
Digital Communications and Networks 10 (2024) 1837–1850

Contents lists available at ScienceDirect

Digital Communications and Networks

journal homepage: www.keaipublishing.com/dcan

Collaborative learning-based inter-dependent task dispatching and

co-location in an integrated edge computing system ✩

Uchechukwu Awada a,b, Jiankang Zhang c,∗, Sheng Chen d,e, Shuangzhi Li b,∗, Shouyi Yang b

a School of Software, Henan Institute of Science and Technology, Xinxiang 453003, China
b School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China
c Department of Computing and Informatics, Bournemouth University, Poole BH12 5BB, UK
d School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK
e Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, China

A R T I C L E I N F O A B S T R A C T

Keywords:

Edge computing

Collaborative learning

Resource utilization

Execution time

Edge federation

Gang scheduling

Recently, several edge deployment types, such as on-premise edge clusters, Unmanned Aerial Vehicles (UAV)-

attached edge devices, telecommunication base stations installed with edge clusters, etc., are being deployed to
enable faster response time for latency-sensitive tasks. One fundamental problem is where and how to offload and
schedule multi-dependent tasks so as to minimize their collective execution time and to achieve high resource
utilization. Existing approaches randomly dispatch tasks naively to available edge nodes without considering
the resource demands of tasks, inter-dependencies of tasks and edge resource availability. These approaches can
result in the longer waiting time for tasks due to insufficient resource availability or dependency support, as
well as provider lock-in. Therefore, we present EdgeColla, which is based on the integration of edge resources
running across multi-edge deployments. EdgeColla leverages learning techniques to intelligently dispatch multi-

dependent tasks, and a variant bin-packing optimization method to co-locate these tasks firmly on available nodes
to optimally utilize them. Extensive experiments on real-world datasets from Alibaba on task dependencies show
that our approach can achieve optimal performance than the baseline schemes.
1. Introduction

Edge Computing (EC) is a distributed computing model which places
cloud computing [1] services closer to data sources to achieve faster
response time and real-time insights. Devices can offload their compu-

tational intensive tasks and latency-sensitive tasks to the edge and after
executions, the results are sent back to the devices. To this end, sev-

eral independent edge deployment types, such as on-premise edge clus-

ters [2], Unmanned Aerial Vehicles (UAV)-enabled EC [3,4], telecom-

munication base stations endowed with edge clusters,1 edge nodes
[2], etc., have been proposed. However, one fundamental problem is
where and how to offload and schedule multi-dependent tasks in such
diverse deployments so that their collective execution time is mini-

mized and high resource utilization is achieved. A common practice is

✩ Peer review under the responsibility of the Chongqing University of Posts and Telecommunications.

* Corresponding authors.

E-mail addresses: awada@hist.edu.cn (U. Awada), jzhang3@bournemouth.ac.uk (J. Zhang), sqc@ecs.soton.ac.uk (S. Chen), ielsz@zzu.edu.cn (S. Li),
iesyyang@zzu.edu.cn (S. Yang).

to randomly offload tasks individually to available edge nodes with-

out considering the resource demands of tasks, inter-dependencies of
tasks and edge resource availability, as shown in Fig. 1 (a). Such a
disjointed approach would result in the longer waiting time for tasks
due to insufficient resource availability, dependency support, and ven-

dor lock-in situations. Hence it is not appropriate for latency-sensitive
tasks.

For this reason, we wish to consider an approach that can seam-

lessly integrate all edge resources running across 𝑁 deployments (i.e.,
on-premise edge clusters, edge nodes, telecommunication base stations
equipped with edge clusters, and UAVs attached with edge devices) in
a single pool as shown in Fig. 1 (b), such that these resources can be
holistically monitored from a Control Plane (CP), and multiple tasks can
be dispatched dynamically across these edge resources. This approach
Available online 13 August 2024
2352-8648/© 2024 Published by Chongqing University of Posts and Telecomm
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1 https://aws .amazon .com /wavelength/.

https://doi.org/10.1016/j.dcan.2024.08.002

Received 9 January 2022; Received in revised form 31 July 2024; Accepted 2 Augu
unications. This is an open access article under the CC BY-NC-ND license

st 2024

http://www.ScienceDirect.com/
http://www.keaipublishing.com/dcan
mailto:awada@hist.edu.cn
mailto:jzhang3@bournemouth.ac.uk
mailto:sqc@ecs.soton.ac.uk
mailto:ielsz@zzu.edu.cn
mailto:iesyyang@zzu.edu.cn
https://aws.amazon.com/wavelength/
https://doi.org/10.1016/j.dcan.2024.08.002
https://doi.org/10.1016/j.dcan.2024.08.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dcan.2024.08.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

U. Awada, J. Zhang, S. Chen et al.

Fig. 1. (a) An example of random multi-tasks dispatching without considering
their dependencies and cluster resource status, and (b) An example of intelligent
multi-tasks dispatching, where both tasks dependencies and cluster resource sta-

tus are considered.

is called Edge Federation (EF) [2,5]. For example, recently introduced
EC frameworks, i.e., KubeEdge,2 MicroK8s,3 etc., have the capabilities
of integrating edge resources running across multiple deployments for
containerized tasks to eliminate provider lock-in situations. One of the
benefits that EF brings is minimized latency by serving devices from
the cluster closest to them [2,5–7]. The EF setup consists of a host
cluster and member cluster(s). Given 𝑁 independent edge de-

ployments, the CP is deployed in one of the deployments as the host
cluster, while the remaining 𝑁 − 1 deployments are regarded mem-

ber cluster(s), which can be added or removed from the CP. The
EF system is given as

𝔼𝔽 =
⋃𝑁

𝑖=1
Edge𝑖 (1)

Through the CP, resource availability status, as well as running task
status can be obtained from all the deployments (host cluster and

member cluster(s)), thus enabling informed decisions on optimal
multi-task dispatching. The work presented in this paper differs consid-

erably from prior works [6,7], which addressed the problem of multi-

dependent task orchestration in a federated autonomous drone-enabled
EC system, while considering the drones’ flight time to avoid the loss of
jobs [8].

In this paper, we present EdgeColla, which leverages the Collabo-

rative Learning (CL) technique [9–11] to estimate multi-task resource
requirements and execution time, and to dispatch these tasks to the
closest member cluster having matching available resources, while
considering their dependencies. The effectiveness of such a CL-based
multi-task dispatching method in 𝑁 edge deployments is critically de-

pendent on the state information update process, in terms of the resource
availability of all the clusters. One drawback of this concept is that
the inaccurate estimation of the multi-task resource requirements and
execution time would cause EF to perform poorly. Similarly, if multi-

dependent tasks are randomly dispatched, e.g., in an offloading strategy
that dispatches tasks individually without considering their dependen-

cies and cluster resource status [12,13], EF might not yield optimal
performance. Therefore, we first investigate the accuracy of our trained
linear regression model by estimating the resource requirements and ex-

ecution time of multi-dependent tasks, using the Normalized Absolute
Estimate Error (NAEE) method. This serves as the estimation accuracy
measure for the trained linear regression model. Then we adopt the
gang-scheduling [14] strategy and a variant bin-packing optimization
method to efficiently co-schedule and co-locate all the tasks, where both
their dependencies and cluster resource status are considered, such that
their actual completion time is minimized, as well as the optimal re-

source usage is achieved. To avoid interference and resource contention

2 https://kubeedge .io /en/.
1838

3 https://microk8s .io/.
Digital Communications and Networks 10 (2024) 1837–1850

among co-located tasks, we provide isolation to co-located tasks through
containerization [15]. Containerization provides isolation to running
tasks and enables tasks to be executed in any edge deployment regard-

less of the architecture or provider.

We summarize the main contributions of our EdgeColla implemen-

tation as follows:

• An intelligent multi-dependent task dispatching method through
the joint optimization of their resource requirements and cluster
resource status is proposed.

• Specifically, we derive a CL-based multi-dependent task resource
requirement, and execution time, and cluster resource status esti-

mation approach for an integrated edge system through the CP,
such that multi-dependent tasks are intelligently dispatched to the
closest edge cluster having sufficient available resources.

• To guarantee the optimal usage of cluster resources, we further
propose a variant bin-packing optimization approach through gang-

scheduling of multi-dependent tasks, which co-schedules and co-

locate tasks firmly on available nodes to avoid resource wastage.

• We show that EdgeColla is capable of minimizing the actual com-

pletion time of multi-dependent tasks using minimum resources and
we conduct extensive experiments to compare the performance of
EdgeColla with several existing approaches on real-world datasets
from Alibaba,4 which provides information on task dependencies.

1.1. Motivating examples

Dependency-awareness is critical for achieving optimal performance
in task dispatching and scheduling problems. In Fig. 2, we show an ex-

ample of multi-dependent tasks, where some of the tasks require the
output of another task(s), as well as other resources,5 i.e., CPU ⟨𝑐⟩ and
memory ⟨𝑚⟩, for its execution. For example, 𝑇1, 𝑇2, and 𝑇3 are inde-

pendent tasks, i.e., they do not have dependencies and they can start
executing without requiring input from other tasks. Tasks 𝑇4 and 𝑇5
require input from 𝑇1 to be able to complete their executions. Simi-

larly, tasks 𝑇6, 𝑇7, and 𝑇8 depend on the completion of tasks 𝑇4, 𝑇5,
and 𝑇2, respectively. Deploying these tasks on the same cluster would
enable dependent tasks to communicate and share data faster, com-

pared to individual tasks execution across different clusters [16]. The
complex inter-task dependency with heterogeneous resource demands
and diverse edge deployments with heterogeneous resource capacities
make resource management in EC a non-trivial task. Considering such
demands and resource capacities is necessary to achieve effective dis-

patching and scheduling, ultimately to achieve optimal performance
[17,18]. Hence a key objective of our EdgeColla is to reduce the collec-

tive execution time of such tasks and to improve cluster resource usage
by considering inter-task dependencies.

Given 𝑛 multi-dependent tasks 𝑇1, 𝑇2, ⋯ , 𝑇𝑛 as shown in Fig. 2,
EdgeColla adopts the gang-scheduling [14] strategy and a variant bin-

packing optimization method to efficiently co-schedule and co-locate
them in a cluster. We consider EdgeColla as a Full Dependency and Full
Packing (FDFP) approach. Therefore, the scheduling time can be ex-

pressed as

𝑚∑
𝑧=1

𝑘𝑧∑
𝑖=1

𝑆𝑐ℎ𝑧𝑖
∕𝑘𝑧 (2)

where 𝑚 is the number of scheduling units and 𝑘𝑧 is the number of tasks
within the 𝑧-th scheduling unit having tasks

{
𝑇𝑧1

, 𝑇𝑧2
, ⋯ , 𝑇𝑧𝑘𝑧

}
.

We illustrate the advantage of the scheduling approach in EdgeColla
over 3 other existing schemes as follows. (i) An approach that does

4 https://github .com /alibaba /clusterdata /blob /master /cluster -trace -v2018 /
trace -2018 .md.

5 Here we focus on CPU and memory resources, since these resources are lim-
ited in edge systems.

https://kubeedge.io/en/
https://microk8s.io/
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace-2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace-2018.md

Digital Communications and Networks 10 (2024) 1837–1850U. Awada, J. Zhang, S. Chen et al.

Fig. 2. An example of multi-dependent tasks, with each task’s CPU and memory resource requirements denoted as ⟨𝑐,𝑚⟩, and execution time denoted as 𝐸𝑒𝑥.

Table 1

Scheduling orders and units of various schemes.

Scheme Scheduling Order Scheduling Units

EdgeColla {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6, 𝑇7, 𝑇8, 𝑇9, 𝑇10, 𝑇11, 𝑇12} 1
PDNP 𝑇3 → 𝑇2 → {𝑇1, 𝑇4}→ {𝑇6, 𝑇8}→ {𝑇5, 𝑇7}→ {𝑇10, 𝑇11}→ {𝑇12, 𝑇9} 7
PDFP 𝑇1 → 𝑇2 → 𝑇3 → {𝑇4, 𝑇5}→ {𝑇6, 𝑇7, 𝑇8, 𝑇9}→ {𝑇10, 𝑇11, 𝑇12} 6
NDFP {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6}→ {𝑇7, 𝑇8, 𝑇9, 𝑇10, 𝑇11, 𝑇12} 2
Random 𝑇1 → 𝑇2 → 𝑇3 → 𝑇4 → 𝑇5 → 𝑇6 → 𝑇7 → 𝑇8 → 𝑇9 → 𝑇10 → 𝑇11 → 𝑇12 12
not consider task dependency but schedules 50% of any given multi-

dependent task by mainly focusing on task co-location. We refer to this
approach as No Dependency and Full Packing (NDFP), and it is similar
to the approach in [19]. (ii) An approach that schedules up to 15% of
any given multi-dependent tasks at a time, but does not consider task
co-location. We refer to this approach as Partial Dependency and No
Packing (PDNP), which is similar to the approach in [20]. (iii) An ap-

proach that schedules up to 40% of any given multi-dependent task with
task co-location. We consider this approach as Partial Dependency and
Full Packing (PDFP), which is similar to the approach in [21]. (iv) Fi-

nally the Random approach does not consider both task dependencies
and task co-location. We refer to this approach as No Dependency and
No Packing (NDNP). It is important to note that delays in scheduling
inter-dependent tasks directly impact their collective execution time.
For the multi-dependent tasks in Fig. 2 with 𝑛 = 12 tasks, Table 1 lists
the scheduling orders and scheduling units for the schemes compared.
EdgeColla only needs one scheduling unit (𝑚 =1) that has 𝑘1=12 tasks
and it also achieves the lowest execution time of 1

12
∑12

𝑖=1𝐸𝑒𝑥𝑖
. By con-

trast, Random has 𝑚 =12 scheduling units, each having a single task.
Hence it has the highest execution time of

∑12
𝑖=1𝐸𝑒𝑥𝑖

. Thus, EdgeColla
achieves the lowest scheduling and execution time. PDNP, PDFP, and
NDFP deploy individual or subsets of tasks at a time.

The remaining parts of this paper are structured as follows. Section 2

presents related work on learning-based resource allocation schemes
used in cloud and edge computing. In Section 3, we detail our proposed
EdgeColla for achieving high resource utilization and minimizing the
execution time of applications deployed on EF resources. In Section 4,
we compare the performance of our proposed EdgeColla against several
existing schemes through extensive experiments. Finally, we conclude
the paper in Section 5.

2. Related work

Effective multi-task dispatching techniques in edge systems can ben-

efit from resource availability status, multi-task resource requirements
and execution time, such that these tasks can be offloaded to the closest
edge cluster with sufficient resources. Information about task execution
time is most important for drone-based edge deployments [6,7]. This
is because a typical drone has limited flight time, which could possibly
lead to a delayed task execution if it is not taken into consideration [8].
Hence, the effective and accurate execution time estimation of multiple
1839

task is needed to select a drone with corresponding flight time and re-
sources to execute tasks. Consequently, existing studies have presented
a huge number of learning methods to estimate tasks’ resource require-

ments and execution time, CL [6,9], Machine Learning (ML) [7,22,23],
Incremental Learning (IL) [24], scheduling [14,25–27] and statistical
models [28]. Previous works [6,7] focused on multi-dependent task or-

chestration in autonomous drone-enabled EC systems, while considering
the drones’ flight time, to avoid the loss of jobs [8]. Specifically, the au-

thors in [6] proposed a multi-output linear regression model based on
CL to estimate multi-dependent tasks’ resource requirements and execu-

tion time, to select the closest drone deployment with matching resource
availability and flight time to execute ready tasks at a given time. In [7],
the authors proposed an ML-based multi-dependent task dispatching
method over a federated autonomous drone-enabled EC platform, using
the total estimated value of the multi-dependent tasks’ execution time to
select a suitable drone. The authors of [9] proposed a distributed train-

ing scheme based on CL, where multiple Deep Reinforcement Learning
(DRL) agents are deployed on IoT devices to enable joint resource al-

location. The work in [22] proposed a method to predict the execution
time of a task, by first predicting its run-time parameters, then it uses
these run-time parameters to finally predict the execution time of the
task. In [23], two novel multi-model ML ensemble systems with the
mixture of experts and dynamic selection of experts were presented to
predict the execution time of workflows in distributed environments.
The work in [24] presented an online incremental approach for the
run-time prediction of scientific workflows in cloud computing environ-

ments using time-series monitoring data. In [25], the authors proposed
a cluster scheduling framework called Gandiva, which exploits intra-job
predictability to share GPUs efficiently across multiple jobs, to achieve
low latency. The authors of [26] proposed an approach that can accu-

rately predict the performance of a given job. Their main idea is to run
a set of instances of the entire job on the samples of the input, and use
the data from these training runs to create a performance model. The
work in [27] proposed a Deep Learning (DL) job scheduler, which aims
to minimize the training time for jobs. This scheduler is based on an on-

line prediction model used to accurately estimate the training speed, as a
function of the allocated resources in each job. In [14], the authors pro-

posed a scheduling algorithm for Bulk Synchronous Parallel (BSP) jobs.
They showed that their solution is robust against inaccurate estimations.
The work in [28] presented a cluster management system called Quasar,
using classification techniques to quickly and accurately determine the
impact of the scales of resources, types of resources, and interference

on performance for each workload and dataset. Then, it uses the clas-

Digital Communications and Networks 10 (2024) 1837–1850U. Awada, J. Zhang, S. Chen et al.

Fig. 3. CL model training and aggregation.
sification results to jointly perform resource allocation and assignment.
The authors of [29] proposed a deep DL-based Point of Interest Recom-

mendation (Deep-PR) method for mobile edge networks, where hidden
feature components from both local and global sub-spaces are deeply
abstracted via representative learning schemes, so that recommenda-

tion accuracy can be ensured.

With limited edge resources, it is extremely important to avoid any
form of resource wastage, i.e., resource underutilization. Efficiently
managing edge resources directly dictates service quality and perfor-

mance [30]. As a result, task co-location has gained attention both in
academia and industry as an optimal solution for improving resource
utilization and system throughput in distributed systems. However, ef-

fective task co-location is a non-trivial task, as it requires an under-

standing of the computing resource requirements of co-running tasks
to determine how many of them can be co-located. To this end, task
co-location mechanism was proposed in [31], by accurately estimating
the resource level needed, to effectively determine how many tasks can
be co-located on the same host to improve the system throughput, tak-

ing into consideration the memory and CPU requirements of co-running
tasks. With the aim to maximize resource utilization, the authors of [32]

utilized Reinforcement Learning (RL) approach to co-locate interactive
services with batched ML workloads. Previous works [17,18] focused on
workload co-location in cloud environments rather than edge systems.
To further improve edge resource management, a resource management
scheme was proposed in [2,5] which unifies distributed edge resources,
such that they are holistically managed. Previous work in [2] proposed a
dependency-aware task scheduling scheme in such a unified system. Ex-

isting EC applications are usually structured with inter-task dependen-

cies, where a task depends on input from other task(s). A huge number
of existing studies, i.e., [33–36] have tackled the problem of scheduling
such inter-dependent tasks or multi-dependent tasks, and their common
goal is to formulate a scheduling decision that minimizes the average
completion time of such tasks.

Existing works on CL-based approaches for task offloading and ex-

ecution in multi-edge deployments do not consider task dependencies
and do not unify distributed edge resources, such that they are holisti-

cally managed and monitored from a single CP, where multi-tasks can
be timely dispatched and co-located without interference or resource
contentions. This motivates our research to extend existing schemes by
proposing EdgeColla to address these problems. Specifically, we propose
a CL-based multi-dependent task resource requirement and execution
time estimation method through a linear regression model, and clus-

ter resource status for an integrated edge system through the Control
Panel (CP), such that multi-dependent tasks are intelligently dispatched
to the closest edge cluster having sufficient available resources. We
further propose a variant bin-packing optimization approach through
1840

gang-scheduling of multi-dependent tasks, which co-schedules and co-
locates tasks firmly on available nodes to avoid resource wastage. We
finally show that EdgeColla is capable of minimizing the actual comple-

tion time of multi-dependent tasks using minimum resources through
extensive experiments and comparisons.

3. System model, problem formulation and algorithm framework

The goal of edge CL is to collaboratively learn a model from data
1, ⋯ , 𝑁 , stored across 𝑁 distributed clusters, where each dataset
𝑖 = {(𝒙𝑖,𝑗 , 𝒚𝑖,𝑗)}

𝑛𝑖

𝑗=1 contains 𝑑-dimensional tensors of data features
𝒙𝑖,𝑗 ∈ℝ1×𝑑 and 𝑐-dimensional tensor data labels 𝒚𝑖,𝑗 ∈ℝ1×𝑐 . The selec-

tion of training data is an important topic in any learning problem. Given
the multiple tasks to be deployed, we should select the training data
from the historical data that have characteristics as close as possible to
those of the current multiple tasks to be deployed. This is critical to en-

sure the accuracy of the model learned. For example, if the multiple
tasks to be deployed are Video Processing (VP) jobs, it is desired to se-

lect the training data that include historical VP data if possible to build
the model.

Before now, a prevalent method is to integrate datasets in one cluster,
i.e., 𝔻 =

⋃𝑁
𝑖=1𝑖, and use this integrated data 𝔻 to train a model ΘS.

Recent CL approaches train models over distributed datasets without
the need for datasets aggregation, as shown in Fig. 3. The following
steps narrate the process of CL model training and aggregation in EF
systems:

1. The member cluster(s) 𝐷𝑒𝑑𝑔𝑒𝑖
separately train their models

Θ𝐷𝑒𝑑𝑔𝑒𝑖
based on their local datasets 𝑖.

2. Then at time 𝑡 > 0, the member cluster(s) send their models,
denoted as Θ(𝑡−1)

𝐷𝑒𝑑𝑔𝑒𝑖

, 1 ≤𝑖 ≤𝑁 , to the host cluster, where global

update Θ(𝑡)
𝐺

is computed by aggregating all the member cluster

models [37–40]:

Θ(𝑡)
𝐺

=
𝑁∑
𝑖=1

Θ(𝑡−1)
𝐷𝑒𝑑𝑔𝑒𝑖

(3)

3. In response, Θ(𝑡)
𝐺

is distributed to the member cluster(s), where
it is used to update Θ(𝑡−1)

𝐷𝑒𝑑𝑔𝑒𝑖

according to [38]

Θ(𝑡)
𝐷𝑒𝑑𝑔𝑒𝑖

=Θ(𝑡)
𝐺
−Θ(𝑡−1)

𝐷𝑒𝑑𝑔𝑒𝑖

, 1 ≤ 𝑖 ≤ 𝑁 (4)

4. At time 𝑡 +1, updates Θ(𝑡)
𝐷𝑒𝑑𝑔𝑒𝑖

, 1 ≤ 𝑖 ≤ 𝑁 , from the member clus-
ter(s) are sent back to the host cluster(s), where a global

update is computed [38]:

Digital Communications and Networks 10 (2024) 1837–1850U. Awada, J. Zhang, S. Chen et al.

Fig. 4. Overview of EdgeColla.
Θ(𝑡+1)
𝐺

=Θ(𝑡)
𝐺
+

𝑁∑
𝑖=1

Θ(𝑡)
𝐷𝑒𝑑𝑔𝑒𝑖

(5)

For member cluster(s) 𝐷𝑒𝑑𝑔𝑒𝑖
with local dataset 𝑖, the associ-

ated ML problem is to solve the following optimization:

Θ⋆
𝐷𝑒𝑑𝑔𝑒𝑖

=arg min
Θ𝐷𝑒𝑑𝑔𝑒𝑖

∈ℝ𝑑×𝑐

1
2𝑛𝑖

𝑛𝑖∑
𝑗=1

‖𝒙𝑖,𝑗Θ𝐷𝑒𝑑𝑔𝑒𝑖
− 𝒚𝑖,𝑗‖22

+ 𝜆

2
‖Θ𝐷𝑒𝑑𝑔𝑒𝑖

‖2
𝐹

(6)

where 𝜆 is the regularization parameter and ‖ ⋅ ‖𝐹 denotes the Frobe-

nius norm. Optimization (6) is solved using gradient-descent by up-

dating the model iteratively until convergence with formula Θ(𝜄+1)
𝐷𝑒𝑑𝑔𝑒𝑖

=

Θ𝜄
𝐷𝑒𝑑𝑔𝑒𝑖

−𝜂
(

1
𝑛𝑖
𝒈
(
Θ𝜄

𝐷𝑒𝑑𝑔𝑒𝑖

)
+𝜆Θ𝜄

𝐷𝑒𝑑𝑔𝑒𝑖

)
, in which 𝜂 is the learning rate,

𝒈
(
Θ𝜄

𝐷𝑒𝑑𝑔𝑒𝑖

)
= 1

𝑛𝑖
𝑿T

𝑖

(
𝑿𝑖Θ𝜄

𝐷𝑒𝑑𝑔𝑒𝑖

−𝒀 𝑖

)
is the gradient of the loss function,

𝑿𝑖=
[
𝒙T

𝑖,1, ⋯ , 𝒙T
𝑖,𝑛𝑖

]T
and 𝒀 𝑖=

[
𝒚T

𝑖,1, ⋯ , 𝒚T
𝑖,𝑛

]T
are the feature set and label

set, respectively.

As multi-dependent tasks arrive into the system, their features
𝒇mt(𝜔, 𝜖, 𝛾), where 𝜔 is the number of instances, 𝜖 is the type of tasks, 𝛾
is the dependency depth, are fed into global model Θ⋆

𝐺
to estimate the

values of the resource requirements and execution time according to

𝒇mt ⋅Θ⋆
𝐺
=
[
𝐸𝑒𝑥1

𝑇
⟨𝑐,𝑚⟩
1 𝐸𝑒𝑥2

𝑇
⟨𝑐,𝑚⟩
2 ⋯𝐸𝑛𝑇

⟨𝑐,𝑚⟩
𝑛

]
(7)

where 𝑇 ⟨𝑐,𝑚⟩
𝑖

and 𝐸𝑒𝑥𝑖
are the estimated resource requirements (in terms

of CPU and memory ⟨𝑐,𝑚⟩) and estimated execution time for task 𝑖,
respectively. Note that the dispatcher has the estimated values and
the update status of all the member clusters ∈ 𝔼𝔽 when deciding
where to dispatch tasks. We show that with these estimated values,
multi-dependent tasks can be intelligently dispatched with the aim of
minimizing their actual completion time using minimum resources in an
integrated edge system, as shown in Fig. 4. We train our model based on
Keras6 with historical data from previously executed tasks/jobs. Keras
is a library that wraps TensorFlow7 complexity into a simple and user-

friendly Application Programming Interface (API).

Multi-dependent tasks resource requirements and execution time es-

timation values, and member clusters available resources denoted
as 𝐷⟨𝑐,𝑚⟩

𝑒𝑑𝑔𝑒𝑖
are needed to effectively dispatch multi-dependent tasks ℂ to

6 https://keras .io/.
1841

7 https://www .tensorflow .org/.
the closest member cluster denoted as 𝐷𝑒𝑑𝑔𝑒𝑖⋆
with sufficient re-

sources denoted as 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

. The closest member cluster is an edge
deployment with the minimum combined upload ∧↑

ℂ→𝐶𝑒𝑑𝑔𝑒𝑖

and down-

load ∧↓
ℂ→𝐶𝑒𝑑𝑔𝑒𝑖

transmission loads:

ℂ⇒ 𝐷𝑒𝑑𝑔𝑒𝑖⋆
(8)

where 𝐷𝑒𝑑𝑔𝑒𝑖⋆
is the solution of the following optimization:

min
𝐷𝑒𝑑𝑔𝑒𝑖

∈𝔼𝔽

(
∧↑
ℂ⇒𝐷𝑒𝑑𝑔𝑒𝑖

+∧↓
ℂ⇒𝐷𝑒𝑑𝑔𝑒𝑖

)
s.t. 𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

is sufficient for tasks
(9)

If a selected member cluster 𝐷𝑒𝑑𝑔𝑒𝑖
is a drone, in addition to

meeting the requirement that 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

is sufficient, its flight time 𝑓𝑖 should
also be sufficient, such that the estimated execution time 𝐸𝑒𝑥 ≤ 𝑓𝑖, to
avoid job losses [8]. For example, autonomous drone systems such as
Drone-in-a-Box8 have the capabilities to fly intelligently and to estimate
their overall fight time 𝑓𝑙

𝑖
, including from source location 𝑙𝑐

𝑖
to des-

tination location 𝑙𝑑
𝑖

to conduct on-demand tasks. Therefore, for drone
deployments, constraint 𝐸𝑒𝑥 ≤ 𝑓𝑖 should be added to optimization (9).

For task 𝑇 ∈ ℂ, its actual starting time and completion time are de-

noted as 𝐸𝑠𝑡 and 𝐸𝑐𝑝, respectively. Thus, its actual execution time is
given as

𝐸𝑒𝑥 = 𝐸𝑐𝑝 −𝐸𝑠𝑡 (10)

Hence the collective execution time of a (𝑛)-task ℂ is given as

𝑛∑
𝑖=1

𝐸𝑒𝑥𝑖

𝑛
(11)

Given a node 𝐼 in each member cluster, let 𝐼⟨𝑐,𝑚⟩
𝑝 denote the 𝑝-th

node’s resource availability. The estimated resource demands and exe-

cution time of 𝑘-dependent tasks to be orchestrated,
∑𝑘

𝑞=1 𝑇
⟨𝑐,𝑚⟩
𝑞 and ∑𝑘

𝑞=1 𝐸𝑒𝑥𝑞
, the updated resource availability status of each member

cluster cluster 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

, and drones’ flight time 𝑓𝑖 (for aerial deploy-

ments) are needed to make an effective dispatching decision on ℂ at
time 𝑡. Our system extends to handle massive requests from multiple
8 https://dronehub .ai/.

https://keras.io/
https://www.tensorflow.org/
https://dronehub.ai/

U. Awada, J. Zhang, S. Chen et al.

users 𝑢 ∈𝕌 [41]. For example, we consider a telecom platform9 that
provides EC services to connected cars and autonomous vehicles. Sup-

pose at 𝑡, there are 𝑛 service requests from 𝕌 at location 𝑙𝑑
𝑖
, where each

user 𝑢 is offloading ℂ. The collective 𝑛 request from 𝕌 can be dispatched
as multi-job 𝕁, where 𝕁 =

∑𝑛
𝑖=1ℂ𝑖, with the collective resource demand

estimation denoted as
∑𝑘

𝑞=1𝑇
⟨𝑐,𝑚⟩
𝑞 =𝑇 ⟨𝑐,𝑚⟩′ and the aggregate execution

time estimation as
∑𝑘

𝑞=1𝐸𝑒𝑥𝑞
=𝐸𝑒𝑥′. We can dispatch 𝕁 to the same

member cluster by jointly considering the estimated total resource
requirements:∑

𝐽∈𝕁
𝑇 ⟨𝑐,𝑚⟩′ = 𝑇

⟨𝑐,𝑚⟩′
total (12)

where the edge or cluster resource capability is 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

and the total
estimated execution time is∑

𝐽∈𝕁
𝐸𝑒𝑥′ = 𝐸total

𝑒𝑥′ (13)

Let 𝐷𝑒𝑑𝑔𝑒𝑖⋆
be the closest edge having sufficient 𝐷⟨𝑐,𝑚⟩

𝑒𝑑𝑔𝑒𝑖⋆
and 𝑓𝑖⋆ to

accommodate 𝑇 ⟨𝑐,𝑚⟩′
total and 𝐸total

𝑒𝑥′ , we can dispatch 𝕁 to 𝐷𝑒𝑑𝑔𝑒𝑖⋆
:

𝕁⇒ 𝐷𝑒𝑑𝑔𝑒𝑖⋆
(14)

The estimated resource utilization of the cluster or edge for multi-job
deployment is given by

𝜌
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

=
𝑇
⟨𝑐,𝑚⟩′
total

𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

(15)

For a member cluster 𝐷𝑒𝑑𝑔𝑒𝑖
, let the aggregate execution time of

multi-job 𝕁 be

∑
𝐽∈𝕁

∑𝑘

𝑞=1

𝐸𝑒𝑥𝑞

𝑘
=
∑

𝐽∈𝕁
𝐸𝑒𝑥′ = 𝐸total

𝑒𝑥′ (16)

and the total resources actually assigned for multi-job 𝕁 be 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝑈

.

Proof. In IoT, edge, and cloud computing systems, timestamp10 values
are assigned to various events or tasks based on when they occur, i.e., to
indicate a task’s starting time (𝐸𝑠𝑡), completion time (𝐸𝑐𝑝), etc. Events
are timestamped based on when they occurred for a range of use cases.
For example, it is used to deduce a task’s execution time, i.e., 𝐸𝑒𝑥 of
a task as expressed in Equation (10). Therefore, for a set of multi-job
tasks, the aggregate execution time is expressed in Equation (16). How-

ever, the actual execution time of tasks is unknown at this stage, hence
we replace it with the estimation values as expressed in Equation (13).
Specifically, the estimated execution time value is essential in selecting
a UAV or drone-based EC deployment with sufficient flight time to avoid
job losses [6–8,42].

Under the condition that estimated total resource demand 𝑇 ⟨𝑐,𝑚⟩′
total is

accurate, i.e., 𝑇 ⟨𝑐,𝑚⟩′
total ≈𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝑈

, then the actually total resources 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝑈

assigned for 𝕁 will not exceed 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

. Similarly, under the condition
that estimated total execution time 𝐸total

𝑒𝑥′ is accurate, i.e., 𝐸total
𝑒𝑥′ ≈𝐸total

𝑒𝑥′ ,
drone 𝐷𝑒𝑑𝑔𝑒𝑖

will have sufficient flight time 𝑓𝑖 for multi-job execution.

Our CL-based approach has significant advantages over non-learning
counterparts. By accurately estimating the resource requirements and
execution time of multiple tasks/jobs, our scheme can intelligently co-

locate multi-dependent tasks in the closest edge having sufficient re-

sources, such that these dependent tasks can communicate and execute
faster, ultimately minimizing the response time and improving resource
utilization. The accuracy of the estimated resource requirements and ex-

9 https://stellar .tc/.
10 https://learn .microsoft .com /en -us /stream -analytics -query /timestamp -by -
1842

azure -stream -analytics.
Digital Communications and Networks 10 (2024) 1837–1850

ecution time can be ensured by constructing multiple training datasets
for different multi-task/multi-job classes from historical data to learn
multiple models, one for a single multi-task/multi-job class. Given mul-

tiple tasks/jobs to be deployed, the model that is the most similar to
them is employed to estimate the resource requirements and execution
time. Since the estimated total resource demand 𝑇 ⟨𝑐,𝑚⟩′

total and execution
time 𝐸total

𝑒𝑥′ are accurate estimates of the actual total resource to be al-

located 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝑈

and actual execution time 𝐸total
𝑒𝑥′ , it is unlikely that the

selected drone edge 𝐷𝑒𝑑𝑔𝑒𝑖
will not have sufficient resources. In other

words, it is very unlikely that

𝐸total
𝑒𝑥′ > 𝑓𝑖 and/or 𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝑈

> 𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

(17)

which would lead to job losses. By contrast, standard non-learning
schemes have no means to intelligently choose appropriate edge de-

ployments for ensuring that the selected edge 𝐷𝑒𝑑𝑔𝑒𝑖
will have sufficient

resources, and the probability of (17) occurring can be much higher than
our EdgeColla approach. There also exist simple and effective measures
to guard against estimation errors. It is obvious that job losses may only
occur in underestimation scenarios. Instead of using the estimates of the
resource demand and execution time for selecting edge deployments, we
can add the two standard deviations of the estimation to the correspond-

ing estimates and use these ‘modified’ or ‘overly’ estimated values to
select edge deployments. This will reduce the probability of (17) occur-

ring to almost zero. It is straightforward to provide both the estimate and
estimation standard deviation by dividing the training data into multi-

ple subsets and running the estimation procedure multiple times. □

3.1. Problem formulation

The notations adopted are listed in Table 2. EdgeColla includes an
intelligent multi-dependent task dispatching method, which co-locates
tasks firmly on available nodes to avoid resource wastage in any
member cluster∈ 𝔼𝔽 , while considering task dependencies. Our ob-

jectives are to maximize the actual cluster resource utilization and to
minimize the overall execution time of multi-dependent tasks, subject
to certain constraints.

3.1.1. Constraints

First, the collective resource demand estimation of 𝕁 at any given
time 𝑡 cannot exceed the available resources of a selected member
cluster ∈ 𝔼𝔽 . Since the actual total resources that need to be assigned
to multi-job 𝐷⟨𝑐,𝑚⟩

𝑒𝑑𝑔𝑒𝑖𝑈
is unknown at the scheduling stage, we use the es-

timated total resource demand 𝑇 ⟨𝑐,𝑚⟩′
total to replace it:

𝑇
⟨𝑐,𝑚⟩′
total ≤ 𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

, ∀𝐷𝑒𝑑𝑔𝑒𝑖
∈ 𝔼𝔽 (18)

Second, the aggregate execution time of 𝕁 at any given time 𝑡 cannot
exceed the flight time of any selected drone. Since the actual execution
time 𝐸total

𝑒𝑥′ is unavailable at the scheduling stage, we replace it with
𝐸total

𝑒𝑥′ :

𝐸total
𝑒𝑥′ ≤ 𝑓𝑖, ∀𝑓𝑖 ∈ 𝔼𝔽 (19)

Third, unused or inactive nodes 𝐼𝑖∈𝐷𝑒𝑑𝑔𝑒𝑖
in a selected cluster would

be shut down. All the nodes can be expressed in one of these two states:
Active and Inactive. An Active node is a node that is running and currently
considered for allocation or has at least 1 job being started, executed or
completed. An Inactive node is a node that is not running and currently
considered for allocation and not having at least 1 job that is being
started, executed or completed. These two states can be expressed as
follows:

() {
1, Active if 𝐽𝑖 ∈ [𝐸𝑠,𝐸𝑐,𝐸𝑒𝑥]
∀𝑐,𝑚 𝛽 𝐼𝑖 = 0, Inactive if 𝐽𝑖 ∉ [𝐸𝑠,𝐸𝑐,𝐸𝑒𝑥]

(20)

https://stellar.tc/
https://learn.microsoft.com/en-us/stream-analytics-query/timestamp-by-azure-stream-analytics
https://learn.microsoft.com/en-us/stream-analytics-query/timestamp-by-azure-stream-analytics

U. Awada, J. Zhang, S. Chen et al.

Table 2

Common notations.

Notation Description

𝔼𝔽 Integrated edge deployments

𝑇 Individual applications or tasks⟨𝑐,𝑚⟩ CPU and memory resources

ℂ A set of containerized applications

𝑇 ⟨𝑐,𝑚⟩ Task resource requirement estimation

𝑇
⟨𝑐,𝑚⟩′
total Estimated total resource requirements for jobs

𝑇
⟨𝑐,𝑚⟩′
total Actual total resources consumed for jobs

𝑇
⟨𝑐⟩′
total, 𝑇

⟨𝑚⟩′
total Actual CPU, memory resources consumed for jobs

𝐷𝑒𝑑𝑔𝑒𝑖
Individual edge deployment or member cluster

𝐷𝑒𝑑𝑔𝑒𝑖⋆
Closest edge deployment with required resources

𝐼𝑖 A node in a cluster

𝐼
⟨𝑐,𝑚⟩
𝑖

Resource capacity or availability of a node

𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

Resource capacity/availability in edge/cluster

𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝑈

Actual resources used or assigned for jobs

𝐷
⟨𝑐⟩
𝑒𝑑𝑔𝑒𝑖𝑈

,𝐷
⟨𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝑈

Actual CPU, memory assigned for jobs

𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝐴𝑅𝑈

Actual resource usage for executing jobs

𝜌
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

Estimated resource utilization of jobs

𝜌
⟨𝑐⟩
𝑒𝑑𝑔𝑒𝑖

, 𝜌
⟨𝑚⟩
𝑒𝑑𝑔𝑒𝑖

Actual cluster CPU, memory resource utilization

𝐸𝑠𝑡, 𝐸𝑐𝑝 Application or task starting time, completion time

𝐸𝑒𝑥 Application or task execution time

𝐸 total
𝑒𝑥′ Actual total execution time for jobs

𝐸𝑒𝑥 Application or task execution time estimation

𝐸 total
𝑒𝑥′ Estimated total execution time for jobs

𝑙𝑐
𝑖
, 𝑙𝑑

𝑖
Drone’s current location and destination location

𝑓𝑖 Drone’s flight time

∧↑
ℂ⇒𝐷𝑒𝑑𝑔𝑒𝑖

Upload transmission

∧↓
ℂ⇒𝐷𝑒𝑑𝑔𝑒𝑖

Download transmission

𝜔𝐽 The number of instances of a job

𝜖𝐽 The type of a job

𝛾𝐽 Dependency depth of a job

𝒇mt Set of multi-task runtime parameters

Θ Linear regression model

𝐽 , 𝕁 A Job, A set of Jobs

𝑢, 𝕌 A User, A set of Users

where 𝛽
(
𝐼𝑖

)
= 1 indicates that node 𝐼𝑖 is ready to accept new jobs

and at least a job 𝐽𝑖 is being started, executed or completed, i.e.,
𝐽𝑖∈[𝐸𝑠, 𝐸𝑐, 𝐸𝑒𝑥] on 𝐼𝑖; otherwise, 𝛽

(
𝐼𝑖

)
=0.

3.1.2. Optimization formulation

As the actual resource utilization of a cluster/edge is unknown, we
maximize the estimated resource utilization:

Maximize 𝜌
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

(21)

subject to 𝕁⇒ 𝐷𝑒𝑑𝑔𝑒𝑖⋆
, ∃ (22)

𝐸total
𝑒𝑥′ ≤ 𝑓𝑖, ∀𝑓𝑖 ∈ 𝔼𝔽 , ∃ (23)

𝑇
⟨𝑐,𝑚⟩′
total ≤ 𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

, ∀𝐷𝑒𝑑𝑔𝑒𝑖
∈ 𝔼𝔽 , ∃ (24)

𝛽
(
𝐼𝑖

)
∈ {0,1}, ∃ (25)

Provided that the estimated resource utilization 𝜌⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

is accurate,
little optimality will be lost.

The constraints (22) to (24) indicate dispatching multi-job 𝕁 to the
closest edge having sufficient resources and flight time. More specifi-

cally, (22) is 𝕁, guaranteeing that 𝕁 is dispatched to a cluster, such that
dependent tasks within each 𝐽 ∈ 𝕁 can communicate and execute faster.
Constraint (23) guarantees that 𝐸total

𝑒𝑥′ of 𝕁 should not exceed 𝑓𝑖 of any
selected drone deployment and constraint (24) guarantees that 𝑇 ⟨𝑐,𝑚⟩′

total of
𝕁 should not exceed 𝐷⟨𝑐,𝑚⟩

𝑒𝑑𝑔𝑒𝑖
of any selected member cluster∈ 𝔼𝔽 . We

shall discuss the details of our multi-job dispatching principle in Subsec-

tion 3.2 and Algorithm 2. Condition (25) guarantees that active nodes
(𝛽

(
𝐼𝑖

)
=1) should be used for execution, and inactive nodes (𝛽

(
𝐼𝑖

)
=0)

should be shut down. Hence, our aim is to minimize the number of ac-
1843

tive nodes used for execution by co-locating jobs tightly on each node
Digital Communications and Networks 10 (2024) 1837–1850

Algorithm 1 Linear Regression Estimation.

Input: 𝕁 arrives at time 𝑡 from 𝑙𝑑
𝑖
; 𝒇mt is fed into Θ⋆

𝐺

Output: ∑𝐽∈𝕁 𝑇
⟨𝑐,𝑚⟩′
𝐽

and ∑𝐽∈𝕁 𝐸𝑒𝑥𝐽 ′

1: for 𝐽 ∈ 𝕁 do

2: Type of job 𝐽 = 𝜖𝐽

3: Number of instances of job 𝐽 = 𝜔𝐽

4: Dependency depth of job 𝐽 = 𝛾𝐽

5: for 𝑇𝑖 ∈ 𝐽 do

6:
(
𝒇mt

)
𝑇𝑖

⋅Θ⋆
𝐺
=
[
𝑇

⟨𝑐,𝑚⟩
𝑇𝑖

𝐸𝑒𝑥𝑇𝑖

]
7: end for

8: 𝑇
⟨𝑐,𝑚⟩′
𝐽

= 𝑇
⟨𝑐,𝑚⟩′
𝐽

+ 𝑇
⟨𝑐,𝑚⟩
𝑇𝑖

9: 𝐸𝑒𝑥𝐽 ′ = 𝐸𝑒𝑥𝐽 ′ +𝐸𝑒𝑥𝑇𝑖

10: end for

Algorithm 2 Multi-Job Dispatching.

Input: 𝕁 arrives at time 𝑡 within 𝑙𝑑
𝑖
; 𝐷𝑒𝑑𝑔𝑒𝑖

∈𝔼𝔽 ; ∑𝐽∈𝕁 𝑇
⟨𝑐,𝑚⟩′
𝐽

; ∑𝐽∈𝕁 𝐸𝑒𝑥𝐽 ′

Output: Dispatch 𝕁 to 𝐷𝑒𝑑𝑔𝑒𝑖⋆
with matching 𝐷⟨𝑐,𝑚⟩

𝑒𝑑𝑔𝑒𝑖
and 𝑓𝑖 for any selected

drone, such that 𝕁 ⇒𝐷𝑒𝑑𝑔𝑒𝑖⋆

1: for 𝐷𝑒𝑑𝑔𝑒𝑖
∈ 𝔼𝔽 do

2: if
∑

𝐽∈𝕁 𝑇
⟨𝑐,𝑚⟩′
𝐽

≤𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

and ∑𝐽∈𝕁 𝐸𝑒𝑥𝐽 ′≤𝑓𝑖 then

3: if 𝐷𝑒𝑑𝑔𝑒𝑖
=arg min

𝐷𝑒𝑑𝑔𝑒𝑗
∈𝔼𝔻𝔾𝔼

(
𝑄𝕁⇒𝐷𝑒𝑑𝑔𝑒𝑗

)
then

4: 𝕁 ⇒ 𝐷𝑒𝑑𝑔𝑒𝑖
= 𝐷𝑒𝑑𝑔𝑒𝑖⋆

5: else

6: Dispatch 𝕁 to next 𝐷𝑒𝑑𝑔𝑒𝑖⋆

7: end if

8: end if

9: end for

10: if 𝕁 cannot be composed as a whole then

11: for 𝐷𝑒𝑑𝑔𝑒𝑖
∈ 𝔼𝔽 do

12: for 𝐽 ∈𝕌 do

13: if 𝑇
⟨𝑐,𝑚⟩′
𝐽

≤𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

and 𝐸𝑒𝑥𝐽 ′≤𝑓𝑖 then

14: if 𝐷𝑒𝑑𝑔𝑒𝑖
=arg min

𝐷𝑒𝑑𝑔𝑒𝑗
∈𝔼𝔽

(
𝑄𝐽⇒𝐷𝑒𝑑𝑔𝑒𝑗

)
then

15: 𝐽 ⇒ 𝐷𝑒𝑑𝑔𝑒𝑖
= 𝐷𝑒𝑑𝑔𝑒𝑖⋆

16: else

17: Dispatch 𝐽 to next 𝐷𝑒𝑑𝑔𝑒𝑖⋆

18: end if

19: end if

20: end for

21: end for

22: end if

to maximize resource utilization. We shall discuss the details of our co-

location strategy in Subsection 3.2 and Algorithm 3.

Then again, 𝐸total
𝑒𝑥′ of 𝕁 can be minimized depending on dispatching:

Minimize 𝐸total
𝑒𝑥′ (26)

subject to 𝕁⇒ 𝐷𝑒𝑑𝑔𝑒𝑖⋆
, ∃ (27)

Note that the actual overall execution time 𝐸total
𝑒𝑥′ is unknown at this

stage and we use the estimated overall execution 𝐸total
𝑒𝑥′ to replace it in

the optimization. Again, provided that 𝐸total
𝑒𝑥′ is accurate, little optimality

will be lost. Constraint (27) guarantees that 𝕁 is dispatched to a cluster,
such that dependent tasks within each 𝐽 ∈ 𝕁 can communicate and exe-

cute faster. The details of our multi-job dispatching principle are given
in Subsection 3.2 and in Algorithm 2.

3.2. EdgeColla algorithm framework

Our EdgeColla approach consists of estimation, dispatching, and co-

location. These 3 components aim at providing optimal performance
for multi-task execution in an integrated edge system, such that op-

timization (21) and optimization (26) are achieved. The values of
the estimations are required by the dispatcher, as well as the update

state of the clusters for effective multi-job dispatching to the closest

U. Awada, J. Zhang, S. Chen et al.

Algorithm 3 Multi-job Co-location.

Input: 𝕁 dispatched to closest member cluster 𝐷𝑒𝑑𝑔𝑒⋆
, ∑𝐽∈𝕁 𝑇

⟨𝑐,𝑚⟩′
𝐽

, resource
availability 𝐼 ⟨𝑐,𝑚⟩

𝑖
of all nodes 𝐼𝑖∈𝐷𝑒𝑑𝑔𝑒⋆

Output: 𝕁 is co-located to Minimize
∑

𝐼𝑖∈𝐷𝑒𝑑𝑔𝑒⋆

𝐼𝑖

1: for 𝐼𝑖 ∈ 𝐷𝑒𝑑𝑔𝑒⋆
do

2: if 𝛽
(
𝐼𝑖

)
= 1 then

3: 𝐼
⟨𝑐,𝑚⟩
𝑖

= ⟨𝑐, 𝑚⟩, i.e., initial resource available

4: for 𝐽 ∈ 𝕁 do

5: if Γ
[
𝐽 , 𝐼𝑖

]
=0 and 𝑇 ⟨𝑐,𝑚⟩′

𝐽
≤𝐼

⟨𝑐,𝑚⟩
𝑖

then

6: 𝐽 ⇒ 𝐼𝑖

7: Γ
[
𝐽 , 𝐼𝑖

]
= 1

8: 𝐼
⟨𝑐,𝑚⟩
𝑖

= 𝐼
⟨𝑐,𝑚⟩
𝑖

− 𝑇
⟨𝑐,𝑚⟩′
𝐽

9: end if

10: if 𝐼
⟨𝑐,𝑚⟩
𝑖

close to zero then

11: break

12: end if

13: end for

14: end if

15: end for

member cluster 𝐷𝑒𝑑𝑔𝑒⋆
with the minimum combined upload and

download transmission loads:

𝑄𝕁⇒𝐷𝑒𝑑𝑔𝑒𝑖
= ∧↑

𝕁⇒𝐷𝑒𝑑𝑔𝑒𝑖

+∧↓
𝕁⇒𝐷𝑒𝑑𝑔𝑒𝑖

(28)

Our co-location approach involves co-locating these tasks firmly on
available resources. We detail the procedures of the 3 components of
EdgeColla as follows.

3.2.1. Resource and execution time estimation

As 𝕁 arrives into the system, their collective resource requirement
𝑇
⟨𝑐,𝑚⟩′
total and execution time 𝐸total

𝑒𝑥′ are estimated. The CL process in Equa-

tions (3) ∼ (5) generates a global model. A set of runtime parameters
𝒇mt(𝜔, 𝜖, 𝛾), where 𝜔 is the number of instances, 𝜖 is the type of tasks,
and 𝛾 is the dependency depth, is fed into the global model Θ⋆

𝐺
to pro-

duce estimation values. Once the estimation values are produced, they
are used in the dispatching stage.

3.2.2. Dispatching

Our policy is to dispatch 𝕁 to the closest member cluster 𝐷𝑒𝑑𝑔𝑒𝑖⋆

with matching or sufficient resources 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖⋆

and flight time 𝑓𝑖⋆ , such

that 𝑇 ⟨𝑐,𝑚⟩′
total ≤𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖⋆

and 𝐸total
𝑒𝑥′ ≤𝑓𝑖⋆ . The closest heuristic given in Equa-

tion (28) is to further minimize the overall response time of 𝕁. Closest

or Nearest is a popular task offloading heuristic in distributed systems,
since IoT and other end devices often need to communicate only with
the closest or nearest clusters and cloud servers. Existing studies, e.g.,
[6,7,18,43], adopted the closest principle as the task offloading policy.
Holistic dispatching of 𝕁 treats each 𝐽 ∈ 𝕁 as a high-priority job. Algo-

rithm 2 describes the dispatching procedure.

With the collective estimated values of 𝕁 and all member clus-
ters ∈ 𝔼𝔽 , and available resources 𝐷⟨𝑐,𝑚⟩

𝑒𝑑𝑔𝑒𝑖
are obtained through the

CP. The dispatcher selects the closest member cluster 𝐷𝑒𝑑𝑔𝑒𝑖⋆
hav-

ing sufficient resources (line 3). It dispatches 𝕁 to 𝐷𝑒𝑑𝑔𝑒𝑖⋆
(line 4). If

𝕁 cannot be dispatched to 𝐷𝑒𝑑𝑔𝑒𝑖⋆
, then 𝕁 is dispatched to the next

𝐷𝑒𝑑𝑔𝑒𝑖⋆
(line 6). If at any time 𝑡, the collective estimated values of 𝕁

are greater than any member cluster∈ 𝔼𝔽 , i.e.,
∑

𝐽∈𝕁 𝑇
⟨𝑐,𝑚⟩′
𝐽

>𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

and/or
∑

𝐽∈𝕁 𝐸𝑒𝑥𝐽 ′>𝑓𝑖, ∀𝐷𝑒𝑑𝑔𝑒𝑖
∈𝔼𝔻𝔾𝔼, then 𝕁 cannot be composed as

a whole. The dispatcher can allow fractionally dispatching each 𝐽 ∈ 𝕌
to the closest member cluster (line 10 ∼ 22). Note that fractionally
dispatching each 𝐽 ∈ 𝕌 to the closest member cluster would still al-

low inter-dependent tasks within each 𝐽 ∈ 𝑢 to execute faster.

Recall that a multi-Job 𝕁 is composed of jobs from multiple users.
The reason behind this multi-Job 𝕁 formation is that it improves the ef-
1844

ficiency of dispatching and scheduling of ready jobs at a time, given
Digital Communications and Networks 10 (2024) 1837–1850

that their collective resource demand and execution time estimation
does not exceed the resource capacity of the closest member cluster.
Therefore, we can define the size of a multi-Job 𝕁 in terms of the total
execution time and resource requirement estimation using constraints
(23) and (24).

3.2.3. Co-location

At member cluster 𝐷𝑒𝑑𝑔𝑒⋆
, our co-location algorithm uses 𝐼⟨𝑐,𝑚⟩

𝑖

and
∑

𝐽∈𝕁 𝑇 ⟨𝑐,𝑚⟩′ to provide efficient co-location, such that fewer nodes
are used for execution in the EF system. Specifically, the gang schedul-

ing approach is adopted alongside our bin-packing optimization to co-

schedule and co-locate 𝕁 at a time. Bin-packing is one of the most popu-

lar packing problems. The goal is to minimize the number of nodes used,
as given in optimization (29). Unlike other approaches, such as First-

Fit-Bin-Packing (FFBP) [44], it requires the next 𝐽𝑖 to be placed on an
active node, otherwise; it is placed on a new node. Our approach scans
all 𝐽 ∈ 𝕁 and maps 𝐽𝑖 to active nodes for full utilization. All 𝐽 ∈ 𝕁 are
co-located firmly on active nodes, so that resource wastage is avoided
and fewer nodes are used to execute all jobs concurrently. Hence our
co-location strategy is to find the solution to the following problem:

Minimize
∑

𝐼𝑖∈𝐷𝑒𝑑𝑔𝑒⋆

𝐼𝑖 (29)

subject to 𝕁⇒ 𝐷𝑒𝑑𝑔𝑒⋆
, ∃ (30)∑

𝐽∈𝕁
Γ
[
𝐽, 𝐼𝑖

]
⋅ 𝑇 ⟨𝑐,𝑚⟩′

𝐽
≤ 𝐼

⟨𝑐,𝑚⟩
𝑖

, ∀𝑐,𝑚 (31)

where

Γ
[
𝐽, 𝐼𝑖

]
=
{

1, if 𝐽 ⇒ 𝐼𝑖

0, otherwise
(32)

Constraint (30) is the multi-job 𝕁 deployment constraint of guaranteeing
that 𝕁 is dispatched to a cluster such that dependent tasks within each
𝐽 ∈ 𝕁 can communicate and execute faster. As we have stated previously
that 𝕁 cannot be dispatched as a whole to a cluster, the dispatcher can
allow fractionally dispatching each 𝐽 ∈ 𝕁 to closest member cluster.
Constraint (31) indicates that the total estimated resource requirements
of co-located jobs

∑𝑁
𝑖=1 𝑇𝑖

⟨𝑐,𝑚⟩′
cannot exceed 𝐼⟨𝑐,𝑚⟩

𝑖
, the node’s available

resources. Constraint (32) means that if job 𝐽𝑖 is placed on node 𝐼𝑖, then
Γ
[
𝐽𝑖, 𝐼𝑖

]
= 1; otherwise, Γ

[
𝐽𝑖, 𝐼𝑖

]
= 0. This is to guarantee that each 𝐽 ∈

𝕁 is placed in exactly one node. To solve this multi-job packing problem,
we have adopted the Solving Constraint Integer Programs (SCIP) solver,
which is currently one of the fastest Mathematical Programming (MP)
solvers for this problem.

Algorithm 3 co-locates multi-dependent tasks firmly on nodes, such
that for any given job, resource wastage is avoided and fewer nodes
are used for execution. It takes the multi-task/job resource demand and
nodes available resources as input, then scans all 𝐽 ∈ 𝕁 and maps them
to active nodes for full utilization.

Note that in existing EC systems, the dispatcher and scheduler need
to understand the characteristics of both the applications, e.g., depen-

dencies, resource requirements, and edge resources in terms of avail-

ability. Specifically, the scheduler should understand the resource re-

quirements of each sub-application, resource availability of each node,
node availability, etc., and assumes the responsibility for executing the
applications on the nodes so that the desired objectives are achieved.
Therefore, we utilize an ML linear regression model to provide the es-

timated resource requirements and execution time of ready tasks, so as
to dispatch these tasks to the closest member cluster having suffi-

cient resources and to quickly execute them. With this in mind, we aim
to avoid the execution delays due to the insufficient resources of the
deployed member cluster or due to tasks waiting in queues. How-

ever, if the estimation values are not accurate, and depending on the
level of inaccuracy, the dispatcher and scheduler in Algorithms 2 and
3, respectively, would perform poorly, i.e., the overall execution of tasks

would be delayed due to the insufficient resources or long queues. For

Digital Communications and Networks 10 (2024) 1837–1850U. Awada, J. Zhang, S. Chen et al.

Table 3

Integrated-edge resource capacities.

Edge Deployments Edge Devices and Total Weight for Aerial Deployments CPU Capacity (Cores) Mem Capacity Flight Time

Aerial Edge 1 Lenovo SE350 + HIVECELL + Xavier NX + Dell 3000 ≈13 kg 30 274 GiB Sufficient

Aerial Edge 2 Snowcone + Huawei AR502H + INTELLIEDGE G700(x2) ≈14 kg 22 38 GiB Sufficient

Aerial Edge 3 {Dell 3000 + Dell 5000 + aiSage + dynaEdge}(x4) ≈20 kg 48 112 GiB Sufficient

Ground Edge 1 Stack Edge + DELL EMC + Snowball + ThinkSystem 132 3536 GiB NA

Ground Edge 2 AWS Snowball (x3) + Dell EMC VxRail(x2) 256 6640 GiB NA

Ground Edge 3 {HPE Edgeline + IBM Power Systems}(x6) 288 24 TiB NA
this reason, we first investigate the accuracy of our trained linear re-

gression model for estimating the resource requirements and execution
time of multi-dependent tasks, using the NAEE method. We will discuss
NAEE in Section 4.3.1 and Equation (36). This serves as the estimation
accuracy measure for the trained linear regression model.

3.2.4. Connection with optimization objectives

As stated previously, our objectives are to maximize the actual edge
cluster resource utilization and to minimize the overall execution time
of task-dependent jobs. Algorithms 2 and 3 together achieve these ob-

jectives. By dispatching task-dependent jobs to the closest edge having
sufficient resources and flight time (for drones), Algorithm 2 ensures
that the actual resources assigned to the execution of jobs 𝐷⟨𝑐,𝑚⟩

𝑒𝑑𝑔𝑒𝑖𝑈
are

sufficient and the dependent tasks can be executed faster, ultimately
leading to a smaller aggregate execution time 𝐸total

𝑒𝑥′ and better cluster
resource utilization. By intelligently packing dependent tasks tightly on
nodes, Algorithm 3 is capable of fully utilizing available resources at
edge clusters, ultimately leading to the actual resource assigned to the
execution of jobs 𝐷⟨𝑐,𝑚⟩

𝑒𝑑𝑔𝑒𝑖𝑈
as small as possible while guaranteeing it is

sufficient for the multi-dependent jobs.

More specifically, the Actual Resource Usage (ARU) of the cluster for
multi-job deployment 𝕁 is given by

𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝐴𝑅𝑈

=
𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝑈

𝐷
⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

(33)

It can be seen that solving optimization (29) is directly linked to min-

imizing ARU (33). Let the actual CPU resource and the actual memory
resource assigned for 𝕁 be 𝐷⟨𝑐⟩

𝑒𝑑𝑔𝑒𝑖𝑈
and 𝐷⟨𝑚⟩

𝑒𝑑𝑔𝑒𝑖𝑈
, respectively. Further

denote the actual CPU consumed and the actual memory consumed in
executing 𝕁 as

∑
𝐽∈𝕁 𝑇 ⟨𝑐⟩′ and

∑
𝐽∈𝕁 𝑇 ⟨𝑚⟩′, respectively. Then the ac-

tual CPU utilization 𝜌⟨𝑐⟩
𝑒𝑑𝑔𝑒𝑖

and the actual memory utilization 𝜌⟨𝑚⟩
𝑒𝑑𝑔𝑒𝑖

are
defined respectively by

𝜌
⟨𝑐⟩
𝑒𝑑𝑔𝑒𝑖

=
∑

𝐽∈𝕁 𝑇 ⟨𝑐⟩′
𝐷

⟨𝑐⟩
𝑒𝑑𝑔𝑒𝑖𝑈

(34)

𝜌
⟨𝑚⟩
𝑒𝑑𝑔𝑒𝑖

=
∑

𝐽∈𝕁 𝑇 ⟨𝑚⟩′
𝐷

⟨𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝑈

(35)

Algorithms 2 and 3 are directly connected with minimizing 𝐸total
𝑒𝑥′ as

well as maximizing 𝜌⟨𝑐⟩
𝑒𝑑𝑔𝑒𝑖

and 𝜌⟨𝑚⟩
𝑒𝑑𝑔𝑒𝑖

.

Proof. The proposed EdgeColla runs all tasks in containers, which helps
to prevent lock-in situations among host and member clusters. A con-

tainer packages up all the dependencies of an application, such that
it runs quickly and reliably from one computing environment to an-

other.11 Hence, the proposed Co-location strategy can co-locate multiple
containers on the same node without resource contention among the
co-located containers. In this case, each container runs within its allo-

cated resources, i.e., 𝑇 ⟨𝑐,𝑚⟩ in terms of CPU and memory resources. We
1845

11 https://www .docker .com /resources /what -container/.
aim to minimize the ARU within each cluster as expressed in Equation
(33) by employing our Dispatching and Co-location strategies in Algo-

rithms 2 and 3, respectively. Therefore, the actual resource utilization
of a cluster is expressed in Equations (34) and (35) for CPU and memory,
respectively. □

4. Performance evaluation

In this section, we describe our experimental setup including cluster
resource configuration, the Alibaba cluster dataset, and the compari-

son baselines. We perform extensive experiments to compare EdgeColla
against some existing schemes. We will also compare EdgeColla against
existing individual cluster schemes. We show that EdgeColla can achieve
the minimized actual execution time of multi-dependent tasks, high re-

source utilization, load balancing, use fewer cluster resources and avoid
job losses in an integrated edge system.

4.1. Experimental setup

Cluster Resources: Our 𝔼𝔽 setup consists of 3 aerial or drone clus-

ters and 3 ground or on-premise clusters, as summarized in Table 3. The
aerial clusters consist of various portable edge devices with combined
weights of up to 20 kg. For example, autonomous drones such as the Bell
ATP7012 have a payload capability of up to 31 kg and a flight time og
up to 45 minutes. Therefore, we assume that the selected drones have
sufficient flight time to execute ready multi-dependent job.

Multi-dependent Tasks: We employ the v-2018 version of the Al-

ibaba cluster dataset, which records the activities of about 4000 ma-

chines in a period of 8 days. The entire dataset contains more than 14
million tasks with more than 12 million dependencies and more than 4
million jobs. Among these, we have deployed 209 jobs with a total of
931 tasks (including dependencies) for our experiments. The number of
tasks within each job ranges from (26, 344], while the task dependency
depth among the jobs ranges from (1, 16]. The multi-task dependencies
in the dataset are valuable for our investigation. Researchers have thor-

oughly investigated the v-2018 version of Alibaba cluster dataset and
used it for various task scheduling problems [45–47].

Comparison Baselines: We compare the scheduling approach of
EdgeColla with the following 3 existing schemes and the random ap-

proach, fixing their dispatching policies to that of EdgeColla:

1. An approach that does not consider tasks’ dependencies but sched-

ules 50% of any given multi-dependent task by mainly focusing on
task co-location. We refer to this approach as No Dependency and
Full Packing (NDFP), which is similar to the approach in [19].

2. An approach that schedules up to 15% of any given multi-

dependent task at a time but does not consider task co-location.
We refer to this approach as Partial Dependency and No Packing
(PDNP), which is similar to the approach in [20].

3. An approach that schedules up to 40% of any given multi-

dependent tasks with task co-location. We consider this approach
as a Partial Dependency and Full Packing (PDFP), which is similar
to the approach in [21].
12 www .bellflight .com /products /bell -apt.

https://www.docker.com/resources/what-container/
http://www.bellflight.com/products/bell-apt

Digital Communications and Networks 10 (2024) 1837–1850U. Awada, J. Zhang, S. Chen et al.

Table 4

Multi-job executions in integrated edge deployments, where the actual resource consumed for multi-job execu-

tion 𝑇 ⟨𝑐,𝑚⟩′
total and actual execution time 𝐸 total

𝑒𝑥′ are taken from the original Alibaba dataset, while the estimated
resource demand 𝑇 ⟨𝑐,𝑚⟩′

total and execution time 𝐸 total
𝑒𝑥′ are calculated by Algorithm 1.

𝐷𝑒𝑑𝑔𝑒𝑖
𝕁 ℂ 𝑇

⟨𝑐,𝑚⟩′
total 𝑇

⟨𝑐,𝑚⟩′
total NAEE 𝐸 total

𝑒𝑥′ (𝑠) 𝐸 total
𝑒𝑥′ (𝑠) NAEE

AerialEdge 1 5 35 ⟨23,10.81⟩ ⟨25.5,10.48⟩ ⟨0.10,0.03⟩ 1134.18 735 0.54
AerialEdge 2 13 26 ⟨15.1,7.48⟩ ⟨17.7,6.57⟩ ⟨0.15,0.14⟩ 158.16 957 0.83
AerialEdge 3 8 49 ⟨31.52,15.38⟩ ⟨36.5,15.5⟩ ⟨0.14,0.01⟩ 1456.1 994 0.46
GroundEdge 1 34 159 ⟨101.17,49.13⟩ ⟨116.2,48.05⟩ ⟨0.13,0.02⟩ 4204.51 3680 0.14
GroundEdge 2 68 318 ⟨202.35,98.25⟩ ⟨232.4,96.1⟩ ⟨0.13,0.02⟩ 8409.03 7360 0.14
GroundEdge 3 81 344 ⟨217.45,105.73⟩ ⟨250.1,102.67⟩ ⟨0.13,0.03⟩ 8567.2 8317 0.03
4. The Random approach schedules a single task individually and as-

sumes a node can only execute a task at a time.

4.2. Device mobility and communication

In a broader EC scenario, such as the EC-enabled Internet of Vehicles
(IoV), edge clusters are deployed on Road Side Units (RSU) and directly
in vehicles to facilitate faster application executions [48,49]. The RSUs
and in-vehicle edge deployments can be added as new members to ex-

isting integrated edge systems. Therefore, vehicles without sufficient
resources can offload their tasks to the closest RSU or other available
edge deployments, and after the execution of 𝐽 ∈ 𝕁, the final result is
immediately transmitted back to the vehicle. However, the fundamen-

tal challenge is how a moving vehicle, whose initial location coordinate
are {𝑥, 𝑦}, can receive its final execution results at any current location
{𝑥′, 𝑦′}. Moreover, given the current location of the vehicle, more than
one routing path may exist from the RSU to the vehicle. Therefore, the
routing path with the best transmission performance can be determined
as the optimal one for the final result transmission. To this end, we pro-

pose an Integrated Edge-assisted Routing (IER) mechanism [48], whose
goal is to find the fastest route to efficiently forward execution results
to the vehicle at its current location. Specifically, our IER leverages the
cooperation among participating EC deployments, i.e., host and mem-
bers to quickly forward the execution results to the target vehicle.

4.3. Deployment results and performance comparison

Our investigation focuses on CPU and memory usage/utilization,
task deployment, scheduling, and execution time. The results obtained
by EdgeColla, PDFP, NDFP, PDNP, and Random are compared.

4.3.1. Resource and execution time estimation accuracy

As detailed in the previous section, to implement the proposed CL-

based intelligent multi-task dispatching and co-location strategy, we
train a linear regression model on a training dataset. In the real-time
application experiments, the trained model is used to estimate the re-

source requirements and execution time (Algorithm 1). The estimated
resource requirements and execution time13 are then employed to aid
our intelligent dispatching and co-location strategy (Algorithms 2 and
3). Clearly, the accuracy of Algorithm 1 impacts the achievable perfor-

mance of our EdgeColla. Therefore, we first investigate the accuracy of
our trained linear regression model.

The multi-job execution information across federated edge deploy-

ments, obtained according to the Alibaba dataset, are listed in Table 4,
where the estimated resource demand 𝑇 ⟨𝑐,𝑚⟩′

total and the estimated exe-

cution time 𝐸total
𝑒𝑥′ are calculated using Algorithm 1, while the actual

resources consumed for multi-job execution 𝑇 ⟨𝑐,𝑚⟩′
total and the actual ex-

ecution time 𝐸total
𝑒𝑥′ are taken from the original data. The Normalized

Absolute Estimate Error (NAEE) is defined as

13 As the drone edges involved have sufficient flight time, the estimated exe-
1846

cution time is not required in selecting drones.
NAEE =
|||estimated value − actual value

|||
actual value

(36)

NAEEs are listed in Table 4 for the resource consumed and execution
time, and serve as the estimation accuracy measure for the trained multi-

output linear regression model. The average NAEE across 6 deployments
is 0.13 for CPU resources, 0.04 for memory resources, and 0.36 for exe-

cution time. From Tables 3 and 4, it can be seen that 𝑇 ⟨𝑐,𝑚⟩′
total <𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

and

𝑇
⟨𝑐,𝑚⟩′
total <𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖

. In other words, each edge has sufficient resources to ex-

ecute the multi-dependent jobs deployed to it. This further indicates the
suitability or accuracy of the trained ML model to provide the necessary
information for our intelligent dispatching and co-location strategy.

4.3.2. Performance comparisons across integrated edge-enabled CL clusters

We applied our EdgeColla to orchestrate 209 jobs across 6 integrated
edge clusters and compare its performance with those of the benchmark
schemes. We first investigated multi-job 𝕁 scheduled across the 6 in-

tegrated clusters, as depicted in Fig. 5. It can be observed that both
EdgeColla (FDFP) and NPFP are able to deploy 100% of all the jobs in
𝕁. PDFP and PDNP are slightly inferior and could not deploy 100% of the
jobs in 𝕁 on some clusters. Specifically, PDFP only achieves 77% of the
multi-job deployments on AerialEdge 2, while PDNP only achieves
83% and 77% on AerialEdge 1 and AerialEdge 2, respectively.
The Random approach could barely schedule 50% of 𝕁 to 5 clusters and
the percentage of its scheduled jobs is much lower compared to other
schemes. Because it deploys a task randomly to any available node, this
results in longer delays for dependent tasks, resource underutilization
and inability to execute all jobs. Therefore, we only show the results
and performance comparisons for the multi-dependent jobs/tasks that
are deployed or scheduled successfully in the integrated edge system.

Fig. 6 compares the actual resource usage 𝐷⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝐴𝑅𝑈

of EdgeColla
with those of the 3 baseline schemes and the Random approach. It can be
seen that EdgeColla consumes the fewest resources across the integrated
clusters with NPFP as the very close second best, while Random is the
worst and PDNP as the second worst. PDFP ranks in the middle, in terms
of resource usage across the integrated clusters. The actual resource uti-

lization (CPU resource utilization 𝜌⟨𝑐⟩
𝑒𝑑𝑔𝑒𝑖

and memory resource utilization

𝜌
⟨𝑚⟩
𝑒𝑑𝑔𝑒𝑖

) comparisons are shown in Figs. 7 and 8, respectively. Again,
EdgeColla and NDFP are superior to PDFP, PDNP, and Random, and
they achieve the highest and close second highest resource utilization
across the integrated clusters, respectively, while PDNP and Random
achieve the second lowest and lowest resource utilization across the in-

tegrated clusters, respectively.

Two other key metrics are the actual task/job scheduling time ∑
𝐽∈𝕁

∑𝑚
𝑧=1

∑𝑘𝑧

𝑖=1𝑆𝑐ℎ𝑧𝑖
∕𝑘𝑧, where 𝑚 is the number of scheduling units,

𝑘𝑧 is the number of tasks within the 𝑧-th scheduling unit, and more
importantly, the actual execution time of multi-dependent jobs/tasks
𝐸total

𝑒𝑥′ . Figs. 9 and 10 compare the actual task/job scheduling time and
task/job execution time of EdgeColla with those of the 4 benchmarks,
respectively. The results show that EdgeColla is the best, NDFP is the
second best, and PDFP is the third best, while Random is the worst

and PDNP is the second worst, in terms of both scheduling time and

Digital Communications and Networks 10 (2024) 1837–1850U. Awada, J. Zhang, S. Chen et al.

Fig. 5. Multi-job dispatching and co-location across integrated edge-enabled CL clusters.

Fig. 6. Actual resource usage across integrated edge-enabled CL clusters.
execution time. The superior performance of EdgeColla over the other
benchmarks is overwhelmingly clear.

4.3.3. Performance comparisons in individual clusters

Figs. 6–10 show the performance of the schemes in terms of the
multi-job deployment, actual resource usage, and resource utilization,
task scheduling and execution time across the integrated clusters. We
now delve into the individual clusters to examine the performance of
all the schemes.

AerialEdge-1 is a drone attached with edge devices Lenovo
SE350, HIVECELL, Xavier NX, and Dell 3000, with a total resource
capacity of 30 Cores and 274 GiB memory, respectively. The entire
weight of the devices is ≈13 kg. We deploy 5 jobs with a total of 35
tasks, where the job has a task dependency depth 𝛾 (2, 16]. Utilizing
the gang scheduling strategy, EdgeColla co-shedules and co-locates all
the 5 jobs at a time in nodes to minimize the overall used nodes. These
jobs are tightly co-located, which enables dependent tasks to commu-

nicate and share data effectively. As a result, EdgeColla achieves the
fastest scheduling time and execution time compared to NDFP, PDFP,
PDNF, and the Random approach. In addition, EdgeColla only uses 87%
of cluster resources to execute the jobs. In the same cluster, NPFP, PDFP,
and PDNP utilize 93%, 93%, and 100% of the cluster resources, respec-

tively. The Random approach uses all the cluster resources as well. It is
observed that EdgeColla is 5 times and 3 times faster than the second-

best NPFP in both the scheduling time and execution time, respectively.
EdgeColla is more than 13 times and 5 times faster than PDFP as well
as more than 18 times and 6 times faster than PDNP in the schedul-

ing time and execution time, respectively. EdgeColla is 50 times and
21 times faster than the Random approach in the scheduling time and
execution time, respectively.

Like AerialEdge-1, AerialEdge-2 is also a drone and a small-

capacity cluster. It is made up of AWS Snowcone, Huawei AR502H,
and Intelliedge G700(x2) portable edge devices with a total
1847

weight of ≈14 kg, and total resource capacity of 22 Cores and 38 GiB
memory, respectively. Here, we deployed 𝕁 = 13, where each 𝐽 ∈ 𝕁 has
a task dependency in the range of (1, 7]. The total number of tasks in 𝕁
is 26. We ensure that the attached edge resources are fully utilized by
co-locating the jobs tightly on them. As discussed earlier, the applica-

tion containers provide isolation to co-located tasks, thereby eliminating
interference and resource contentions in the cluster. A single node is
capable of running several containerized tasks, given that available re-

sources are sufficient. In this cluster, EdgeColla consumes 9% fewer
resources than NDFP, and 18% fewer resources than PDFP, PDNP, and
Random. EdgeColla also gains 10% higher CPU utilization over NDFP,
and 18% higher CPU utilization over PDFP, PDNP, and Random, as well
as 2% higher memory utilization than NDFP, and 4% higher memory uti-

lization than PDFP, PDNP and Random. More significantly, EdgeColla is
2.4, 11 and 26 times faster in the scheduling time than NDFP, PDFP, and
PDNP, respectively, while it is 3, 5, and 8 times faster in the execution
time than NDFP, PDFP, and PDNP, respectively. Note that for Random,
PDFP, and PDNP, the results of the actual resource usage, resource uti-

lization, scheduling and execution time are 54%, 77% and 77% of the
multi-dependent jobs that can be scheduled on AerialEdge-2, respec-

tively.

AerialEdge-3 is the last of the drone clusters. It is attached
with Dell 3000, Dell 5000, aiSage, and dynaEdge(x4) portable
edge devices. It has a high load capacity of ≈20 kg compared to

AerialEdge-1 and AerialEdge-2. It also has a higher resource ca-

pacity of 48 Cores and 112 GiB memory, respectively compared to the
previous drone clusters. In this cluster, we deploy 𝕁 = 8 and a total of
49 tasks, where each 𝐽 ∈ 𝕁 has a task dependency depth 𝛾 ranging from
(2, 16]. In this cluster, EdgeColla, NDFP, and PDFP achieve reduced
𝐷

⟨𝑐,𝑚⟩
𝑒𝑑𝑔𝑒𝑖𝐴𝑅𝑈

by 11% and 21% compared with PDNP and Random, respec-

tively. EdgeColla, NDFP, and PDFP achieve 9% and 20% higher CPU
utilization as well as 2% and 4% higher memory utilization compared
to PDNP and Random, respectively. In terms of scheduling, EdgeColla

is about 4, 14, 45, and 96 times faster than NDFP, PDFP, PDNP, and

Digital Communications and Networks 10 (2024) 1837–1850U. Awada, J. Zhang, S. Chen et al.

Fig. 7. CPU utilization across integrated edge-enabled CL clusters.

Fig. 8. Memory utilization across integrated edge-enabled CL clusters.

Fig. 9. Actual multi-job scheduling time across integrated edge-enabled CL clusters.
1848

Fig. 10. Actual multi-job execution time across integrated edge-enabled CL clusters.

U. Awada, J. Zhang, S. Chen et al.

Random, respectively. It achieves 2, 4, 8, and 20.7 times faster exe-

cution time than NDFP, PDFP, PDNP, and Random, respectively. Not
surprisingly, Random has the worst scheduling time and execution time
performance.

GroundEdge-1 is an on-premise cluster. Generally, on-premise clus-

ters are higher than drone clusters in terms of resource capacities. This
cluster particularly is a memory-intensive cluster. It is made of Stack
Edge, DELL EMC, AWS Snowball, and Lenovo ThinkSystem on-

premise edge devices, with a resource capacity of 132 Cores and a
memory capacity of 3536 GiB, respectively. Here, we deploy 𝕁 = 34 with
a total of 159 tasks. Each 𝐽 ∈ 𝕁 has a dependency depth 𝛾 ranging from
(2, 16]. It is observed that EdgeColla consumes the fewest resources at
89%, followed by NDFP and PDFP at 91% each. PDNP consumes 96%
of the resources, while the Random approach uses all the available re-

sources. EdgeColla also achieves 2%, 2%, 7%, and 11% higher CPU
utilization over NDFP, PDFP, PDNP, and Random, respectively. Note
that the clusters GroundEdge 1, GroundEdge 2, and GroundEdge 3
are memory-intensive clusters, i.e., they have huge memory capacities.
Therefore, the jobs can only consume a few such capacities, as shown
in Fig. 8. It is worth noting that Random can only schedule 49% of the
tasks. By contrast, EdgeColla, NDFP, PDFP, and PDNP all schedule 100%
of the jobs. In terms of scheduling time, EdgeColla is approximately 114,
180, and 406 times faster than NDFP, PDFP, and PDNP, respectively. In
terms of execution time, EdgeColla is about 3, 6, and 12 times faster
than NDFP, PDFP, and PDNP, respectively. In this cluster, Random can
only schedule 49% of all the tasks within the jobs and it has the worst
performance for scheduling time and execution time.

GroundEdge-2 and GroundEdge-3 are the largest on-premise
clusters in terms of resource capacities. We deploy a combined 𝕁 =
149 in these 2 clusters. The combined number of tasks deployed in
both clusters is 662. The task dependency depth 𝛾 of each 𝐽 ∈ 𝕁 is
in the range of (2, 16]. Random can only deploy 41% and 51% of
the tasks in these high-capacity on-premise clusters, respectively. In

GroundEdge-2, EdgeColla uses 1%, 3%, and 4% fewer resources, com-

pared with NDFP, PDFP, and PDNP, respectively. EdgeColla and NDFP
also achieve 2% and 4% higher CPU utilization over PDFP and PDNP,
respectively. All the schemes, except Random, achieve the same mem-

ory utilization. In terms of scheduling time, EdgeColla is approximately
58, 18, 34, and 95 times faster than NDFP, PDFP, PDNP, and Random,
respectively. In terms of execution time, EdgeColla is about 4, 7, 12, and
23 times faster than NDFP, PDFP, PDNP, and Random, respectively. In
GroundEdge-3, EdgeColla and NDFP use 2% and 3% fewer resources
than PDFP and PDNP, respectively. EdgeColla and NDFP also achieve
2% and 3% higher CPU utilization than PDFP and PDNP, respectively.
In terms of memory utilization, all the 5 schemes achieve the same uti-

lization. In terms of scheduling time, EdgeColla is 6.6 times faster than
NDFP as well as 9.3 and 12 times faster than PDFP and PDNP, respec-

tively. In terms of execution time, EdgeColla is 3, 6, and 12 times faster
than NDFP, PDFP, and PDNP, respectively. EdgeColla is 38.7 times faster
and 24 times faster than Random in the scheduling time and execution
time, respectively.

4.4. Discussions

Overall, EdgeColla has demonstrated better performance in an in-

tegrated EC system. It has consistently outperformed baseline schemes
(NDFP, PDFP, PDNP and Random) by achieving faster scheduling time
and excution time, and using fewer resources. Utilizing fewer resources
can allow for more tasks to be executed, thereby improving the overall
throughput of EC systems. Effective multi-task dispatching of EdgeColla
across the integrated clusters provides overall system load balancing,
thereby eliminating any resource overload problem. The performance
of EdgeColla can be attributed to its effective dispatching policy, gang-

deployment and co-location of multi-dependent jobs, which allows
inter-dependent tasks within each job to communicate and share data
1849

faster. Such fast execution is crucial for EC applications to perform bet-
Digital Communications and Networks 10 (2024) 1837–1850

ter. The existing schemes do not consider task’s dependencies or multi-

task co-location, leading to edge resource wastage and underutilization,
as well as causing execution delay.

5. Conclusions

This paper has presented an intelligent multi-dependent task dis-

patching and co-location scheme called EdgeColla. Specifically, we de-

rived a CL-based multi-dependent task resource requirements and exe-

cution time estimation method for an integrated edge system through
the control panel, such that multi-dependent tasks are intelligently
dispatched to the closest edge cluster having sufficient resources. To
guarantee the optimal usage of cluster resources, we further utilize
a variant bin-packing optimization approach through gang-scheduling
multi-dependent tasks to co-schedule and co-locate tasks firmly on avail-

able nodes, so as to avoid resource wastage. Our experimental results
demonstrated that EdgeColla is capable of minimizing the actual com-

pletion time of multi-dependent tasks using minimum resources, and
we conducted extensive experiments to compare the performance of our
EdgeColla with several existing approaches using the real-world Alibaba
cluster dataset, which provides information on task dependencies in an
integrated edge system.

CRediT authorship contribution statement

Uchechukwu Awada: Writing – original draft, Methodology, For-

mal analysis. Jiankang Zhang: Writing – review & editing, Validation,
Supervision, Resources, Funding acquisition, Conceptualization. Sheng
Chen: Writing – review & editing, Validation, Methodology. Shuangzhi
Li: Validation, Resources, Investigation, Funding acquisition. Shouyi
Yang: Writing – review & editing, Supervision, Resources, Conceptu-

alization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

The financial support of the National Natural Science Foundation of
China under grants 61901416 and 61571401 (part of the Natural Sci-

ence Foundation of Henan under grant 242300420269), the Young Elite
Scientists Sponsorship Program of Henan under grant 2024HYTP026,
and the Innovative Talent of Colleges and the University of Henan
Province under grant 18HASTIT021 are gratefully acknowledged.

References

[1] U. Bokhari Mohammad, Q. Makki, Y.K. Tamandani, A survey on cloud computing, in:
V.B. Aggarwal, V. Bhatnagar, K. Mishra, Durgesh (Eds.), Big Data Analytics, Springer,
Singapore, 2018, pp. 149–164.

[2] U. Awada, J. Zhang, Edge federation: a dependency-aware multi-task dispatching
and co-location in federated edge container-instances, in: 2020 IEEE International
Conference on Edge Computing (EDGE), IEEE, 2020, pp. 91–98.

[3] H. Guo, J. Liu, Uav-enhanced intelligent offloading for Internet of things at the edge,
IEEE Trans. Ind. Inform. 16 (4) (2020) 2737–2746.

[4] Z. Yu, Y. Gong, S. Gong, Y. Guo, Joint task offloading and resource allocation in
uav-enabled mobile edge computing, IEEE Int. Things J. 7 (4) (2020) 3147–3159.

[5] X. Cao, G. Tang, D. Guo, Y. Li, W. Zhang, Edge federation: towards an integrated
service provisioning model, IEEE/ACM Trans. Netw. 28 (3) (2020) 1116–1129.

[6] U. Awada, J. Zhang, S. Chen, S. Li, Air-to-air collaborative learning: a multi-task
orchestration in federated aerial computing, in: 2021 IEEE 14th International Con-
ference on Cloud Computing (CLOUD), IEEE, 2021, pp. 671–680.

http://refhub.elsevier.com/S2352-8648(24)00095-6/bibA1234B3161B4FBFDFB96DD576B65BBEAs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibA1234B3161B4FBFDFB96DD576B65BBEAs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibA1234B3161B4FBFDFB96DD576B65BBEAs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibD866C8F57BA62888ECACE3E49CB80CB8s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibD866C8F57BA62888ECACE3E49CB80CB8s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibD866C8F57BA62888ECACE3E49CB80CB8s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib2B499360548E2F9695476D2FD27EA01Fs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib2B499360548E2F9695476D2FD27EA01Fs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib02124CCDAE6A597F1E26F2D52B419938s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib02124CCDAE6A597F1E26F2D52B419938s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib15A83AC967FA55F42F68ED58F4005297s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib15A83AC967FA55F42F68ED58F4005297s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib397F65ADCFFCF9972673C30FF1C2F19As1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib397F65ADCFFCF9972673C30FF1C2F19As1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib397F65ADCFFCF9972673C30FF1C2F19As1

Digital Communications and Networks 10 (2024) 1837–1850U. Awada, J. Zhang, S. Chen et al.

[7] U. Awada, J. Zhang, S. Chen, S. Li, Airedge: a dependency-aware multi-task or-

chestration in federated aerial computing, IEEE Trans. Veh. Technol. 71 (1) (2022)
805–819.

[8] G. Faraci, C. Grasso, G. Schembra, Fog in the clouds: UAVs to provide edge comput-

ing to iot devices, ACM Trans. Internet Technol. 20 (3) (2020) 1–26.

[9] J. Ren, H. Wang, T. Hou, S. Zheng, C. Tang, Federated learning-based computation
offloading optimization in edge computing-supported Internet of things, IEEE Access
7 (2019) 69194–69201.

[10] R. Yu, P. Li, Toward resource-efficient federated learning in mobile edge computing,
IEEE Netw. 35 (1) (2021) 148–155.

[11] Q. Wu, K. He, X. Chen, Personalized federated learning for intelligent iot applica-

tions: a cloud-edge based framework, IEEE Open Journal of the Computer Society 1
(2020) 35–44.

[12] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, K.K. Leung, Dynamic service mi-

gration and workload scheduling in edge-clouds, Perform. Eval. 91 (2015) 205–228.

[13] L. Tong, Y. Li, W. Gao, A hierarchical edge cloud architecture for mobile comput-

ing, in: IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on
Computer Communications, IEEE, 2016, pp. 1–9.

[14] Z. Han, H. Tan, S.H.-C. Jiang, X. Fu, W. Cao, F.C. Lau, Scheduling placement-sensitive
bsp jobs with inaccurate execution time estimation, in: IEEE INFOCOM 2020 - IEEE
Conference on Computer Communications, IEEE, 2020, pp. 1053–1062.

[15] C. Anderson, Docker [software engineering], IEEE Softw. 32 (3) (2015) 102–c3.

[16] Q. Ren, K. Liu, L. Zhang, Multi-objective optimization for task offloading based on
network calculus in fog environments, Digital Communications and Networks 8 (5)
(2022) 825–833.

[17] U. Awada, A. Barker, Resource efficiency in container-instance clusters, in: Proceed-

ings of the Second International Conference on Internet of Things, Data and Cloud
Computing, ACM, 2017, pp. 1–5.

[18] U. Awada, A. Barker, Improving resource efficiency of container-instance clusters on
clouds, in: Proceedings of the 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, IEEE, 2017, pp. 929–934.

[19] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, A. Akella, Multi-resource pack-

ing for cluster schedulers, in: Proceedings of the 2014 ACM Conference on SIG-

COMM, ACM, 2014, pp. 455–466.

[20] Z. Hu, J. Tu, B. Li, Spear: Optimized dependency-aware task scheduling with deep
reinforcement learning, in: 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), IEEE, 2019, pp. 2037–2046.

[21] R. Grandl, S. Kandula, S. Rao, A. Akella, J. Kulkarni, Graphene: packing and
dependency-aware scheduling for data-parallel clusters, in: Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation, USENIX As-

sociation, USA, 2016, pp. 81–97.

[22] T.-P. Pham, J.J. Durillo, T. Fahringer, Predicting workflow task execution time in
the cloud using a two-stage machine learning approach, IEEE Trans. Cloud Comput.
8 (1) (2020) 256–268.

[23] F. Nadeem, D. Alghazzawi, A. Mashat, K. Faqeeh, A. Almalaise, Using machine
learning ensemble methods to predict execution time of e-science workflows in het-

erogeneous distributed systems, IEEE Access 7 (2019) 25138–25149.

[24] M.H. Hilman, M.A. Rodriguez, R. Buyya, Task runtime prediction in scientific work-

flows using an online incremental learning approach, in: 2018 IEEE/ACM 11th Inter-

national Conference on Utility and Cloud Computing (UCC), IEEE, 2018, pp. 93–102.

[25] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han, P. Patel, X. Peng,
H. Zhao, Q. Zhang, F. Yang, L. Zhou, Gandiva: introspective cluster scheduling for
deep learning, in: Proceedings of the 13th USENIX Conference on Operating Systems
Design and Implementation, USENIX Association, USA, 2018, pp. 595–610.

[26] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, I. Stoica, Ernest: Efficient per-

formance prediction for large-scale advanced analytics, in: Proceedings of the 13th
Usenix Conference on Networked Systems Design and Implementation, USENIX As-

sociation, 2016, pp. 363–378.

[27] Y. Peng, Y. Bao, Y. Chen, C. Wu, C. Guo, Optimus: an efficient dynamic resource
scheduler for deep learning clusters, in: Proceedings of the Thirteenth EuroSys Con-

ference, ACM, 2018, pp. 1–14.

[28] C. Delimitrou, C. Kozyrakis, Quasar: resource-efficient and qos-aware cluster man-

agement, SIGPLAN Not. 49 (4) (2014) 127–144.

[29] Z. Guo, K. Yu, N. Kumar, W. Wei, S. Mumtaz, M. Guizani, Deep-distributed-learning-

based poi recommendation under mobile-edge networks, IEEE Int. Things J. 10 (1)
(2023) 303–317.

[30] R.-A. Cherrueau, A. Lebre, D. Pertin, F. Wuhib, J.M. Soares, Edge computing resource
management system: a critical building block! Initiating the debate via OpenStack,
in: USENIX Workshop on Hot Topics in Edge Computing (HotEdge 18), USENIX
Association, 2018.

[31] V.S. Marco, B. Taylor, B. Porter, Z. Wang, Improving spark application throughput
via memory aware task co-location: a mixture of experts approach, in: Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference, ACM, 2017, pp. 95–108.

[32] Y. Li, D. Sun, B.C. Lee, Dynamic colocation policies with reinforcement learning,
ACM Trans. Archit. Code Optim. 17 (1) (2020) 1–25.

[33] C. Shu, Z. Zhao, Y. Han, G. Min, H. Duan, Multi-user offloading for edge computing
networks: a dependency-aware and latency-optimal approach, IEEE Int. Things J.
7 (3) (2020) 1678–1689.

[34] J. Liu, H. Shen, Dependency-aware and resource-efficient scheduling for heteroge-

neous jobs in clouds, in: 2016 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), IEEE, 2016, pp. 110–117.

[35] J. Lee, H. Ko, J. Kim, S. Pack, Data: dependency-aware task allocation scheme in
distributed edge clouds, IEEE Trans. Ind. Inform. 16 (12) (2020) 7782–7790.

[36] Y. Liu, S. Wang, Q. Zhao, S. Du, A. Zhou, X. Ma, F. Yang, Dependency-aware task
scheduling in vehicular edge computing, IEEE Int. Things J. 7 (6) (2020) 4961–4971.

[37] Z. Ji, L. Chen, N. Zhao, Y. Chen, G. Wei, F.R. Yu, Computation offloading for edge-

assisted federated learning, IEEE Trans. Veh. Technol. 70 (9) (2021) 9330–9344.

[38] J. Konečný, H.B. McMahan, F.X. Yu, P. Richtarik, A.T. Suresh, D. Bacon, Federated
learning: strategies for improving communication efficiency, in: NIPS Workshop on
Private Multi-Party Machine Learning, Curran Associates, Inc., 2016, pp. 5–10.

[39] Y. Chen, X. Sun, Y. Jin, Communication-efficient federated deep learning with layer-

wise asynchronous model update and temporally weighted aggregation, IEEE Trans.
Neural Netw. Learn. Syst. 31 (10) (2020) 4229–4238.

[40] Z. Chen, W. Liao, K. Hua, C. Lu, W. Yu, Towards asynchronous federated learn-

ing for heterogeneous edge-powered Internet of things, Digital Communications and
Networks 7 (3) (2021) 317–326.

[41] Y. Li, T. Wang, Y. Wu, W. Jia, Optimal dynamic spectrum allocation-assisted latency
minimization for multiuser mobile edge computing, Digital Communications and
Networks 8 (3) (2022) 247–256.

[42] U. Awada, J. Zhang, S. Chen, S. Li, S. Yang, Edgedrones: co-scheduling of drones
for multi-location aerial computing missions, J. Netw. Comput. Appl. 215 (2023)
103632.

[43] H. Tan, Z. Han, X.-Y. Li, F.C. Lau, Online job dispatching and scheduling in edge-

clouds, in: IEEE INFOCOM 2017 - IEEE Conference on Computer Communications,
IEEE, 2017, pp. 1–9.

[44] S. Rampersaud, D. Grosu, Sharing-aware online virtual machine packing in heteroge-

neous resource clouds, IEEE Trans. Parallel Distrib. Syst. 28 (7) (2017) 2046–2059.

[45] J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, L. Mao, Y. Bao, Who limits the re-

source efficiency of my datacenter: an analysis of alibaba datacenter traces, in:
2019 IEEE/ACM 27th International Symposium on Quality of Service (IWQoS), IEEE,
2019, pp. 1–10.

[46] H. Wu, W. Zhang, Y. Xu, H. Xiang, T. Huang, H. Ding, Z. Zhang, Aladdin: opti-

mized maximum flow management for shared production clusters, in: 2019 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), IEEE, 2019,
pp. 696–707.

[47] F. Li, B. Hu, Deepjs: job scheduling based on deep reinforcement learning in cloud
data center, in: Proceedings of the 2019 4th International Conference on Big Data
and Computing, ACM, 2019, pp. 48–53.

[48] U. Awada, J. Zhang, S. Chen, S. Li, S. Yang, Resource-aware multi-task offloading
and dependency-aware scheduling for integrated edge-enabled iov, J. Syst. Archit.
141 (2023) 102923.

[49] W. Huang, Z. Zeng, N.N. Xiong, S. Mumtaz, Joet: sustainable vehicle-assisted edge
computing for iot devices, J. Syst. Archit. 131 (2022) 102686.
1850

http://refhub.elsevier.com/S2352-8648(24)00095-6/bib0924F0A2FACF5B082A703E9294183C01s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib0924F0A2FACF5B082A703E9294183C01s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib0924F0A2FACF5B082A703E9294183C01s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib14781EE5E859104D453AD3EB28B441E5s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib14781EE5E859104D453AD3EB28B441E5s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib85DC3B96A50A1468F0C277E4D20D67DDs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib85DC3B96A50A1468F0C277E4D20D67DDs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib85DC3B96A50A1468F0C277E4D20D67DDs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib966B518AF458F92F5611F7B120EE3F16s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib966B518AF458F92F5611F7B120EE3F16s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib12C6B1DED7E2EB891AF88DBE65B120CCs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib12C6B1DED7E2EB891AF88DBE65B120CCs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib12C6B1DED7E2EB891AF88DBE65B120CCs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib094CE265DDDA7DE2AC039A3BA155AB12s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib094CE265DDDA7DE2AC039A3BA155AB12s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib5808F5C126EB1BCB1A6738E6BC3E09CCs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib5808F5C126EB1BCB1A6738E6BC3E09CCs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib5808F5C126EB1BCB1A6738E6BC3E09CCs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib16CA93DF9965E5296337CD88C52F1A2Cs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib16CA93DF9965E5296337CD88C52F1A2Cs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib16CA93DF9965E5296337CD88C52F1A2Cs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib05B6053C41A2130AFD6FC3B158BDA4E6s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibD9D729A2FC731C33EA1360682D73AAD5s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibD9D729A2FC731C33EA1360682D73AAD5s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibD9D729A2FC731C33EA1360682D73AAD5s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib710714CAD7690AC8552D1D394D5D42C8s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib710714CAD7690AC8552D1D394D5D42C8s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib710714CAD7690AC8552D1D394D5D42C8s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib5D68AE6F5600CE898E5E6E94AA19723Cs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib5D68AE6F5600CE898E5E6E94AA19723Cs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib5D68AE6F5600CE898E5E6E94AA19723Cs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibEA8F243D9885CF8CE9876A580224FD3Cs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibEA8F243D9885CF8CE9876A580224FD3Cs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibEA8F243D9885CF8CE9876A580224FD3Cs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibDC700272F46FB3DDD0550F40664239AFs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibDC700272F46FB3DDD0550F40664239AFs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibDC700272F46FB3DDD0550F40664239AFs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibEBDE8080C092FC908416083A701FEB30s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibEBDE8080C092FC908416083A701FEB30s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibEBDE8080C092FC908416083A701FEB30s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibEBDE8080C092FC908416083A701FEB30s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib68C2C4BACFF451330AC7D1B5486164CEs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib68C2C4BACFF451330AC7D1B5486164CEs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib68C2C4BACFF451330AC7D1B5486164CEs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib7E77354BFE06505DAB35C6C854E99533s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib7E77354BFE06505DAB35C6C854E99533s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib7E77354BFE06505DAB35C6C854E99533s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib20E53EB925B38E6C1589E8654DBDC992s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib20E53EB925B38E6C1589E8654DBDC992s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib20E53EB925B38E6C1589E8654DBDC992s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibF9C2DBE214BADEAF0BFA5869FFD5F53Ds1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibF9C2DBE214BADEAF0BFA5869FFD5F53Ds1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibF9C2DBE214BADEAF0BFA5869FFD5F53Ds1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibF9C2DBE214BADEAF0BFA5869FFD5F53Ds1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibC0A406F0315B11C05ECCA03C635A98ADs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibC0A406F0315B11C05ECCA03C635A98ADs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibC0A406F0315B11C05ECCA03C635A98ADs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibC0A406F0315B11C05ECCA03C635A98ADs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib8F2473FD5BBB865CA193C5FA1AA41C40s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib8F2473FD5BBB865CA193C5FA1AA41C40s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib8F2473FD5BBB865CA193C5FA1AA41C40s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibE68A63FCB491FB3C2CF10EEB06D536E2s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibE68A63FCB491FB3C2CF10EEB06D536E2s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib187DA83771C1B8646AEB9EB895FA15C0s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib187DA83771C1B8646AEB9EB895FA15C0s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib187DA83771C1B8646AEB9EB895FA15C0s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibD10AF457DAA1DEED54E2C36B5F295E7Es1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibD10AF457DAA1DEED54E2C36B5F295E7Es1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibD10AF457DAA1DEED54E2C36B5F295E7Es1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibD10AF457DAA1DEED54E2C36B5F295E7Es1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib30A8F6836FC3D0A94938C6B33E024454s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib30A8F6836FC3D0A94938C6B33E024454s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib30A8F6836FC3D0A94938C6B33E024454s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib7F06FC72C8C75E268E75351A702AEECDs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib7F06FC72C8C75E268E75351A702AEECDs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib640ED5EE25A11678D78F88C766AA6173s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib640ED5EE25A11678D78F88C766AA6173s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib640ED5EE25A11678D78F88C766AA6173s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib103D1DB83B4BCBCDB556FE3B998BF3C6s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib103D1DB83B4BCBCDB556FE3B998BF3C6s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib103D1DB83B4BCBCDB556FE3B998BF3C6s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib99B98351F95F07A217C1965C65919DCBs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib99B98351F95F07A217C1965C65919DCBs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibDA0586C987D53088E3797941F3998FD8s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibDA0586C987D53088E3797941F3998FD8s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib24CCED45949F87B6967226CE7BF4A96Es1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib24CCED45949F87B6967226CE7BF4A96Es1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibF2931002F3BD2262B2F05A36A7610FA5s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibF2931002F3BD2262B2F05A36A7610FA5s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibF2931002F3BD2262B2F05A36A7610FA5s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibA9959C89A13C8135C2D4C14066D5CE1As1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibA9959C89A13C8135C2D4C14066D5CE1As1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibA9959C89A13C8135C2D4C14066D5CE1As1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibE9F38B810CFE101F1AA204F1E3D5F888s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibE9F38B810CFE101F1AA204F1E3D5F888s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibE9F38B810CFE101F1AA204F1E3D5F888s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibD2D189775AF5E7891B5E86FF9AE51341s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibD2D189775AF5E7891B5E86FF9AE51341s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibD2D189775AF5E7891B5E86FF9AE51341s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib34701E570196174C2095C78A19A5B39Es1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib34701E570196174C2095C78A19A5B39Es1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib34701E570196174C2095C78A19A5B39Es1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib0FA5F03A2FE5DA42D187527E86F47DE5s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib0FA5F03A2FE5DA42D187527E86F47DE5s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib0FA5F03A2FE5DA42D187527E86F47DE5s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibF2393781E4B1D0B066785C3BAA341482s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibF2393781E4B1D0B066785C3BAA341482s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib9DED81A8FE2FA1A9E11B1FF25D6B229As1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib9DED81A8FE2FA1A9E11B1FF25D6B229As1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib9DED81A8FE2FA1A9E11B1FF25D6B229As1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib9DED81A8FE2FA1A9E11B1FF25D6B229As1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib0E6287E09215B864EDF95A4A8AF61B3Fs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib0E6287E09215B864EDF95A4A8AF61B3Fs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib0E6287E09215B864EDF95A4A8AF61B3Fs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib0E6287E09215B864EDF95A4A8AF61B3Fs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib6D86960FB11B575718703ECF2B787797s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib6D86960FB11B575718703ECF2B787797s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib6D86960FB11B575718703ECF2B787797s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib5017BE8446EF6C33E782F06D726E7EDFs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib5017BE8446EF6C33E782F06D726E7EDFs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bib5017BE8446EF6C33E782F06D726E7EDFs1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibED963BE22C150CE1D7CC5A4EFA4724C6s1
http://refhub.elsevier.com/S2352-8648(24)00095-6/bibED963BE22C150CE1D7CC5A4EFA4724C6s1

	Collaborative learning-based inter-dependent task dispatching and co-location in an integrated edge computing system
	1 Introduction
	1.1 Motivating examples

	2 Related work
	3 System model, problem formulation and algorithm framework
	3.1 Problem formulation
	3.1.1 Constraints
	3.1.2 Optimization formulation

	3.2 EdgeColla algorithm framework
	3.2.1 Resource and execution time estimation
	3.2.2 Dispatching
	3.2.3 Co-location
	3.2.4 Connection with optimization objectives

	4 Performance evaluation
	4.1 Experimental setup
	4.2 Device mobility and communication
	4.3 Deployment results and performance comparison
	4.3.1 Resource and execution time estimation accuracy
	4.3.2 Performance comparisons across integrated edge-enabled CL clusters
	4.3.3 Performance comparisons in individual clusters

	4.4 Discussions

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

