect (i.e. deviation of the path from a straight line) 
on planning reaction times suggests that it is the event of turning in a 
new direction that is demanding, and that once mentally simulating a 
route in a given direction, there is no specific mental cost to continuing 
in that direction, even though it may be away from the goal.

4.2. Limitations

There are several limitations to our study. Firstly, we recruited 
drivers in the areas of Bloomsbury and King’s Cross, and they showed 
preferences for working in Central London, which could have impacted 
their knowledge of areas with greater distance to central London (e.g. 
West London, south of the River Thames). Future studies could recruit 

taxi drivers at different taxi ranks across London to account for this 
possibility. Secondly, even though the study included several geo-spatial 
properties (e.g. distance measures, boundaries, road types, turns), there 
is a range of information that we did not account for in the current 
analysis. For instance, planning directions, angular deviations at each 
street, spatial analytics or perceptual input of building use were not 
included (even though angular deviation and circuity are related met
rics). These variables went beyond the scope of the study, but they 
should be considered in the future.

Potentially confounding factors, such as linguistic factors, age, or 
experience, were not found to impact response times. We considered 
whether the length of street names may interfere with response times 
during the verbal recall, but no such effect was found. For the entire 
group of taxi drivers, age and experience were correlated, and as age 
increased, so did experience. Age would be expected to impair route 
planning (van der Ham & Claessen, 2020), and experience should have 
the opposite effect (Chase, 1983; Pailhous, 1969). Moreover, training of 
spatial navigation abilities is expected to cause changes in hippocampal 
volume, the neural centre for spatial navigation: in a series of neuro
imaging studies, volume changes in the posterior hippocampal grey 
matter were correlated with experience, and with greater experience 
one might expect better performance (Maguire et al., 2000; Maguire, 
Woollett, & Spiers, 2006). However, the current data does not seem to 
point in this direction, as there were no correlations between experience 
and response times. We considered that for the entire group of taxi 
drivers, age and experience might have cancelled out any response time 
related effects. Even for a subset of drivers, where age and experience 
were decorrelated, no impact of age or experience was found. It is 
possible that the thorough training and daily use of navigation skills 
among London taxi drivers might protect them from age-related decline 
in spatial skills (Lövdén et al., 2012). Ultimately, this might explain why 
neither the entire group, nor the subset of taxi drivers showed any 
ageing effects for response times of route recalls.

While we controlled for word length, other linguistic factors, such as 
word complexity or familiarity of street names could have acted as 
confounds. Or taxi drivers might be aware of a street but struggle to 
recall it by name. Additional validation of findings could be achieved 
through alternative approaches with designs that do not rely on verbal 
recall of street names. For instance, video recorded route drawings on 
maps could provide supporting evidence for the current results. How
ever, such a design would draw less on mental representations because 
visual features of the map (differently highlighted routes) are likely to 
impact route planning, given the availability of external spatial infor
mation. It is also not the manner in which taxi drivers are formally tested 
on competency. Therefore, study designs might have to restrict visual 
information to a small area around the streets that are being highlighted 
to ensure planning to rely on mental planning (e.g. showing only an area 
smaller than a quarter mile on a map at any time). In turn, implementing 
such a study would require technical or technological approaches that 
could come with other drawbacks regarding motor actions and a pref
erence for paper maps over digitised maps with taxi drivers. Alterna
tively, drivers might be prompted to highlight key points that they 
would pass through on a map, or to indicate if specific streets would be 
part of their route. Under time pressure, these prompts might highlight 
response time differences for street network structures that are part of a 
hierarchical representation when contrasted with streets that are non- 
hierarchical. Here, planning would have to depend on predefined con
ditions, such as the most direct route rather than general preferences as 
in this study. However, such approaches would not allow for rich in
formation on street level, focusing instead on coarse route level infor
mation, because attention is drawn to key points rather than entire 
routes. While each method comes with its own drawbacks, a diversity of 
approaches in future work might provide a useful contrast to the current 
study.
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4.3. Future directions

In this study, we tested a total of 43 taxi drivers across two sets of 
data collection, and we analysed a total of almost 3400 response times 
between streets in relation to different street network properties. This 
data allowed us to identify interesting effects in the route planning 
process of licensed London taxi drivers, such as the impact of bound
aries, turns or road type. There is room, however, for further spatial 
analysis of the environment under study. Space syntax, for instance, 
could provide vital insight into the role of major roads and street 
network properties in route planning (Hölscher et al., 2006; Javadi 
et al., 2017; Peponis et al., 1990; Yesiltepe et al., 2023). The current 
approach did not allow for this because most spatial network analytics 
use an approach that segregates entire streets into several clusters and 
then attributes spatial measures to each cluster, rather than to an entire 
street and their corresponding response times. Additionally, there is 
currently no approach to automatically assigning cluster-based infor
mation from the space syntax dataset of London to the street network, as 
clusters were parts of an unlabelled graph (i.e. no assignment of street 
names) and only contained graph network related information (e.g. 
betweenness centrality). Future analysis could consider a manual 
approach and focus on just a subset of routes or a specific area such as 
Soho.

Another question that remains open is how the spatial variables 
under study can be used to predict route planning at places in which 
multiple features interfere with each other. For instance, we would have 
predicted a fast recall for Shaftesbury Avenue in route 8, but the 
response time turned out to be extremely high. It appears that the 
properties that it was both a main road and a turning outweighed 
boundary factors in this particular case. Additionally, the intersection of 
Charing Cross Road with Shaftesbury Avenue might have turned it into a 
decision point, as both roads are main roads and several alternative 
options have to be considered, such as whether to cut through the north- 
eastern corner of Leicester Square. Thus, when forming predictions for a 
complex, real-world environment it will be useful to develop approaches 
to weigh many factors that might impact planning at specific places e.g. 
using judiciously chosen interaction variables for linear modelling, and 
this is an area that requires further research.

London taxi drivers are expert planners trained to navigate a 
particular urban environment. It is increasingly clear that there is a wide 
diversity of expert navigation strategies across the world (Farzanfar 
et al., 2023). It would be interesting to employ the methods developed 
here to investigate the factors that impact planning response times in 
other expert navigators (e.g. those navigating river system networks). In 
our study, we found no evidence of decline with age (and no gain with 
experience), which is remarkable, as navigation performance generally 
declines with age (Coutrot et al., 2018). Future work could study if this is 
the case in other navigation experts. Future work could also investigate 
more explicitly how navigation choices in the network related to metrics 
from reinforcement learning agents (De Cothi et al., 2022) or metrics 
about the space such as centrality measures (Lancia et al., 2023) and 
street network entropy (Coutrot et al., 2022).

Recently, there have been some important advances concerning the 
brain regions involved in hierarchical representations (Andermane 
et al., 2021; Peer & Epstein, 2021). Expert planning of the kind studied 
in this paper is likely to involve prefrontal-hippocampal interactions 
(Patai & Spiers, 2021; Simons & Spiers, 2003). Previous work has shown 
differences in hippocampal engagement in familiar environments when 
many vs few turns are required to reach a goal (Patai et al., 2019). 
Lateral prefrontal activity has been found to scale with the number of 
future options in streets when re-planning was required (Javadi et al., 
2017) and with detour demands (Javadi et al., 2017). It seems likely for 
taxi drivers the prefrontal cortex would be engaged when it is difficult to 
exploit a hierarchy, such as instances of planning routes circuitous 
routes within a region where no hierarchy can be exploited. Future work 
could adapt our methodology for brain imaging studies in order to 

clarify the neural structures involved in expert planning.

5. Conclusion

The current study provided real-world evidence of hierarchical route 
planning. The vast complexity of existing street networks, such as Lon
don, renders these environments computationally intractable for tradi
tional tree-search models of situated route planning. Hierarchical 
models, which segregate the environment and represent it through 
smaller clusters containing local information (McNamee et al., 2016), 
are a promising approach, but it has been challenging to find real-world 
evidence for them. Previous work had employed virtual environments, 
which have hierarchically organised clusters by design, in contrast to 
urban networks, which often lack clearly defined boundaries. Here, we 
bridged this gap by relying on agreement rates across taxi drivers as an 
indicator for boundaries. We were then able to test the impact of 
boundaries and of other street network properties on route recall tasks 
performed by London taxi drivers. Our ecologically valid data shows 
that boundaries impact response times during route recall, as do other 
street network properties such as turning actions and road types. Taken 
together, our findings support the view that taxi drivers employ a hi
erarchical representation of London when planning routes.
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