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Abstract

Predictive models are often complex to produce and interpret, yet can offer valuable insights

for management, conservation and policy-making. Here we introduce a new modelling tool

(the R package ‘BBNet’), which is simple to use, and requires little mathematical or com-

puter programming background. By using straightforward concepts to describe interactions

between model components, predictive models can be effectively constructed using basic

spreadsheet tools and loaded into the R package. These models can be analysed, visual-

ised, and sensitivity tested to assess how information flows through the system’s compo-

nents and provide predictions for future outcomes of the systems. This paper provides a

theoretical background to the models, which are modified Bayesian belief networks (BBNs),

and an overview of how the package can be used. The models are not fully quantitative, but

outcomes between different modelled scenarios can be considered ordinally (i.e. ranked

from ‘best’ to ‘worse’). Parameterisation of models can also be through data, literature,

expert opinion, questionnaires and/or surveys of opinion, which are expressed as a simple

‘weak’ to ‘very strong’ or 1–4 integer value for interactions between model components.

While we have focussed on the use of the models in environmental and ecological problems

(including with links to management and social outcomes), their application does not need

to be restricted to these disciplines, and use in financial systems, molecular biology, political

sciences and many other disciplines are possible.

1. Introduction

The paucity of quantitative skills in the environmental workforce and among graduate stu-

dents is well documented [1, 2]. Meanwhile, quantitative ecology continues to create and

develop increasingly sophisticated models, embracing complex mathematics and AI principles

[3, 4]. This creates difficulties for many environmental professionals; not only is modelling not

an available tool without employment of specialists, but the complexity of the models and their
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outcomes often makes it hard to convince decision makers and end users of their validity. This

is especially true for AI approaches like Artificial Neural Networks, which lack transparency in

how predictions are made [5–7].

Unlike some of the complexity of ecological models, environmental policy’s evidence needs

are often quite basic (e.g. ensuring a situation does not get worse, or a population is on an

increasing trajectory). Such coarse levels of prediction can also be useful to ecologists and con-

servationists who may subsequently try to validate models through data collection and experi-

mentation [6, 8, 9]. However, policy and conservation decisions are rarely made in isolation.

The effects on other components of the wider ‘system’, including the rest of the ecosystem,

ecosystem services, local communities, employment, and health, also need to be considered

[10, 11].

Bayesian belief networks (BBNs) are tools which can be used to model system behaviours

and have been used in a number of ecological applications [8, 12–16]. Technically they are

probabilistic graphical methods, more simply, they model complex systems through probabili-

ties assigned to different components of a system (e.g. species in a foodweb) and the interac-

tions between these components (i.e. trophic interactions between species) [8]. They are

capable of using a variety of information sources in their design and parameterisation, from

field data through to qualitative data and expert opinion [8, 17]. As such, they can be useful

tools to model understudied systems, or to study interactions between systems (such as inter-

actions between ecological and social systems) [15, 17, 18].

However, the complexity of most systems means that multiple interactions and multiple

drivers are frequently affecting any single component of a system (e.g. a given species might be

competing with many others for resources, as well as feeding on a variety of species, and being

predated by many others).With traditional BBNs, such complexity requires complex model

parameterisation and building models can become overwhelming and impossible to populate

beyond just (largely uneducated) guesswork. Furthermore, the inability of reciprocal feedback

between network nodes (i.e. reciprocal competition between species, or the consideration of

both bottom-up and top-down processes acting simultaneously) and inability to construct

feedback loops also limit their use in ecological disciplines [19]. In complex systems, there is

also a tendency for ‘signal loss’ as signals or changes propagate through the network, meaning

that the predicted effect of a change becomes smaller and smaller until it is almost indetectable,

making it difficult to interpret the outcomes of the models [12, 19].

More recent work has modified these BBNs approaches by simplifying the development of

models with complex interactions and implementing programming loops to determine recipro-

cal interactions. Additionally, automated computer decision making has been used to ensure sig-

nals propagate through the network [8]. Computational methods to help estimate uncertainty

have also been incorporated in some models [20]. The models have been used on a variety of eco-

logical and socio-ecological systems and to help examine the effects of environmental policies at

local and national/international levels [20, 21]. Furthermore, while software related issues still

arose, the fundamental principles of these models and their construction and parameterisation

did not require detailed modelling knowledge. These tasks could be successfully achieved within

a few hours by first year undergraduate students [22]. As such, the ‘BBNet’ package puts tools for

constructing and interpreting ecological models in the hands of a far broader number of envi-

ronmental scientists and professionals than has previously been the case.

The purpose of this paper is to present (1) the underlying theory of the modified Bayesian

belief networks, (2) introduce the ‘BBNet’ package as a user-friendly interface for ecological

and environmental researchers and practitioners with limited modelling experience to pro-

duce useful and meaningful models, and (3) suggest a workflow for the formulation of these

models, including parameterisation of the model and dealing with uncertainty.
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2. Theoretical basis

Bayesian belief networks (BBNs) are a modelling approach where interactions between differ-

ent components of complex systems can be examined and predictions can be made for compo-

nents of interest in these systems, as such, they can be used to make environmental or

ecological predictions. For example, in foodwebs with multiple interacting species, an increase

in the population size of one species can impact the entire ecological community, and relative

changes to each population can be predicted by the model. However, models are not limited to

foodwebs. They can also be used to investigate the effects of biological, economic, or policy

changes on species, ecosystem functions, ecosystem services, and socio-economic outcomes

(examples of these are in the references above).

More technically, BBNs create models based on causal graphs. Essentially a series of nodes

(which may represent aspects of interest in the model, e.g. species, ecosystem services, laws,

social outcomes) are connected by directional edges (direct relationships between the aspects

of interest or between individual nodes). The relationship between nodes is defined by the

edges–a fixed parameter of how the child node will respond if the parent node changes. These

relationships are based on Bayesian inference, although non-Bayesian processes are also used

to allow processes such as feedback loops and reciprocal interactions and to prevent signal loss

(see below in the current section). Only direct cause and effect relationships are defined by the

edges, indirect effects are an outcome of the modelling process. The theoretical basis for the

model is based on that in Stafford et al. (2015) [8] and is described below. A number of updates

and additional useful tools are provided in the ‘BBNet’ package, described in the functions

below (section 3), which provide additional functionality to understand and visualise the mod-

els and to examine information flow through the models.

Within the ‘BBNet’ package each edge in the is given network an integer value between -4

and 4 to indicate the belief that a specific child node may increase or decrease, given an

increase in the parent node. Negative numbers for edges equate to a mathematical negative

relationship between nodes–i.e. an increase in the parent node will lead to a decrease in the

child node. Positive numbers for edges equate to a mathematical positive relationship between

nodes—i.e. an increase in the parent node will lead to an increase in the child node. A value of

0 does not need to be used for edges, as essentially the edge can be removed from the network.

Nodes are also given values between -4 and 4. These are the ‘prior’ values of each node, and

these values can change as the model runs (unlike edge values, which do not change). Negative

values equate to a reduction in the node (e.g. if the node represents a species, a negative value

would indicate a decline in the population of the species). Positive values represent an increase

in the node (e.g. an increase in population size). In complex social-ecological systems, there

tends to be greater certainty over large events and their impacts, and greater uncertainty over

smaller events and their emergent properties. Therefore, a value of 4 indicates high certainty

over a greater magnitude of change in each node, and a value of -4 indicates low certainty over

a lesser magnitude of change (see Table 1 for details of determining parameters for ‘prior’

nodes and edges). Prior values are only set for nodes where known changes will occur–e.g. if

an intervention to cull a species was proposed, only the species culled would have a ‘prior’

value. Other nodes would be left with no prior knowledge (values of 0) and the effects on these

nodes would be calculated by the model.

In determining edge values and prior node values, thought should be given to the spatial

and temporal aspects which require modelling. The model has no direct temporal or spatial

components (although an order of events can be investigated using some of the functions

below). Temporal and spatial dimensions need to be considered in the edge and prior values,

with an awareness that these may need to be changed if the temporal or spatial constraints of
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the model change. A biological example of temporal and spatial consideration is given in the

case of starvation in the description of the rocky shore model below (section 3.1.1). In this

example, small changes in species numbers will be important due to the limited spatial compo-

nent of the model (communities are on isolated boulders), yet the limited duration of the

model means that while grazing may have top down effects, starvation (a bottom up effect) is

unlikely to have an effect on predators and grazers, and these interactions (or potential edges)

are not included in the model. Other examples considering spatial and temporal aspects could

include comparison of wildfires vs. controlled burning. Over a short timescale (i.e. days), and a

small spatial area (e.g. the area of a controlled burn), both will have similar effects on the eco-

logical communities, decimating biodiversity which was present. However, at a larger spatial

scale, controlled burning may have much less impact than an uncontrolled fire. At longer spa-

tial scales (months to years) the effects on biodiversity will also change (for example, there may

be benefits of fire to biodiversity).

The use of integer values between -4 and 4 are added for purposes of clarity in building the

model and are transferred to a value between 0 and 1 for the purposes of calculations. P(Xi)
(the probability of the node increasing) is derived from the integer values from -4 to 4

(Table 2). Note, that due to there always being some uncertainty in complex systems, both in

terms of knowing a node will increase or decrease, and in terms of interactions between nodes,

probabilities of both priors and edges have maximum values of 0.9 and minimum values of

0.1, rather than 1 and 0.

Table 1. Parameterisation values of edges and priors in the model.

Input

value

Edge values Prior values

4 (or -4) Strong relationship between parent and child node,

creating a clear and noticeable cause and effect

relationship. Full (> 95%) agreement between

sources for the relationship

Full or large magnitude implementation of a change

(i.e. doubling a large population size, increasing

costs by 70–100%). It would be difficult to

implement the change in greater detail

3 (or -3) Strong relationship between parent and child node,

creating a clear and noticeable cause and effect

relationship. Good agreement between sources for

the relationship (>75% of data agree)

OR

Moderate relationship between parent and child

nodes. Difference is detectable but may not be

obvious. Full agreement between sources for the

relationship

Moderate to large scale implementation of a

change–i.e. removing 50% of a moderately

abundant population

2 (or -2) Moderate relationship between parent and child

nodes. Difference is detectable but may not be

obvious. Good agreement between sources for the

relationship (>75% of data agree)

OR

Weak relationship between parent and child nodes.

Difference is apparent in studies but might not

always be significant (i.e. due to low sample size).

Full (> 95%) agreement between sources for the

relationship

Small to moderate change. e.g. deer culling to

remove 10% of deer

1 (or -1) Weak relationship between parent and child nodes.

Difference is apparent in studies but might not

always be significant (i.e. due to low sample size).

Good agreement between sources for the

relationship (>75% of data agree)

Smaller than above

0 No relationship, or large disagreement between

sources

No direct change

https://doi.org/10.1371/journal.pone.0305882.t001
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In the following equations, the probability of a node decreasing (P(Xd)) is calculated by

Eq 1:

PðXiÞ þ PðXdÞ ¼ 1 ½1�

With subscripts i and d indicate increasing or decreasing respectively for the nodes.

Intermediate probabilities of each node increasing given the different interactions from all

connecting nodes are calculated using the following Bayesian equation:

PðXijYÞ ¼ ½PðXijYiÞ∗PðYiÞ þ PðXijYdÞ∗PðYdÞ� ½2�

where X is the node under consideration (the child node), and Y are the interacting nodes

(parent nodes, considered one at a time). These values are calculated for each interacting node.

Where there is no knowledge of a change in value of node Y (i.e. the prior probability of

change is 0.5) then this node is not included in the above equation (however, such inclusion

might occur in future iterations of the model where the value of the node may have changed).

At this point, no ‘prior’ information on node X is included in the calculation. To ensure

any prior knowledge available is maintained in the network, and to allow reciprocal interac-

tions and feedback loops, the overall posterior probability for each node is calculated in two

ways, the first ensuring that additional information on node interactions add to the certainty

provided by the prior, the second will ignore prior values if information on species interactions

provide more certain information (i.e. a value further away from 0.5) than the prior:

PostðXiÞ ¼ PðXiÞ þ j1 � PðXiÞj∗½
X

1� n
ðPðXiÞ∗ðPðXijYÞ � 0:5ÞÞ=n� ½3�

and

PostðXiÞ ¼ ½
X

1� n
ðPðXijYÞÞ�=n ½4�

where n is the number of interactions with species X. The final value of Post(Xi) is given by the

value displaying the most certainty (i.e. furthest in magnitude from 0.5). The model is then

repeated for further iterations to allow information to propagate through the network, but

with updated prior probabilities such that:

PðXiÞ ¼ PostðXiÞ ½5�

The model then runs through additional iterations. When all iterations of the model are

completed (four iterations are included in the bbn.predict() function, some functions allow

this to be altered), conversion back to a -4 to 4 scale occurs using the following equation (note,

Table 2. Transformations of prior node values and edge strengths from inputted values to those used for

calculations.

Input value Value used in calculations for increase

-4 0.1

-3 0.2

-2 0.3

-1 0.4

0 0.5

1 0.6

2 0.7

3 0.8

4 0.9

https://doi.org/10.1371/journal.pone.0305882.t002
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these final posterior values are not integers):

Final change ¼ 10� ðPostðXiÞ � 0:5Þ ½6�

Importantly, only nodes with known prior changes are altered in any scenarios provided at

the start of a model (see also section 4.4). For example, if simulating a manipulative ecological

experiment where a species of grazer was removed from an area, only the prior for this species

of grazer would be altered, with the model calculating the predicted changes to other species

based on the edge values already assigned to interacting nodes.

Technically, BBNs calculate the probability of a node increasing or decreasing. However,

given difficulties in distinguishing probabilities (i.e., belief or certainty of a node increasing

or decreasing) from magnitude for most natural phenomena (see [20]), the inclusion of Eqs

1 and 2 above disrupt the pure calculation of probability and help prevent signal loss

through the network, allowing for more meaningful predictions. The conversion back to -4

to 4 reinforces this amalgamation of probability and magnitude, by not presenting the data

as a probability. While this conversion means that model outputs cannot be treated as inter-

val or ratio data (i.e., you cannot numerically measure the differences between values -4 to

4), these values can be compared across different models and act as ordinal variables as a

minimum (i.e. different scenarios can be ranked by changes to variables of interest, as per

[21]).

3. The ‘BBNet’ package

The ‘BBNet’ Package consists of a series of functions to create and obtain results from causal

graph models, as well as two examples of systems with various implemented scenarios. The

example datasets are discussed, followed by each of the package functions. Additional informa-

tion, beyond the basis of the model described in section 2 above, is provided below, where it

relates to particular functions in the package.

The ‘BBNet’ package is available from both CRAN and GitHub (https://github.com/

vda1r22/bbnet).

You can install the stable version of ‘BBNet’ from CRAN or GitHub with:

install.packages("bbnet") or

devtools::install_github("vda1r22/bbnet")

All data files discussed are available as datasets within the package, or as.csv files in S1 File.

Further information on datasets and requirements are provided in a video tutorial (S2 File). A

video tutorial on running the model is provided in S3 File. The R markdown script used in the

video is provided in S4 File.

3.1 Example datasets

3.1.1 Rocky shore ecology. The BBN model here uses the interactions described previ-

ously [8]. It is a simple model of rocky shore interactions (trophic interactions and competi-

tion) between species on isolated boulders on a rocky shore. It is designed for scenarios

relating to experimental manipulation of predator and grazer abundance on isolated boulders

over a 4–8 week period, and as such, trophic interactions are top down only (starvation is

unlikely to occur in this time period, but populations are small, given the spatial isolation of

the community on boulders–see discussion in [8]). Five csv files are provided (S1 File). (1)

RockyShoreNetwork.csv provides the edge strengths for the network. These are given as values

between -4 to +4 (converted as per Table 1 before running the model) and represent the proba-

bility of a child node increasing given that the parent node was increasing (with a value of 1

after conversion to 0 to 1 values). In this file, when opened in a spreadsheet, the node listed at
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the start of each row affects the indicated species in each column (see S2 File, creating input

files). (2) Dogwhelk_Removal.csv is a scenario for the model, and provides initial prior values

for each node (note, all nodes have the value of 0, or no change, other than dogwhelks)–this

scenario represents a removal of all dogwhelks from the area. (3) Winkle_addition.csv is a sce-

nario node representing the addition of periwinkles to an area. (4) Combined_treatment.csv

represents a removal of dogwhelks and addition of periwinkles to an area. (5) RockyShoreNet-

workDiagram.csv is a slightly altered version of the edge strengths model -see above–in this

case, it contains additional parameters for use with the BBN.network.diagram() func-

tion and has been used with this function to produce Fig 1.

3.1.2 MPA management. This example contains 3 data files (S1 File). The network

model here (MPANetwork.csv) is based around a simple foodweb in a Marine Protected

Area (MPA), but also includes human activities (fishing and scuba diving) and an overall

indication of revenue from the area (from fishing and diving activities). No management

measures are included in the model, but the scenarios indicate how these can be imple-

mented–i.e. a potting ban (NoPotting.csv) will reduce the lobster fishery node. A no take

scenario (NoTake.csv) will affect both fishing nodes. Again, it is only the direct effects

which are accounted for in the scenario nodes, the model determining the changes to other

nodes (e.g. an increase in diving due to more fish and lobsters is not included as a model

prior value in any scenario).

Fig 1. Interaction diagram of the rocky shore model, produced by the BBN.visualise() function. Nodes are

colour coded to represent functional groups (white = algae, grey = predator, orange = grazers, yellow = filter feeders).

Arrows point from the parent node to the child node. Red arrows indicate negative interactions between nodes. Black

arrows (not present in this figure) represent positive interactions.

https://doi.org/10.1371/journal.pone.0305882.g001
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3.2 ‘BBNet’ package functions

3.2.1 bbn.predict()making predictions, bootstrapping and outputting data. This is

the main predictive function, requiring an interaction network in the format of a n+1 by n

matrix or dataframe (where n is the number of nodes, row names form the first column, but

the column names are imported as a header, resulting in the extra column of row names), indi-

cating edge strengths between each node (see examples in sections 3.1 and S2 File for detailed

requirements). It also requires between 1 and 12 scenarios (each scenario represented by a 2 x

n dataframe where n is the number of nodes in the network) which show initial changes to

some of the prior values of the nodes. All of these files should have integer values ranging

between -4 and 4, indicating the degree to which the node increases (negative numbers there-

fore represent a decrease), with scenario files having values of 0 for nodes with no prior infor-

mation, and the interaction network matrix having blank values where no edges connect

nodes.

The function offers potential to ‘bootstrap’ the outputs of the model to understand inherent

uncertainty. Such uncertainty can arise due to the exact parameterisation of edges and priors,

and the fact that some interactions have larger changes in magnitude on child nodes than oth-

ers. As such, bootstrapping allows the uncertainty of the predictions to be visualised as error

bars. Bootstrapping involves randomly selecting and modifying edge strengths to determine

overall changes to the posterior node values. This bootstrapping process is run multiple times

(number determined by user–see “boot_max” below) and 95% confidence intervals of the out-

put of each parameter are calculated by removing the highest and lowest 2.5% of values for

each posterior node (as per methods in [23]). These confidence intervals are applied to the

actual values calculated using unadjusted parameters. If bootstrapping is applied to the model-

ling process, then the first run through does not adjust any parameters and is displayed as the

‘point’ or filled circle in any figures produced, or the first column of any numeric output

produced.

R Function and arguments

bbn.predict(BBN.model, priors1, . . ., boot_max, values, figure, font.size)

Required arguments

bbn.model - a matrix or dataframe of interactions between different model nodes (as

described above)

priors1 - an X by 2 array of initial changes to the system under investigation for a given

scenario.

Optional Arguments

. . . priorS2 - priors12 - as above, but additional scenarios.

boot_max - the number of bootstraps to perform. Suggested range for exploratory analysis

1–1000. For final analysis recommended size = 1000–10000—note, this can take a long time to

run. Default value is 1, running with no bootstrapping—suitable for exploration of data and

error checking.

values - default value 1. This provides a numeric output of posterior values and any confi-

dence intervals. Set to 0 to hide this output.

figure - default value 1. Sets the figure options. 0 = no figures produced. 1 = figure is saved

in working directory as a PDF file (note, this is overwritten if the name is not changed, and no

figure is produced if the existing PDF is open when the new one is generated). 2 = figure is pro-

duced in a graphics window. All figures are combined on a single plot where scenario 2 is

below scenario 1 (i.e. scenarios work in columns then rows).

font.size - default = 5. This sets the font size on the figures.
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Example

my_BBN <- read.csv(’RockyShoreNetwork.csv’, header=T)
dogwhelk <- read.csv(’Dogwhelk_Removal.csv’, header = T)
winkle <- read.csv(’Winkle_addition.csv’, header = T)
combined <- read.csv(’Combined_Treatment.csv’, header = T)
bbn.predict(bbn.model = my_BBN, priors1 = dogwhelk,

priors2 = winkle, priors3= combined, figure = 2, boot_max = 100,
values = 0, font.size = 7)

3.2.2. bbn.timeseries()understanding node behaviour over different timesteps.
This function helps visualise the flow of information through the network and how changes

progress through the network over time (e.g. changes occurring in one parameter before

another—as per trophic cascade or ecological succession type processes). It should be noted

that the exact values from these functions do not correspond to the more robust bbn.
predict() which should be used to inform of likely changes (this function does not imple-

ment Eqs 2 and 3 detailed in the theoretical basis above).

As for bbn.predict() we need to pass the function a network model and a scenario as

a minimum. In this case, only one scenario can be analysed at once. The output is a graph of

each node in the network, visualised across the different timesteps in the model. Note—values

are plotted on each graph and lines of best fit are drawn using the geom_smooth function.

Typically this function may not perform well with the variability in values and lack of data

points, and multiple warning messages may be produced, but the shape of the response is still

visible.

R Function and arguments

bbn.timeseries(BBN.model, priors1, timesteps, disturbance)
Required arguments

bbn.model - a matrix or dataframe of interactions between different model nodes as per

above.

priors1 - an X by 2 array of initial changes to the system under investigation. The first

column should be a -4 to 4 (including 0) integer value for each node in the network with nega-

tive values indicating a decrease and positive values representing an increase. 0 represents no

change.

Optional Arguments

timesteps - default = 5. This is the number of timesteps the model performs. Note, time-

steps are arbitrary and non-linear. However, something occurring in timestep 2, should occur

before timestep 3.

disturbance - default = 1. 1—creates a prolonged or press disturbance as per the bbn.
predict() function. Essentially prior values for each manipulated node are at least main-

tained (if not increased through reinforcement in the model) over all timesteps. 2—shows a

brief pulse disturbance, which can be useful to visualise changes as peaks and troughs in

increase and decrease of nodes can propagate through the network

Example
my_BBN <- read.csv(’RockyShoreNetwork.csv’, header=T)
dogwhelk <- read.csv(’Dogwhelk_Removal.csv’, header = T)
bbn.timeseries(bbn.model = my_BBN, priors1 = dogwhelk,

timesteps = 5, disturbance = 2)
3.2.3. BBN.visualise()visualising information flow through the network over model

timesteps. This produces similar data to bbn.timeseries() (section 3.2.2) but in a very

different visual format. A network diagram (similar to Fig 1) is produced, consisting of all
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nodes. Each node is ordinally weighted with the biggest increase in black and the smallest

increase (which potentially is a decrease) in white. Not all edges are plotted, only those exceed-

ing a certain threshold. This allows the flow of information through the network to be visual-

ised at each timestep more clearly.

R Function and arguments

bbn.visualise(BBN.model, priors1, timesteps, disturbance,
threshold, font.size, arrow.size)

Required arguments

bbn.model - a matrix or dataframe of interactions between different model nodes
priors1- an X by 2 array of initial changes to the system under investigation. The first

column should be a -4 to 4 (including 0) integer value for each node in the network with nega-

tive values indicating a decrease and positive values representing an increase. 0 represents no

change.

Optional Arguments

timesteps - default = 5. This is the number of timesteps the model performs. Note, time-

steps are arbitrary and non-linear. However, something occurring in timestep 2, should occur

before timestep 3.

disturbance - default = 1. 1—creates a prolonged or press disturbance as per the bbn.

predict() function. Essentially prior values for each manipulated node are at least maintained

(if not increased through reinforcement in the model) over all timesteps. 2—shows a brief

pulse disturbance, which can be useful to visualise changes as peaks and troughs in increase

and decrease of nodes can propagate through the network

threshold - default = 0.2. Nodes which deviate from 0 by more than this threshold value

will display interactions with other nodes. As mentioned, values in these visualisation func-

tions don’t directly correspond to those in the bbn.predict()function. This value can be tweaked

from 0 to 4 to create the most useful visualisations.

font.size - default = 0.7. Changes the font in the figure produced. The value here is a

multiplier of the default font size used in the ‘igraph’ package and does not correspond to the

font.size argument in the bbn.timeseries() function.

arrow.size - default = 4. Changes the size of the arrows. Note, sizes do vary based on

interaction strength, so this is a multiplier for visualisation purposes.

Example

my_BBN <- read.csv(’RockyShoreNetwork.csv’, header=T)
dogwhelk <- read.csv(’Dogwhelk_Removal.csv’, header = T)
bbn.visualise(bbn.model = my_BBN, priors1 = dogwhelk,

timesteps = 5, disturbance = 2, threshold=0.05, font.size=0.7,
arrow.size=4)

3.2.4 BBN.sensitivity() running sensitivity analysis. For some methods of model

parameterisation, extensive data extraction from literature, or expert opinion can be useful.

However, this is time consuming, and being aware of the most sensitive edge parameters in

the model which may affect the desired outputs could help concentrate efforts. This function

produces a list of the most important edge parameters (interaction strengths) that might

require further examination, with importance increasing with numerical value (frequency

number).

The function works by bootstrapping, consisting of multiple changes to prior values and

interaction strengths in the network (the same process used for bootstrapping in the bbn.
predict() function: selecting 10% of interactions in each iteration and adjusting them by a

randomly determined amount of up to ± 0.1, based on the probability values, rather than the

integer input values). The frequency value produced shows the number of times a modified
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interaction shows up as important in causing a change to the listed nodes (the edge is counted

as important each time it is changed and subsequently is in the 25% of bootstrapped cases

which caused the biggest changes in the defined nodes of importance). As such, those interac-

tions showing as more frequent in the table or figure are likely to be most influential in any

predictions made. These edge values should be subject to closer scrutiny in terms of values

used. Note, this does not mean the values are incorrect or should be reduced from more

extreme values—i.e. from 4 to 3, just that they should be carefully checked, e.g. through litera-

ture searches, agreement amongst experts etc.

Required arguments

bbn.model - a matrix or dataframe of interactions between different model nodes

One or more nodes (recommended no more than 3) which would be the main outcomes of

interest in the model. The spelling of these nodes needs to be identical (including capital let-

ters) to that in the imported csv file (note, you should include spaces if these are in your csv

file, rather than the dot notation used once imported into R)–see example below for more

details.

Optional arguments

boot_max - the number of bootstraps to perform. Suggested range for exploratory analy-

sis 100–1000. For final analysis recommended size = 1000–10000—note, this can take a long

time to run. Default value is 1000.

Example

bbn.sensitivity(bbn.model = my_BBN, boot_max = 100, ’Limpet’,
’Green Algae’)

3.2.5 BBN.network.diagram() creating a diagram of the network. This function

visualises all nodes and interactions in a network, in a similar manner to the bbn.
visualise() function (section 3.2.3), other than the full network, including all edges are

shown. The strengths and directions of the edges are shown, but information ‘flow’ is not

shown, and no scenarios are included in the function. Nodes can also be colour coded by

theme. For simple models, this function can produce a visual representation of the model of

interest, but for complex models, the visual representation is hard to interpret.

This function requires a slightly different input file, based on the normal BBN interaction

model file. The first column is called id and consists of an ‘s’ and a 2-digit number relating to

the node number (e.g. s01, s02 and so on). The second column is called node.type and is an

integer value from 1–4. This sets the colour of the node in the network (sticking to a maximum

of four colours). For example, predators, grazers, filter feeders and algae could be colour coded

separately. The third column is the same as the first column in the standard BBN interaction

csv, other than it is titled node.name. It is important to use these column names (including

capitals and dot notation). The remainder of the columns are exactly as the standard BBN

interaction csv file (see S1 File in the Rocky Shore model for an example csv file or S2 File for

further details of file requirements).

Required arguments

bbn.network - a csv file as described above, with note paid to the first three column

names.

Optional arguments

font.size - default = 0.7. Changes the font in the figure produced. The value here is a

multiplier of the default font size used in the ‘igraph’ package and does not correspond to the

font.size argument in the bbn.timeseries() function.

arrow.size - default = 4. Changes the size of the arrows. Note, sizes do vary based on

interaction strength, so this is a multiplier for visualisation purposes. Negative interactions are

shown by red arrows, and positive interactions by black arrows.
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arrange - this describes how the final diagram looks. Default is layout_on_sphere
but layout_on_grid provides the same layout as in the bbn.visualise() function

and ensures nodes are structured in the order specified in the network. Other layouts, includ-

ing layout_on_sphere are more randomly determined, and better/clearer diagrams may

occur if you run these multiple times. Other options are from the ‘igraph’ package:

layout.sphere
layout.circle
layout.random
layout.fruchterman.reingold
Examples

bbn.network.diagram(bbn.network = my_network, font.size = 0.
7, arrow.size = 4, arrange = layout_on_sphere)
bbn.network.diagram(bbn.network = my_network, font.size = 0.

7, arrow.size = 2, arrange = layout_on_grid)

4. Creating and parameterising ‘BBNet’ models

There are many ways to create BBNs models, with differing degrees of time commitment and

robustness, depending on the purpose of the final model. For example, models can be created

and parameterised based on interactions assumed to be correct by the model developer. If

these models were used to develop hypotheses to test experimentally, then this method would

be suitable–empirical data would support or reject the models developed. A simple model,

such as the rocky shore model discussed above, could be likely developed from ‘best guess’ esti-

mates of the parameters in less than an hour. However, models used to make predictions

which are not empirically tested may take much longer to develop and involve careful consid-

eration over the nodes, edges, and interaction strengths. We discuss how to develop the model

step by step, and considerations of each stage below.

4.1 Determining nodes

In some cases, such as for a species interaction web, determining nodes can be straightforward, as

each node represents a species, or higher taxonomic group, in the area of interest. For example, in

the rocky shore model provided [8] (Fig 1), the snail species were those commonly found on the

boulders (other snail species were rare at<1% of total abundance). Seaweeds and barnacles were

categorised on higher taxonomic classifications, with the assumption that all species within each

grouping would respond in a similar manner to grazing pressure or competition. When wider

environmental aspects, ecosystem functions and services, and socio-economics are added to mod-

els, the choice of nodes becomes more complex. Firstly, there will be output nodes—equivalent of

dependent variables, or aspects of the system which need measurement. For example, this could

be the relative abundance of a protected species, the economic value of an ecosystem service, or

the amount of carbon sequestered within a habitat. Output nodes representing socioeconomic or

cultural aspects that are not typically quantified require greater consideration, thinking about

what an increase or decrease in this node represents in a meaningfully way. For example, a con-

cept such as ‘community acceptance’ might be hard to quantify with traditional metrics, but the

model will show if this is increasing or decreasing. There will also be clear input nodes which may

have their prior values altered in the development of scenarios, such when exploring changes in

policy and management, (e.g. preventing fishing in a marine protected area) or experimental

manipulations (e.g. excluding grazing deer from a section of heathland). The intermediate

nodes become a little more difficult to determine and relate to typical modelling issues of

the need for sufficient detail. BBNs model direct interactions between nodes, so a direct
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causal link should be established between all nodes in a model. However, as long as there is

sufficient scope to include conflicts between different pathways, then the nodes can be quite

broad scale. For example, an increase in mature tree coverage in an area is likely to lead to

increased carbon sequestration, there would be no need to model photosynthetic pathways,

for example. However, if the aim of a model was to address whether rewilding an area

through natural succession was to increase carbon sequestration, then a direct link from

rewilding to carbon sequestration would be incorrect. Rewilding may lead to various pro-

cesses (including changes in predation and grazing) which may influence the amount of

woodland, grassland, heathland, and other habitats in an area. A direct link between

amount of woodland and carbon sequestration (and perhaps between grassland and heath-

land and carbon sequestration, but at different interaction strengths) can be made, but the

amount of woodland will vary depending on other ecological factors.

Nodes must therefore capture the appropriate amount of detail needed for the model to be

useful, without including excessive detail. For instance, if the link between amount of habitat

and an ecosystem service are well established, but the mechanisms by which the habitat pro-

vides the ecosystem services are unclear, including the mechanism would reduce certainty and

predictive power in the model and should, therefore, be avoided.

4.2 Determining edges

All nodes in the network should interact with other nodes via one or more edges. Unless a

node is a clear ‘output node’ (see section 4.1), it should connect downstream to a child node.

Equally, unless a node is a clear ‘input node’, it should act as a child node in the network.

These rules, however, are not exclusive–an input node may be affected by another node in a

network, and an output node can still be measured and go on to affect further nodes. Nodes

can also have multiple edges as inputs or outputs. Edges are also directional. This means that

node A can have an effect on node B, but node B will not have an effect on node A. Reciprocal

interactions are possible (e.g. interspecific competition between species, where species A and B

are nodes in the network) but are not required. For example, in the Rocky Shore model

described (Fig 1), competition interactions are reciprocal, but trophic interactions were one

way, with predators affecting prey only, due to the time over which the results were modelled

(see [8] for details). In ‘BBNet’ each edge acts independently on a node as per Eqs 4 and 5 (see

section 2). This allows for much more complex networks to be built than traditional Bayesian

belief networks, which require conditional probability matrices to be built when multiple

edges act on a node. While some degree of control is lost in the model as a result, careful

thought about model structure can overcome this (see S5 File). Finally, edges can represent

either positive or negative interactions. These are defined mathematically, where a positive

interaction creates a directional change in a child node in the same direction as the parent

node (i.e. an increase in the parent node leads to an increase in the child node). A negative

interaction creates a difference in direction between child and parent nodes (i.e. an increase in

the parent node leads to a decrease in the child node). Care is needed here, especially when

human-centric value judgements can be placed on the nodes. For example, increased use of

fossil fuels has a [mathematically] positive effect on climate change (as one increases, so does

the other). The models need this specified as a positive interaction although we tend to associ-

ate this as a negative outcome for society and the environment.

4.3 Determining edge strengths

Edges are given integer values between -4 and 4, where negative values indicate mathematically

negative interactions between parent and child nodes. Values of zero indicate no interaction,
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but for simplicity these should be left blank in the interaction matrix file. Decimal values will

cause the ‘BBNet’ package to crash and should not be used. The purpose of limiting interaction

strengths to these integer values is to make the network easier to parameterise when limited

information may be available. Given the output of the model can be described as ‘ordinal’

between scenarios, these levels of interaction strength are enough to provide clear differences

between outputs and evaluate different scenarios. The bbn.sensitivity() function can

also highlight parameters which cause the biggest differences to the outputs of the models, and

therefore need the most data or highest certainty to parameterise (section 3.3.4; see S3 File for

an example based on the rocky shore model).

It is possible to use published and grey literature to aid in the parameterisation process.

Equally, quantitative or qualitative evidence from field or laboratory studies, interviews, focus

groups, expert opinion, Delphi surveys can also inform the design and parametrisation of the

models (section 4.5). The amount of evidence and agreement between studies, people or

sources will help form the final values used in the model (for example, see [24] for a framework

for a four stage degree of confidence framework). However, the magnitude of the change is

also important. We suggest Table 1 is used to help formulate the edge and prior strengths.

4.4 Creating scenarios

Scenarios are changes to some of the nodes of a network. Prior node values are changed to

integer values between -4 and 4 if these are directly manipulated or directly influenced nodes

in a system. For example, in the rocky shore model, one scenario is the removal of dogwhelks

from the system. All dogwhelks were removed, so the prior value was set to -4 (see Table 2).

No further changes are made to the priors. The effect on dogwhelk removal on other aspects of

the community are determined by the model as the numeric change in dogwhelks flows

through the network. Another scenario involved removing dogwhelks and increasing periwin-

kles. In this case, prior values are changed for dogwhelks and periwinkles, as these are directly

manipulated, but not for other nodes (see S3 File for an example based on the rocky shore

model).

Changes in law and policy can also be included in model scenarios. In the MPA manage-

ment scenario a potting ban was implemented by reducing the lobster fishery (setting the prior

to -4), and a total fishing ban to setting both lobster and finfish fisheries nodes to -4. Where

policies are thought to be weak or ineffective, values other than +/- 4 can be used to indicate

this inherent weakness in the policy.

It is possible to include policy nodes when building models, and these nodes can be con-

nected to relevant model nodes via edges. For example, a lobster fishing ban policy node could

be linked to the lobster fishing node with an edge set to -4. This approach can be beneficial in

complex policy scenarios or when multiple nodes change due to policy implementation. How-

ever, it is generally simpler to represent the effects of policies directly in a basic model by

adjusting the priors.

The ‘BBNet’ model prevents signal loss (Eqs 3 and 4 in section 2), meaning that priors in

the bbn.predict() function only change when they become more certain (i.e. closer in

value to 4 or -4). This means that when a prior is intended to be important measured outcomes

of the model, the process to prevent signal loss may limit the model’s ability to determine the

overall influence of the system on that particular prior node. In these cases, developing a policy

node, as described earlier, allows for the examination of all nodes (other than policy nodes).

For example, implementing a lobster fishing ban in the MPA system could lead to an increase

in lobster population, which might result in more illegal lobster fishing. If the lobster fishing

ban is implemented by simply changing the lobster fishing node prior to -4, the model would

PLOS ONE Simple predictive models for ecology, conservation and environmental policy

PLOS ONE | https://doi.org/10.1371/journal.pone.0305882 December 10, 2024 14 / 18

https://doi.org/10.1371/journal.pone.0305882


be unable to predict this increase in illegal fishing, as such activity would move this node

towards zero (indicating less certainty). However, having a policy node for the lobster fishing

ban set to -4 as a prior, connected to the lobster fishing node with an edge of -4, would prevent

the policy node from changing, while allowing the lobster fishing node to increase to reflect

the rise in illegal fishing.

4.5 Involving others in building the model

The relative intuitiveness of the network model approach does lend itself to a collaborative

model and scenario building process. Indeed, while a framework for scoring interaction

strengths has been given; for models which are going to be used beyond the scope of hypothe-

sis development, it is useful to have multiple people involved in designing and parametrising

models. BBNs can be built from expert opinion. Processes such as the Delphi method can be

used to obtain agreement on nodes and edges [25], and potentially even interaction strength.

Disagreements can be resolved by assigning disputed edge strengths based on data or literature

(as per Table 2) or assessing the importance of the interaction under question using the sensi-

tivity analysis functions. Stakeholder groups can also inform nodes, edges and edge strengths

in the BBNs [18].

Stakeholder interaction and consultation can also be useful for refining the models and

ensuring maximum trust in the model outputs [26]. In particular, stakeholders may have views

different from scientific experts or scientific literature on some topics (e.g. the effects of fishing

[27]). Such disagreements may involve building two or more models to compare the results of

these disagreements. Stakeholders can also design scenarios for exploration, based on how pol-

icy, management, environmental conditions etc. may affect the system being considered.

Given the relative ease of creating scenarios, it may be possible to produce and analyse these in

real time in meetings with stakeholder groups.

Another application of BBNs is in the aiding of transfer of knowledge between academics

and practitioners (e.g. government policy makers). These models, even if quickly produced,

can facilitate dialogue between academic knowledge and potential implications and conse-

quences of policy formation [20]. They can also be tailored to specific requirements and out-

comes. Using BBNs as a mechanism for information transfer between academic and

practitioner sectors may facilitate some of the difficulties currently faced in these knowledge

exchange activities [28].

5. Conclusions

We have presented an approach to predictive ecological and environmental modelling (which

can link to social science outcomes e.g. [15, 18]) which can be rapid to develop, easy to use

(albeit with some degree of training or troubleshooting support) and intuitive to understand

key concepts and outcomes, particularly for non-specialists including policy makers and

NGOs. The methodological overview presented here and the R package functions for the

‘BBNet’ package provide a framework for the use of these models and a user-friendly interface

for creating and analysing the models.

BBNs models will not fulfil every requirement of current modelling processes, and do not

produce fully quantitative data (e.g. estimates of fish biomass in tonnes, or value of ecosystem

services in US$). They do, however, allow different scenarios to be explored and evaluated rela-

tive to each other [21], predict the direction of change in various parts of a system [16], and

handle complex systems with environmental, ecological, and social aspects [20].

Additionally, the ‘BBNet’ package can account for feedback loops within the system over

varying timescales [8]. It can be used to develop hypotheses which can be tested empirically
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[8], produce results which inform policy [20], capture community and management group

understanding [18], and address concerns and facilitate dialogue with practitioners [18]. How-

ever, it can also produce meaningful research outputs in their own right and gain understand-

ing of complex system dynamics.

While we have focussed on the use of the models in environmental problems, their applica-

tion does not need to be restricted to this, and use in financial systems, molecular biology,

political sciences, and many other disciplines are likely possible (as an example, the ‘BBNet’
package has been used to model the high level financial and political landscape of the UK and

predict how different outcomes of the 2024 general election would change this landscape [29]).

Supporting information

S1 File. Input files for edges and priors for each of the two example models. See section 3.1

for further details.

(ZIP)

S2 File. Tutorial video of input file requirements for the ‘BBNet’ package.

(MP4)

S3 File. Tutorial video of running ‘BBNet’ functions using provided data files.

(MP4)

S4 File. R Markdown script with necessary functions and example R code to import input

files and run ‘BBNet’ functions.

(RMD)

S5 File. Tutorial video on incorporating more complex probability matrices in ‘BBNet’
through model structure.

(MP4)
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