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Abstract
In this paper, we study urban road infrastructure in densely populated cities. As the subject of our
study, we choose road networks from 35 populous cities worldwide, including China, India,
Pakistan, Colombia, Brazil, Bangladesh, and Cote d’Ivoire. We abstract road networks as complex
systems, represented by graphs consisting of nodes and links, and employ tools from network
science to study their topological properties. Our multi-scale analysis includes macro-, meso-, and
micro-scale perspectives, deriving insights into both common and unexpected patterns in these
networks. At the macro-scale, we examine the global properties of these networks, summarizing
the results in radar diagrams. This analysis reveals significant correlations among key metrics,
indicating that more robust networks tend to be more efficient, while diameter and average path
length show negative correlations with other properties. At the meso-scale, we explore the
existence of sub-structures embedded within the road networks using two main concepts, namely,
community and core-periphery structures. We find that while these densely populated city road
networks show particularly strong community structures (high modularity values, close to 1.0) that
are not typical to other networks, they exhibit a low level of presence of core-periphery structures,
with an average coreness of 6.3%. This points to the cities being polycentric. At the micro-scale, we
find nodal-level properties of the network. Specifically, we compute the various centrality measures
and examine their distributions to capture the prevalent characteristics of these networks. We
observe that the centrality measures present different distribution patterns. While the degree
distribution demonstrates a limited range of degree values, the betweenness centrality distribution
follows a power law, and the closeness centrality exhibits a binomial distribution—yet these
patterns remain consistent across the studied cities. Overall, our multi-scale analysis provides
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valuable insights into the topological properties of urban road networks, informing city planning,
traffic management, and infrastructure development in similar urban environments.

Keywords
Urban road networks, complex systems, network properties

Introduction

Continuous urbanization is fostering the growth of cities around the world (UN Habitat, 2022).
These cities act as the hubs or marketplaces for goods and services. They offer more economic
opportunities and have attracted influxes of citizens seeking their fortune. Such growth puts strains
on the city infrastructures including the transportation system. The seamless functioning of city
services relies heavily on an efficient and robust road network which is the subject of study in this
paper. Similar to most real-world networks, urban road networks evolve and grow over time, and
their complexity increases from the rise of interconnectedness, and the dynamic processes involved,
as vehicles navigate within the networks’ configuration and structure (Boeing, 2018).

As urban areas continue to expand and evolve, understanding the structure and dynamics of
urban road networks becomes crucial for ensuring sustainable development and improving the
quality of life for residents. Given that road networks are the backbone of urban mobility, their
design and functionality directly impact economic growth, accessibility, and environmental sus-
tainability. Understanding the topological characteristics of road networks is also essential for a
variety of stakeholders, especially urban planners, transportation engineers, and policymakers.

By analyzing the topological features of road networks, these stakeholders can make informed
choices regarding infrastructure development, traffic control, and sustainable urban development
(Badhrudeen et al., 2022; Buhl et al., 2006). Urban planners benefit from an understanding of the
network’s structure when creating efficient designs that encourage public transportation use,
mitigate traffic congestion, and improve overall connectivity within urban areas (Casali and
Heinimann, 2019; Strano et al., 2012). In transportation engineering, topological assessments
are used to understand, evaluate, and also improve the design and functions of transportation
networks/systems such as enhancing traffic flow efficiency and pinpointing critical network nodes
for infrastructure enhancements (Baruah and Bora, 2018; Jayasinghe et al., 2017). Policymakers
leverage this knowledge to allocate resources efficiently and prioritize infrastructure initiatives
(Burghardt et al., 2022; Tsiotas and Polyzos, 2017).

In recent years, advancements in understanding the structure and dynamics of urban road
networks have been made through the application of various mathematical tools including complex
network analysis, graph theory, and epidemic theory (Boeing, 2018) and the corresponding dynamic
processes (Kozhabek et al., 2024) to analyze network topology. Various questions have been
investigated using such approaches. These include, for instance, the identification of travel be-
haviors of city inhabitants (Levinson and El-Geneidy, 2009), the evaluation of transportation
performance (Levinson, 2012), and the comprehension of the urban organization (Crucitti et al.,
2006; Newman, 2012). We present a summary of relevant studies in which we segregate the
different perspectives taken by the literature into three scales in the Literature Review section.

In this work, we contribute towards the study of topological properties of real-world urban road
networks. We selected 35 densely populated cities and studied their road networks (see the
Supplemental Material, Road Network Dataset section for the details of the dataset which is
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extracted from OpenStreetMap). Further, we contribute methodologically and propose a multi-scale
analysis approach subjecting the chosen road networks to three prevalent perspectives found in the
literature, namely, macro-, meso-, and micro-scale (see Theoretical Network Metrics section). We
employ a collection of metrics and concepts from network science and draw insights into different
properties of these networks and present them in the Results and Analysis section. From our multi-
scale analysis, we gained different insights, for example, robust networks tend to be more efficient
and that many of these cities exhibit polycentric structures, with multiple centers of connectivity.We
also observed distinct patterns in the distribution of centrality measures, with betweenness fol-
lowing a power-law distribution, highlighting important differences in how these road networks
function compared to other real-world networks. These insights can guide urban planning, par-
ticularly in managing city decentralization and improving infrastructure resilience. This study
contributes to the field by offering a scalable, multi-scale analysis framework that can be applied to
other urban networks. The methodology and findings presented here provide valuable insights for
transportation engineers and policymakers in shaping more efficient and resilient urban envi-
ronments. Finally, we summarize our findings in the Conclusions section.

Literature review

In recent years, aided by the availability of new datasets, there have been various studies on
transportation systems including air transportation (e.g., Diop et al., 2021; Siozos-Rousoulis et al.,
2021), rail and metro networks (e.g., Derrible and Kennedy, 2010; Wang et al., 2017), public
transportation networks (e.g., bus network Li et al., 2020), and urban road networks (e.g., Jiang
et al., 2008; Lämmer et al., 2006; Lee and Jung, 2018; Liu, 2019; Reza et al., 2022). These studies
have focused on different aspects or questions ranging from understanding topological properties
(e.g., computing the efficiency of the network) to finding vulnerabilities or bottlenecks (e.g.,
identifying key nodes against failure or targeted attacks). In this paper, we focus on road networks
which prove to be challenging and rich in properties due to the fact that, unlike air, rail, and buses,
vehicles do not follow timetables/schedules, and depending on the level of abstractions, the road
networks may include various different link types and features (roundabouts vs junctions, highways
vs small lanes, traffic lights, etc.). Methodologically, tools and concepts from network science
(Barabási, 2013), with roots from graph theory, have widely been used in the examination and
understanding of these complex networks (Newman, 2012). In fact, the well-known Königsberg’s
bridges problem, solved by Euler in 1735, can be considered as the earliest and simplified
transportation optimization problem. This problem not only served as a basis for the development of
graph theory but also introduced the initial concepts of network topology into transportation
research (Barabási, 2013). Since then, there are various metrics and approaches developed.

One intuitive way to study road networks is to view the entire topology as one whole system and
compute some overall properties (often taking the mean value of some indicator). Basic metrics such
as network diameter/radius, link density, average degree, average path length, and global clustering
coefficient are commonly used. The significance of these metrics has been explored, for instance, in
Buhl et al. (2006), Jiang and Claramunt (2004), and Barthélemy (2011). Average node degree is one
of the most used metrics (not limited to road networks). It offers a first insight into the level of
connectivity in the network. However, road networks are spatial networks, and thus, the physical
road infrastructure is often constrained by the actual geographical space and terrain of the geo-
graphical area. Studies such as Boeing (2017) and Barthelemy (2018) have all noted that due to
spatial restrictions, often the degree is also constrained.

Another dimension of complexity relates to the fact that geography and environment evolve over
time and hence metrics may also change (e.g., Casali and Heinimann (2019) analyzed the road
network topology in Zurich over the period between 1955 and 2012 and found some spatial metrics
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considered here (e.g., betweenness and closeness centrality metrics) can be used to identify changes
in infrastructure. Casali and Heinimann (2019) further highlighted that nodes with high betweenness
tend to be locations that offer accesses to narrow passages such as bridges and tunnels. Additionally,
the paper by Cheng et al. (2023) conducts a large-scale empirical analysis of urban road networks
across 363 cities in China, revealing that while some topological metrics like average node degree
and edge density remain consistent across various boundary definitions, significant differences exist
in metrics such as clustering coefficient and average edge length, with only 21%–28% overlap in
high-centrality nodes between networks extracted using administrative and daily travel range
boundaries. Hillier et al. (2012) apply Depthmap software to analyze urban spaces primarily within
a macro framework, illustrating how spatial configuration significantly affects accessibility and
connectivity in urban road networks. On the other hand, other studies such as Novak and Sullivan
(2014) and Sharifi (2019) highlighted the importance of path-based metrics such as average path
lengths which may also be influenced by physical space as well as dynamic events/processes
(congestion, disruptions, or road closures). While it is valuable to analyze the network as a whole
system and compute overall properties, focusing solely on these macroscopic metrics may overlook
crucial insights at smaller scales.

As opposed to the above-mentioned body of work focusing on the average behavior of the
network as one whole system, other studies have focused on the sub-structure of the network. The
detection of community structures in a network was first introduced by Newman and Girvan (2004)
where modularity is proposed to measure the presence of communities in a network. This has
subsequently been applied to road networks (e.g., Duan and Lu, 2013; Duan and Lu, 2014; Song and
Wang, 2010). Specific to urban cities, Kloosterman and Musterd (2001) found that modularity has a
correlation with regional urbanization and exploited it as an indicator of the presence of either
polycentrism or monocentrism in regional structures. Modularity is also used to find nodes with the
closest relations in a road network (Tang et al., 2013).

On the other hand, Sun et al. (2016) proposed a spectral method based on modularity to obtain
traffic communities in a network focusing on taxi trips which is used to understand the effects of
various traffic needs on the spatial distribution of communities. A heuristic approach was employed
by Yildirimoglu and Kim (2018) to maximize modularity based on the interactions between
different traffic types. The core-periphery structure is another sub-structure often found in networks
and could describe the existence of highly mesh nodes in the center of a city. Works such as
Cucuringu et al. (2016) and Lee et al. (2014) extend the application of this concept to road networks,
developing the idea of transport-based coreness instead of the original concept purely based on
connectivity as in Borgatti and Everett (2000). Examining the sub-structure of the network offers
insights into the intermediate structures and connections within the system.

Meanwhile, there is also another body of work focusing on nodal-level properties of a network
(i.e., focusing on the importance or role of individual nodes). These works commonly use a
combination of different centrality measures to answer their research questions. Degree, be-
tweenness, and closeness centralities appear to be the most used measures (e.g., Crucitti et al., 2006;
Lin and Ban, 2017; Liu, 2019; Porta et al., 2006; Reza et al., 2022; Shang et al., 2020a) in this
category of studies. In Crucitti et al. (2006), the authors conducted an analysis of centrality measures
and their spatial distributions across urban networks in different cities around the world. Centrality
is also used to examine growth patterns as a result of urbanization. For instance, the evolution of
Paris from 1789 to 2010 was investigated, highlighting a reorganization in the spatial distribution of
centrality (Barthelemy et al., 2013). As prior mentioned, Casali and Heinimann (2019) also tracked
the evolution of the road network in Zurich and they found that traditional metrics such as alpha, beta,
and gamma indices failed to capture the changes in time while studying the network using centrality
metrics such as betweenness and closeness reveals new insights such as critical nodes increasingly
become even more critical over time based on betweenness centrality. In Strano et al. (2012), authors
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identified two urbanization processes, densification, and exploration, in a northern area of Milan,
using differences in betweenness centrality values at each edge to quantify these processes.

The relationship between centrality measures in road networks and land use was also explored
(e.g., in Wang et al., (2011) and; Zeng, 2020)). These works found that closeness centrality showed
the highest correlation with land use densities, while betweenness centrality exhibited a weaker
correlation. In Jiang et al. (2008), authors investigated the correlation between traffic flow and
centrality measures in self-organized road network systems. In the city of Bologna, Porta et al.
(2009) studied the connection between the centrality of the street interconnections and the densities
of commercial and service activities. They discovered a high correlation between these activities and
the global betweenness of the street network, as well as a slightly lower correlation with the global
closeness centrality.

From the above, we can already see the literature has adopted various different perspectives when
studying road networks. Employing aggregated network-wide metrics offers insights into the
network property as a whole while nodal-level metrics give indications on the importance of nodes
in the network. As such, the different perspectives have their strengths. We thus see a gap in which
most relevant studies are still studying road networks focusing on one particular perspective or even
specific metric. This paper is then motivated by the opportunity and potential to exploit the ad-
vantages offered by different perspectives in studying road networks.

In this paper, we thus advocate for a multi-scale analysis approach to understand the full range of
road network characteristics. By conducting multi-scale analysis, we aim to uncover more insights,
especially by linking observations or dependencies from one scale to another. For instance, while
macro-scale properties may offer an overall indication of a network on specific properties, these
could be explained better with nodal-level observations. Certain centrality distributions or clustering
may directly result in the formation of some sub-structures such as communities. Closely correlated
metrics at different scales may be identified to inform future research on their similarity and thus
offering limited additional insights from one to the other (Wang et al., 2017). By integrating these
analyses, we aim to paint a more comprehensive picture of the overall network topology, capturing
global, regional, and local properties.

Theoretical network metrics

In this section, we detail the tools and metrics from network science used in our analysis. Based on our
literature review, we have consolidated and logically categorized them into three scales: macro-, meso-
and micro-scales. They were chosen based on their ability to capture different aspects of network
structure. Each metric type serves a distinct purpose. We will elaborate on this in the next subsections.

We abstract the road networks and represent them as undirected graph, GðV, EÞ with V ¼
v1,…, vN the set of nodes and E ¼ e1,…, eL the set of links where N ¼ jVj and L ¼ jEj. In our case,
the nodes represent the road intersections/junctions while the links represent road segments
connecting two nodes. G can be represented by A, the N × N symmetric adjacency matrix, with ai,j =
1 if there exists a link between nodes vi and vj and 0 otherwise.

The illustration in Figure 1 delineated metrics at macro- meso-, and micro scales. By con-
solidating metrics from these distinct scales, a more comprehensive understanding of the archi-
tecture can be achieved, enabling a detailed assessment and analysis.

Macro-scale metrics

By macro-scale metrics, we are referring to metrics that describe the network as a whole. Often this
is an average value of certain measures. We consider nine such global metrics. They can be further
segregated into three categories based on the specific features considered by the metric.
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· Macro-scale metrics based on overall network size and links. Specifically, we consider the
robustness indicator and meshedness coefficient which are both computed as a function of N
and L.

· Macro-scale metrics based on local connectivity. These metrics consider the average of some
local features of each node. The prominent input for these metrics is based on the node
degrees and/or their immediate neighbors. For this, we consider average degree, degree
diversity, clustering coefficient, and transitivity. From our literature review, given that road
networks commonly have constrained degrees due to spatial features, we can hypothesize that
the urban road networks could exhibit low average degree and limited degree diversity while
relatively higher clustering coefficient and transitivity despite low degree since in these
crowded cities, nodes are likely to be physically close to each other.

· Macro-scale metrics based on paths. These metrics consider the paths between pairs of nodes
to characterize the network. We consider network diameter, average path length, and network
efficiency for this.

In the following, we introduce the metrics mentioned above.

The robustness indicator, rT. The robustness indicator, first introduced in Derrible and Kennedy
(2010), was later modified by Wang et al. (2017) and was used to measure the robustness of metro
networks. In its original form, it considers the number of alternative paths in the network as a ratio of
those paths over the total number of nodes in the network. It considers multi-edge scenarios where
there may be multiple links between a pair of nodes. Similar to Wang et al. (2017), we also do not
consider multi-edge graphs and our networks are also sufficiently sparse. Essentially, rT increases
when there are more alternative paths available to reach a destination, and decreases in larger
systems that may be more difficult to maintain. Thus, for this work, we use the following:

rT ¼ lnðL� N þ 2Þ
N

, (1)

with L the number of links and N the number of nodes (intersections).

Figure 1. Conceptual visualization of the micro-, meso-, and macro-scale metrics.
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Meshedness coefficient, m. In the context of street networks, Cardillo et al. (2006) proposed the
concept of meshedness coefficient, m, by considering the network as a planar graph since in reality,
road networks are spatially embedded networks. The coefficient exploits the Euler formula, F = L�
N + 1 as the numerator where F is the number of faces of the planar graph while the maximum
number of faces when considering a maximally connected planar graph, Fmax = 2N � 5 as the
denominator:

m ¼ F

Fmax
¼ L� N þ 1

2N � 5
: (2)

As the name implies, meshedness coefficient is a measure that quantifies the degree of inter-
connectedness or “meshedness” in the network. One property of this measure is that it ranges
between 0 and 1. With maximal planar graphs where L = 3N � 6, we obtain m = 1 while m = 0 for
tree graphs. A high meshedness coefficient indicates a high level of connectivity and redundancy in
the road network (Lin and Ban, 2013; Wang et al., 2013). This means that there are multiple routes
or paths between different locations, which can increase the robustness and resilience of the
network. Conversely, a low meshedness coefficient indicates a less connected network with fewer
alternative routes (Knaap and Rey, 2023).

Average degree, d. One of the most commonly used quantities in complex network analysis is the
node degree which indicates the number of immediate neighbors of a node. For instance, in the
context of road networks, this has been used in various forms (Crucitti et al., 2006; Lee and Jung,
2018; Lin and Ban, 2017; Liu, 2019; Porta et al., 2006; Reza et al., 2022; Shang et al., 2020a; Shang
et al., 2020b; Zeng, 2020) with the simplest being the average degree of all nodes in the considered
network which could be obtained as follows:

d ¼ 1

N

XN
i¼1

di (3)

where di is the degree of node vi, that is, di ¼
PN

j ai, j. A network with higher d indicates higher link
density which in turn implies better network robustness.

Degree diversity, κ. A closely related degree-based metric of average degree is the degree diversity,
the second-order average, which is given as Wang et al. (2017):

κ ¼
PN

i¼1d
2
iPN

i¼1di
: (4)

This quantity is often used in epidemic and percolation theory. For instance, in epidemic
theory, it relates to the epidemic threshold below which the epidemic will die off (Boguná et al.,
2003). To normalize the degree diversity within the range of [0, 1], we take the inverse of the
degree diversity.

Clustering coefficient, CCG. First introduced in Watts and Strogatz (1998), the clustering coefficient
has become a widely used metric to assess how the neighbors of a node are connected with one
another. The clustering coefficient of a node represents the proportion of links that exist between its
neighboring nodes out of the maximum possible number of links (Boeing, 2017, 2018). The
clustering coefficient of node vi is defined as follows:

Kozhabek and Chai 7



CCi ¼ 2Ei

diðdi � 1Þ, (5)

where Ei is the number of links connecting neighbors of nodes vi and di is the degree of node vi. The
clustering coefficient of a node vi characterizes the connection density among the neighbors of node
vi. The maximum clustering coefficient is achieved in a complete graph where all the neighbors of a
node are connected. From the above, we can then obtain the average clustering coefficient as
follows:

CCG ¼ 1

N

XN
i¼1

CCi: (6)

For a graph with N nodes, the clustering coefficient is bounded by 0 ≤ CCG ≤1 where 0 is
obtained in a tree and 1 is reached in a complete graph. In our context, it serves as a measure of the
connectivity of a road network by assessing the degree to which the neighborhood of a specific
intersection/junction is interconnected (Jiang and Claramunt, 2004). The average clustering co-
efficient is likely to be higher in spatially embedded networks such as road networks due to the fact
that nodes located in close proximity are more likely to be connected (Barthelemy, 2018).

Transitivity, τG. Transitivity was introduced by Newman et al. (2002), as an alternative formulation
of the clustering coefficient of a graph (Schank and Wagner, 2005). Let G denote a simple and
undirected graph. A triangle, represented by Δ ¼ ðVΔ, EΔÞ, is a complete subgraph of G consisting
of exactly three nodes. The number of triangles in graph G is denoted as λ(G), and it can be
calculated by taking one-third of the sum of the triangle counts for each node, that is, λ(G) = 1/
3
P

i2Vλ(i).
A triple refers to a subgraph in G with three nodes and two edges. A triple at vi is defined as one

where vi is incident to both edges of the triple. The number of triples at vi in terms of its degree di is
given by:

TG ¼ d2
i � di
2

(7)

the total number of triples in the entire graph is determined by summing up the triple counts for each
node, denoted as T(G) =

P
i2VT(i).

The transitivity of a graph, τG, is defined as the ratio of three times the number of triangles inG to
the number of triples in G, as proposed in Brinkmeier and Schank (2005):

τG ¼ 3 × λðGÞ
TG

(8)

Since each triangle contains exactly three triples, it follows that 3λ(G) ≤ T(G). Consequently, the
transitivity τ(G) is always a rational number ranging from 0 to 1. Transitivity is closely related to the
clustering coefficient and is sometimes used as an alternative where both provide insights into
the local connectivity structure of a network (Schank and Wagner, 2005).

Network diameter, D. Distance between nodes in a network is often important in network analysis.
This is also true for road networks. The network diameter is one of the most basic quantities
describing the network in terms of node distance. It is the maximum node eccentricity that cor-
responds to the longest shortest path amongst all pairs of nodes in the network of interest
(Wasserman and Faust, 1994).
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D ¼ max
i, j

ðHijÞ (9)

where Hij denotes the shortest path distance (in hop count) between node vi and vj. When G is not
connected, we find the diameter of each connected component and take the maximum value.

Average path length,HG. While network diameter only uses one particular path as an indicator of the
graph property, a more informative measure considering all shortest paths is the average path length,
HG (Newman, 2012). Essentially, it is the mean of shortest path lengths between all node pairs
(Newman et al., 2002):

HG ¼ 2

NðN � 1Þ
XN
i¼1

XN
j¼1

Hi, j (10)

where N is the number of nodes in the network.

Efficiency, effG. The measure of network efficiency provides an indication of how easily traffic
spreads through an arbitrary network. It is given by the average of reciprocals of all the shortest
paths between node pairs and can be given as follows (Latora and Marchiori, 2002):

effG ¼ 2

NðN � 1Þ
XN
i¼1

XN
j¼1

1

Hi, j
: (11)

In this measure, the network is considered to be more efficient when nodes can reach each other
in fewer hops (i.e., shorter paths).

Meso-scale metrics

Mesoscopic structures relating to subgraph patterns in complex networks have recently gained
much attention. In this work, we focus on two main concepts: community and core-periphery
structures.

Community. A population often consists of different communities where a subset of nodes have
more connections among them than to others. A string of research has attempted to capture such
phenomena. Given the social contact network, the goal is to find community structures in the graph.
In this work, we exploit the concept ofmodularity,Q, one of the most used functions in determining
communities in a network (Newman and Girvan, 2004), which is measured by using the following:

Q ¼ 1

2L

X
i, j

aij � didj
2L

� �
μðci, cjÞ, (12)

where ci is the community of i, cj that of j, the sum goes over all i and j pairs of nodes, and μ(ci, cj) is
1 if ci = cj and 0 otherwise. Various modularity algorithms have been proposed in the literature, and
in our work, we use the Clauset–Newman–Moore algorithm (Clauset et al., 2004). Modularity
maximization is an NP-complete problem (Brandes, 2006). It is beyond the scope of this paper to
investigate the goodness of the various available algorithms.

Core-periphery. The core-periphery structure is a common pattern seen in many real-world net-
works, such as social networks, neural networks, and transportation systems. In this structure, nodes
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in the network are divided into two main groups: core nodes and periphery nodes. Core nodes are
highly interconnected with each other, forming a tight-knit group that acts as the central part of the
network. On the other hand, periphery nodes are linked to core nodes but do not connect with one
another, meaning they operate more independently (Borgatti and Everett, 2000). This separation
helps us understand the different roles that nodes play in the network and how information and
resources move through it. Researchers have built on this idea; for example, Kojaku and Masuda
(2017a) developed a scalable algorithm to find multiple non-overlapping core-periphery groups
within a network. Similarly, Holme (2005) introduced a CP coefficient that uses closeness centrality
and the k-cores deposition technique to identify core nodes, assuming that these core nodes
generally have high closeness centrality. Additionally, Rombach et al. (2014) explores the dynamics
of core-periphery structures, highlighting their importance for understanding how networks behave,
their resilience, and how effectively they transmit information and resources.

The distinction between core and periphery plays a significant role in the function and dynamics
of the network. In transportation networks, core nodes may be central hubs with numerous
connections, while peripheral nodes represent smaller, less connected locations. This observation
supports the use of the transport-based core-periphery detection algorithm known as the Path-Core
(PC) algorithm, as proposed by Cucuringu et al. (2016), which effectively focuses on paths rather
than just immediate neighbors. We have also considered different algorithms (e.g., Borgatti’s
algorithm [Borgatti and Everett, 2000]) but most proved to be computationally infeasible for the
large datasets we consider here.

According to the PC algorithm, core-periphery structure identification bears a resemblance to
betweenness centrality (defined later in the Micro-scale Metrics section) in network analysis. The
Path-Core metric of node vi, PC(vi), is defined as follows:

PCðviÞ ¼
X

ðj, kÞ2E
ðj, kÞ ≠ vi

σjkðviÞjGnðj, kÞ
σjk Gnðj, kÞ

�� (13)

where σjk|G \ (j, k) counts the number of shortest paths between node j and k in the network G after
removing the edge (j, k) itself. Additionally, σjk (vi)|G \ (j, k) counts the subset of these paths that pass
through node vi.

Micro-scale metrics

For micro-scale metrics, we are looking into nodal-level measures of nodes in a network. Spe-
cifically, we exploit widely used centrality measures to rank nodes or links based on their relative
importance and examine their distributions to derive insights into the characteristics of given
networks. Various works such as Crucitti et al. (2006), Lämmer et al. (2006), and Barthélemy (2011)
have already utilized centrality measures in the context of road networks, and in this work, we
choose the three most commonly used centrality measures as follows.

Degree centrality. The simplest yet most widely used centrality measure is the degree centrality. The
degree centrality of a node is the number of direct neighbors the node has (see subsection Average
degree). Networks with different degree distributions can exhibit vastly different properties. For
instance, Erdös–Rényi random graph model (Erdos et al., 1960) has a binomial degree distribution
(or a Poisson distribution in the limit of large N) while scale-free networks (Barabási, 2013) have
power-law degree distribution and both models have different properties (Erdos et al., 1960).
Degree centrality of a node vi, cD (vi), is defined as follows:
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cDðviÞ ¼ di
N � 1

(14)

Betweenness centrality. The betweenness centrality measures the number of times a node lies on the
shortest paths between all pairs of nodes in a network (Wasserman and Faust, 1994). It appears as a
natural representation of load in terms of traffic in road networks. With the assumption that road
users normally use the shortest route to get to their destinations, then betweenness centrality
provides a good indicator to measure the burden of nodes in the transport process. Even in instances
where movement within the network is random, locations with high betweenness centrality ex-
perience higher volumes of traffic or congestion, as indicated by Crucitti et al. (2006) and
Barthélemy (2011). Hence, nodes characterized by high betweenness centrality are more susceptible
to disruptions and congestion. Betweenness centrality of a node vi, cB(vi), is defined as follows:

cBðviÞ ¼
X

vj , vk2V

σðvj, vk jviÞ
σðvj, vkÞ , (15)

where σ(vj, vk) is the number of shortest paths between vj and vk and σ(vj, vk|vi) is the number of those
paths passing through vi.

Betweenness distribution has been found to follow power-law in scale-free graphs which are
used to model various types of real-world networks such as the Internet and road networks
(Faloutsos et al., 1999). Such betweenness distribution is exploited in path-based problems (e.g., in
content caching problems in computer networks [Chai et al., 2013]).

Closeness centrality. Closeness centrality measures how close a node is, in terms of shortest path
lengths, to all other nodes in the network (Wasserman and Faust, 1994). It is defined as the reciprocal
of the average of those N � 1 shortest paths and can be computed as follows:

ccðviÞ ¼ NPN�1
j¼1;j ≠ iHi, j

: (16)

While betweenness centrality focuses on the role of a node as a connector or intermediary
between other nodes, closeness centrality focuses on the distance of a node to other nodes in the
network. A node that is closer to all others is deemed to be of higher relative importance (e.g., a
higher level of accessibility with others).

Results and analysis

We analyze road networks from 35 populous cities worldwide, including 20 cities from China,
9 from India, 2 from Pakistan, and 1 each from Colombia, Brazil, Bangladesh, and Côte d’Ivoire.
Details of the dataset can be found in the Supplementary Material section 1.

Assessment at macro-scale

We first present the results of the macro-scale metrics in Table 1. The robustness indicator, rT,
suggests that Surat, Dongguan, and Zhengzhou have the most robust road networks among the
35 considered cities. From our results, it appears rT favors smaller networks where the robustness
has an inverse relationship with the size of the network. We do not observe such a relationship with
the meshedness coefficient, m, even though similar to rT, both metrics are a function of L and N.
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A higher m is generally considered desirable for road networks as it implies better accessibility,
flexibility, and resilience in terms of transportation options (Lin and Ban, 2013; Wang et al., 2013). In
this case, Shenyang has the highest meshedness which also has the highest average degree, d.
However, we see a small deviation of d across the 35 cities (all having d between 2.5 and 2.9). This
corroborates with previous findings (e.g., Akbarzadeh et al., 2018; Lee and Jung, 2018; Reza et al.,
2022) that urban road networks do not exhibit large variation in degrees due to planar constraints
(Lämmer et al., 2006; Viana et al., 2013). In our case, we see that the densely populated cities have
road networks havingmost junctions connecting two or three road segments. As an artefact of this, we
also note that the degree diversity, κ, also exhibits small deviations and positively correlates with d.
Our results thus confirm our initial hypothesis that both d andm are constrained to exhibit low values.

Table 1. Macro-scale metrics results.

Road networks rT m d κ CCG τG D HG effG

Surat 0.00326 0.916 2.8 3.10 0.048 0.057 73 29 0.044
Quanzhou 0.00162 0.843 2.7 3.09 0.053 0.079 125 43 0.028
Dongguan 0.00115 0.839 2.7 3.05 0.036 0.049 135 46 0.026
Zhengzhou 0.00106 0.904 2.8 3.13 0.03 0.04 114 42 0.030
Harbin 0.00092 0.872 2.7 3.09 0.039 0.05 162 53 0.024
Fuzhou 0.00080 0.811 2.6 3.01 0.050 0.08 128 46 0.021
Ahmedabad 0.00078 0.916 2.8 3.11 0.039 0.047 129 49 0.026
Shenyang 0.00078 0.964 2.9 3.23 0.050 0.07 117 41 0.029
Dalian 0.00074 0.816 2.6 3.01 0.046 0.06 186 70 0.018
Qingdao 0.00073 0.869 2.7 3.15 0.030 0.04 183 63 0.021
Dhaka 0.00066 0.811 2.6 2.99 0.022 0.041 136 55 0.024
Chengdu 0.00057 0.917 2.8 3.19 0.040 0.06 137 51 0.024
Hangzhou 0.00051 0.866 2.7 3.11 0.040 0.059 201 62 0.02
Nanjing 0.00050 0.890 2.8 3.12 0.047 0.06 162 56 0.021
Wuhan 0.00049 0.892 2.8 3.11 0.056 0.073 143 52 0.023
Chongqing 0.00048 0.744 2.5 2.81 0.034 0.05 439 105 0.014
Xianyang 0.00040 0.875 2.8 3.08 0.036 0.05 223 63 0.019
Lahore 0.00039 0.982 2.9 3.16 0.029 0.035 122 49 0.024
Pune 0.00037 0.781 2.6 2.91 0.029 0.038 170 68 0.018
Tianjin 0.00034 0.860 2.7 3.09 0.032 0.04 186 66 0.018
Abidjan 0.00033 0.901 2.8 3.09 0.027 0.031 200 74 0.0167
Shenzhen 0.00030 0.850 2.7 3.08 0.043 0.06 190 65 0.017
Karachi 0.00030 0.976 2.9 3.17 0.0201 0.023 121 55 0.022
Suzhou 0.00024 0.849 2.7 3.06 0.037 0.06 257 91 0.013
Mumbai 0.00024 0.807 2.6 2.98 0.04 0.058 325 106 0.012
Guangzhou 0.00022 0.833 2.7 3.02 0.040 0.055 226 78 0.015
Delhi 0.00021 0.915 2.8 3.09 0.029 0.030 190 76 0.016
Chennai 0.00021 0.844 2.7 2.99 0.023 0.030 227 79 0.016
Calcutta 0.00016 0.754 2.5 2.87 0.021 0.029 303 101 0.013
Shanghai 0.00015 0.859 2.7 3.07 0.028 0.04 263 86 0.014
Beijing 0.00014 0.813 2.6 3.11 0.040 0.1 244 90 0.011
Hyderabad 0.00009 0.819 2.6 3.02 0.024 0.030 267 108 0.011
Bogota 0.00009 0.886 2.8 3.12 0.019 0.027 379 129 0.011
Bengaluru 0.00009 0.813 2.6 2.97 0.029 0.037 254 102 0.011
Sao Paolo 0.00006 0.545 2.9 3.12 0.046 0.052 296 125 0.01
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While degree-based metrics such as d and κ focus on the number of immediate neighbors,
clustering coefficient, CCG, and transitivity, τG, measure how well these immediate neighbors are
connected to each other (i.e., the triangles in a network). They differ in their method of sampling (see
Rohe, 2024). In our context, they assess how well the neighboring nodes of a road junction or road
intersection are interconnected between them. For instance, a high clustering coefficient indicates a
network that is highly clustered, while a low clustering coefficient indicates a sparsely connected
network. From our results, the two metrics provided different but still correlated rankings (e.g.,
Wuhan and Quanzhou are highest in CCG but Beijing and Fuzhou are highest in τG). Overall, the
road networks in the large cities chosen in this study exhibit comparatively higher clustering
coefficients when compared against some other cities in the literature. Specifically, from Table 1, we
see that the obtained CCG for networks in this study consistently achieve values of one magnitude
higher than other road networks found in the literature (e.g., Texas with CCG = 0.0015 and
Pennsylvania with CCG = 0.0015 [Kartun-Giles and Bianconi, 2019]; Austin with CCG = 0.0010,
Winnipeg with CCG = 0.0007, Berlin with CCG = 0.0017, Barcelona with CCG = 0.0009, and
Hessen with CCG = 0.0003 [Shang et al., 2020b]).

The three remainingmacro-scale metrics (i.e.,D,HG, and effG) are all based on shortest paths.We
note that both the diameter and average shortest paths of all the chosen networks are relatively high
(at an average of 200 hops and 71 hops, respectively, from the 35 cities). This is due to the level of
abstraction in the dataset where every junction and intersection is extracted as a node and par-
ticularly in big cities considered here, the number of nodes becomes large even across small spatial
areas. An inter-city road network (where cities are nodes) will record much smaller D andHG due to
the different methods of abstraction (in this case, cities are nodes). This then points to the ob-
servation that these urban city road networks do not exhibit small-world property (Watts and
Strogatz, 1998). Also resulting from this, the network efficiency for the road networks is low (since
by definition, efficiency is computed as a function of the inverse of shortest path lengths).

From the above discussion, we can already infer some relationships between themacro-scale metrics.
We present the Pearson correlations of the nine metrics in Figure 2. From the heat map, we note the
strong positive correlations among m, d, and κ where we obtain ρðm, dÞ ¼ 0:89, ρ(m, κ) = 0.85, and
ρðd, κÞ ¼ 0:84. They are consistent (e.g., Karachi and Shenyang have the highest value for all three
metrics; m = 0.976, d = 2.9, and κ = 3.17; m = 0.964, d = 2.9, and κ = 3.23, respectively). Clustering
coefficient and transitivity appear to be another related group of metrics, unsurprisingly due to them
measuring similar features of the network (ρ(CCG, τG) = 0.84). With both taking the shortest path as the
input, diameter and average shortest path lengths also exhibit high correlation (ρ(D, HG) = 0.92).
Interestingly, we computed ρ(rT, effG) = 0.88, implying those networks with high robustness indicators
are also the most efficient ones. On the other hand, HG and effG show a significant negative relation
(ρ(HG, effG) = �0.88. The same tendency was found also in Shang et al. (2020b) on nine smaller road
networks. In general, we found that both D and HG have a negative correlation with other metrics.

Finally, we summarize our results in radar diagrams in Supplementary Figure S2, providing a
visual illustration of the various considered metrics. For this purpose, each value of xi in a set of
macro-scale metrics from Table 1 is re-scaled to a xinew value within the range [0,1], by normalization
formula: xinew ¼ xi � xmin=xmax � xmin. From the diagrams, we note that smaller road networks
achieve higher values in macro-metrics at the upper half of the radars (i.e., Surat, Quanzhou,
Zhengzhou, Ahmedabad, Shenyang, Qingdao, Chengdu, Hangzhou, Nanjing, and Wuhan). On the
other hand, bigger road networks tend to achieve higher values in the lower half of the radar
diagrams (i.e., Chongqing, Suzhou, Mumbai, Guangzhou, Calcutta, Hyderabad, and Bengaluru).
We show the area of the shaded polygon in the radar diagrams (Supp Figure 2). Shenyang and Surat
obtain higher values in more metrics while at the other end of the spectrum, Calcutta, Pune, and
Dhaka achieve the lowest overall area.
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Assessment at meso-scale

To detect meso-scale structures, we compute the modularity, Q, number of communities, and
average community size for community structure while for core-periphery structure, we compute
the Path-Core (PC)%. These are presented in Table 2. The first observation must be the unusually
high modularity we obtain for all cities (Q close to 1.0). As indicated in Newman and Girvan (2004),
the usual range of modularity values typically falls between 0.3 and 0.7 and rarely achieves higher
values. It appears that such densely populated urban road networks under our study represent a class
of networks that exhibit consistently high modularity. This is important when modeling such real-
world networks. The relatively high number of communities also suggests that these cities have
multiple regions of high concentration (e.g., areas with high population density or regions with high
aggregation of activities such as business districts or entertainment centers). While smaller towns
may largely focus on the city center, our results suggest that these populous cities appear to be
polycentric (Kloosterman and Musterd, 2001).

Results of the core-periphery identification using PC algorithm (Cucuringu et al., 2016) are
presented in the last column of Table 2 as the percentage of core nodes in each road network.
Chongqing is revealed as the city with the highest percentage of core nodes at 18.7% while the
lowest is Ahmedabad with only 0.45% of nodes appearing as core. Nevertheless, across all the
cities, the small percentage of nodes considered as core further reinforces the previous observation

Figure 2. Pearson correlation heat map of macro-scale metrics.
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that these cities do not possess one single focal point but rather possess many areas of concentration,
which may be due to multiple waves of development over time as the cities grow.

In our analysis, we also found correlations between macro- and meso-scale metrics. Specifically,
we find that there modularity, Q, is positively correlated with N, HG, and D as shown in Figure 3
(i.e., ρ(Q, N) = 0.693, ρ(Q, D) = 0.70, and ρ(Q, HG) = 0.82).

Assessment at micro-scale

The importance of different nodes in a network could be ranked using different centrality measures,
and their distributions have been widely used to describe the properties of the networks under study.

Table 2. Meso-scale metrics results.

Road networks Modularity, Q Number of communities Mean community size Path-Core, %

Surat 0.914 44 59 1.35
Quanzhou 0.935 206 28 9.78
Dongguan 0.948 183 45 7.82
Zhengzhou 0.943 81 113 8.30
Harbin 0.954 190 56 5.85
Fuzhou 0.955 289 43 8.12
Ahmedabad 0.942 92 140 0.45
Shenyang 0.945 116 112 5.56
Dalian 0.960 459 30 7.63
Qingdao 0.958 274 51 6.46
Dhaka 0.961 221 69 5.08
Chengdu 0.956 230 80 6.69
Hangzhou 0.957 282 74 8.78
Nanjing 0.960 332 64 7.74
Wuhan 0.960 182 118 6.14
Chongqing 0.969 462 47 18.7
Xianyang 0.961 261 102 7.06
Lahore 0.966 175 159 1.24
Pune 0.971 268 107 6.31
Tianjin 0.966 273 116 10.4
Abidjan 0.975 205 161 2.97
Shenzhen 0.967 770 48 4.63
Karachi 0.971 247 152 1.21
Suzhou 0.969 364 127 12.9
Mumbai 0.977 625 75 5.19
Guangzhou 0.972 526 99 8.48
Delhi 0.975 304 177 2.58
Chennai 0.975 326 167 3.78
Calcutta 0.978 547 131 7.46
Shanghai 0.971 691 114 11.2
Beijing 0.973 3214 26 7.98
Hyderabad 0.985 910 143 2.85
Bogota 0.982 1792 80 3.99
Bengaluru 0.983 900 169 5.84
Sao Paolo 0.983 474 452 2.65
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Figure 3. Pearson correlation of Q with N (a), Q with D (b), and Q with HG (c).
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As prior mentioned, we have chosen the three most commonly used centrality measures in the
literature for our study here. We begin with the degree distribution, presented in the Supplementary
Figure S3 for all the cities. The plots reveal a lack of diverse degree values with the most common
degree across all road networks being three, which corresponds to T-shaped intersections. This is in
line with previous findings such as in Lee and Jung (2018) where the authors similarly highlighted
that junctions with three connections are more frequently found than others and in Badhrudeen et al.
(2022) which also corroborated this when studying 22 Korean urban road networks. Furthermore,
we observe that crossroad junctions (i.e., two roads intersect resulting in a degree of four) are the
second highest occurrences for many of the networks, especially for smaller ones, that is, Quanzhou,
Zhengzhou, Ahmedabad, and Shenyang. On the other hand, larger city road networks (e.g.,
Bengaluru, Hyderabad, Beijing, Calcutta, Chennai, Delhi, and Pune) have many leaf nodes (de-
gree = 1), likely because they are richly connected to other cities. Unlike many urban infrastructure
networks which have been shown to be scale-free (e.g., water distribution networks [Sitzenfrei et al.,
2020], telecommunication networks [Schintler et al., 2005], airline routes [Li et al., 2006], railway
networks [Calzada-Infante et al., 2020], and public transportation network [Sienkiewicz and Hołyst,
2005]), it is also obvious that these road networks in densely populated cities do not exhibit scale-
free properties as their degree distributions do not follow the power-law; we obtain R2 values
ranging from 0.02 to 0.18. Similar power-law fitting experiments were conducted by Reza et al.
(2022) and Akbarzadeh et al. (2018) on the road networks of Ingolstadt in Germany, Porto in
Portugal, and other eight urban road networks across the world, and the outcomes aligned with those
observed in the road networks of these highly populated cities. The lack of degree diversity may be
caused by challenges (such as cost [Serafino et al., 2021]) or need (i.e., there is no need to have
junctions connecting a high number of roads).

Contrary to degree distributions, we find that the betweenness distributions for the considered
road networks strongly follow a power-law distribution, PðcBÞ∼ c�β

B where β is the power-law
exponent. We show the betweenness distributions in the Supplementary Figure S4. From our fitting,
we find that the power-law exponent, β, ranges between 0.98 (Surat) and 1.44 (Sao Paolo) (see
Supplementary Figure S4 for the exponent for individual cities). We also find high goodness-of-fit
with all R-squared (R2) close to 1.0. From the perspective of road network structure, a higher value
of β was interpreted as having a high concentration of traffic on the most important intersections
(Lämmer et al., 2006). Investigations by Lämmer et al. (2006) and Kirkley et al. (2018) identified
scale-free and truncated power-law betweenness distributions in German cities and other 97 cities
worldwide. However, Crucitti et al. (2006) observes an exponential in Venice or Gaussian dis-
tribution in Richmond and San Francisco. They argue a uniform scale distribution in self-organized
and planned cities, with the former displaying an exponential pattern and the latter showing a
Gaussian pattern. Another study of betweenness distribution in Zurich by Casali and Heinimann
(2019) exhibits a closer similarity to a log-normal distribution. Our findings align with Lämmer et al.
(2006) and underline that betweenness distribution for cities in highly populated countries follows a
power law. Our findings on high-betweenness nodes align with Hillier et al. (2012) results using the
least angle choice, as both methods highlight key routes in the urban network. This suggests that
certain paths are consistently essential for city accessibility, regardless of the analysis method used.

A higher closeness centrality value for a road segment implies that it is closer to other nodes in
terms of network distance (Lan et al., 2022; Lin and Ban, 2017). The closeness distributions,
presented in the Supplementary Figure S5, offer yet another picture to describe the networks.
Broadly, we find the observed distributions to be akin to a binomial distribution with several cities
exhibiting left-skewedness in their distribution. For this, disconnected nodes (with closeness ≈0)
were ignored. Studying the evolution of Hong Kong road networks between 1976 and 2018, Lan
et al. (2022) showed that the closeness distributions over different years can be fitted to a normal
distribution with increasing adjusted R2 as the city grows over the years. Coupled with our
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observations, we conjecture that the closeness distribution tends to fit normal distribution when the
city road network grows denser. Interestingly, we also found that several Chinese cities also show
left-skewed distribution (i.e., Quanzhou, Zhengzhou, Harbin, Shenyang, Qingdao, Hangzhou,
Nanjing, Chongqing, Xianyang, and Beijing). The tail extending towards the lower closeness values

Figure 4. Correlation between macro- and micro-scale metrics: rT and mean cD (a), effG and mean cC (b).
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suggests that in these networks, there are more nodes with longer distances away from the most
central nodes. Finally, similar to Lin and Ban (2017), we found that the average closeness size
decreases while the size of the road network increases.

As in the previous section, we also cross-examined if there are correlations between micro-scale
and macro-scale metrics. From our analysis (see Figure 4), we found that average degree centrality
strongly correlated with rT achieving ρðcD, rT Þ ¼ 0:9964 while average closeness centrality pos-
itively correlates with efficiency effG with ρðcC , effGÞ ¼ 0:9471Þ.

Contrasting Chinese and Indian cities

Out of 35 road networks in this study, 29 of them are from China (20 cities) and India (9 cities), the
two most populous countries in the world. It is then interesting to discover the similarities or
differences of road networks in these two countries. From our results, we observe that most Indian
cities tend to exhibit higher diameter D and average path length HG than Chinese cities. From our
study, Indian cities on average recorded D and HG to be 215 and 80 while Chinese cities only
showed average D and HG to be 191 and 63, respectively. This suggests that Chinese cities exhibit
stronger “small-world” property (Watts and Strogatz, 1998) than Indian cities.

At meso-scale, Chinese cities have a slightly higher number of communities (Chinese cities have
469 communities on average, while Indian cities have 446), reflecting the existence of more hubs in
the city. For instance, Beijing which has 3214 communities is the Chinese city with the highest
community count while the Indian counterpart, Hyderabad, only has 910 communities. On the other
hand, Indian cities have a larger average community size than Chinese cities, averaging
177 compared to 127. Chinese cities, with a higher number of smaller communities, likely feature a
decentralized, cluster-based structure, each with its own local services. This setup suggests a need
for localized infrastructure. In contrast, Indian cities have larger community sizes, indicating a
demand for higher-capacity infrastructure and services to support more densely populated areas.
The Path-Core (PC)% metric reveals that Chongqing has 18.7% core nodes, compared to only
0.45% in Ahmedabad. This difference highlights that Chinese cities, averaging 8.5% core nodes,
tend to have larger centralized hubs that may boost transportation efficiency, while Indian cities,
with an average of 3.9%, might have more fragmented transportation structures.

The centrality distributions for road networks from both countries share similar shapes. Both
groups exhibit power-law distributions in betweenness centrality distribution, suggesting traffic
concentration at key intersections. Also, both groups of cities predominantly have nodes with a
degree of 3 (T-shape junction). Nevertheless, Chinese cities exhibit a slightly more balanced degree
distribution across degrees 1 to 4 while Indian cities show a higher concentration of nodes with a
degree of 3.

Conclusions

This paper presents a topological study of road networks in densely populated cities. Using tools
from network science, we first view the road networks as graphs consisting of nodes and links and
then approach the analysis in three different scales, namely, macro-scale, meso-scale, and micro-
scale. At the macro-scale, we used a range of metrics based on various aspects of the networks
(i.e., based on several nodes and links, based on local connectivity, and based on paths). Among
these, we find three groups of metrics which are highly positively correlated, (m, d, κ), (CCG, τG),
and (rT, effG), while D and HG are negatively correlated with other metrics.

From our analysis at the meso-scale, we found that the considered road networks represent a
specific class of networks with particularly high modularity which is not often observed in other
real-world networks. The high number of communities as well as the low sign of core-periphery
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structure also suggests that these cities are polycentric with multiple regions having a concentration
of road connectivity likely due to high demand to access these regions (e.g., business districts). A
future direction on this front would be to consider multiple core-periphery pairs, for instance, using
the definition proposed in Kojaku and Masuda (2017b).

At the micro-scale (i.e., nodal level), we find the centrality measures considered showing
different but consistent distributions. The degree distributions show a lack of degree diversity and
highlight the physical spatial constraint in the construction of road infrastructure where most
junctions follow the T-shape and there is a very limited number of junctions with high degrees. This
then resulted in the distributions not following the power-law which is the opposite to the be-
tweenness distributions which show a strong positive fit to the power-law. We found that the power-
law exponent of these cities ranges between 0.98 and 1.44 which are steeper than networks such as
the Internet (see Faloutsos et al., 1999). Closeness distributions, on the other hand, show (left-
skewed) binomial distribution.

While individual metrics offer their own specific insights into the characteristics of the road
networks and have different correlations with each other, we further summarize the key highlights
below:

· Macro-scale: We identified three groups of highly positively correlated metrics related to
network characteristics, while diameter (D) and average path length (HG) were negatively
correlated with other metrics. Road networks with higher rT were also found to be more
efficient effG.

· Meso-scale: The road networks exhibited high modularity and polycentric structures,
characterized by high number of communities and low core-periphery values.

· Micro-scale: Centrality measures showed consistent distribution shapes across different
networks, with degree distributions lacking diversity due to spatial constraints, while be-
tweenness distributions fit a power-lawmodel. Closeness distributions followed a left-skewed
binomial pattern.

The results and observations from this work offer a multi-scale analysis of the topological
properties of road networks in highly populated urban cities. Our approach offers a set of multi-scale
pictures of urban road networks, enabling a more exploratory avenue to understand road networks.
Methodologically, this approach is generic and could always be further expanded to include more
metrics (e.g., other centrality metrics such as Katz and PageRank), depending on the purpose of
study or use cases. Our analysis here should offer insights for relevant stakeholders for under-
standing, planning, and developing cities. For instance, both road networks in Bologna and central
Nantes have been found to be monocentric systems (Viana et al., 2013) while in contrast, highly
urban road networks studied here exhibit polycentrism (e.g., Shanghai in our study has evolved
from a monocentric city centered around the Bund and People’s Square area to a polycentric city
with multiple urban center areas such as Pudong, Hongqiao, and Minhang [Wu, 2015]). This would
inform city authorities/planners whether to decentralize city development or how to distribute
resources across different regions in the city.

Finally, our insights (e.g., the distribution shapes of the centrality measures, power-law exponent,
and modularity) could also be exploited for modeling and assessing similar classes of networks. For
instance, understanding that betweenness centrality follows a power-law distribution, particularly
with the highest exponents observed in Sao Paolo (1.44) and Calcutta (1.39), indicates that be-
tweenness centrality is concentrated in a small number of nodes. This concentration means that a
few nodes account for a significant portion of the network’s total betweenness centrality. Con-
sequently, traffic management systems can identify critical roads that handle a substantial share of
traffic. These high-betweenness nodes can be targeted with real-time traffic signals and congestion
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management strategies, thereby reducing overall congestion in the city. Similarly, the insights
regarding closeness centrality following a binomial distribution with the tail extending towards
lower closeness values suggest a higher proportion of nodes that are farther from the central nodes.
This indicates potential areas where improved connectivity could alleviate traffic bottlenecks and
increase overall accessibility within Quanzhou and Chongqing. In conclusion, our study provides a
multi-scale understanding of road networks in densely populated cities, offering insights that can
inform city planning, traffic management, and infrastructure development in similar urban
environments.
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Barthélemy M (2011) Spatial networks. Physics Reports 499(1): 1.
Barthelemy M (2018) Morphogenesis of Spatial Networks. Springer.
Barthelemy M, Bordin P, Berestycki H, et al. (2013) Self-organization versus top-down planning in the

evolution of a city. Scientific Reports 3(1): 2153.
Baruah A and Bora T (2018) Bridging centrality: identifying bridging nodes in transportation network. IJANA

9(6): 3669.

Kozhabek and Chai 21

https://orcid.org/0009-0008-6762-640X
https://orcid.org/0009-0008-6762-640X
https://orcid.org/0000-0002-4847-5465
https://orcid.org/0000-0002-4847-5465
https://figshare.com/articles/dataset/Urban_Road_Network_Data/2061897
https://figshare.com/articles/dataset/Urban_Road_Network_Data/2061897


Boeing G (2017) Osmnx: new methods for acquiring, constructing, analyzing, and visualizing complex street
networks. Computers, Environment and Urban Systems 65: 126–139.

Boeing G (2018) Measuring the complexity of urban form and design. Urban Design International 23(4):
281–292.
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