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Unsupervised Salient Object Detection on Light
Field with High-Quality Synthetic Labels

Yanfeng Zheng, Zhong Luo, Ying Cao, Xiaosong Yang, Weiwei Xu, Zheng Lin, Nan Yin, Pengjie Wang!

Abstract—Most current Light Field Salient Object Detection
(LFSOD) methods require full supervision with labor-intensive
pixel-level annotations. Unsupervised Light Field Salient Object
Detection (ULFSOD) has gained attention due to this limitation.
However, existing methods use traditional handcrafted techniques
to generate noisy pseudo-labels, which degrades the performance
of models trained on them. To mitigate this issue, we present a
novel learning-based approach to synthesize labels for ULFSOD.
We introduce a prominent focal stack identification module that
utilizes light field information (focal stack, depth map, and
RGB color image) to generate high-quality pixel-level pseudo-
labels, aiding network training. Additionally, we propose a
novel model architecture for LFSOD, combining a multi-scale
spatial attention module for focal stack information with a cross
fusion module for RGB and focal stack integration. Through
extensive experiments, we demonstrate that our pseudo-label
generation method significantly outperforms existing methods in
label quality. Our proposed model, trained with our labels, shows
significant improvement on ULFSOD, achieving new state-of-the-
art scores across public benchmarks.

Index Terms—Light Field, Salient Object Detection, Unsuper-
vised Model.

I. INTRODUCTION

Salient Object Detection (SOD) has always been an essen-
tial task in the field of computer vision. Its goal is to identify
pixels or regions in an image that capture the human atten-
tion the most. Detecting salient objects can enhance various
computer vision and image processing applications, including
visual tracking and image segmentation. In the past few years,
SOD based on RGB images [1], [2] has made significant
progress. To further enhance detection accuracy in challenging
scenarios, recent efforts have applied emerging light field data
to this task, known as LFSOD. The key distinction between
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Fig. 1. Comparison of different pseudo-label generation methods. Notably,
compared to hand-crafted methods, our method can generate higher-quality
labels that are closer to the ground truth.

LFSOD and traditional salient object detection is the wealth of
information present in light field data, providing an abundance
of visual cues that significantly enhance performance.

Based on these abundant cues, researchers have proposed
competitive salient object detection methods on light field [6]-
[8]. However, most methods necessitate supervision in the
form of pixel-level labels, and acquiring these labels for a large
quality of images is highly time-consuming. Feng et al. [9]
made the first attempt at ULFSOD. However, their method
employs traditional hand-crafted SOD methods [5] to generate
labels, which are often inherently noisy. Generated pseudo-
labels exhibit inaccurate localization, unclear boundaries, and
lower confidence, as shown in Figure 1. This is because
the traditional hand-crafted methods largely rely on low-level
local features to detect salient objects. Directly training deep
networks with such noisy labels is not appropriate, as the
models can easily adapt to the corrupted labels [10], yielding
unsatisfying results at test time. Hence, it is imperative to
investigate more effective pseudo-label generation methods to
offer unsupervised light field SOD models with pseudo-labels
of higher quality, which helps further improve performance.

In light of this, we focus on ULFSOD, and propose a
learning-based framework that generates pseudo-labels for
SOD in an unsupervised manner. The key component to the
success of our approach is a prominent focal slice identifi-
cation module which is able to precisely locate the optimal
focal slice on which true salient regions can be estimated reli-
ably. Our approach is capable of hallucinating more accurate,
complete and noiseless labels compared to existing methods
as shown in Figure 1. While our label generation method is
generic and can work with any SOD models trained with pixel-
level annotations, we also propose a SOD model, to further
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boost performance, with two novel components: 1) a Multi-
Scale Spatial Attention (MSSA) module to enhance focal stack
features and reduce redundant information; 2) a Cross Fusion
Module (CFM) based on coordinate attention [11] for the
fusion of RGB features and focal stack features. The entire
model is trained using pixel-level pseudo-labels generated by
our unsupervised pseudo-labeling method. In contrast to [12],
our method is unsupervised, avoiding manual labeling costs.
We conducted extensive experiments to demonstrate the effec-
tiveness of the proposed method compared to existing unsu-
pervised, weakly-supervised, and fully-supervised methods.
Our main contributions can be summarized as follows:

o We propose a novel unsupervised deep learning frame-
work for LFSOD that generates high-quality salient ob-
ject maps by leveraging complementary visual cues from
depth maps, focal stacks, and all-in-focus images. Our
method, for the first time, can achieve pseudo-labels with
reasonable quality and thereby greatly helps improve the
performance of ULFSOD methods.

e« We propose an improved model that is able to learn
rich feature representations for SOD through the novel
attention modules. Training the model on our generated
labels yields further performance improvement.

o Experimental results demonstrate the superiority of our
approach over the state-of-the-art unsupervised methods
for LFSOD in both 2D and 3D domains.

Focal-slices

Pseduo-label

Fig. 2. Label predictions with different focal slices.

II. RELATED WORK

Early SOD methods (e.g., [13], [14]) were based on tra-
ditional methods to manually craft low-level features, such as
color and texture contrast. In recent years, with the rise of deep
learning methods, the performance of SOD has significantly
improved. Wang et al. [15] provide a comprehensive sur-
vey of deep learning-based salient object detection, covering
network architectures, datasets, evaluation metrics and future
challenges. This paper mainly discusses the SOD methods
based on deep learning that have different inputs.

A. 2D Salient Object Detection

2D (based on RGB images) SOD is the largest family in the
SOD field. These methods are usually fully/weakly supervised,
requiring tedious manual annotations to obtain pixel-level
labels or category labels [16], [17], bounding boxes [18],
category labels and captions [19], and scribble [20]. Zhang et
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al. [20] proposed weakly supervised saliency method based
on scribble annotation. They introduced an auxiliary edge
detection task to locate target edges, and a gate structure
perception loss to constrain the range of structures that need
to be recovered. Xu et al. [21] utilized a mix of pseudo
labels generated by unsupervised methods and real labels for
weakly supervised salient object detection. [22] and [23] are
salient object methods based on multimodality. While the
former focuses on integrating thermal infrared features as
complementary cues to RGB features, the latter focuses on
constructing a framework to fuse two modalities to enhance
the performance of salient object detection.

To mitigate the label annotation problem, various unsuper-
vised methods have been proposed. Wang et al. [24] proposed
a biologically inspired model that infers salient objects from
human fixations, leveraging a fixation map to progressively
optimize object saliency. Wang et al. [25] introduced an
iterative and cooperative top-down and bottom-up network
that enhances saliency detection by integrating high-level and
low-level features. Furthermore, Wang et al. [26] developed
PAGE-Net, which combines pyramid attention and salient
edge detection for precise boundary delineation in salient
object segmentation. Zhou et al. [27] introduced a pipeline
that transforms activation maps from a pre-trained network
into high-quality pseudo labels. Zhou et al. [28] developed
a confidence-aware salient distilling method to extract rich
and precise saliency information from noisy labels, effectively
overcoming the limitation of existing methods in handling hard
samples.

B. 3D Salient Object Detection

3D (based on RGB-D images) SOD combines depth in-
formation to help distinguish between foreground and back-
ground objects. Zhang et al. [29] proposed a framework (UC-
Net) for RGB-D salient detection inspired by uncertainty. Ji et
al. [30] introduced a deep RGB-D unsupervised salient object
detection method (USOD) that decomposes depth features
to reconstruct both saliency-guided and non-saliency-guided
depths, which are used to update pseudo-labels. Yang et
al. [31] proposed using depth maps to estimate the pseudo
labels, and then they introduced a uncertainty-aware label
optimization method to enhance these labels. Li et al. [32]
presented a weakly-supervised RGB-D SOD model with scrib-
ble guidance. Nevertheless, when the depth information is
unreliable, these methods may still fail in many scenes. Xu et
al. [33] proposed a weakly-supervised RGB-D salient object
detection method that employs prediction consistency training
and active scribble boosting to improve detection accuracy
while significantly reducing the annotation burden. Zhou et
al. [34] provided a comprehensive survey on RGB-D salient
object detection models, benchmark datasets, and challenges,
offering insights into future directions for enhancing RGB-D
SOD performance.

C. 4D Salient Object Detection

Traditional light field SOD techniques have demonstrated
the effectiveness of using light field data. Li et al. [35]
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Fig. 3. Pseudo-label generation. The pseudo-label generation process consists of two stages: the prominent focal slice identification (PFSI) and the label
generation. We first use the DUT-LFSD dataset to independently train the contrastive learning of class-agnostic activation map (C? AM) module, and freeze its
weights after training is completed. In the first stage (PFSI), we use the frozen C2 AM to select the optimal focal slice. In the second stage (label generation),
we generate pseudo-labels from the selected focal slice to serve as supervisory signals for the subsequent network.

introduced the first light field SOD method and established
the initial benchmark dataset. Later, Li et al. [36] developed
a salient dictionary using weighted sparse coding to generate
salient maps.

The advancement of deep learning technology has improved
the performance of light-field salient object detection through
the use of deep neural networks. A number of LFSOD
techniques that leverage deep learning have succeeded in
enhancing the quality of predicted salient object maps. Zhang
et al. [37] proposed a memory-oriented decoder to fuse the
complementary information between 4D light fields and RGB
images. Piao et al. [38] explored focal slices in a regional
manner and integrated focused salient regions. Liang et al. [12]
proposed a weakly supervised learning framework for LFSOD
based on bounding boxes. Feng et al. [9] proposed to create
pixel-level labels through unsupervised salient object detection
methods, and use the labels to train a SOD model, resulting
in an USOD method. Unfortunately, their generated labels are
often noisy and incomplete, and thus training on such low-
quality labels leads to inferior performance.

In this paper, we also aim for ULFSOD with pseudo-
label synthesis similar to [9]. However, different from [9],
we do not employ traditional hand-engineered methods for
label generation, and instead propose a deep learning-based
approach to significantly improve the quality of generated
labels, resulting in improved SOD performance.

III. THE PROPOSED METHOD

Given a focal stack, a depth map, and an RGB image from
light field data, the goal of LFSOD is to predicts masks for
salient objects in the RGB image. Our unsupervised method
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for LFSOD consists of two stages: first, pseudo-labels (i.e.,
salient object masks) on light field images are generated;
second, the generated labels are used to train a SOD network.
In this section, we first present the proposed pseudo-label
generation method in detail, which is based on deep learning
instead of traditional hand-crafted features. Then, we elaborate
on our proposed SOD network, which consists of two essential
modules, the multi-scale spatial attention (MSSA) and cross
fusion module (CFM).

A. Pseudo-label Generation

Our method is focused on improving the quality of gen-
erated pseudo-labels, whose design is essentially motivated
by two key observations as follows. First, we observe that
information from focal stack, depth maps and RGB images
complements each other in locating salient objects, but state-
of-the-art methods have not fully harnessed such fertile infor-
mation. Secondly, different slices aid in effectively separating
the foreground from the background. This is because the
refocused region in one image includes salient objects, while
some defocused regions solely represent the background [37],
[39]. We define one slice among the focal stack which is
the best for detecting the salient objects as prominent focal
slice (PFS). In Figure 2, we present the pseudo-label results
generated with different focal slice. If the PFS is used, higher-
quality pixel-level pseudo-labels will be obtained compared to
using non-prominent focal slice. Hence, we carefully design
a prominent focal slice identification module to choose the
prominent focal slice by employing rich attributes (focal stack,
depth and RGB image) in the light field data. Specifically,
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as shown in Figure 3, our pseudo-label generation method
includes two components: a prominent focal slice identifica-
tion module for fusing the complementary features in order
to select the prominent focal slice, and a label generation
module for generating the final pseudo label from the selected
prominent focal slice.

As shown in Figure 3 (left), our Prominent Focal Slice
Identification (PFSI) module first obtains a contrastive learning
of class-agnostic activation map (C?AM) for the input RGB
image that highlights the foreground region using the approach
of [40], which is learned with contrastive learning without
image-level supervision. This approach acquires discriminative
information between foreground and background by learning
the distribution of semantic information in feature space varies
across images. It can capture object boundaries, textures, and
crucial features, resulting in a more precise delineation of the
foreground and background on the activation map.

For our method, we train the C2AM approach on the
DUT-LFSD dataset to enhance its adaptation to light field
images. Additionally, to further enhance the quality of the
foreground region, we apply the Pixel-Adaptive Mask Re-
finement (PAMR) [41] to generate adaptive masks pixel by
pixel, allowing for a more precise activation of the foreground
region. Both the depth map and Frgp have values between 0
and 1, with higher values indicating foreground pixels. Thus,
adding them up will combine complementary information
from the two to more accurately localize the foreground
region. The fusion can be represented as follows:

Fru = (FraB + IDeptn) /2, (D

where Frgp represents the refined contrastive learning of
class-agnostic activation map for the RGB image, Ipepin
represents the depth image, and Fpy represents the fused
representation of F'rgp and Ipepih.

Furthermore, we take full advantage of the unique properties
of the focal stack in light field data. The focal stack consists of
a series of images which focus on different depths, generated
by processing the raw light field data. Among them are images
with a clear foreground and blurred background, which are
exactly what we need. We perform pixel-wise multiplication
of the fused representation Fpy with the all-in-focus image
and the focal stack, resulting in masked images with a black
background that emphasize the foreground.

FRUsk = Fry @ Irap, )
Fz%afk = Fpy @ IS, 3)

where ® represents element-wise multiplication, FAL¢5F rep-

resents the masked RGB image, and 9 represents the version
of i-th focal stack, and FAL* represents the masked version
of ¢-th focal stack with only the foreground.

Based on the computed F}%lgk and F%‘ffk, we perform
the best focal slice selection by measuring the consistency
of Fek with respect to Fi(¢5". In particular, we compute
the pixel-level distance between the masked RGB image and
the masked focal stack and choose the focal slice with the
minimum distance. Then the prominent focal slice is denoted

as If S that has a clear foreground region and a blurred
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Fig. 4. Our proposed LFSOD network with pseudo-labels. The network
uses the pseudo-labels generated in the first stage for supervised learning. We
propose MSSA in order to enhances the focal stack features and eliminate
redundant information, the proposed CFM fully fuses the RGB image and
focal stack features.

background area. Formally, the distance between FALS* and
FRsF is written as:
Mask Mask
Drep,i = Z |FRéE (%, y) = Fpst (xv)[, @)

XYy

We empirically found that the quality of the depth maps in
the current dataset varies, which affects the effectiveness of
the model. By contrast, the quality of focus stack is relatively
stable, which contains not only focus information but also
certain depth information. Therefore, we choose the prominent
focal slice for further processing, which is sent to the label
generation module.

In the label generation module, If S is first passed into the
C? AM method, resulting in an activation map of soft values.
The activation map is then converted into a binary mask with
the dense conditional random field [42] and morphological
operation, giving the final pseudo-label Ypy .

B. Unsupervised Salient Object Detection with Pseudo-labels

As shown in Figure 4, our proposed SOD model con-
sists of two parallel feature extraction networks, encoding
the RGB image and focal stack respectively. These feature
extraction networks are constructed based on the ResNet-
50 [43] architecture, without the fully connected layer used
for classification. Through four feature extraction layers, we
extract features from both the RGB image and focal stack,
generating four feature maps of four scales for each denoted as
(FlF"C“l, cee Ffocal) and (FlRGB, e ,F4RGB), which serve
as inputs for subsequent modules. In order to enhance the
focal stack features and eliminate redundant information, we
introduce MSSA, which weights the focal stack features, to
emphasize their importance at different spatial scales, thus
capturing scene characteristics more effectively. We further
introduce CFM to fuse the RGB image features with the focal
stack features. This fusion combines features from different
modalities to create a more informative representation.

1) Multi-Scale Spatial Attention: Interference within the
focal stack may potentially degrade the performance of SOD,
although they contain rich light field cues. This interference
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Fig. 5. Multi-Scale Spatial Attention (MSSA).

is usually a result of focal slices that are focused on unrelated
depth levels. In these cases, the focused regions often cor-
respond to the background, while the blurred region contains
the desired objects. To address this issue, we enhance the focal
stack features with the MSSA before feeding them into CFM.

The MSSA integrates the Atrous Spatial Pyramid Pooling
(ASPP) [44] and spatial attention [45]. The ASPP struc-
ture uses dilated convolutions with different dilation rates to
capture multi-scale features, enabling wide receptive fields
across various spatial ranges. Such multi-scale features help
to capture the depth and structure information of the scene,
and reduce information loss to some extent. Moreover, spatial
attention not only emphasizes the semantic information of
individual features but also model the positional relationships
of features over spatial dimension, thereby enhancing the
richness of information available for subsequent tasks.

Figure 5 illustrates the structure of the proposed MSSA
module. Given the focal stack feature Ffocal ¢ RSXCXHXW
where S is the number of focal stack and C' and (H,W)
represent the channel number and spatial resolution of the fea-
ture map. We first apply averaging across stack to it and then
reshape it, resulting in two features F;**"P¢ ¢ ROS*HXW
and FMean ¢ ROXHXW " \which serve as inputs to the
module. We feed F/7*"P 3 to the ASPP that contains dilated
convolutions (with dilation rates of 3 and 6) followed by
adaptive average pooling, and the results are concatenated
along channel dimension, resulting in a feature FZ-AS PP with
context information at different scales.

Due to the observed feature redundancy in the focal stack
and significant differences in features at different focus posi-
tions, we split the features along stack channel and input them

into the spatial attention module, resulting in F;*"*7¢54 apq
FASPPSA.
B :

FiREShaPESA = Conv (Cat (SA <¢ (FiReShape)>>) , (5

FASPPSA Z Gony (Cat (SA (6 (FA57F)))), ©)

where ¢ represents stack-wise split, SA represents spatial
attention, C'at denotes concatenation along channel dimension,
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and C1 re gresents 1 x 1 convolutions. Then, the two features
fteshape nd FASPPSA are transformed by two 1 x
1 convolutions, added element-wise, and concatenated with
FMean that captures global information across stack to obtain
the final output feature FM554

FMSSA _ ogy (FiMean’ (FiReshapeSA i FZ_ASPPSA>) 7
(7
The above operations fuse global information of the stack,
multi-scale features and spatial relational information, which
gives rise to an expressive feature representation for the stack
and thus improves the model performance.

2) Cross Fusion Module: To obtain more informative and
discriminative representations for detection, it is crucial to fuse
the rich feature information from the focal stack and the RGB
image. The focal stack contains comprehensive information
about the depth, shape, and position of objects in light field
data. On the other hand, RGB images provide color and texture
information. In the two-stream network structure, the RGB and
focus stack feature extraction branches produce different and
rich features, which we opt to merge together to produce a
more powerful representation. To this end, we propose a cross
fusion model which adapts the coordinate attention [11] to
fuse features of different modalities: the focal stack feature
and the RGB image feature, for each scale.

As shown in Figure 6, the inputs to the CFM include the
focal stack feature F554 output from the MSSA module and
the RGB image feature F/*“B for scale i. We apply a 1 x 1
convolution to FM554 obtaining FMS54, Then, FMS54 js
fed through a convolution followed by a sigmoid operation,
and the outputs are pooled along the horizontal and vertical



This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2024.3514754

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

TABLE I
COMPARISON WITH PREVIOUS TRADITIONAL METHODS (T), FULLY SUPERVISED METHODS (F), WEAKLY SUPERVISED METHODS (W), AND
UNSUPERVISED METHODS (U). - REPRESENTS UNAVAILABLE RESULTS, AND THE UNSUPERVISED BEST RESULTS ARE BOLDED IN BLACK.

Method Type/Sup DUT-LFSD LFSD DUTLF-V2 PKU-LF
MAE| FP't Ent Smt |MAEL FPt Ent Sut |MAEL FJ't EwmT Swt |MAEL FP't Eaxt  Swt
WSC [36] /T 0.158 0.591 0.776 0.652 0.150 0.722 0.787 0.702 0.156 0.484 0.738 0.609 0.117 0.598 0.743 0.698
PiCA [46] 2D/F 0.083 0.763 0.898 0.830 0.133 0.689 0.824 0.764 0.083 0.664 0.869 0.776 0.067 0.703 0.871 0.814
UCNet [29] 3D/F 0.087 0.758 0.858 0.792 0.149 0.689 0.800 0.722 0.057 0.799 0.899 0.844 0.054 0.790 0.891 0.842
MOoLF [37] 4D/F 0.052 0.854 0.922 0.886 0.115 0.749 0.846 0.777 0.065 0.745 0.867 0.826 0.084 0.676 0.825 0.769
WSS [20] 2D/W 0.069 0.822 0.900 0.838 0.098 0.789 0.857 0.800 0.082 0.721 0.855 0.786 0.061 0.757 0.878  0.816
MEFENet [47] 2D/W 0.099 0.752 0.854 0.783 0.131 0.736 0.804 0.749 0.095 0.679 0.833 0.758 0.070 0.715 0.864 0.784
WSLF [12] 4D/IW 0.043 0.881 0.937 0.889 0.080 0.861 0.880 0.831 0.065 0.743 0.857 0.803 - - - -
A2SV1 [27] 2D/U 0.077 0.820 0.889 0.827 0.103 0.808 0.855 0.797 0.079 0.732 0.857 0.790 0.056 0.787 0.882  0.835
DSU [30] 3D/U 0.109 0.729 0.853 0.776 0.128 0.760 0.834 0.781 0.109 0.645 0.824 0.743 0.075 0.734 0.852  0.803
DLM [31] 3D/U 0.075 0.808 0.897 0.846 0.098 0.806 0.875 0.824 0.088 0.694 0.847 0.784 0.065 0.749 0.858 0.826
A2SV2 [28] 2D/U 0.056 0.859 0.920 0.869 0.084 0.819 0.877 0.828 0.072 0.764 0.873 0.815 0.057 0.793 0.887 0.839
A2SV2 [28] 3D/U 0.058 0.865 0.920 0.865 0.081 0.834 0.885 0.838 0.066 0.775 0.884 0.820 0.055 0.793 0.891 0.835
Ours 4D/U 0.052 0.889 0.924 0.877 0.093 0.842 0.866 0.819 0.061 0.796 0.888 0.826 0.054 0.804 0.887  0.839
1,00 DUT-LFSD 1,00 DUTLF-V2 100 LFSD 1,00 PKU-LF
0.95 1 —_ 0.95 0.95 0.95 1
0.90 1 0.90 - 0.90 - 0.90 1
0.85 1 0851 el 0.85 0.85 1
g 0.80 50801 - — 5 0.80 4 S 0.80
§ 0.75 § 0.75 1 4 § 0.75 1 § 0.75
& 0.70 & 0.70 & 0.70 & 0.70
0.65 1 0.65 0.65 0.65 1
0.60 1 0.60 0.60 0.60 1
0.55 1 ‘ 0.55 0.55 0.55 1

0.50 T T T T T T T 1
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Fig. 7. Precision-recall curves of different unsupervised methods on four datasets.

directions:
HMSSA — HPOOL (a <CBR (F;MSSA))) . @®)

V;MSSA — VPOOL (0 (C’BR (EMSSA))) )

We element-wise multiply the RGB image feature with W; ;
and W, o sequentially, and add a skip connection from the
RGB image feature to the multiplication result, producing an
enhanced image feature. Finally, we concatenate the RGB
image feature, focal stack feature and the enhanced image

: CF.
where C'BR represents the Convolution + BatchNorm + ReLLU feature to obtain the output of the CFM, denoted as F7":

operation, o represents the sigmoid function, H POOL and
VPOOL represent Horizontal Pooling and Vertical Pooling,
respectively, and are specialized pooling operations designed
to capture vertical and horizontal contextual information, re-
spectively. These operations improve the network’s ability to
extract directional features, leading to more accurate object
detection. Furthermore, RGB image feature F*“B is pooled
along the horizontal and vertical directions, resulting in HF¢5
and V;*¢B_ These two pooled features are then concatenated
and fed through a convolution with Swish nonlinearity, and

FEF = Cat (BMSSA, pRGE
(FFEP @ Wiy @ Win) + FF9P), (12

3) Decoder: The output features of the CFM for each
scale is sent into a decoder D to produce four salient map

predictions:
Yo =D (FEF) ,i=1,2,3,4, (13)

The decoder consists of two convolutions, followed by the

; it RGB’
the res]l;g Blls further split Info two separate features H,; . batch normalization and the ReLU activation function.
and V; along the spatial dimension. Then, dot product is . - . .
MSSA RCB 4) Loss function: We utilize a combination loss function
performed between V; and H; » as well as between consisting of a BCE loss, a SSIM loss and an IoU loss for
VMSSA and V.RGB | resulting in two different attention ’

training [48].

weight matrix W; 1 and W ».

4
Wiy = o (HMS54 @ VRGE), 10 £=3"(Lpop(V Yer)
i=1 (14
L MSSA RGB'
Wz,Q =0 <‘/; O) Hz ) ) (11) + ESSIM (mout, YPL) + EIOU (Y'iout’ YPL))a
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Furthermore, we implement a deep supervision strategy by
introducing supervision signals at different network layers,
further improving the model’s performance.

IV. EXPERIMENTS
A. Experimental Setup

Datasets and Evaluation Metrics. In our experiment, we
use 1000 training images from the DUT-LFSD dataset [37]
as our training dataset. In our experiment, we do not use
the ground-truth labels of this dataset, but use pixel-level
pseudo-labels generated from the proposed method in this
paper as supervisory signals to training the network. To
further evaluate the performance of our proposed method,
we conduct experiments on the following datasets: DUT-
LFSD, LFSD [35], DUTLF-V2 [49], and PKU-LF [8]. We
employ five commonly used evaluation metrics in LFSOD to
evaluate the performance of different models, including mean
F-measure (Fé”) [13], Mean Absolute Error (MAE) [4], S-
measure [50], E-measure [51].

Implementation Details. Our experiments were conducted
on a single GTX 3090 GPU with the model implemented with
the PyTorch framework. To be more specific, the backbone
networks of our second stages are initialized with a pre-trained
ResNet-50 using DINO [52]. The hyperparameter settings for
the network in the first stage are the same as in C2AM [40].
All the training images are resized to 224 x 224. We use the
ASGD [53] optimizer, with a batch size of 4, an initial learning
rate of 0.01. We optimize for 100 epochs, with a 10% learning
rate decay every 5 epochs.

B. Compared with State-of-the-art Methods

We primarily compare our method with 2D, 3D and 4D
fully, weakly and unsupervised methods, including a tra-
ditional method (WSC [36]), 2D methods (PiCANe [46],
MFNet [47], WSS [20], A2S-V1 [27], A2S-V2 [28]), 3D
methods (UCNet [29], A2S-V2(RGBD) [28], DLM [31],
DSU [30]), and 4D methods (MOLF [37], WSLF [12], Noi-
seLF [9]). Following the evaluation protocol of [54], we run
these methods directly on the test set without re-training them.

Quantitative Evaluation. Table I presents the results of
comparison with other approaches, excluding NoiseLLF. It can
be observed that our method achieves superior results, setting
state-of-the-art scores across various evaluation metrics on the
dataset.

We additionally compare our approach with other un-
supervised methods in terms of precision-recall curves, as
depicted in Figure 7. It is evident that the precision-recall
curve coordinates of our method more closely approach (1,
1) compared to other methods, which again confirms the
outstanding performance of our method.

To the best of our knowledge, NoiseLF was the pioneer
in using noisy label for ULFSOD, while we seek to improve
pseudo-labels by making the first attempt to employ a deep
learning-based approach to higher-quality pseudo-labels. We
compare our method with NoiseLF in Table II, and the results
show that our proposed method significantly outperforms
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TABLE I
COMPARISON WITH THE UNSUPERVISED 4D METHOD NOISELF.

. DUT-LFSD LFSD
Method Supervision
MAE | Fgt|MAE | Fg?t
NoiseLF [9] U 0.148 0.689| 0.152 0.723
Ours 8] 0.052 0.891| 0.093 0.846

NoiseLF across several evaluation metrics on the DUT-LFSD
and LFSD datasets.

Qualitative Evaluation. As shown in Figure 8, our method
performs significantly better than the previous methods across
various types of images. For example, in the first two rows,
our method succeeds in localizing salient objects as well as
their boundaries accurately, whereas the other methods either
produce many false positives or fail to identify the precise
shapes of some objects such as the two candies in the second
row. The input images for the third to fifth rows have low
contrast between the salient objects and the background. For
the natural scenes and buildings in the last lines, the proposed
method also demonstrates its robustness in processing images
with various textures and complexities. Our method consis-
tently performs well in these challenging cases while most
of the other methods struggle with discriminating the salient
objects from the visually similar background. DSU [30] can
also produce reasonable results but has difficulty in finding
precise object boundaries.

C. Ablation Study

To validate the effectiveness of the different components
of our method, we conducted an ablation study on the DUT-
LFSD dataset. We first established a simple baseline model by
(1) using only C? AM and DCREF for pseudo-label generation,
and (2) training a variant of our SOD model without the MSSA
and CFM modules. We then progressively added our proposed
modules to the baseline model to analyze their contributions.
In addition, we introduced two new variables: the type of
pseudo-label used and the pre-trained weights employed for
the backbone network. As shown in Table III, each of these
components plays a crucial role in improving overall per-
formance. Notably, our full pseudo-label generation method
(PFSI) combined with the SOD baseline (without MSSA
and CFM) already delivers strong results, demonstrating the
effectiveness of our pseudo-label generation. Furthermore,
integrating MSSA and CFM provides additional performance
gains. The table also highlights the importance of choosing the
appropriate backbone weights, with DINO-pretrained weights
yielding the best results. We additionally experimented with
MoCo and SimCLR as alternative pre-training approaches, ob-
serving that while these methods also enhanced performance,
they were slightly outperformed by DINO, suggesting that the
richer feature representations learned by DINO are particularly
beneficial for our SOD task.

D. Ablation Study on the Input Modalities of PFSI

We investigate the importance of the RGB and depth inputs
of PFSI by disabling each of them at a time and reporting
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Images

A2S [27]

A2SV2 [28]

Fig. 8. Qualitative comparisons of our method with other methods.

TABLE III
ABLATION EXPERIMENTS ON DUT-LFSD.

PFSI MSSA CFM Lable Weight MAFE | Fi't Em?T Sm?
X X x Ours DINO  0.080 0831 0900 0.831
v X x Ours DINO 0059 0868 0918 0.867
v v x Ours DINO 0056 0878 0920 0873
v v Vv MR DINO 0158 0619 0803 0716
v v v SF DINO 0171 0513 0762 0.632
v v v wCt DINO 0176 059 0790 0.716
v v v Ous MOCO 0053 0887 0923 0875
v v v Ours SimCLR 0.064 0864 0908 0.858
v v vV Ours DINO 0.052 0889 0924 0.877

the results in Table IV. We can see that both input modalities
are crucial to the performance of our method. And we have
experimented with randomly selecting a focal slice from the
input focal stack and using it as the input to the label genera-
tion stage. Figure 9 visually demonstrates that combining RGB
and depth information improves focal slice selection, resulting
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A2SV2_RGBD [28]

DLM [31] DSU [30]

in higher-quality pseudo-labels.

TABLE IV
ABLATION EXPERIMENT ON THE RGB AND DEPTH INPUTS OF PFSI ON
DUT-LFSD.
MAE | Fprt Emt  Smt
w/o Depth 0.120 0.762 0.818 0.762
w/o RGB 0.093 0.780 0.830 0.774
Random Selection 0.127 0.712 0.783 0.728
PFSI 0.087 0.798 0.855 0.795

E. Training Fully Supervised Methods Using Pseudo-labels.

To further demonstrate the validity of our model, we have
trained LF-TransNet [54] and OBGNet [55] using the pseudo-
labels generated by our method. As shown in Tables V and
VI, although our model does not achieve the highest F'PS, it
consistently outperforms other methods in key metrics such as
MAFE and Fj". These results clearly demonstrate the superior
accuracy and overall performance of our method on both the
DUT-LFSD and DUTLF-V2 datasets.
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TABLE V
COMPARISON OF DIFFERENT METHODS TRAINED ON OUR GENERATED
PSEUDO-LABELS (DUT-LFSD).

Method ~ FPS+ MAE | FJ' 1 Ep 1 S 1

LFTransNet [54] 18.12 0.053 0.879 0.927 0.876

OBGNet [55] 34.16 0.129 0.684 0.849 0.783
Ours 18.38  0.052 0.889 0.924 0.877
TABLE VI

COMPARISON OF DIFFERENT METHODS TRAINED ON OUR GENERATED
PSEUDO-LABELS (DUTLF-V2).

Method ~ FPS+ MAE | FJ' 1 Ep 1 S 1

LFTransNet [54] 18.96
OBGNet [55] 36.76
20.07

0.074 0.753 0.866 0.804
0.130 0.589 0.816 0.740

Ours 0.061 0.796 0.888 0.826

F. Label Quality Evaluation

We also evaluate the quality of our generated labels by
treating the pseudo-labels output by the first stage as the
final predictions, which are compared with the ground truth.
The results on DUT-LFSD are reported in Table VII. It
can be seen that our generated labels are of greater quality
compared to those by existing hand-crafted label generation
methods, having high degree of similarity to the ground truth.
Furthermore, our proposed PFSI is crucial to label quality.

TABLE VII
QUANTITATIVE EVALUATION OF DIFFERENT LABEL GENERATION
METHODS ON DUT-LFSD.

MAE | Fgr 1 En 1 Sm T

MR [3] 0.213 0.466 0.750 0.646
SF [4] 0.226 0.362 0.671 0.502
wCtr [5] 0.229 0.472 0.743 0.630
Ours w/o PFSI 0.121 0.739 0.825 0.754
Ours 0.087 0.798 0.855 0.795

V. LIMITATION AND DISCUSSION

Despite these promising results, our approach has limitation
as a light-field saliency method compared to RGB saliency
methods. The computational complexity of processing large-
scale light field data can be time-consuming. However, this
challenge is common to all light-field saliency methods. To
address this challenge, several directions could be explored.
One approach is to develop a light-field pre-processing frame-
work that efficiently handles light-field data prior to the
main processing stages. Another potential solution involves
designing lightweight feature fusion structures to enhance the
overall efficiency of light-field salient object detection. Last
but not the least, recent research in implicit representation [56],
[57] encodes images into a latent space and then processes and
fuses multi-modality features in the frequency domain [58].
Based on this research, a promising direction might be to
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Fig. 9. The importance of the RGB and depth inputs of PFSI.

RGB

fuse the abundant light-field features with RGB features in
the latent space rather than in pixel space.

VI. CONCLUSION

In this paper, we propose a novel deep learning-based frame-
work for unsupervised pseudo-label generation for LFSOD.
Following a label synthesis scheme, we propose an unsu-
pervised framework for pseudo-label generation that learns
to select the optimal focal stack to maximize the quality of
generated labels. To further boost performance, we propose an
improved LFSOD model, with a multi-scale spatial attention
module to learn multi-scale and contextual features for focal
stack and a cross fusion module for deep fusion of multi-modal
features. Experimental results demonstrate that our approach
outperforms existing unsupervised methods.
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