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Recently, several edge deployment types, such as on-premise edge clusters, Unmanned Aerial Vehicles (UAV)-

attached edge devices, telecommunication base stations installed with edge clusters, etc., are being deployed to 
enable faster response time for latency-sensitive tasks. One fundamental problem is where and how to offload and 
schedule multi-dependent tasks so as to minimize their collective execution time and to achieve high resource 
utilization. Existing approaches randomly dispatch tasks naively to available edge nodes without considering 
the resource demands of tasks, inter-dependencies of tasks and edge resource availability. These approaches can 
result in the longer waiting time for tasks due to insufficient resource availability or dependency support, as 
well as provider lock-in. Therefore, we present EdgeColla, which is based on the integration of edge resources 
running across multi-edge deployments. EdgeColla leverages learning techniques to intelligently dispatch multi-

dependent tasks, and a variant bin-packing optimization method to co-locate these tasks firmly on available nodes 
to optimally utilize them. Extensive experiments on real-world datasets from Alibaba on task dependencies show 
that our approach can achieve optimal performance than the baseline schemes.
1. Introduction

Edge Computing (EC) is a distributed computing model which places 
cloud computing [1] services closer to data sources to achieve faster 
response time and real-time insights. Devices can offload their compu-

tational intensive tasks and latency-sensitive tasks to the edge and after 
executions, the results are sent back to the devices. To this end, sev-

eral independent edge deployment types, such as on-premise edge clus-

ters [2], Unmanned Aerial Vehicles (UAV)-enabled EC [3,4], telecom-

munication base stations endowed with edge clusters,1 edge nodes 
[2], etc., have been proposed. However, one fundamental problem is 
where and how to offload and schedule multi-dependent tasks in such 
diverse deployments so that their collective execution time is mini-

mized and high resource utilization is achieved. A common practice is 
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to randomly offload tasks individually to available edge nodes with-

out considering the resource demands of tasks, inter-dependencies of 
tasks and edge resource availability, as shown in Fig. 1 (a). Such a 
disjointed approach would result in the longer waiting time for tasks 
due to insufficient resource availability, dependency support, and ven-

dor lock-in situations. Hence it is not appropriate for latency-sensitive 
tasks.

For this reason, we wish to consider an approach that can seam-

lessly integrate all edge resources running across 𝑁 deployments (i.e., 
on-premise edge clusters, edge nodes, telecommunication base stations 
equipped with edge clusters, and UAVs attached with edge devices) in 
a single pool as shown in Fig. 1 (b), such that these resources can be 
holistically monitored from a Control Plane (CP), and multiple tasks can 
be dispatched dynamically across these edge resources. This approach 
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Fig. 1. (a) An example of random multi-tasks dispatching without considering 
their dependencies and cluster resource status, and (b) An example of intelligent 
multi-tasks dispatching, where both tasks dependencies and cluster resource sta-

tus are considered.

is called Edge Federation (EF) [2,5]. For example, recently introduced 
EC frameworks, i.e., KubeEdge,2 MicroK8s,3 etc., have the capabilities 
of integrating edge resources running across multiple deployments for 
containerized tasks to eliminate provider lock-in situations. One of the 
benefits that EF brings is minimized latency by serving devices from 
the cluster closest to them [2,5–7]. The EF setup consists of a host 
cluster and member cluster(s). Given 𝑁 independent edge de-

ployments, the CP is deployed in one of the deployments as the host 
cluster, while the remaining 𝑁 − 1 deployments are regarded mem-

ber cluster(s), which can be added or removed from the CP. The 
EF system is given as

𝔼𝔽 =
⋃𝑁

𝑖=1
Edge𝑖 (1)

Through the CP, resource availability status, as well as running task 
status can be obtained from all the deployments (host cluster and

member cluster(s)), thus enabling informed decisions on optimal 
multi-task dispatching. The work presented in this paper differs consid-

erably from prior works [6,7], which addressed the problem of multi-

dependent task orchestration in a federated autonomous drone-enabled 
EC system, while considering the drones’ flight time to avoid the loss of 
jobs [8].

In this paper, we present EdgeColla, which leverages the Collabo-

rative Learning (CL) technique [9–11] to estimate multi-task resource 
requirements and execution time, and to dispatch these tasks to the 
closest member cluster having matching available resources, while 
considering their dependencies. The effectiveness of such a CL-based 
multi-task dispatching method in 𝑁 edge deployments is critically de-

pendent on the state information update process, in terms of the resource 
availability of all the clusters. One drawback of this concept is that 
the inaccurate estimation of the multi-task resource requirements and 
execution time would cause EF to perform poorly. Similarly, if multi-

dependent tasks are randomly dispatched, e.g., in an offloading strategy 
that dispatches tasks individually without considering their dependen-

cies and cluster resource status [12,13], EF might not yield optimal 
performance. Therefore, we first investigate the accuracy of our trained 
linear regression model by estimating the resource requirements and ex-

ecution time of multi-dependent tasks, using the Normalized Absolute 
Estimate Error (NAEE) method. This serves as the estimation accuracy 
measure for the trained linear regression model. Then we adopt the 
gang-scheduling [14] strategy and a variant bin-packing optimization 
method to efficiently co-schedule and co-locate all the tasks, where both 
their dependencies and cluster resource status are considered, such that 
their actual completion time is minimized, as well as the optimal re-

source usage is achieved. To avoid interference and resource contention 

2 https://kubeedge .io /en/.
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among co-located tasks, we provide isolation to co-located tasks through 
containerization [15]. Containerization provides isolation to running 
tasks and enables tasks to be executed in any edge deployment regard-

less of the architecture or provider.

We summarize the main contributions of our EdgeColla implemen-

tation as follows:

• An intelligent multi-dependent task dispatching method through 
the joint optimization of their resource requirements and cluster 
resource status is proposed.

• Specifically, we derive a CL-based multi-dependent task resource 
requirement, and execution time, and cluster resource status esti-

mation approach for an integrated edge system through the CP, 
such that multi-dependent tasks are intelligently dispatched to the 
closest edge cluster having sufficient available resources.

• To guarantee the optimal usage of cluster resources, we further 
propose a variant bin-packing optimization approach through gang-

scheduling of multi-dependent tasks, which co-schedules and co-

locate tasks firmly on available nodes to avoid resource wastage.

• We show that EdgeColla is capable of minimizing the actual com-

pletion time of multi-dependent tasks using minimum resources and 
we conduct extensive experiments to compare the performance of 
EdgeColla with several existing approaches on real-world datasets 
from Alibaba,4 which provides information on task dependencies.

1.1. Motivating examples

Dependency-awareness is critical for achieving optimal performance 
in task dispatching and scheduling problems. In Fig. 2, we show an ex-

ample of multi-dependent tasks, where some of the tasks require the 
output of another task(s), as well as other resources,5 i.e., CPU ⟨𝑐⟩ and 
memory ⟨𝑚⟩, for its execution. For example, 𝑇1, 𝑇2, and 𝑇3 are inde-

pendent tasks, i.e., they do not have dependencies and they can start 
executing without requiring input from other tasks. Tasks 𝑇4 and 𝑇5
require input from 𝑇1 to be able to complete their executions. Simi-

larly, tasks 𝑇6, 𝑇7, and 𝑇8 depend on the completion of tasks 𝑇4, 𝑇5, 
and 𝑇2, respectively. Deploying these tasks on the same cluster would 
enable dependent tasks to communicate and share data faster, com-

pared to individual tasks execution across different clusters [16]. The 
complex inter-task dependency with heterogeneous resource demands 
and diverse edge deployments with heterogeneous resource capacities 
make resource management in EC a non-trivial task. Considering such 
demands and resource capacities is necessary to achieve effective dis-

patching and scheduling, ultimately to achieve optimal performance 
[17,18]. Hence a key objective of our EdgeColla is to reduce the collec-

tive execution time of such tasks and to improve cluster resource usage 
by considering inter-task dependencies.

Given 𝑛 multi-dependent tasks 𝑇1, 𝑇2, ⋯ , 𝑇𝑛 as shown in Fig. 2, 
EdgeColla adopts the gang-scheduling [14] strategy and a variant bin-

packing optimization method to efficiently co-schedule and co-locate 
them in a cluster. We consider EdgeColla as a Full Dependency and Full 
Packing (FDFP) approach. Therefore, the scheduling time can be ex-

pressed as

𝑚∑
𝑧=1

𝑘𝑧∑
𝑖=1

𝑆𝑐ℎ𝑧𝑖
∕𝑘𝑧 (2)

where 𝑚 is the number of scheduling units and 𝑘𝑧 is the number of tasks 
within the 𝑧-th scheduling unit having tasks 

{
𝑇𝑧1

, 𝑇𝑧2
, ⋯ , 𝑇𝑧𝑘𝑧

}
.

We illustrate the advantage of the scheduling approach in EdgeColla 
over 3 other existing schemes as follows. (i) An approach that does 

4 https://github .com /alibaba /clusterdata /blob /master /cluster -trace -v2018 /
trace -2018 .md.

5 Here we focus on CPU and memory resources, since these resources are lim-
ited in edge systems.
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Fig. 2. An example of multi-dependent tasks, with each task’s CPU and memory resource requirements denoted as ⟨𝑐,𝑚⟩, and execution time denoted as 𝐸𝑒𝑥.

Table 1

Scheduling orders and units of various schemes.

Scheme Scheduling Order Scheduling Units

EdgeColla {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6, 𝑇7, 𝑇8, 𝑇9, 𝑇10, 𝑇11, 𝑇12} 1
PDNP 𝑇3 → 𝑇2 → {𝑇1, 𝑇4}→ {𝑇6, 𝑇8}→ {𝑇5, 𝑇7}→ {𝑇10, 𝑇11}→ {𝑇12, 𝑇9} 7
PDFP 𝑇1 → 𝑇2 → 𝑇3 → {𝑇4, 𝑇5}→ {𝑇6, 𝑇7, 𝑇8, 𝑇9}→ {𝑇10, 𝑇11, 𝑇12} 6
NDFP {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6}→ {𝑇7, 𝑇8, 𝑇9, 𝑇10, 𝑇11, 𝑇12} 2
Random 𝑇1 → 𝑇2 → 𝑇3 → 𝑇4 → 𝑇5 → 𝑇6 → 𝑇7 → 𝑇8 → 𝑇9 → 𝑇10 → 𝑇11 → 𝑇12 12
not consider task dependency but schedules 50% of any given multi-

dependent task by mainly focusing on task co-location. We refer to this 
approach as No Dependency and Full Packing (NDFP), and it is similar 
to the approach in [19]. (ii) An approach that schedules up to 15% of 
any given multi-dependent tasks at a time, but does not consider task 
co-location. We refer to this approach as Partial Dependency and No 
Packing (PDNP), which is similar to the approach in [20]. (iii) An ap-

proach that schedules up to 40% of any given multi-dependent task with 
task co-location. We consider this approach as Partial Dependency and 
Full Packing (PDFP), which is similar to the approach in [21]. (iv) Fi-

nally the Random approach does not consider both task dependencies 
and task co-location. We refer to this approach as No Dependency and 
No Packing (NDNP). It is important to note that delays in scheduling 
inter-dependent tasks directly impact their collective execution time. 
For the multi-dependent tasks in Fig. 2 with 𝑛 = 12 tasks, Table 1 lists 
the scheduling orders and scheduling units for the schemes compared. 
EdgeColla only needs one scheduling unit (𝑚 =1) that has 𝑘1=12 tasks 
and it also achieves the lowest execution time of 1

12
∑12

𝑖=1𝐸𝑒𝑥𝑖
. By con-

trast, Random has 𝑚 =12 scheduling units, each having a single task. 
Hence it has the highest execution time of 

∑12
𝑖=1𝐸𝑒𝑥𝑖

. Thus, EdgeColla 
achieves the lowest scheduling and execution time. PDNP, PDFP, and 
NDFP deploy individual or subsets of tasks at a time.

The remaining parts of this paper are structured as follows. Section 2

presents related work on learning-based resource allocation schemes 
used in cloud and edge computing. In Section 3, we detail our proposed 
EdgeColla for achieving high resource utilization and minimizing the 
execution time of applications deployed on EF resources. In Section 4, 
we compare the performance of our proposed EdgeColla against several 
existing schemes through extensive experiments. Finally, we conclude 
the paper in Section 5.

2. Related work

Effective multi-task dispatching techniques in edge systems can ben-

efit from resource availability status, multi-task resource requirements 
and execution time, such that these tasks can be offloaded to the closest 
edge cluster with sufficient resources. Information about task execution 
time is most important for drone-based edge deployments [6,7]. This 
is because a typical drone has limited flight time, which could possibly 
lead to a delayed task execution if it is not taken into consideration [8]. 
Hence, the effective and accurate execution time estimation of multiple 
1839

task is needed to select a drone with corresponding flight time and re-
sources to execute tasks. Consequently, existing studies have presented 
a huge number of learning methods to estimate tasks’ resource require-

ments and execution time, CL [6,9], Machine Learning (ML) [7,22,23], 
Incremental Learning (IL) [24], scheduling [14,25–27] and statistical 
models [28]. Previous works [6,7] focused on multi-dependent task or-

chestration in autonomous drone-enabled EC systems, while considering 
the drones’ flight time, to avoid the loss of jobs [8]. Specifically, the au-

thors in [6] proposed a multi-output linear regression model based on 
CL to estimate multi-dependent tasks’ resource requirements and execu-

tion time, to select the closest drone deployment with matching resource 
availability and flight time to execute ready tasks at a given time. In [7], 
the authors proposed an ML-based multi-dependent task dispatching 
method over a federated autonomous drone-enabled EC platform, using 
the total estimated value of the multi-dependent tasks’ execution time to 
select a suitable drone. The authors of [9] proposed a distributed train-

ing scheme based on CL, where multiple Deep Reinforcement Learning 
(DRL) agents are deployed on IoT devices to enable joint resource al-

location. The work in [22] proposed a method to predict the execution 
time of a task, by first predicting its run-time parameters, then it uses 
these run-time parameters to finally predict the execution time of the 
task. In [23], two novel multi-model ML ensemble systems with the 
mixture of experts and dynamic selection of experts were presented to 
predict the execution time of workflows in distributed environments. 
The work in [24] presented an online incremental approach for the 
run-time prediction of scientific workflows in cloud computing environ-

ments using time-series monitoring data. In [25], the authors proposed 
a cluster scheduling framework called Gandiva, which exploits intra-job 
predictability to share GPUs efficiently across multiple jobs, to achieve 
low latency. The authors of [26] proposed an approach that can accu-

rately predict the performance of a given job. Their main idea is to run 
a set of instances of the entire job on the samples of the input, and use 
the data from these training runs to create a performance model. The 
work in [27] proposed a Deep Learning (DL) job scheduler, which aims 
to minimize the training time for jobs. This scheduler is based on an on-

line prediction model used to accurately estimate the training speed, as a 
function of the allocated resources in each job. In [14], the authors pro-

posed a scheduling algorithm for Bulk Synchronous Parallel (BSP) jobs. 
They showed that their solution is robust against inaccurate estimations. 
The work in [28] presented a cluster management system called Quasar, 
using classification techniques to quickly and accurately determine the 
impact of the scales of resources, types of resources, and interference 

on performance for each workload and dataset. Then, it uses the clas-
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Fig. 3. CL model training and aggregation.
sification results to jointly perform resource allocation and assignment. 
The authors of [29] proposed a deep DL-based Point of Interest Recom-

mendation (Deep-PR) method for mobile edge networks, where hidden 
feature components from both local and global sub-spaces are deeply 
abstracted via representative learning schemes, so that recommenda-

tion accuracy can be ensured.

With limited edge resources, it is extremely important to avoid any 
form of resource wastage, i.e., resource underutilization. Efficiently 
managing edge resources directly dictates service quality and perfor-

mance [30]. As a result, task co-location has gained attention both in 
academia and industry as an optimal solution for improving resource 
utilization and system throughput in distributed systems. However, ef-

fective task co-location is a non-trivial task, as it requires an under-

standing of the computing resource requirements of co-running tasks 
to determine how many of them can be co-located. To this end, task 
co-location mechanism was proposed in [31], by accurately estimating 
the resource level needed, to effectively determine how many tasks can 
be co-located on the same host to improve the system throughput, tak-

ing into consideration the memory and CPU requirements of co-running 
tasks. With the aim to maximize resource utilization, the authors of [32]

utilized Reinforcement Learning (RL) approach to co-locate interactive 
services with batched ML workloads. Previous works [17,18] focused on 
workload co-location in cloud environments rather than edge systems. 
To further improve edge resource management, a resource management 
scheme was proposed in [2,5] which unifies distributed edge resources, 
such that they are holistically managed. Previous work in [2] proposed a 
dependency-aware task scheduling scheme in such a unified system. Ex-

isting EC applications are usually structured with inter-task dependen-

cies, where a task depends on input from other task(s). A huge number 
of existing studies, i.e., [33–36] have tackled the problem of scheduling 
such inter-dependent tasks or multi-dependent tasks, and their common 
goal is to formulate a scheduling decision that minimizes the average 
completion time of such tasks.

Existing works on CL-based approaches for task offloading and ex-

ecution in multi-edge deployments do not consider task dependencies 
and do not unify distributed edge resources, such that they are holisti-

cally managed and monitored from a single CP, where multi-tasks can 
be timely dispatched and co-located without interference or resource 
contentions. This motivates our research to extend existing schemes by 
proposing EdgeColla to address these problems. Specifically, we propose 
a CL-based multi-dependent task resource requirement and execution 
time estimation method through a linear regression model, and clus-

ter resource status for an integrated edge system through the Control 
Panel (CP), such that multi-dependent tasks are intelligently dispatched 
to the closest edge cluster having sufficient available resources. We 
further propose a variant bin-packing optimization approach through 
1840

gang-scheduling of multi-dependent tasks, which co-schedules and co-
locates tasks firmly on available nodes to avoid resource wastage. We 
finally show that EdgeColla is capable of minimizing the actual comple-

tion time of multi-dependent tasks using minimum resources through 
extensive experiments and comparisons.

3. System model, problem formulation and algorithm framework

The goal of edge CL is to collaboratively learn a model from data 
1, ⋯ , 𝑁 , stored across 𝑁 distributed clusters, where each dataset 
𝑖 = {(𝒙𝑖,𝑗 , 𝒚𝑖,𝑗 )}

𝑛𝑖

𝑗=1 contains 𝑑-dimensional tensors of data features 
𝒙𝑖,𝑗 ∈ℝ1×𝑑 and 𝑐-dimensional tensor data labels 𝒚𝑖,𝑗 ∈ℝ1×𝑐 . The selec-

tion of training data is an important topic in any learning problem. Given 
the multiple tasks to be deployed, we should select the training data 
from the historical data that have characteristics as close as possible to 
those of the current multiple tasks to be deployed. This is critical to en-

sure the accuracy of the model learned. For example, if the multiple 
tasks to be deployed are Video Processing (VP) jobs, it is desired to se-

lect the training data that include historical VP data if possible to build 
the model.

Before now, a prevalent method is to integrate datasets in one cluster, 
i.e., 𝔻 =

⋃𝑁
𝑖=1𝑖, and use this integrated data 𝔻 to train a model ΘS. 

Recent CL approaches train models over distributed datasets without 
the need for datasets aggregation, as shown in Fig. 3. The following 
steps narrate the process of CL model training and aggregation in EF 
systems:

1. The member cluster(s) 𝐷𝑒𝑑𝑔𝑒𝑖
separately train their models 

Θ𝐷𝑒𝑑𝑔𝑒𝑖
based on their local datasets 𝑖.

2. Then at time 𝑡 > 0, the member cluster(s) send their models, 
denoted as Θ(𝑡−1)

𝐷𝑒𝑑𝑔𝑒𝑖

, 1 ≤𝑖 ≤𝑁 , to the host cluster, where global 

update Θ(𝑡)
𝐺

is computed by aggregating all the member cluster

models [37–40]:

Θ(𝑡)
𝐺

=
𝑁∑
𝑖=1

Θ(𝑡−1)
𝐷𝑒𝑑𝑔𝑒𝑖

(3)

3. In response, Θ(𝑡)
𝐺

is distributed to the member cluster(s), where 
it is used to update Θ(𝑡−1)

𝐷𝑒𝑑𝑔𝑒𝑖

according to [38]

Θ(𝑡)
𝐷𝑒𝑑𝑔𝑒𝑖

=Θ(𝑡)
𝐺
−Θ(𝑡−1)

𝐷𝑒𝑑𝑔𝑒𝑖

, 1 ≤ 𝑖 ≤ 𝑁 (4)

4. At time 𝑡 +1, updates Θ(𝑡)
𝐷𝑒𝑑𝑔𝑒𝑖

, 1 ≤ 𝑖 ≤ 𝑁 , from the member clus-
ter(s) are sent back to the host cluster(s), where a global 

update is computed [38]:
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Fig. 4. Overview of EdgeColla.
Θ(𝑡+1)
𝐺

=Θ(𝑡)
𝐺
+

𝑁∑
𝑖=1

Θ(𝑡)
𝐷𝑒𝑑𝑔𝑒𝑖

(5)

For member cluster(s) 𝐷𝑒𝑑𝑔𝑒𝑖
with local dataset 𝑖, the associ-

ated ML problem is to solve the following optimization:

Θ⋆
𝐷𝑒𝑑𝑔𝑒𝑖

=arg min
Θ𝐷𝑒𝑑𝑔𝑒𝑖

∈ℝ𝑑×𝑐

1
2𝑛𝑖

𝑛𝑖∑
𝑗=1

‖𝒙𝑖,𝑗Θ𝐷𝑒𝑑𝑔𝑒𝑖
− 𝒚𝑖,𝑗‖22

+ 𝜆

2
‖Θ𝐷𝑒𝑑𝑔𝑒𝑖

‖2
𝐹

(6)

where 𝜆 is the regularization parameter and ‖ ⋅ ‖𝐹 denotes the Frobe-

nius norm. Optimization (6) is solved using gradient-descent by up-

dating the model iteratively until convergence with formula Θ(𝜄+1)
𝐷𝑒𝑑𝑔𝑒𝑖

=

Θ𝜄
𝐷𝑒𝑑𝑔𝑒𝑖

−𝜂
(

1
𝑛𝑖
𝒈
(
Θ𝜄

𝐷𝑒𝑑𝑔𝑒𝑖

)
+𝜆Θ𝜄

𝐷𝑒𝑑𝑔𝑒𝑖

)
, in which 𝜂 is the learning rate, 

𝒈
(
Θ𝜄

𝐷𝑒𝑑𝑔𝑒𝑖

)
= 1

𝑛𝑖
𝑿T

𝑖

(
𝑿𝑖Θ𝜄

𝐷𝑒𝑑𝑔𝑒𝑖

−𝒀 𝑖

)
is the gradient of the loss function, 

𝑿𝑖=
[
𝒙T

𝑖,1, ⋯ , 𝒙T
𝑖,𝑛𝑖

]T
and 𝒀 𝑖=

[
𝒚T

𝑖,1, ⋯ , 𝒚T
𝑖,𝑛

]T
are the feature set and label 

set, respectively.

As multi-dependent tasks arrive into the system, their features 
𝒇mt(𝜔, 𝜖, 𝛾), where 𝜔 is the number of instances, 𝜖 is the type of tasks, 𝛾
is the dependency depth, are fed into global model Θ⋆

𝐺
to estimate the 

values of the resource requirements and execution time according to

𝒇mt ⋅Θ⋆
𝐺
=
[
𝐸𝑒𝑥1

𝑇
⟨𝑐,𝑚⟩
1 𝐸𝑒𝑥2

𝑇
⟨𝑐,𝑚⟩
2 ⋯𝐸𝑛𝑇

⟨𝑐,𝑚⟩
𝑛

]
(7)

where 𝑇 ⟨𝑐,𝑚⟩
𝑖

and 𝐸𝑒𝑥𝑖
are the estimated resource requirements (in terms 

of CPU and memory ⟨𝑐,𝑚⟩) and estimated execution time for task 𝑖, 
respectively. Note that the dispatcher has the estimated values and 
the update status of all the member clusters ∈ 𝔼𝔽 when deciding 
where to dispatch tasks. We show that with these estimated values, 
multi-dependent tasks can be intelligently dispatched with the aim of 
minimizing their actual completion time using minimum resources in an 
integrated edge system, as shown in Fig. 4. We train our model based on 
Keras6 with historical data from previously executed tasks/jobs. Keras 
is a library that wraps TensorFlow7 complexity into a simple and user-

friendly Application Programming Interface (API).

Multi-dependent tasks resource requirements and execution time es-

timation values, and member clusters available resources denoted 
as 𝐷⟨𝑐,𝑚⟩

𝑒𝑑𝑔𝑒𝑖
are needed to effectively dispatch multi-dependent tasks ℂ to 

6 https://keras .io/.
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7 https://www .tensorflow .org/.
the closest member cluster denoted as 𝐷𝑒𝑑𝑔𝑒𝑖⋆
with sufficient re-

sources denoted as 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

. The closest member cluster is an edge 
deployment with the minimum combined upload ∧↑

ℂ→𝐶𝑒𝑑𝑔𝑒𝑖

and down-

load ∧↓
ℂ→𝐶𝑒𝑑𝑔𝑒𝑖

transmission loads:

ℂ⇒ 𝐷𝑒𝑑𝑔𝑒𝑖⋆
(8)

where 𝐷𝑒𝑑𝑔𝑒𝑖⋆
is the solution of the following optimization:

min
𝐷𝑒𝑑𝑔𝑒𝑖

∈𝔼𝔽

(
∧↑
ℂ⇒𝐷𝑒𝑑𝑔𝑒𝑖

+∧↓
ℂ⇒𝐷𝑒𝑑𝑔𝑒𝑖

)
s.t. 𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

is sufficient for tasks
(9)

If a selected member cluster 𝐷𝑒𝑑𝑔𝑒𝑖
is a drone, in addition to 

meeting the requirement that 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

is sufficient, its flight time 𝑓𝑖 should 
also be sufficient, such that the estimated execution time 𝐸𝑒𝑥 ≤ 𝑓𝑖, to 
avoid job losses [8]. For example, autonomous drone systems such as 
Drone-in-a-Box8 have the capabilities to fly intelligently and to estimate 
their overall fight time 𝑓𝑙

𝑖
, including from source location 𝑙𝑐

𝑖
to des-

tination location 𝑙𝑑
𝑖

to conduct on-demand tasks. Therefore, for drone 
deployments, constraint 𝐸𝑒𝑥 ≤ 𝑓𝑖 should be added to optimization (9).

For task 𝑇 ∈ ℂ, its actual starting time and completion time are de-

noted as 𝐸𝑠𝑡 and 𝐸𝑐𝑝, respectively. Thus, its actual execution time is 
given as

𝐸𝑒𝑥 = 𝐸𝑐𝑝 −𝐸𝑠𝑡 (10)

Hence the collective execution time of a (𝑛)-task ℂ is given as

𝑛∑
𝑖=1

𝐸𝑒𝑥𝑖

𝑛
(11)

Given a node 𝐼 in each member cluster, let 𝐼⟨𝑐,𝑚⟩
𝑝 denote the 𝑝-th 

node’s resource availability. The estimated resource demands and exe-

cution time of 𝑘-dependent tasks to be orchestrated, 
∑𝑘

𝑞=1 𝑇
⟨𝑐,𝑚⟩
𝑞 and ∑𝑘

𝑞=1 𝐸𝑒𝑥𝑞
, the updated resource availability status of each member 

cluster cluster 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

, and drones’ flight time 𝑓𝑖 (for aerial deploy-

ments) are needed to make an effective dispatching decision on ℂ at 
time 𝑡. Our system extends to handle massive requests from multiple 
8 https://dronehub .ai/.

https://keras.io/
https://www.tensorflow.org/
https://dronehub.ai/
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users 𝑢 ∈𝕌 [41]. For example, we consider a telecom platform9 that 
provides EC services to connected cars and autonomous vehicles. Sup-

pose at 𝑡, there are 𝑛 service requests from 𝕌 at location 𝑙𝑑
𝑖
, where each 

user 𝑢 is offloading ℂ. The collective 𝑛 request from 𝕌 can be dispatched 
as multi-job 𝕁, where 𝕁 =

∑𝑛
𝑖=1ℂ𝑖, with the collective resource demand 

estimation denoted as 
∑𝑘

𝑞=1𝑇
⟨𝑐,𝑚⟩
𝑞 =𝑇 ⟨𝑐,𝑚⟩′ and the aggregate execution 

time estimation as 
∑𝑘

𝑞=1𝐸𝑒𝑥𝑞
=𝐸𝑒𝑥′. We can dispatch 𝕁 to the same 

member cluster by jointly considering the estimated total resource 
requirements:∑

𝐽∈𝕁
𝑇 ⟨𝑐,𝑚⟩′ = 𝑇

⟨𝑐,𝑚⟩′
total (12)

where the edge or cluster resource capability is 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

and the total 
estimated execution time is∑

𝐽∈𝕁
𝐸𝑒𝑥′ = 𝐸total

𝑒𝑥′ (13)

Let 𝐷𝑒𝑑𝑔𝑒𝑖⋆
be the closest edge having sufficient 𝐷⟨𝑐,𝑚⟩

𝑒𝑑𝑔𝑒𝑖⋆
and 𝑓𝑖⋆ to 

accommodate 𝑇 ⟨𝑐,𝑚⟩′
total and 𝐸total

𝑒𝑥′ , we can dispatch 𝕁 to 𝐷𝑒𝑑𝑔𝑒𝑖⋆
:

𝕁⇒ 𝐷𝑒𝑑𝑔𝑒𝑖⋆
(14)

The estimated resource utilization of the cluster or edge for multi-job 
deployment is given by

𝜌
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

=
𝑇
⟨𝑐,𝑚⟩′
total

𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

(15)

For a member cluster 𝐷𝑒𝑑𝑔𝑒𝑖
, let the aggregate execution time of 

multi-job 𝕁 be

∑
𝐽∈𝕁

∑𝑘

𝑞=1

𝐸𝑒𝑥𝑞

𝑘
=
∑

𝐽∈𝕁
𝐸𝑒𝑥′ = 𝐸total

𝑒𝑥′ (16)

and the total resources actually assigned for multi-job 𝕁 be 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝑈

.

Proof. In IoT, edge, and cloud computing systems, timestamp10 values 
are assigned to various events or tasks based on when they occur, i.e., to 
indicate a task’s starting time (𝐸𝑠𝑡), completion time (𝐸𝑐𝑝), etc. Events 
are timestamped based on when they occurred for a range of use cases. 
For example, it is used to deduce a task’s execution time, i.e., 𝐸𝑒𝑥 of 
a task as expressed in Equation (10). Therefore, for a set of multi-job 
tasks, the aggregate execution time is expressed in Equation (16). How-

ever, the actual execution time of tasks is unknown at this stage, hence 
we replace it with the estimation values as expressed in Equation (13). 
Specifically, the estimated execution time value is essential in selecting 
a UAV or drone-based EC deployment with sufficient flight time to avoid 
job losses [6–8,42].

Under the condition that estimated total resource demand 𝑇 ⟨𝑐,𝑚⟩′
total is 

accurate, i.e., 𝑇 ⟨𝑐,𝑚⟩′
total ≈𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝑈

, then the actually total resources 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝑈

assigned for 𝕁 will not exceed 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

. Similarly, under the condition 
that estimated total execution time 𝐸total

𝑒𝑥′ is accurate, i.e., 𝐸total
𝑒𝑥′ ≈𝐸total

𝑒𝑥′ , 
drone 𝐷𝑒𝑑𝑔𝑒𝑖

will have sufficient flight time 𝑓𝑖 for multi-job execution.

Our CL-based approach has significant advantages over non-learning 
counterparts. By accurately estimating the resource requirements and 
execution time of multiple tasks/jobs, our scheme can intelligently co-

locate multi-dependent tasks in the closest edge having sufficient re-

sources, such that these dependent tasks can communicate and execute 
faster, ultimately minimizing the response time and improving resource 
utilization. The accuracy of the estimated resource requirements and ex-

9 https://stellar .tc/.
10 https://learn .microsoft .com /en -us /stream -analytics -query /timestamp -by -
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ecution time can be ensured by constructing multiple training datasets 
for different multi-task/multi-job classes from historical data to learn 
multiple models, one for a single multi-task/multi-job class. Given mul-

tiple tasks/jobs to be deployed, the model that is the most similar to 
them is employed to estimate the resource requirements and execution 
time. Since the estimated total resource demand 𝑇 ⟨𝑐,𝑚⟩′

total and execution 
time 𝐸total

𝑒𝑥′ are accurate estimates of the actual total resource to be al-

located 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝑈

and actual execution time 𝐸total
𝑒𝑥′ , it is unlikely that the 

selected drone edge 𝐷𝑒𝑑𝑔𝑒𝑖
will not have sufficient resources. In other 

words, it is very unlikely that

𝐸total
𝑒𝑥′ > 𝑓𝑖 and/or 𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝑈

> 𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

(17)

which would lead to job losses. By contrast, standard non-learning 
schemes have no means to intelligently choose appropriate edge de-

ployments for ensuring that the selected edge 𝐷𝑒𝑑𝑔𝑒𝑖
will have sufficient 

resources, and the probability of (17) occurring can be much higher than 
our EdgeColla approach. There also exist simple and effective measures 
to guard against estimation errors. It is obvious that job losses may only 
occur in underestimation scenarios. Instead of using the estimates of the 
resource demand and execution time for selecting edge deployments, we 
can add the two standard deviations of the estimation to the correspond-

ing estimates and use these ‘modified’ or ‘overly’ estimated values to 
select edge deployments. This will reduce the probability of (17) occur-

ring to almost zero. It is straightforward to provide both the estimate and 
estimation standard deviation by dividing the training data into multi-

ple subsets and running the estimation procedure multiple times. □

3.1. Problem formulation

The notations adopted are listed in Table 2. EdgeColla includes an 
intelligent multi-dependent task dispatching method, which co-locates 
tasks firmly on available nodes to avoid resource wastage in any 
member cluster∈ 𝔼𝔽 , while considering task dependencies. Our ob-

jectives are to maximize the actual cluster resource utilization and to 
minimize the overall execution time of multi-dependent tasks, subject 
to certain constraints.

3.1.1. Constraints

First, the collective resource demand estimation of 𝕁 at any given 
time 𝑡 cannot exceed the available resources of a selected member 
cluster ∈ 𝔼𝔽 . Since the actual total resources that need to be assigned 
to multi-job 𝐷⟨𝑐,𝑚⟩

𝑒𝑑𝑔𝑒𝑖𝑈
is unknown at the scheduling stage, we use the es-

timated total resource demand 𝑇 ⟨𝑐,𝑚⟩′
total to replace it:

𝑇
⟨𝑐,𝑚⟩′
total ≤ 𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

, ∀𝐷𝑒𝑑𝑔𝑒𝑖
∈ 𝔼𝔽 (18)

Second, the aggregate execution time of 𝕁 at any given time 𝑡 cannot 
exceed the flight time of any selected drone. Since the actual execution 
time 𝐸total

𝑒𝑥′ is unavailable at the scheduling stage, we replace it with 
𝐸total

𝑒𝑥′ :

𝐸total
𝑒𝑥′ ≤ 𝑓𝑖, ∀𝑓𝑖 ∈ 𝔼𝔽 (19)

Third, unused or inactive nodes 𝐼𝑖∈𝐷𝑒𝑑𝑔𝑒𝑖
in a selected cluster would 

be shut down. All the nodes can be expressed in one of these two states: 
Active and Inactive. An Active node is a node that is running and currently 
considered for allocation or has at least 1 job being started, executed or 
completed. An Inactive node is a node that is not running and currently 
considered for allocation and not having at least 1 job that is being 
started, executed or completed. These two states can be expressed as 
follows:

( ) {
1, Active if 𝐽𝑖 ∈ [𝐸𝑠,𝐸𝑐,𝐸𝑒𝑥]
∀𝑐,𝑚 𝛽 𝐼𝑖 = 0, Inactive if 𝐽𝑖 ∉ [𝐸𝑠,𝐸𝑐,𝐸𝑒𝑥]

(20)

https://stellar.tc/
https://learn.microsoft.com/en-us/stream-analytics-query/timestamp-by-azure-stream-analytics
https://learn.microsoft.com/en-us/stream-analytics-query/timestamp-by-azure-stream-analytics
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Table 2

Common notations.

Notation Description

𝔼𝔽 Integrated edge deployments

𝑇 Individual applications or tasks⟨𝑐,𝑚⟩ CPU and memory resources

ℂ A set of containerized applications

𝑇 ⟨𝑐,𝑚⟩ Task resource requirement estimation

𝑇
⟨𝑐,𝑚⟩′
total Estimated total resource requirements for jobs

𝑇
⟨𝑐,𝑚⟩′
total Actual total resources consumed for jobs

𝑇
⟨𝑐⟩′
total, 𝑇

⟨𝑚⟩′
total Actual CPU, memory resources consumed for jobs

𝐷𝑒𝑑𝑔𝑒𝑖
Individual edge deployment or member cluster

𝐷𝑒𝑑𝑔𝑒𝑖⋆
Closest edge deployment with required resources

𝐼𝑖 A node in a cluster

𝐼
⟨𝑐,𝑚⟩
𝑖

Resource capacity or availability of a node

𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

Resource capacity/availability in edge/cluster

𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝑈

Actual resources used or assigned for jobs

𝐷
⟨𝑐⟩
𝑒𝑑𝑔𝑒𝑖𝑈

,𝐷
⟨𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝑈

Actual CPU, memory assigned for jobs

𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝐴𝑅𝑈

Actual resource usage for executing jobs

𝜌
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

Estimated resource utilization of jobs

𝜌
⟨𝑐⟩
𝑒𝑑𝑔𝑒𝑖

, 𝜌
⟨𝑚⟩
𝑒𝑑𝑔𝑒𝑖

Actual cluster CPU, memory resource utilization

𝐸𝑠𝑡, 𝐸𝑐𝑝 Application or task starting time, completion time

𝐸𝑒𝑥 Application or task execution time

𝐸 total
𝑒𝑥′ Actual total execution time for jobs

𝐸𝑒𝑥 Application or task execution time estimation

𝐸 total
𝑒𝑥′ Estimated total execution time for jobs

𝑙𝑐
𝑖
, 𝑙𝑑

𝑖
Drone’s current location and destination location

𝑓𝑖 Drone’s flight time

∧↑
ℂ⇒𝐷𝑒𝑑𝑔𝑒𝑖

Upload transmission

∧↓
ℂ⇒𝐷𝑒𝑑𝑔𝑒𝑖

Download transmission

𝜔𝐽 The number of instances of a job

𝜖𝐽 The type of a job

𝛾𝐽 Dependency depth of a job

𝒇mt Set of multi-task runtime parameters

Θ Linear regression model

𝐽 , 𝕁 A Job, A set of Jobs

𝑢, 𝕌 A User, A set of Users

where 𝛽
(
𝐼𝑖

)
= 1 indicates that node 𝐼𝑖 is ready to accept new jobs 

and at least a job 𝐽𝑖 is being started, executed or completed, i.e., 
𝐽𝑖∈[𝐸𝑠, 𝐸𝑐, 𝐸𝑒𝑥] on 𝐼𝑖; otherwise, 𝛽

(
𝐼𝑖

)
=0.

3.1.2. Optimization formulation

As the actual resource utilization of a cluster/edge is unknown, we 
maximize the estimated resource utilization:

Maximize 𝜌
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

(21)

subject to 𝕁⇒ 𝐷𝑒𝑑𝑔𝑒𝑖⋆
, ∃ (22)

𝐸total
𝑒𝑥′ ≤ 𝑓𝑖, ∀𝑓𝑖 ∈ 𝔼𝔽 , ∃ (23)

𝑇
⟨𝑐,𝑚⟩′
total ≤ 𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

, ∀𝐷𝑒𝑑𝑔𝑒𝑖
∈ 𝔼𝔽 , ∃ (24)

𝛽
(
𝐼𝑖

)
∈ {0,1}, ∃ (25)

Provided that the estimated resource utilization 𝜌⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

is accurate, 
little optimality will be lost.

The constraints (22) to (24) indicate dispatching multi-job 𝕁 to the 
closest edge having sufficient resources and flight time. More specifi-

cally, (22) is 𝕁, guaranteeing that 𝕁 is dispatched to a cluster, such that 
dependent tasks within each 𝐽 ∈ 𝕁 can communicate and execute faster. 
Constraint (23) guarantees that 𝐸total

𝑒𝑥′ of 𝕁 should not exceed 𝑓𝑖 of any 
selected drone deployment and constraint (24) guarantees that 𝑇 ⟨𝑐,𝑚⟩′

total of 
𝕁 should not exceed 𝐷⟨𝑐,𝑚⟩

𝑒𝑑𝑔𝑒𝑖
of any selected member cluster∈ 𝔼𝔽 . We 

shall discuss the details of our multi-job dispatching principle in Subsec-

tion 3.2 and Algorithm 2. Condition (25) guarantees that active nodes 
(𝛽

(
𝐼𝑖

)
=1) should be used for execution, and inactive nodes (𝛽

(
𝐼𝑖

)
=0) 

should be shut down. Hence, our aim is to minimize the number of ac-
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Algorithm 1 Linear Regression Estimation.

Input: 𝕁 arrives at time 𝑡 from 𝑙𝑑
𝑖
; 𝒇mt is fed into Θ⋆

𝐺

Output: ∑𝐽∈𝕁 𝑇
⟨𝑐,𝑚⟩′
𝐽

and ∑𝐽∈𝕁 𝐸𝑒𝑥𝐽 ′

1: for 𝐽 ∈ 𝕁 do

2: Type of job 𝐽 = 𝜖𝐽

3: Number of instances of job 𝐽 = 𝜔𝐽

4: Dependency depth of job 𝐽 = 𝛾𝐽

5: for 𝑇𝑖 ∈ 𝐽 do

6:
(
𝒇mt

)
𝑇𝑖

⋅Θ⋆
𝐺
=
[
𝑇

⟨𝑐,𝑚⟩
𝑇𝑖

𝐸𝑒𝑥𝑇𝑖

]
7: end for

8: 𝑇
⟨𝑐,𝑚⟩′
𝐽

= 𝑇
⟨𝑐,𝑚⟩′
𝐽

+ 𝑇
⟨𝑐,𝑚⟩
𝑇𝑖

9: 𝐸𝑒𝑥𝐽 ′ = 𝐸𝑒𝑥𝐽 ′ +𝐸𝑒𝑥𝑇𝑖

10: end for

Algorithm 2 Multi-Job Dispatching.

Input: 𝕁 arrives at time 𝑡 within 𝑙𝑑
𝑖
; 𝐷𝑒𝑑𝑔𝑒𝑖

∈𝔼𝔽 ; ∑𝐽∈𝕁 𝑇
⟨𝑐,𝑚⟩′
𝐽

; ∑𝐽∈𝕁 𝐸𝑒𝑥𝐽 ′

Output: Dispatch 𝕁 to 𝐷𝑒𝑑𝑔𝑒𝑖⋆
with matching 𝐷⟨𝑐,𝑚⟩

𝑒𝑑𝑔𝑒𝑖
and 𝑓𝑖 for any selected 

drone, such that 𝕁 ⇒𝐷𝑒𝑑𝑔𝑒𝑖⋆

1: for 𝐷𝑒𝑑𝑔𝑒𝑖
∈ 𝔼𝔽 do

2: if
∑

𝐽∈𝕁 𝑇
⟨𝑐,𝑚⟩′
𝐽

≤𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

and ∑𝐽∈𝕁 𝐸𝑒𝑥𝐽 ′≤𝑓𝑖 then

3: if 𝐷𝑒𝑑𝑔𝑒𝑖
=arg min

𝐷𝑒𝑑𝑔𝑒𝑗
∈𝔼𝔻𝔾𝔼

(
𝑄𝕁⇒𝐷𝑒𝑑𝑔𝑒𝑗

)
then

4: 𝕁 ⇒ 𝐷𝑒𝑑𝑔𝑒𝑖
= 𝐷𝑒𝑑𝑔𝑒𝑖⋆

5: else

6: Dispatch 𝕁 to next 𝐷𝑒𝑑𝑔𝑒𝑖⋆

7: end if

8: end if

9: end for

10: if 𝕁 cannot be composed as a whole then

11: for 𝐷𝑒𝑑𝑔𝑒𝑖
∈ 𝔼𝔽 do

12: for 𝐽 ∈𝕌 do

13: if 𝑇
⟨𝑐,𝑚⟩′
𝐽

≤𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

and 𝐸𝑒𝑥𝐽 ′≤𝑓𝑖 then

14: if 𝐷𝑒𝑑𝑔𝑒𝑖
=arg min

𝐷𝑒𝑑𝑔𝑒𝑗
∈𝔼𝔽

(
𝑄𝐽⇒𝐷𝑒𝑑𝑔𝑒𝑗

)
then

15: 𝐽 ⇒ 𝐷𝑒𝑑𝑔𝑒𝑖
= 𝐷𝑒𝑑𝑔𝑒𝑖⋆

16: else

17: Dispatch 𝐽 to next 𝐷𝑒𝑑𝑔𝑒𝑖⋆

18: end if

19: end if

20: end for

21: end for

22: end if

to maximize resource utilization. We shall discuss the details of our co-

location strategy in Subsection 3.2 and Algorithm 3.

Then again, 𝐸total
𝑒𝑥′ of 𝕁 can be minimized depending on dispatching:

Minimize 𝐸total
𝑒𝑥′ (26)

subject to 𝕁⇒ 𝐷𝑒𝑑𝑔𝑒𝑖⋆
, ∃ (27)

Note that the actual overall execution time 𝐸total
𝑒𝑥′ is unknown at this 

stage and we use the estimated overall execution 𝐸total
𝑒𝑥′ to replace it in 

the optimization. Again, provided that 𝐸total
𝑒𝑥′ is accurate, little optimality 

will be lost. Constraint (27) guarantees that 𝕁 is dispatched to a cluster, 
such that dependent tasks within each 𝐽 ∈ 𝕁 can communicate and exe-

cute faster. The details of our multi-job dispatching principle are given 
in Subsection 3.2 and in Algorithm 2.

3.2. EdgeColla algorithm framework

Our EdgeColla approach consists of estimation, dispatching, and co-

location. These 3 components aim at providing optimal performance 
for multi-task execution in an integrated edge system, such that op-

timization (21) and optimization (26) are achieved. The values of 
the estimations are required by the dispatcher, as well as the update 

state of the clusters for effective multi-job dispatching to the closest 
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Algorithm 3 Multi-job Co-location.

Input: 𝕁 dispatched to closest member cluster 𝐷𝑒𝑑𝑔𝑒⋆
, ∑𝐽∈𝕁 𝑇

⟨𝑐,𝑚⟩′
𝐽

, resource 
availability 𝐼 ⟨𝑐,𝑚⟩

𝑖
of all nodes 𝐼𝑖∈𝐷𝑒𝑑𝑔𝑒⋆

Output: 𝕁 is co-located to Minimize
∑

𝐼𝑖∈𝐷𝑒𝑑𝑔𝑒⋆

𝐼𝑖

1: for 𝐼𝑖 ∈ 𝐷𝑒𝑑𝑔𝑒⋆
do

2: if 𝛽
(
𝐼𝑖

)
= 1 then

3: 𝐼
⟨𝑐,𝑚⟩
𝑖

= ⟨𝑐, 𝑚⟩, i.e., initial resource available

4: for 𝐽 ∈ 𝕁 do

5: if Γ 
[
𝐽 , 𝐼𝑖

]
=0 and 𝑇 ⟨𝑐,𝑚⟩′

𝐽
≤𝐼

⟨𝑐,𝑚⟩
𝑖

then

6: 𝐽 ⇒ 𝐼𝑖

7: Γ 
[
𝐽 , 𝐼𝑖

]
= 1

8: 𝐼
⟨𝑐,𝑚⟩
𝑖

= 𝐼
⟨𝑐,𝑚⟩
𝑖

− 𝑇
⟨𝑐,𝑚⟩′
𝐽

9: end if

10: if 𝐼
⟨𝑐,𝑚⟩
𝑖

close to zero then

11: break

12: end if

13: end for

14: end if

15: end for

member cluster 𝐷𝑒𝑑𝑔𝑒⋆
with the minimum combined upload and 

download transmission loads:

𝑄𝕁⇒𝐷𝑒𝑑𝑔𝑒𝑖
= ∧↑

𝕁⇒𝐷𝑒𝑑𝑔𝑒𝑖

+∧↓
𝕁⇒𝐷𝑒𝑑𝑔𝑒𝑖

(28)

Our co-location approach involves co-locating these tasks firmly on 
available resources. We detail the procedures of the 3 components of 
EdgeColla as follows.

3.2.1. Resource and execution time estimation

As 𝕁 arrives into the system, their collective resource requirement 
𝑇
⟨𝑐,𝑚⟩′
total and execution time 𝐸total

𝑒𝑥′ are estimated. The CL process in Equa-

tions (3) ∼ (5) generates a global model. A set of runtime parameters 
𝒇mt(𝜔, 𝜖, 𝛾), where 𝜔 is the number of instances, 𝜖 is the type of tasks, 
and 𝛾 is the dependency depth, is fed into the global model Θ⋆

𝐺
to pro-

duce estimation values. Once the estimation values are produced, they 
are used in the dispatching stage.

3.2.2. Dispatching

Our policy is to dispatch 𝕁 to the closest member cluster 𝐷𝑒𝑑𝑔𝑒𝑖⋆

with matching or sufficient resources 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖⋆

and flight time 𝑓𝑖⋆ , such 

that 𝑇 ⟨𝑐,𝑚⟩′
total ≤𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖⋆

and 𝐸total
𝑒𝑥′ ≤𝑓𝑖⋆ . The closest heuristic given in Equa-

tion (28) is to further minimize the overall response time of 𝕁. Closest

or Nearest is a popular task offloading heuristic in distributed systems, 
since IoT and other end devices often need to communicate only with 
the closest or nearest clusters and cloud servers. Existing studies, e.g., 
[6,7,18,43], adopted the closest principle as the task offloading policy. 
Holistic dispatching of 𝕁 treats each 𝐽 ∈ 𝕁 as a high-priority job. Algo-

rithm 2 describes the dispatching procedure.

With the collective estimated values of 𝕁 and all member clus-
ters ∈ 𝔼𝔽 , and available resources 𝐷⟨𝑐,𝑚⟩

𝑒𝑑𝑔𝑒𝑖
are obtained through the 

CP. The dispatcher selects the closest member cluster 𝐷𝑒𝑑𝑔𝑒𝑖⋆
hav-

ing sufficient resources (line 3). It dispatches 𝕁 to 𝐷𝑒𝑑𝑔𝑒𝑖⋆
(line 4). If 

𝕁 cannot be dispatched to 𝐷𝑒𝑑𝑔𝑒𝑖⋆
, then 𝕁 is dispatched to the next 

𝐷𝑒𝑑𝑔𝑒𝑖⋆
(line 6). If at any time 𝑡, the collective estimated values of 𝕁

are greater than any member cluster∈ 𝔼𝔽 , i.e., 
∑

𝐽∈𝕁 𝑇
⟨𝑐,𝑚⟩′
𝐽

>𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

and/or 
∑

𝐽∈𝕁 𝐸𝑒𝑥𝐽 ′>𝑓𝑖, ∀𝐷𝑒𝑑𝑔𝑒𝑖
∈𝔼𝔻𝔾𝔼, then 𝕁 cannot be composed as 

a whole. The dispatcher can allow fractionally dispatching each 𝐽 ∈ 𝕌
to the closest member cluster (line 10 ∼ 22). Note that fractionally 
dispatching each 𝐽 ∈ 𝕌 to the closest member cluster would still al-

low inter-dependent tasks within each 𝐽 ∈ 𝑢 to execute faster.

Recall that a multi-Job 𝕁 is composed of jobs from multiple users. 
The reason behind this multi-Job 𝕁 formation is that it improves the ef-
1844
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that their collective resource demand and execution time estimation 
does not exceed the resource capacity of the closest member cluster. 
Therefore, we can define the size of a multi-Job 𝕁 in terms of the total 
execution time and resource requirement estimation using constraints 
(23) and (24).

3.2.3. Co-location

At member cluster 𝐷𝑒𝑑𝑔𝑒⋆
, our co-location algorithm uses 𝐼⟨𝑐,𝑚⟩

𝑖

and 
∑

𝐽∈𝕁 𝑇 ⟨𝑐,𝑚⟩′ to provide efficient co-location, such that fewer nodes 
are used for execution in the EF system. Specifically, the gang schedul-

ing approach is adopted alongside our bin-packing optimization to co-

schedule and co-locate 𝕁 at a time. Bin-packing is one of the most popu-

lar packing problems. The goal is to minimize the number of nodes used, 
as given in optimization (29). Unlike other approaches, such as First-

Fit-Bin-Packing (FFBP) [44], it requires the next 𝐽𝑖 to be placed on an 
active node, otherwise; it is placed on a new node. Our approach scans 
all 𝐽 ∈ 𝕁 and maps 𝐽𝑖 to active nodes for full utilization. All 𝐽 ∈ 𝕁 are 
co-located firmly on active nodes, so that resource wastage is avoided 
and fewer nodes are used to execute all jobs concurrently. Hence our 
co-location strategy is to find the solution to the following problem:

Minimize
∑

𝐼𝑖∈𝐷𝑒𝑑𝑔𝑒⋆

𝐼𝑖 (29)

subject to 𝕁⇒ 𝐷𝑒𝑑𝑔𝑒⋆
, ∃ (30)∑

𝐽∈𝕁
Γ
[
𝐽, 𝐼𝑖

]
⋅ 𝑇 ⟨𝑐,𝑚⟩′

𝐽
≤ 𝐼

⟨𝑐,𝑚⟩
𝑖

, ∀𝑐,𝑚 (31)

where

Γ
[
𝐽, 𝐼𝑖

]
=
{

1, if 𝐽 ⇒ 𝐼𝑖

0, otherwise
(32)

Constraint (30) is the multi-job 𝕁 deployment constraint of guaranteeing 
that 𝕁 is dispatched to a cluster such that dependent tasks within each 
𝐽 ∈ 𝕁 can communicate and execute faster. As we have stated previously 
that 𝕁 cannot be dispatched as a whole to a cluster, the dispatcher can 
allow fractionally dispatching each 𝐽 ∈ 𝕁 to closest member cluster. 
Constraint (31) indicates that the total estimated resource requirements 
of co-located jobs 

∑𝑁
𝑖=1 𝑇𝑖

⟨𝑐,𝑚⟩′
cannot exceed 𝐼⟨𝑐,𝑚⟩

𝑖
, the node’s available 

resources. Constraint (32) means that if job 𝐽𝑖 is placed on node 𝐼𝑖, then 
Γ 
[
𝐽𝑖, 𝐼𝑖

]
= 1; otherwise, Γ 

[
𝐽𝑖, 𝐼𝑖

]
= 0. This is to guarantee that each 𝐽 ∈

𝕁 is placed in exactly one node. To solve this multi-job packing problem, 
we have adopted the Solving Constraint Integer Programs (SCIP) solver, 
which is currently one of the fastest Mathematical Programming (MP) 
solvers for this problem.

Algorithm 3 co-locates multi-dependent tasks firmly on nodes, such 
that for any given job, resource wastage is avoided and fewer nodes 
are used for execution. It takes the multi-task/job resource demand and 
nodes available resources as input, then scans all 𝐽 ∈ 𝕁 and maps them 
to active nodes for full utilization.

Note that in existing EC systems, the dispatcher and scheduler need 
to understand the characteristics of both the applications, e.g., depen-

dencies, resource requirements, and edge resources in terms of avail-

ability. Specifically, the scheduler should understand the resource re-

quirements of each sub-application, resource availability of each node, 
node availability, etc., and assumes the responsibility for executing the 
applications on the nodes so that the desired objectives are achieved. 
Therefore, we utilize an ML linear regression model to provide the es-

timated resource requirements and execution time of ready tasks, so as 
to dispatch these tasks to the closest member cluster having suffi-

cient resources and to quickly execute them. With this in mind, we aim 
to avoid the execution delays due to the insufficient resources of the 
deployed member cluster or due to tasks waiting in queues. How-

ever, if the estimation values are not accurate, and depending on the 
level of inaccuracy, the dispatcher and scheduler in Algorithms 2 and 
3, respectively, would perform poorly, i.e., the overall execution of tasks 

would be delayed due to the insufficient resources or long queues. For 
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Table 3

Integrated-edge resource capacities.

Edge Deployments Edge Devices and Total Weight for Aerial Deployments CPU Capacity (Cores) Mem Capacity Flight Time

Aerial Edge 1 Lenovo SE350 + HIVECELL + Xavier NX + Dell 3000 ≈13 kg 30 274 GiB Sufficient

Aerial Edge 2 Snowcone + Huawei AR502H + INTELLIEDGE G700(x2) ≈14 kg 22 38 GiB Sufficient

Aerial Edge 3 {Dell 3000 + Dell 5000 + aiSage + dynaEdge}(x4) ≈20 kg 48 112 GiB Sufficient

Ground Edge 1 Stack Edge + DELL EMC + Snowball + ThinkSystem 132 3536 GiB NA

Ground Edge 2 AWS Snowball (x3) + Dell EMC VxRail(x2) 256 6640 GiB NA

Ground Edge 3 {HPE Edgeline + IBM Power Systems}(x6) 288 24 TiB NA
this reason, we first investigate the accuracy of our trained linear re-

gression model for estimating the resource requirements and execution 
time of multi-dependent tasks, using the NAEE method. We will discuss 
NAEE in Section 4.3.1 and Equation (36). This serves as the estimation 
accuracy measure for the trained linear regression model.

3.2.4. Connection with optimization objectives

As stated previously, our objectives are to maximize the actual edge 
cluster resource utilization and to minimize the overall execution time 
of task-dependent jobs. Algorithms 2 and 3 together achieve these ob-

jectives. By dispatching task-dependent jobs to the closest edge having 
sufficient resources and flight time (for drones), Algorithm 2 ensures 
that the actual resources assigned to the execution of jobs 𝐷⟨𝑐,𝑚⟩

𝑒𝑑𝑔𝑒𝑖𝑈
are 

sufficient and the dependent tasks can be executed faster, ultimately 
leading to a smaller aggregate execution time 𝐸total

𝑒𝑥′ and better cluster 
resource utilization. By intelligently packing dependent tasks tightly on 
nodes, Algorithm 3 is capable of fully utilizing available resources at 
edge clusters, ultimately leading to the actual resource assigned to the 
execution of jobs 𝐷⟨𝑐,𝑚⟩

𝑒𝑑𝑔𝑒𝑖𝑈
as small as possible while guaranteeing it is 

sufficient for the multi-dependent jobs.

More specifically, the Actual Resource Usage (ARU) of the cluster for 
multi-job deployment 𝕁 is given by

𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝐴𝑅𝑈

=
𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝑈

𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

(33)

It can be seen that solving optimization (29) is directly linked to min-

imizing ARU (33). Let the actual CPU resource and the actual memory 
resource assigned for 𝕁 be 𝐷⟨𝑐⟩

𝑒𝑑𝑔𝑒𝑖𝑈
and 𝐷⟨𝑚⟩

𝑒𝑑𝑔𝑒𝑖𝑈
, respectively. Further 

denote the actual CPU consumed and the actual memory consumed in 
executing 𝕁 as 

∑
𝐽∈𝕁 𝑇 ⟨𝑐⟩′ and 

∑
𝐽∈𝕁 𝑇 ⟨𝑚⟩′, respectively. Then the ac-

tual CPU utilization 𝜌⟨𝑐⟩
𝑒𝑑𝑔𝑒𝑖

and the actual memory utilization 𝜌⟨𝑚⟩
𝑒𝑑𝑔𝑒𝑖

are 
defined respectively by

𝜌
⟨𝑐⟩
𝑒𝑑𝑔𝑒𝑖

=
∑

𝐽∈𝕁 𝑇 ⟨𝑐⟩′
𝐷

⟨𝑐⟩
𝑒𝑑𝑔𝑒𝑖𝑈

(34)

𝜌
⟨𝑚⟩
𝑒𝑑𝑔𝑒𝑖

=
∑

𝐽∈𝕁 𝑇 ⟨𝑚⟩′
𝐷

⟨𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝑈

(35)

Algorithms 2 and 3 are directly connected with minimizing 𝐸total
𝑒𝑥′ as 

well as maximizing 𝜌⟨𝑐⟩
𝑒𝑑𝑔𝑒𝑖

and 𝜌⟨𝑚⟩
𝑒𝑑𝑔𝑒𝑖

.

Proof. The proposed EdgeColla runs all tasks in containers, which helps 
to prevent lock-in situations among host and member clusters. A con-

tainer packages up all the dependencies of an application, such that 
it runs quickly and reliably from one computing environment to an-

other.11 Hence, the proposed Co-location strategy can co-locate multiple 
containers on the same node without resource contention among the 
co-located containers. In this case, each container runs within its allo-

cated resources, i.e., 𝑇 ⟨𝑐,𝑚⟩ in terms of CPU and memory resources. We 
1845

11 https://www .docker .com /resources /what -container/.
aim to minimize the ARU within each cluster as expressed in Equation 
(33) by employing our Dispatching and Co-location strategies in Algo-

rithms 2 and 3, respectively. Therefore, the actual resource utilization 
of a cluster is expressed in Equations (34) and (35) for CPU and memory, 
respectively. □

4. Performance evaluation

In this section, we describe our experimental setup including cluster 
resource configuration, the Alibaba cluster dataset, and the compari-

son baselines. We perform extensive experiments to compare EdgeColla 
against some existing schemes. We will also compare EdgeColla against 
existing individual cluster schemes. We show that EdgeColla can achieve 
the minimized actual execution time of multi-dependent tasks, high re-

source utilization, load balancing, use fewer cluster resources and avoid 
job losses in an integrated edge system.

4.1. Experimental setup

Cluster Resources: Our 𝔼𝔽 setup consists of 3 aerial or drone clus-

ters and 3 ground or on-premise clusters, as summarized in Table 3. The 
aerial clusters consist of various portable edge devices with combined 
weights of up to 20 kg. For example, autonomous drones such as the Bell 
ATP7012 have a payload capability of up to 31 kg and a flight time og 
up to 45 minutes. Therefore, we assume that the selected drones have 
sufficient flight time to execute ready multi-dependent job.

Multi-dependent Tasks: We employ the v-2018 version of the Al-

ibaba cluster dataset, which records the activities of about 4000 ma-

chines in a period of 8 days. The entire dataset contains more than 14 
million tasks with more than 12 million dependencies and more than 4 
million jobs. Among these, we have deployed 209 jobs with a total of 
931 tasks (including dependencies) for our experiments. The number of 
tasks within each job ranges from (26, 344], while the task dependency 
depth among the jobs ranges from (1, 16]. The multi-task dependencies 
in the dataset are valuable for our investigation. Researchers have thor-

oughly investigated the v-2018 version of Alibaba cluster dataset and 
used it for various task scheduling problems [45–47].

Comparison Baselines: We compare the scheduling approach of 
EdgeColla with the following 3 existing schemes and the random ap-

proach, fixing their dispatching policies to that of EdgeColla:

1. An approach that does not consider tasks’ dependencies but sched-

ules 50% of any given multi-dependent task by mainly focusing on 
task co-location. We refer to this approach as No Dependency and 
Full Packing (NDFP), which is similar to the approach in [19].

2. An approach that schedules up to 15% of any given multi-

dependent task at a time but does not consider task co-location. 
We refer to this approach as Partial Dependency and No Packing 
(PDNP), which is similar to the approach in [20].

3. An approach that schedules up to 40% of any given multi-

dependent tasks with task co-location. We consider this approach 
as a Partial Dependency and Full Packing (PDFP), which is similar 
to the approach in [21].
12 www .bellflight .com /products /bell -apt.

https://www.docker.com/resources/what-container/
http://www.bellflight.com/products/bell-apt
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Table 4

Multi-job executions in integrated edge deployments, where the actual resource consumed for multi-job execu-

tion 𝑇 ⟨𝑐,𝑚⟩′
total and actual execution time 𝐸 total

𝑒𝑥′ are taken from the original Alibaba dataset, while the estimated 
resource demand 𝑇 ⟨𝑐,𝑚⟩′

total and execution time 𝐸 total
𝑒𝑥′ are calculated by Algorithm 1.

𝐷𝑒𝑑𝑔𝑒𝑖
𝕁 ℂ 𝑇

⟨𝑐,𝑚⟩′
total 𝑇

⟨𝑐,𝑚⟩′
total NAEE 𝐸 total

𝑒𝑥′ (𝑠) 𝐸 total
𝑒𝑥′ (𝑠) NAEE

AerialEdge 1 5 35 ⟨23,10.81⟩ ⟨25.5,10.48⟩ ⟨0.10,0.03⟩ 1134.18 735 0.54
AerialEdge 2 13 26 ⟨15.1,7.48⟩ ⟨17.7,6.57⟩ ⟨0.15,0.14⟩ 158.16 957 0.83
AerialEdge 3 8 49 ⟨31.52,15.38⟩ ⟨36.5,15.5⟩ ⟨0.14,0.01⟩ 1456.1 994 0.46
GroundEdge 1 34 159 ⟨101.17,49.13⟩ ⟨116.2,48.05⟩ ⟨0.13,0.02⟩ 4204.51 3680 0.14
GroundEdge 2 68 318 ⟨202.35,98.25⟩ ⟨232.4,96.1⟩ ⟨0.13,0.02⟩ 8409.03 7360 0.14
GroundEdge 3 81 344 ⟨217.45,105.73⟩ ⟨250.1,102.67⟩ ⟨0.13,0.03⟩ 8567.2 8317 0.03
4. The Random approach schedules a single task individually and as-

sumes a node can only execute a task at a time.

4.2. Device mobility and communication

In a broader EC scenario, such as the EC-enabled Internet of Vehicles 
(IoV), edge clusters are deployed on Road Side Units (RSU) and directly 
in vehicles to facilitate faster application executions [48,49]. The RSUs 
and in-vehicle edge deployments can be added as new members to ex-

isting integrated edge systems. Therefore, vehicles without sufficient 
resources can offload their tasks to the closest RSU or other available 
edge deployments, and after the execution of 𝐽 ∈ 𝕁, the final result is 
immediately transmitted back to the vehicle. However, the fundamen-

tal challenge is how a moving vehicle, whose initial location coordinate 
are {𝑥, 𝑦}, can receive its final execution results at any current location 
{𝑥′, 𝑦′}. Moreover, given the current location of the vehicle, more than 
one routing path may exist from the RSU to the vehicle. Therefore, the 
routing path with the best transmission performance can be determined 
as the optimal one for the final result transmission. To this end, we pro-

pose an Integrated Edge-assisted Routing (IER) mechanism [48], whose 
goal is to find the fastest route to efficiently forward execution results 
to the vehicle at its current location. Specifically, our IER leverages the 
cooperation among participating EC deployments, i.e., host and mem-
bers to quickly forward the execution results to the target vehicle.

4.3. Deployment results and performance comparison

Our investigation focuses on CPU and memory usage/utilization, 
task deployment, scheduling, and execution time. The results obtained 
by EdgeColla, PDFP, NDFP, PDNP, and Random are compared.

4.3.1. Resource and execution time estimation accuracy

As detailed in the previous section, to implement the proposed CL-

based intelligent multi-task dispatching and co-location strategy, we 
train a linear regression model on a training dataset. In the real-time 
application experiments, the trained model is used to estimate the re-

source requirements and execution time (Algorithm 1). The estimated 
resource requirements and execution time13 are then employed to aid 
our intelligent dispatching and co-location strategy (Algorithms 2 and 
3). Clearly, the accuracy of Algorithm 1 impacts the achievable perfor-

mance of our EdgeColla. Therefore, we first investigate the accuracy of 
our trained linear regression model.

The multi-job execution information across federated edge deploy-

ments, obtained according to the Alibaba dataset, are listed in Table 4, 
where the estimated resource demand 𝑇 ⟨𝑐,𝑚⟩′

total and the estimated exe-

cution time 𝐸total
𝑒𝑥′ are calculated using Algorithm 1, while the actual 

resources consumed for multi-job execution 𝑇 ⟨𝑐,𝑚⟩′
total and the actual ex-

ecution time 𝐸total
𝑒𝑥′ are taken from the original data. The Normalized 

Absolute Estimate Error (NAEE) is defined as

13 As the drone edges involved have sufficient flight time, the estimated exe-
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cution time is not required in selecting drones.
NAEE =
|||estimated value − actual value

|||
actual value

(36)

NAEEs are listed in Table 4 for the resource consumed and execution 
time, and serve as the estimation accuracy measure for the trained multi-

output linear regression model. The average NAEE across 6 deployments 
is 0.13 for CPU resources, 0.04 for memory resources, and 0.36 for exe-

cution time. From Tables 3 and 4, it can be seen that 𝑇 ⟨𝑐,𝑚⟩′
total <𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

and 

𝑇
⟨𝑐,𝑚⟩′
total <𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

. In other words, each edge has sufficient resources to ex-

ecute the multi-dependent jobs deployed to it. This further indicates the 
suitability or accuracy of the trained ML model to provide the necessary 
information for our intelligent dispatching and co-location strategy.

4.3.2. Performance comparisons across integrated edge-enabled CL clusters

We applied our EdgeColla to orchestrate 209 jobs across 6 integrated 
edge clusters and compare its performance with those of the benchmark 
schemes. We first investigated multi-job 𝕁 scheduled across the 6 in-

tegrated clusters, as depicted in Fig. 5. It can be observed that both 
EdgeColla (FDFP) and NPFP are able to deploy 100% of all the jobs in 
𝕁. PDFP and PDNP are slightly inferior and could not deploy 100% of the 
jobs in 𝕁 on some clusters. Specifically, PDFP only achieves 77% of the 
multi-job deployments on AerialEdge 2, while PDNP only achieves 
83% and 77% on AerialEdge 1 and AerialEdge 2, respectively. 
The Random approach could barely schedule 50% of 𝕁 to 5 clusters and 
the percentage of its scheduled jobs is much lower compared to other 
schemes. Because it deploys a task randomly to any available node, this 
results in longer delays for dependent tasks, resource underutilization 
and inability to execute all jobs. Therefore, we only show the results 
and performance comparisons for the multi-dependent jobs/tasks that 
are deployed or scheduled successfully in the integrated edge system.

Fig. 6 compares the actual resource usage 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝐴𝑅𝑈

of EdgeColla 
with those of the 3 baseline schemes and the Random approach. It can be 
seen that EdgeColla consumes the fewest resources across the integrated 
clusters with NPFP as the very close second best, while Random is the 
worst and PDNP as the second worst. PDFP ranks in the middle, in terms 
of resource usage across the integrated clusters. The actual resource uti-

lization (CPU resource utilization 𝜌⟨𝑐⟩
𝑒𝑑𝑔𝑒𝑖

and memory resource utilization 

𝜌
⟨𝑚⟩
𝑒𝑑𝑔𝑒𝑖

) comparisons are shown in Figs. 7 and 8, respectively. Again, 
EdgeColla and NDFP are superior to PDFP, PDNP, and Random, and 
they achieve the highest and close second highest resource utilization 
across the integrated clusters, respectively, while PDNP and Random 
achieve the second lowest and lowest resource utilization across the in-

tegrated clusters, respectively.

Two other key metrics are the actual task/job scheduling time ∑
𝐽∈𝕁

∑𝑚
𝑧=1

∑𝑘𝑧

𝑖=1𝑆𝑐ℎ𝑧𝑖
∕𝑘𝑧, where 𝑚 is the number of scheduling units, 

𝑘𝑧 is the number of tasks within the 𝑧-th scheduling unit, and more 
importantly, the actual execution time of multi-dependent jobs/tasks 
𝐸total

𝑒𝑥′ . Figs. 9 and 10 compare the actual task/job scheduling time and 
task/job execution time of EdgeColla with those of the 4 benchmarks, 
respectively. The results show that EdgeColla is the best, NDFP is the 
second best, and PDFP is the third best, while Random is the worst 

and PDNP is the second worst, in terms of both scheduling time and 
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Fig. 5. Multi-job dispatching and co-location across integrated edge-enabled CL clusters.

Fig. 6. Actual resource usage across integrated edge-enabled CL clusters.
execution time. The superior performance of EdgeColla over the other 
benchmarks is overwhelmingly clear.

4.3.3. Performance comparisons in individual clusters

Figs. 6–10 show the performance of the schemes in terms of the 
multi-job deployment, actual resource usage, and resource utilization, 
task scheduling and execution time across the integrated clusters. We 
now delve into the individual clusters to examine the performance of 
all the schemes.

AerialEdge-1 is a drone attached with edge devices Lenovo 
SE350, HIVECELL, Xavier NX, and Dell 3000, with a total resource 
capacity of 30 Cores and 274 GiB memory, respectively. The entire 
weight of the devices is ≈13 kg. We deploy 5 jobs with a total of 35 
tasks, where the job has a task dependency depth 𝛾 (2, 16]. Utilizing 
the gang scheduling strategy, EdgeColla co-shedules and co-locates all 
the 5 jobs at a time in nodes to minimize the overall used nodes. These 
jobs are tightly co-located, which enables dependent tasks to commu-

nicate and share data effectively. As a result, EdgeColla achieves the 
fastest scheduling time and execution time compared to NDFP, PDFP, 
PDNF, and the Random approach. In addition, EdgeColla only uses 87% 
of cluster resources to execute the jobs. In the same cluster, NPFP, PDFP, 
and PDNP utilize 93%, 93%, and 100% of the cluster resources, respec-

tively. The Random approach uses all the cluster resources as well. It is 
observed that EdgeColla is 5 times and 3 times faster than the second-

best NPFP in both the scheduling time and execution time, respectively. 
EdgeColla is more than 13 times and 5 times faster than PDFP as well 
as more than 18 times and 6 times faster than PDNP in the schedul-

ing time and execution time, respectively. EdgeColla is 50 times and 
21 times faster than the Random approach in the scheduling time and 
execution time, respectively.

Like AerialEdge-1, AerialEdge-2 is also a drone and a small-

capacity cluster. It is made up of AWS Snowcone, Huawei AR502H, 
and Intelliedge G700(x2) portable edge devices with a total 
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weight of ≈14 kg, and total resource capacity of 22 Cores and 38 GiB 
memory, respectively. Here, we deployed 𝕁 = 13, where each 𝐽 ∈ 𝕁 has 
a task dependency in the range of (1, 7]. The total number of tasks in 𝕁
is 26. We ensure that the attached edge resources are fully utilized by 
co-locating the jobs tightly on them. As discussed earlier, the applica-

tion containers provide isolation to co-located tasks, thereby eliminating 
interference and resource contentions in the cluster. A single node is 
capable of running several containerized tasks, given that available re-

sources are sufficient. In this cluster, EdgeColla consumes 9% fewer 
resources than NDFP, and 18% fewer resources than PDFP, PDNP, and 
Random. EdgeColla also gains 10% higher CPU utilization over NDFP, 
and 18% higher CPU utilization over PDFP, PDNP, and Random, as well 
as 2% higher memory utilization than NDFP, and 4% higher memory uti-

lization than PDFP, PDNP and Random. More significantly, EdgeColla is 
2.4, 11 and 26 times faster in the scheduling time than NDFP, PDFP, and 
PDNP, respectively, while it is 3, 5, and 8 times faster in the execution 
time than NDFP, PDFP, and PDNP, respectively. Note that for Random, 
PDFP, and PDNP, the results of the actual resource usage, resource uti-

lization, scheduling and execution time are 54%, 77% and 77% of the 
multi-dependent jobs that can be scheduled on AerialEdge-2, respec-

tively.

AerialEdge-3 is the last of the drone clusters. It is attached 
with Dell 3000, Dell 5000, aiSage, and dynaEdge(x4) portable 
edge devices. It has a high load capacity of ≈20 kg compared to

AerialEdge-1 and AerialEdge-2. It also has a higher resource ca-

pacity of 48 Cores and 112 GiB memory, respectively compared to the 
previous drone clusters. In this cluster, we deploy 𝕁 = 8 and a total of 
49 tasks, where each 𝐽 ∈ 𝕁 has a task dependency depth 𝛾 ranging from 
(2, 16]. In this cluster, EdgeColla, NDFP, and PDFP achieve reduced 
𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝐴𝑅𝑈

by 11% and 21% compared with PDNP and Random, respec-

tively. EdgeColla, NDFP, and PDFP achieve 9% and 20% higher CPU 
utilization as well as 2% and 4% higher memory utilization compared 
to PDNP and Random, respectively. In terms of scheduling, EdgeColla 

is about 4, 14, 45, and 96 times faster than NDFP, PDFP, PDNP, and 
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Fig. 7. CPU utilization across integrated edge-enabled CL clusters.

Fig. 8. Memory utilization across integrated edge-enabled CL clusters.

Fig. 9. Actual multi-job scheduling time across integrated edge-enabled CL clusters.
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Fig. 10. Actual multi-job execution time across integrated edge-enabled CL clusters.
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Random, respectively. It achieves 2, 4, 8, and 20.7 times faster exe-

cution time than NDFP, PDFP, PDNP, and Random, respectively. Not 
surprisingly, Random has the worst scheduling time and execution time 
performance.

GroundEdge-1 is an on-premise cluster. Generally, on-premise clus-

ters are higher than drone clusters in terms of resource capacities. This 
cluster particularly is a memory-intensive cluster. It is made of Stack 
Edge, DELL EMC, AWS Snowball, and Lenovo ThinkSystem on-

premise edge devices, with a resource capacity of 132 Cores and a 
memory capacity of 3536 GiB, respectively. Here, we deploy 𝕁 = 34 with 
a total of 159 tasks. Each 𝐽 ∈ 𝕁 has a dependency depth 𝛾 ranging from 
(2, 16]. It is observed that EdgeColla consumes the fewest resources at 
89%, followed by NDFP and PDFP at 91% each. PDNP consumes 96% 
of the resources, while the Random approach uses all the available re-

sources. EdgeColla also achieves 2%, 2%, 7%, and 11% higher CPU 
utilization over NDFP, PDFP, PDNP, and Random, respectively. Note 
that the clusters GroundEdge 1, GroundEdge 2, and GroundEdge 3
are memory-intensive clusters, i.e., they have huge memory capacities. 
Therefore, the jobs can only consume a few such capacities, as shown 
in Fig. 8. It is worth noting that Random can only schedule 49% of the 
tasks. By contrast, EdgeColla, NDFP, PDFP, and PDNP all schedule 100% 
of the jobs. In terms of scheduling time, EdgeColla is approximately 114, 
180, and 406 times faster than NDFP, PDFP, and PDNP, respectively. In 
terms of execution time, EdgeColla is about 3, 6, and 12 times faster 
than NDFP, PDFP, and PDNP, respectively. In this cluster, Random can 
only schedule 49% of all the tasks within the jobs and it has the worst 
performance for scheduling time and execution time.

GroundEdge-2 and GroundEdge-3 are the largest on-premise 
clusters in terms of resource capacities. We deploy a combined 𝕁 =
149 in these 2 clusters. The combined number of tasks deployed in 
both clusters is 662. The task dependency depth 𝛾 of each 𝐽 ∈ 𝕁 is 
in the range of (2, 16]. Random can only deploy 41% and 51% of 
the tasks in these high-capacity on-premise clusters, respectively. In

GroundEdge-2, EdgeColla uses 1%, 3%, and 4% fewer resources, com-

pared with NDFP, PDFP, and PDNP, respectively. EdgeColla and NDFP 
also achieve 2% and 4% higher CPU utilization over PDFP and PDNP, 
respectively. All the schemes, except Random, achieve the same mem-

ory utilization. In terms of scheduling time, EdgeColla is approximately 
58, 18, 34, and 95 times faster than NDFP, PDFP, PDNP, and Random, 
respectively. In terms of execution time, EdgeColla is about 4, 7, 12, and 
23 times faster than NDFP, PDFP, PDNP, and Random, respectively. In
GroundEdge-3, EdgeColla and NDFP use 2% and 3% fewer resources 
than PDFP and PDNP, respectively. EdgeColla and NDFP also achieve 
2% and 3% higher CPU utilization than PDFP and PDNP, respectively. 
In terms of memory utilization, all the 5 schemes achieve the same uti-

lization. In terms of scheduling time, EdgeColla is 6.6 times faster than 
NDFP as well as 9.3 and 12 times faster than PDFP and PDNP, respec-

tively. In terms of execution time, EdgeColla is 3, 6, and 12 times faster 
than NDFP, PDFP, and PDNP, respectively. EdgeColla is 38.7 times faster 
and 24 times faster than Random in the scheduling time and execution 
time, respectively.

4.4. Discussions

Overall, EdgeColla has demonstrated better performance in an in-

tegrated EC system. It has consistently outperformed baseline schemes 
(NDFP, PDFP, PDNP and Random) by achieving faster scheduling time 
and excution time, and using fewer resources. Utilizing fewer resources 
can allow for more tasks to be executed, thereby improving the overall 
throughput of EC systems. Effective multi-task dispatching of EdgeColla 
across the integrated clusters provides overall system load balancing, 
thereby eliminating any resource overload problem. The performance 
of EdgeColla can be attributed to its effective dispatching policy, gang-

deployment and co-location of multi-dependent jobs, which allows 
inter-dependent tasks within each job to communicate and share data 
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faster. Such fast execution is crucial for EC applications to perform bet-
Digital Communications and Networks 10 (2024) 1837–1850

ter. The existing schemes do not consider task’s dependencies or multi-

task co-location, leading to edge resource wastage and underutilization, 
as well as causing execution delay.

5. Conclusions

This paper has presented an intelligent multi-dependent task dis-

patching and co-location scheme called EdgeColla. Specifically, we de-

rived a CL-based multi-dependent task resource requirements and exe-

cution time estimation method for an integrated edge system through 
the control panel, such that multi-dependent tasks are intelligently 
dispatched to the closest edge cluster having sufficient resources. To 
guarantee the optimal usage of cluster resources, we further utilize 
a variant bin-packing optimization approach through gang-scheduling 
multi-dependent tasks to co-schedule and co-locate tasks firmly on avail-

able nodes, so as to avoid resource wastage. Our experimental results 
demonstrated that EdgeColla is capable of minimizing the actual com-

pletion time of multi-dependent tasks using minimum resources, and 
we conducted extensive experiments to compare the performance of our 
EdgeColla with several existing approaches using the real-world Alibaba 
cluster dataset, which provides information on task dependencies in an 
integrated edge system.
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