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A B S T R A C T

Chronic Obstructive Pulmonary Disease (COPD) has been presenting highly significant global health challenges 
for many decades. Equally, it is important to slow down this disease’s ever-increasingly challenging impact on 
hospital patient loads. It has become necessary, if not critical, to capitalise on existing knowledge of advanced 
artificial intelligence to achieve the early detection of COPD and advance personalised care of COPD patients 
from their homes. The use of machine learning and reaching out on the classification of the multiple types of 
COPD severities effectively and at progressively acceptable levels of confidence is of paramount importance. 
Indeed, this capability will feed into highly effective personalised care of COPD patients from their homes while 
significantly improving their quality of life.

Auscultation lung sound analysis has emerged as a valuable, non-invasive, and cost-effective remote diagnostic 
tool of the future for respiratory conditions such as COPD. This research paper introduces a novel machine 
learning-based approach for classifying multiple COPD severities through the analysis of lung sound data 
streams. Leveraging two open datasets with diverse acoustic characteristics and clinical manifestations, the 
research study involves the transformation and decomposition of lung sound data matrices into their eigenspace 
representation in order to capture key features for machine learning and detection. Early eigenvalue spectra 
analyses were also performed to discover their distinct manifestations under the multiple established COPD 
severities. This has led us into projecting our experimental data matrices into their eigenspace with the use of the 
manifested data features prior to the machine learning process. This was followed by various methods of machine 
classification of COPD severities successfully. Support Vector Classifiers, Logistic Regression, Random Forests 
and Naive Bayes Classifiers were deployed. Systematic classifier performance metrics were also adopted; they 
showed early promising classification accuracies beyond 75 % for distinguishing COPD severities.

This research benchmark contributes to computer-aided medical diagnosis and supports the integration of 
auscultation lung sound analyses into COPD assessment protocols for individualised patient care and treatment. 
Future work involves the acquisition of larger volumes of lung sound data while also exploring multi-modal 
sensing of COPD patients for heterogeneous data fusion to advance COPD severity classification performance.

1. Introduction

In the UK, Chronic Obstructive Pulmonary Disease (COPD) accounts 
for 1 in 8 patients attending Emergency Care due to the sudden wors
ening of the condition that is known as an "Exacerbation Event" (EE). 
The NHS manages 1.2 million patients with COPD and, unlike commu
nicable diseases, it is expected to grow by 40 % by 2030 with annual 
costs exceeding £2.5 billion (NHS, 2023). There is also an expectation of 
nearly 2 million undiagnosed people who are living with COPD [1].

COPD is a broad term for respiratory conditions that limit airflow [2] 

and systematic inflammatory responses [3]. COPD is partially reversible 
and manageable depending on the accurate classification of its severity 
levels. These are pivotal in effective clinical management and inter
vention [2]. Currently, the 2 million undiagnosed people with COPD in 
the UK are identified only after experiencing an acute EE [1]. With the 
current advances in Artificial intelligence (AI), we are enabled to 
benchmark the deployment of machine classifiers which advance 
COPD’s diagnosis, prognosis, and severity identification for supporting 
personalised healthcare of large numbers of patients in a scalable 
manner. Thus, the primary objective of this pioneering study is to 
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develop machine learning classifiers of COPD severities and assess their 
respective performances. This paper sets out the background setting of 
COPD and medical diagnosis, lung differences in health and COPD 
before reviewing the literature for computational classification of lung 
pathologies and COPD and its distinct severities. Then, we review our 
lung sound analysis by exploring the eigenspectra of COPD 
audio-transformed representative matrices and their features versus 
COPD severities prior to supervised machine learning and classification 
results of COPD severities from given audio signals. Our new findings 
and our perspectives of future research work are discussed in our 
conclusions.

1.1. Background

COPD is a debilitating respiratory condition which is characterised 
by the overdistention of air spaces distal to the terminal bronchioles, 
leading to the destruction of alveolar septa, alveolar enlargement, and 
limitation of expiratory airflow [4]. It is a significant public health 
concern, which substantially impacts affected individuals’ quality of life 
and health outcomes. This background discusses the diagnostic methods 
and the intricate dynamics of lung function in healthy individuals 
compared to those with COPD. It focuses on lung sounds, including 
adventitious sounds, as indicators of the disease’s presence and eventual 
progression.

COPD diagnosis primarily relies on spirometry, a highly recom
mended technique by the Global Initiative for Chronic Obstructive Lung 
Disease [2]. Spirometry involves assessing important lung metrics, 
including Forced Vital Capacity (FVC), which measures a complete 
forced exhale, Forced Expiratory Volume in 1 s (FEV1), and the 
FEV1/FVC ratio. In COPD diagnosis, the FEV1/FVC ratio must be below 
0.70. Furthermore, and according to the GOLD criteria [5], COPD se
verities are categorised in the following way: 

1. Mild: FEV1 > 0.80
2. Moderate: 0.50 < FEV1 < 0.80
3. Severe: 0.30 < FEV1 < 0.50
4. Very Severe: FEV1 ≤ 0.30

During spirometry, patients are instructed to exhale forcefully and 
rapidly. Spirometry is useful for diagnosing and monitoring COPD as an 
objective metric for airway obstruction. Additionally, COPD severity is 
assessed using the "ABE" categorisation, which considers symptoms, 
their impact on patients, and the history of exacerbations. This assess
ment relies on either the COPD Assessment Test (CAT) score or the 
Modified Medical Research Council (mMRC) Dyspnoea Scale [6].

However, some patients may face challenges in performing forceful 
exhalation due to various factors, which may potentially affect the ac
curacy of FEV1 measurements as an indicator of lung condition [7].

In addition to spirometry, another method to aid in COPD diagnosis 
and assess its severity is Computerised Tomography (CT), which is more 
invasive. However, the National Institute for Health and Care Excellence 
(NICE) recommends using CT primarily to rule out other potential di
agnoses [8].

COPD is primarily associated with several risk factors, the most 
prominent ones including smoking and exposure to environmental lung 
irritants, such as air pollutants. These may include Sulphates, Nitrates, 
Ozone gases and Suspended Particulate Matter [2]. Additional risk 
factors include susceptibility to lung infections and genetic predisposi
tion, notably Alpha-1 antitrypsin deficiency (AATD) [2]. Understanding 
these risk factors is crucial for the early detection and prevention of 
COPD.

Lung dynamics in healthy individuals exhibit gender-based differ
ences. Studies have shown that women generally have 10–12 % lower 
lung volume than males [9]. Furthermore, lung compliance, a critical 
measure of lung function, is influenced by anatomical differences such 
as smaller airway diameter, lung volumes, maximum expiratory flow 

and diffusion surface in women compared to men [10]. These anatom
ical disparities are crucial in respiratory function, particularly during 
women’s pregnancy. But it is worth noting that lung size, rather than 
gender, appears to be the primary determinant of functional 
implications.

In contrast to healthy lungs, COPD, characterised as obstructive 
pulmonary disease, leads to increased lung volumes caused by trapped 
air, increased airway resistance on exhalation and decreased expiratory 
flow rates. Emphysema, a subtype of COPD, is further characterised by 
increased lung compliance with reduced carbon monoxide diffusion 
capacity [11]. The disproportionate decrease in Forced Expiratory Vol
ume per second (FEV1) compared to the Forced Vital Capacity (FVC) is a 
hallmark of COPD [11].

Lung auscultation serves as an invaluable diagnostic tool, offering 
critical insights into the health of both the respiratory and cardiovas
cular systems. Notably, there exist distinct differences in lung sounds 
between healthy individuals and those grappling with the complexities 
of COPD. In individuals with COPD, a careful examination may reveal 
decreased breath sounds and the presence of adventitious lung sounds, 
such as crackles (Bickley and Szilagyi, 2017). These crackles, charac
terised by their discontinuous and non-harmonic nature, indicate early 
inspiratory changes often associated with COPD (Bickley and Szilagyi, 
2017). Moreover, a more ominous sound in lung auscultation emerges in 
coarse crackles, bearing a distinct popping quality which persists 
throughout inspiration and expiration (Bickley and Szilagyi, 2017). 
Though often linked to COPD, these coarse crackles can also signal the 
presence of other diseases, including pneumonia (Bickley and Szilagyi, 
2017).

In addition to crackles, wheezes represent another type of adventi
tious lung sound frequently associated with conditions like COPD and 
asthma [12]. Unlike crackles, which are sudden and transient, wheezes 
exhibit a continuous, harmonic quality lasting approximately 250 ms. 
These sounds are attributed to airway turbulence, often induced by 
excess mucus. While crackles are categorised as transient signals due to 
their abrupt nature, wheezes are classified as harmonic sounds.

Furthermore, it is essential to acknowledge the intricate interplay 
between COPD and other lung diseases and comorbidities. COPD char
acteristics often overlap with other respiratory conditions or diseases, 
such as Asthma or Congestive heart failure [13]. This coexistence 
highlights the multifaceted and complex nature of COPD. It underscores 
the need for a comprehensive diagnostic approach to discern the 
complexity of symptoms, including specific lung sounds that may be 
present in affected individuals.

In summary, this background section has outlined the critical dif
ferences in lung dynamics between healthy individuals and those with 
COPD and the role of gender, lung size, and anatomical factors. It has 
also emphasised the importance of understanding the risk factors asso
ciated with COPD and the significance of lung sounds, including 
adventitious sounds that can be used as diagnostic markers.

Further, accurate classification of COPD severity is crucial for 
appropriate treatment planning, monitoring disease progression, and 
improving patient outcomes. Our proposed method aims to provide 
clinicians with a reliable, non-invasive tool for assessing COPD severity. 
This shall potentially enable earlier interventions and more personalised 
care strategies for COPD patients in the near future. While further 
clinical validation would be required, this approach could complement 
existing diagnostic methods and greatly support clinical decision- 
making in COPD management.

Diagnosing and Classifying COPD and other lung diseases pose 
intricate challenges, which prompt extensive research efforts to explore 
various methods and techniques for precise computational and auto
mated assessment. Upon reviewing the existing literature, it becomes 
evident that diverse approaches are employed. These also highlight the 
persistent challenges encountered in this field. In this, let us delve into 
the classification of respiratory conditions initially before narrowing it 
down to COPD literature later.
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Recent advancements in deep learning have shown promising results 
in COPD severity analysis. Huang et al. [14] provided a comprehensive 
overview of deep learning algorithms which are used for lung sound 
analysis, while they emphasised the significance of artificial intelligence 
in this field. Further, their review focused on various components of 
deep learning-based lung sound analysis systems, including Abnormal 
Sound Detection and Respiratory Disease Recognition, public datasets, 
denoising methods, and state-of-the-art approaches for converting lung 
sounds into two-dimensional spectrograms.

In a related study, Sabry et al. [15] presented a discussion on the 
elements of sound-based lung disease classification using machine 
learning algorithms. Their work highlighted the importance of feature 
extraction, selection, and classification techniques in developing accu
rate models for lung disease recognition.

Palaniappan et al. [16] embarked on the classification of respiratory 
health conditions by analysing breath sound signals. Their work stands 
out due to its notable classification accuracies. Additionally, they 
employed a Bandpass filter with a 150–200 Hz range and harnessed a 
Support Vector Machine, which excels in classifying non-linear sound 
signal data.

Similarly, Altan et al. [17] embraced a deep learning methodology, 
utilising 3D-second-order difference plots to analyse respiratory sounds. 
Their approach underscored the potential of non-linear signal analysis 
and high-order statistics, further emphasising the need for research into 
denoising techniques to enhance information extraction. They also 
conducted signal processing with low and high pass filters on segmented 
audio sections.

Likewise, Rocha et al. [18] worked on the automatic classification of 
adventitious respiratory sounds. Their study highlighted the challenges 
arising from variable event durations, calling for a more profound 
exploration of the underlying causes of misclassifications and strategies 
to mitigate them.

Transitioning to the COPD Identification and Severity Classification 
domain, Li et al. [19] introduced a groundbreaking approach based on 
CT-based radiomics feature analysis for COPD identification and 
severity staging. While their methodology showcases advancements in 
image-based diagnosis, it prompts a need for comprehensive evalua
tions, considering the clinical impact and potential ethical consider
ations linked to reliance solely on imaging features.

On the other hand, Isik et al. [20] delved into COPD classification 
using Artificial Neural Networks (ANNs). They considered 15 feature 
input parameters such as age, gender, airway obstruction metrics and 
pathology metrics, which explored the multifaceted nature of COPD and 
achieved effective results with their ANNs.

In contrast, Cheplygina et al. [21] explored the application of Mul
tiple Instance Learning (MIL) for COPD classification, emphasising the 
utilisation of weakly labelled data. Nevertheless, they concluded that 
further research is required to generalise and test the method under 
other datasets and clinical settings for COPD classification.

Concurrently, Siddiqui and Morshed [22] concentrated on severity 
classification using heart rate and oxygen saturation sensor measure
ments. However, the measurement criteria were obtained from docu
mented clinical literature, and the performance measures were 
compared to the same data cluster results as data without clinical 
annotation.

Further, Roy and Satija [23] proposed a Mel Spectrogram Snippet 
Representation learning framework for COPD severity detection while 
they incorporated deep learning frameworks. What is noteworthy 
regarding this work is that YAMnet was used as a base for transfer 
learning from existing data to facilitate sound classification.

Furthermore, to address the need for efficient and lightweight 
models, Roy and Satija [24] developed a novel lightweight inception 
network (RDLINet) for respiratory disease classification using lung 
sounds. Their model achieved high accuracy while maintaining a low 
computational footprint, which makes it suitable for deployment in 
resource-constrained environments.

In a recent study, Roy et al. [25] proposed a triple-scale self-opera
tional neural network (Pulmo-TS2ONN) for pulmonary disorder detec
tion using respiratory sounds. Their approach incorporated a triplet 
time-frequency feature set extraction method and demonstrated 
improved performances in classifying various pulmonary disorders.

Moreover, Guo [26] sought to uncover the predictive value of clin
ical data, blood test indexes and ventilation function test indexes for 
distinguishing COPD severities. This presented a promising nomogram 
modelling approach. Nevertheless, the standard blood test data’s limi
tations may not fully represent the entire spectrum of systematic in
flammatory blood biomarkers for assessing COPD classifications.

Convolutional Neural Networks (CNN) may also be suitable for 
COPD identification using diverse data inputs. In this, Nguyen and 
Pernkopf [27] utilised a CNN for crackle detection using audio signal 
data. However, they highlighted the issues of limited data while 
acknowledging the adopted transfer learning strategies for their CNN, 
which exhibited improvement in the F1 scores. In comparison, Wu et al. 
[28] developed a CNN for COPD identification by integrating CT scans of 
3D airway trees and lung field morphologies, displaying CT and CNN’s 
potential role in COPD identification.

Recent advancements in deep learning have shown promising results 
in COPD severity analysis. Altan et al. [29] proposed a novel method 
using deep learning on multi-channel lung sounds for COPD severity 
analysis. Their approach, which utilised convolutional neural networks 
(CNNs) and long short-term memory (LSTM) networks, achieved high 
accuracy in classifying COPD severity levels. In a related study, Altan 
et al. [30] developed a computerized analysis system for COPD using 
deep learning techniques. They employed a hybrid deep learning model 
which combines CNNs and bi-directional LSTMs, while demonstrating 
improved performance in COPD detection and severity assessment when 
compared to traditional machine learning methods. These studies 
highlight the potential of deep learning approaches in enhancing the 
accuracy and reliability of COPD severity classification using lung sound 
analyses.

The above studies collectively showcase various methodologies and 
data types, underscoring the intricate nature of COPD diagnosis and 
classification. Nevertheless, many of these studies operate with limited 
data, while some of them boosted their machine learning performance 
results by adopting transfer learning strategies. Consequently, further 
research using larger datasets is indispensable to generalise the ap
proaches mentioned earlier while transfer learning knowledge can still 
be adopted.

Another theme for analysing respiratory audio is the need for a noise 
reduction strategy. Several studies above utilised filters to remove heart 
sounds and other artefacts from the respiratory audio, with Altan et al. 
[17] highlighting more research in denoising methods to reduce infor
mation loss.

In addition, no literature on COPD severity classification of an 
ordinal nature using machine learning has been found. It entails COPD 
grading from mild to severe and misclassification. Therefore, using 
metrics that incorporate abstract distances from a targeted class may 
advance research into COPD severity classifications.

In the next section, we will state and describe the data used in this 
early research work and provide the foundation of the mathematical 
theories used in this study.

2. Data holdings

This study utilised two datasets: The Respiratory Database @TR 
Dataset [31] used throughout our study; and the ICBHI Respiratory 
Database [32] in the second phase of our study. The system the exper
iment was run on was a Linux-6.1.58 with 12.7 Gb RAM.

2.1. Respiratory Database @TR dataset

The Respiratory Database @TR Dataset [31] contains recordings of 
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42 patients with five categories of COPD. These categories are COPD0, 
COPD1, COPD2, COPD3, and COPD4, where COPD0 are people with 
symptoms and at risk of COPD, while the other four categories follow the 
GOLD COPD severity guidelines from low to very severe (as was outlined 
in section 1.1). Each patient has 12 recordings from different ausculta
tion locations. The breakdown of recordings per condition and re
cordings selected is based on a ≥20-s filter. The counts of conditions 
used for the training and test datasets are displayed in Table 1.

2.2. The ICBHI Respiratory Database

The ICBHI Respiratory Database [32] contains 920 recordings of 
auscultations of people with multiple conditions. Audio samples shorter 
than 20 s are excluded, as 20 s duration are extracted from the included 
audio samples. Therefore, each audio sample that was included con
tained multiple breathing cycles. Table 2, below shows the breakdown 
of the conditions for the whole database and the counts for selected 
audio used in creating the projection matrix.

In summary, two respiratory datasets are utilised in this study. But 
they are both imbalanced. Audio samples were selected based on con
taining 20 s of audio, as multiple breathing cycles were captured for 
analysis while the audio length remained constant.

A bandpass filter with a frequency range of 200–1500 Hz was applied 
to remove heart sounds and other low-frequency noise while preserving 
the relevant lung sound information applied to all samples. This range 
was selected based on previous studies which have shown it effective in 
isolating respiratory sounds from other physiological noises [16,17].

The Respiratory Database @TR Dataset is utilised for data explora
tion of Eigenspectral Analyses and COPD Severity Classification. The 
ICBHI Respiratory Database is utilised only for COPD severity 
classification.

3. Eigenspaces, Singular Value Decomposition and STFT

This study leverages eigenspace analysis to uncover key patterns in 
lung sound fields, a technique widely applied across scientific disci
plines. We employ this approach to identify essential characteristics and 
distribution of lung sound signals for data exploration of COPD 
severities.

The eigenspace framework enables us to distil crucial features from 
the complex lung sound data. By focusing on eigenvectors and their 
corresponding eigenvalues, we can isolate the most influential compo
nents of the sound field, revealing underlying structures that may not be 
immediately apparent in the raw data. Mathematically, eigenspaces are 
defined by the equation A v→= λ v→ is a linear transformation, v→ is an 
eigenvector and λ is the corresponding eigenvalue [33].

Singular Value Decomposition (SVD) plays a pivotal role in our 
analysis, since it facilitates the decomposition of the lung sound field 
matrix into its constituent components. This decomposition allows us to 
extract and prioritise the salient features for our data exploration and 
COPD severity classification. The SVD of a given matrix A is defined by 
A = U Σ VT, where U and VT are orthogonal matrices and Σ is a diagonal 
matrix of singular values.

Our methodology incorporates a Short-Time Frequency Transform 
(STFT) as an initial processing step to provide spectrograms of the 

pulmonary audio [34]. This transform segments the audio signal into 
windowed sections and converts them to the frequency domain, 
providing a time-frequency representation of the lung sounds. We then 
apply SVD to this transformed data, enabling us to capture both tem
poral and spectral characteristics of the lung sounds efficiently.

By rigorously selecting 20-s audio samples, we ensure the capture of 
multiple breathing cycles, enhancing the reliability and comprehen
siveness of our analysis. This approach allows us to construct a robust 
feature space that forms the foundation for our machine-learning 
classifiers.

The significance of this eigenspace-based approach lies in its ability 
to efficiently identify and extract the most relevant features from com
plex lung sound data. With the focus on these key characteristics, we can 
develop more effective and interpretable machine-learning models for 
COPD severity classification.

Regarding computational complexity, the Big O notation for our 
proposed method is primarily determined by the SVD operation, which 
has a time complexity of O

(
mn2) for an m × n matrix, where m ≥ n. The 

STFT, performed as a pre-processing step, has a time complexity of 
O(n log n) for each window, where n is the number of samples in the 
window. The total number of Floating-Point Operations (FLOPs) for the 
SVD is approximately 2mn2 + 2n3 for an m × n matrix.

It is worth noting that while these computational complexities might 
seem high, the dimensionality reduction achieved through eigenspace 
analysis often leads to significant improvements in subsequent pro
cessing steps, potentially offsetting the initial computational cost. 
Moreover, the interpretability gained through this approach can provide 
valuable insights into the underlying structure of the lung sound data, 
which may not be readily apparent with other methods.

4. Eigenspectral densities exploratory analysis

In this initial phase of the study, we investigated the eigenspectral 
probability distributions which are derived from COPD audio recordings 
for data exploration. This is specifically for categorising them by severity 
and recording locations. Our primary hypothesis asserts that the 
eigenspectral distributions corresponding to different severity levels 
may exhibit observed differences. We also examined the question of 
independence concerning the recording locations of COPD audio signals. 
In contrast, the alternative hypothesis posits a statistically significant 
dependence between recording locations and severity levels. The 
extraction of eigenspectral distributions, or densities, from audio sam
ples, involves the employment of the spectrogram technique, followed 
by SVD. Subsequently, we perform a random sub-sampling procedure, 
selecting 20 %[35] of each SVD component’s elements. This 
sub-sampled data undergoes an eighth-root transformation purposely 
designed to generate the eigenvalue spectra with normal and inter
pretable trends [36]. Histograms of 50 bins are visually depicted as 
eigenspectral distributions in the subsequent Figs. 1 and 2 below. These 
represent the generated eigenspectral under severities and locations 
recordings, respectively.

Table 1 
COPD Severity Dataset audio counts with selected training/testing sets.

Severity Count Selected Training Testing

COPD0 72 63 51 12
COPD1 60 48 45 3
COPD2 84 60 45 15
COPD3 84 71 57 14
COPD4 204 145 111 34

Totals 504 387 309 78

Table 2 
Conditions in the ICBHI Respiratory Database with selected samples.

Condition Count Selected

Asthma 1 1
Bronchiectasis 16 16
Bronchiolitis 13 13
COPD 793 757
Healthy 35 30
LRTI 2 2
Pneumonia 37 37
URTI 23 21

Totals 920 877
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4.1. Severities

Normalised spectral densities have been computed against severities 
using the labelled experimental data from the Respiratory Database 
@TR. Further, these refer particularly to the generated Σ singular matrix 
with its S-values following the SVD transform of the matrix X. The 
densities under the five severities are depicted in Fig. 1, below.

Following the above, the generated eigenspectral densities, repre
senting Σ manifest their subtly different distribution trends, against se
verities respectively. Nonetheless, they fall under an overall common 
trend.

In the computational exploration of COPD severities through 
eigenspectral analysis, our work leveraged a suite of software libraries to 
process and analyse the transformed auscultation audio data. The core of 
our computational framework was built upon Python version 3.10, 
Librosa and SciPy. These libraries were practical in facilitating the signal 
processing of spectral analysis required in our study. The computational 
process commenced with the extraction of the S, U, and VT matrices from 
the audio data, which are essential components for the eigenspectral 
density analysis. The execution times for this phase varied depending on 
the COPD severity category and the number of samples processed. The 
CPU times noted in accord with the various severities versus samples 
used are illustrated in Table 3 below:

4.2. Locations

The same approach is adopted for severities for computing the 
spectral densities against locations, which are the various patient 
auscultation points of the chest at which audio signals are observed, 
using the same labelled experimental data. Again, these particularly 
refer to the generated Σ matrix following the SVD transform of the 

matrix X. They are depicted in Fig. 2 below.
Similar observations are noted for each spectral density, representing 

Σ as manifesting various distribution trends against various recording 
locations. Again, they represent an overall common trend although with 
their slight and subtle distinctions.

In order to evaluate our hypotheses, we employed the Kruskal-Wallis 
Test, a practical statistical methodology for discerning the presence of 
statistical independence among variables. Specifically, we applied this 
test to investigate the relationship between severity levels and recording 
locations within the context of eigenspectral distribution. The results of 
the Kruskal-Wallis Tests are presented in Tables 4 and 5. Remarkably, 
both sets of tests related to severity levels and recording locations yield 
p-values that fall substantially below the predetermined significance 
level of α = 0.05. Consequently, we accepted the null hypothesis, which 
ultimately concludes that the distribution of eigenspectral densities 
demonstrates significant independence amongst the groups concerning 
severity levels as well as recording locations.

In summary, when the Kruskal-Wallis test yields a p-value below α =
0.05, it suggests that statistically significant differences among groups 
likely exist. However, the test alone does not provide information 
regarding distinct groups. Subsequent analyses are imperative for 
identifying the specific groups manifesting disparities. As we reflect on 
these findings, it becomes apparent that the relationship between 
recording and respiratory sound characteristics is complex.

Our research significantly advances the understanding of the com
plex interactions within acoustic environments, particularly high
lighting how spatial factors influence acoustic attributes. Building on the 
insights from our analysis of Eigenspectral distributions, the next phase 
of our study will focus on the classification of COPD severity levels. Our 
previous findings have demonstrated a clear distinction among the 
severity level distributions, indicating that the medians of these groups 
are significantly different. This differentiation is crucial for the accurate 
classification of COPD severity. However, a challenge remains: Despite 
these significant differences, further advanced analytical techniques are 
needed to enhance the discriminatory power of our classification model, 
in this case, the utilisation of eigenspaces for a projection matrix to 
enhance features understanding. Enhancing our model is essential for 
improving the accuracy of COPD severity identification, which ensures 
that our approach remains robust in various clinical scenarios. This step 
is vital for developing a more effective diagnostic tool that can lead to 
better patient outcomes.

The computational times for this aspect of the study varied 
depending on the location category and the number of processed sam
ples. The average number of samples per location was 32, and the 
average Eigenspectral extraction CPU time was 0.91 s, with the total 

Fig. 1. PDF of Singular S-Values for COPD by severity.

Fig. 2. PDF of Singular S-Values for COPD by location.

Table 3 
CPU times.

Computational Times

Severity Number of samples CPU time (s)

COPD0 63 1.30
COPD1 48 0.93
COPD2 60 1.27
COPD3 71 1.44
COPD4 145 2.91
Totals 387 7.85

Table 4 
Kruskal-Wallis test of COPD severity groups.

Kruskal-Wallis Test by Severity Levels

Component Statistic P-Value

S Values 11189.3 0.0
U Vectors 1005.8 0.0
VT Vectors 915.6 0.0
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time of processing all 387 samples being approximately 10.90 s.

5. COPD severity classification

Accurate COPD severity assessment is vital for effective clinical 
management. This part of the study proposes a novel approach to COPD 
severity identification by analysing the eigenspectral of lung audio sig
nals. Given the challenge of limited data availability within the Respi
ratory Database@TR dataset [31], our study draws upon the ICBHI 
Respiratory dataset [32] to augment our data.

The respiratory audio samples we employ undergo a multistep 
transformation process. Firstly, we filter out heart rate interference 
using a bandpass filter of 200–1500hz on each sample and transform it 
into spectrograms with the STFT. The ICBHI Respiratory dataset spec
trograms are then organised into a matrix, which serves as SVD input to 
extract unique respiratory characteristics from multiple respiratory 
health conditions. From the SVD, we derive a projection matrix by 
combining the left matrix vectors and the singular values.

This projection matrix plays a pivotal role in our research method
ology. It facilitates the transformation of the filtered spectrogram COPD 
severity audio samples into a subspace, a critical step in our pursuit of 
accurate classification using machine learning. We harnessed the power 
of four distinct machine-learning algorithms to classify and identify 
COPD severity classes effectively. This approach allows us to transfer 
insights gained from various respiratory conditions and healthy audio- 
sound characteristics to the context of COPD severity assessment.

In the following sections, we delve into the technical details of our 
methodology, present experimental results, and discuss the implications 
of our findings. Our research aims to set a benchmark of accurate and 
robust COPD severity assessment, ultimately benefiting future clinical 
practice and patient care.

5.1. Eigenspace projection and features

The projection process, which involves the VT matrix enables the 
capture of the variations in the attributes inherent in the respiratory 
audio data from the Respiratory database and the corresponding sin
gular values and culminates in constructing a pivotal projection matrix. 
This one is denoted as follows: 

P=X • V • Σ+. (9) 

Where P is the projection matrix, X the original matrix of stacked flat
tened spectrograms. V signifies the matrix of eigenvectors that capture 
the variance, Σ+ is the pseudo-inverse of the singular matrix Σ. Notably, 
the pseudo-inversion of Σ refers to the Moore-Penrose (1955) inversion 
of a rectangular matrix of Rank p=max (n,m) under the earlier intro
duced SVD transformation, shown in equation (4).

Integrating eigenvalues into the projection matrix draws inspiration 
from the work of Albiges et al. [37] and Javaheri and Sicilian [38].

Albiges et al. [37] assert that eigenvalues are pivotal in discerning 
disparities among conditions of healthy individuals, those with chronic 
obstructive pulmonary disease (COPD), and those with pneumonia. 
These conditions could be manifested under the eigenvalue spectrum 
structures, leading to the classifications of respiratory conditions. Their 
findings are complemented by Javaheri and Sicilian’s [38] research on 
breathing patterns, which reveals insights into the relationship between 

lower forced vital capacities (FVCs) and the concurrent increase in 
respiratory rates and decrease in tidal values. These distinct character
istics may closely correlate with the combined manifestation of the V 
matrix, the VT matrix transposed, which captures the variance of the 
eigenvalue spectral density together with Σ+ on the eigenspace’s 
strength characteristics. This matrix P encapsulates the most significant 
basis vectors of the selected samples from the ICBHI dataset of breathing 
sounds, representing the directions and magnitudes in the eigenspaces 
which contain maximum information. By projecting new samples onto 
this feature space, P accentuates essential features that are most 
discriminative while suppressing less informative ones, often associated 
with noise or irrelevant variations.

However, it is essential to note that while our approach draws 
inspiration from these pioneering works [33,39], it diverges in a vital 
aspect. The referenced studies utilised rank reduction techniques, 
whereas our method takes a different path with a focus on all the 
reordered characteristics, which is indeed a departure from the rank 
reduction approach [33]. This strategic alteration aims to enhance linear 
classification, moving away from rank reduction in the projection stage, 
as the filtered audio seeks to remove unwanted noise only.

Subsequently, the projection matrix is a fundamental tool for pro
jecting COPD severity samples into a novel subspace, as articulated in 
S = PT • A. Here, S denotes the transformed COPD severity sample, PT 

Represents the transpose of the projection matrix P, and A symbolises 
the COPD severity audio sample, which is pre-processed by a bandpass 
filter and transformed into spectrograms, for facilitating the exploration 
and analysis of COPD severity based on Eigenspectral in the ensuing 
stages of this the ongoing research programme.

5.2. Machine learning and severity classification

Four machine learning algorithms are applied to the transformed 
audio of the COPD severity dataset. We opted for a Training/Testing 
split ratio of 80:20. The training and testing set numbers have been 
previously noted in Table 1. The classification is conducted twice, firstly 
on the spectrograms without projection, as shown in Table 6, and sec
ondly on the projected spectrograms, S, in Table 7, for a comparison of 
the results. As the datasets are imbalanced, the class weights are passed 
to the machine learning algorithms. This study opted for class weighting 
over other balancing techniques, such as oversampling or under- 
sampling, to preserve all available data while addressing the imbal
ance issue. This method is particularly suitable for our relatively small 
dataset, where losing samples through under-sampling could signifi
cantly impact model performance.

The machine learning algorithms employed in this study encompass 
Random Forest, Gaussian Naïve Bayes, Support Vector and Logistic 
Regression Classifiers. As an ensemble method, Random Forest con
structs multiple classification trees and amalgamates their outputs to 
yield the results [40]. The Gaussian Naïve Bayes classifier operates as a 
probabilistic classification model, while the Support Vector Classifier 
serves as a boundary classifier, aiming to delineate class boundaries 
using a hyperplane [41]. Lastly, Logistic Regression for multiclass 
classification operates as another probabilistic classifier that predicts 
class membership using a one-versus-the-rest approach for each class 
[42].

The classification evaluations in this study employed several metrics, 
including Accuracy, Precision, Recall, F1-Score, Kappa [43], and 
weighted Kappa. The use of weighted Kappa is particularly relevant in 
this context as the target classes represent values of an ordinal variable. 
To further assess the models’ performance, a detailed classification ex
amination per class is conducted using ROC curves [41,44].

Table 5 
Kruskal-Wallis test of COPD location groups.

Kruskal-Wallis Test by Location Groups

Component Statistic P-Value

S Values 109.8 0.0
U Vectors 261825.4 0.0
VT Vectors 1769.6 0.0
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6. Results and discussion

6.1. COPD severity classifications

The outcomes of the COPD severity classification based on eigens
pectral feature spaces are presented below for comparison. The result of 
the classification without projection is shown in Table 6.

Table 7 displays the results of the COPD severity classification with 
projection into subspace to assist on class separation.

Tables 6 and 7 present the classification results for models without 
projection and those with projection, respectively. In the absence of 
projection, the classifiers performed poorly. Specifically, the Logistic 
Regression model achieved an accuracy of 48.7 %, with a Precision of 
42.5 %, Recall of 48.3 %, and F1-Score of 42.6 %. Similarly, the Random 
Forest model exhibited an accuracy of 52.6 %, with Precision, Recall, 
and F1-Score values of 56.2 %, 52.0 %, and 47.69 %, respectively. 
Support Vector and Logistic Regression models demonstrated 55.1 % 
and 48.7 % accuracy, respectively. Upon applying projection into the 
breathing subspace, improvements were observed for some classifiers. 
While the Random Forest model still performed modestly, it exhibited 
an accuracy of 59.0 %, with Precision, Recall, and F1-Score values of 
56.8 %, 39.1 %, and 40.8 %, respectively. Equally, Naïve Bayes achieved 
an accuracy of 43.5 %, with Precision, Recall, and F1-Score values of 
35.0 %, 23.6 %, and 20.0 %, respectively. However, the Support Vector 
model showed significant improvement with an accuracy of 75.6 % and 
robust Precision, Recall, and F1-Score values of 70.7 %, 69.3 %, and 
67.7 %, respectively. Likewise, Logistic Regression demonstrated an 

accuracy of 71.8 %, with Precision, Recall, and F1-Score values of 64.5 
%, 65.0 %, and 62.8 %, respectively. Overall, the classifiers with pro
jection generally showed improvements in accuracy and performance 
metrics, particularly evident in the substantial enhancement of the 
Support Vector model notwithstanding the Logistic Regression. The 
weighted Kappa values provide insights into the agreement beyond 
chance, with both models displaying varying degrees of agreement. The 
observed variations underscore the impact of the projection into the 
breathing subspace on model performance. Looking at the results of the 
best-performing models, the SVC with linear kernel and the Logistic 
Regression, specifically by checking their Receiver Operating Curves 
(ROC) and Area Under Curves (AUC), are shown in Fig. 3.

Further, the evaluation of the SVC and Logistic Regression models, 
the AUC for the One versus Rest classification across different classes 
reveals distinctive performance metrics (Fig. 4). For the Support Vector 
Classifier, the AUC values for each class indicate varied discriminatory 
capabilities. Class 1 exhibits the highest AUC at 96, indicating excellent 
discrimination, followed by Class 0 with an AUC of 93. Class 4 and Class 
2 demonstrate respectable AUC values of 90 and 94, respectively, sug
gesting good discriminatory capabilities. However, Class 3 lags with an 
AUC of 78, implying a comparatively lower discriminative ability.

In contrast, the Logistic Regression model displays a similar trend but 
with nuances. Class 1 achieves the highest AUC at 96, akin to the SVC 
results. However, Class 0 shows a slightly lower AUC of 92, indicating 
robust discriminatory performance. Classes 4 and 2 maintain respect
able AUC values of 90 and 77, respectively. Class 3 mirrors the lower 
discriminatory trend observed in the SVC results, with an AUC of 78.

Table 6 
COPD severity classification results without projection to feature subspace.

Without Projection

Accuracy Precision Recall F1-Score Kappa Weighted Kappa

Random Forest 52.6 % 30.3 % 31.3 % 27.3 % 0.22 0.47
Naïve Baye 53.8 % 56.2 % 52.0 % 47.69 % 0.40 0.35
Support Vector 55.1 % 48.6 % 50.8 % 47.7.3 % 0.39 0.46
Logistic Regression 48.7 % 42.5 % 48.3 % 42.6 % 0.30 0.45

Table 7 
COPD severity classification results with projection to feature subspace.

With Projection

Accuracy Precision Recall F1-Score Kappa Weighted Kappa

Random Forest 59.0 % 56.8 % 39.1 % 40.8 % 0.36 0.37
Naïve Bayes 43.5 % 35.0 % 23.6 % 0.20 % 0.06 0.08
Support Vector 75.6 % 70.7 % 69.3 % 67.7 % 0.65 0.65
Logistic Regression 71.8 % 64.5 % 65.0 % 62.8 % 0.60 0.64

Fig. 3. Roc curves of the SVC and the logistic regression models.
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These AUC values provide valuable insights into the extracted 
models’ ability to distinguish between different classes concerning 
COPD severities. The consistently high AUC for Class 1 suggests a robust 
discriminatory capacity across both models. The nuanced variations in 
AUC values across other classes highlight the models’ differing abilities 
to discriminate between specific groups.

This study performed a parameter sensitivity analysis for the SVC 
and LGC models to optimise their performance. For the SVC, we 
explored different values of the regularisation parameter ’C’, finding 
that lower values yielded better results. This suggests a larger margin 
and potentially increased generalisation benefited our COPD severity 
classification task. For the LGC, we compared the L1 and L2 regular
isation methods while discovering that L1 regularisation outperformed 
L2. This indicates that feature selection and sparsity were advantageous 
for our dataset, which is potentially due to the high-dimensional nature 
of the audio features. These parameter choices were made based on the 
models’ respective performances.

These findings contribute to a comprehensive understanding of the 
models’ discriminative power across various classes, underscoring the 
importance of class-specific evaluation metrics in assessing the perfor
mance of machine learning models.

The computational CPU time of the SVD of the grouped breathing 
audio was performed, which took 37.8 s for 877 samples. This step was 
crucial for decomposing the audio data into its constituent eigenvectors 
and eigenvalues, thereby enabling the identification of features that 
characterise the different COPD severities. The projection of these 
samples into the eigenspace, a critical step for the classification of COPD 
severities using machine learning algorithms, CPU-time was completed 
in a mere 1.9 s for 387 samples.

The classification performance was evaluated using a comprehensive 
set of metrics to assess the models’ capabilities [45]. The assessment of 
the stability and reliability of our best-performing models, SVC and LGC, 
led us to conduct 100 randomised tests using stratified k-fold 
cross-validation (k = 5). We report the mean and 95 % confidence in
tervals for each COPD severity class’s accuracy, sensitivity, and 
specificity.

The results with the mean results of the 100 random stratified K-fold 
results are shown in Table 8 below and Fig. 4 shows the distribution of 
results as a box plot for the SVC and LGC models metrics accuracy, 
sensitivity, and specificity.

The results of 100 random stratified k-fold cross-validations for 
COPD severity classification demonstrate robust performances for both 
the SVC and LGC models. Both classifiers achieved a mean accuracy of 
77 %, with the SVC showing a slightly higher upper bound of the 95 % 
confidence interval at 86 %, when compared to the LGC’s 84 %. Both 
models exhibited excellent sensitivity, with a mean of 93 % and an upper 

confidence interval reaching 100 %. This indicates a strong ability to 
correctly identify positive cases across COPD severity levels.

The SVC demonstrated superior specificity, with a mean of 97 % and 
a confidence interval of 100 %, compared to the LGC’s of 90 %. We 
selected these performance metrics on their ability to comprehensively 
assess classification performance, particularly with imbalanced datasets 
[46]. Mean and 100 % upper bound, suggest the SVC’s capability to 
correctly identify negative cases. These findings underscore the models’ 
effectiveness in distinguishing between different COPD severity levels, 
with the SVC showing a marginal advantage in overall performance.

7. Further discussions

This research aimed to leverage artificial intelligence in healthcare 
and benchmark it with machine learning approaches, which were 
satisfactorily performed in detecting COPD severities. The methodology 
can be summarised as follows. 

1. Data Pre-processing and Transformation: We began by processing 
respiratory audio samples, removing heart rate background inter
ference, and converting them into spectrograms uses the STFT. The 
dataset is organised into a matrix for SVD.

2. Singular Value Decomposition (SVD): We utilise SVD to extract 
unique respiratory characteristics from the data. From this, we 
derive a pivotal projection matrix that plays a crucial role in our 
subsequent analysis.

3. Eigenspace Features Projection: The projection matrix is con
structed by incorporating eigenvalues and eigenvectors from the SVD 
process. This step draws inspiration from previous research on res
piratory conditions and diverges from conventional rank reduction 
approaches.

4. Subspace Transformation: The projection matrix facilitates the 
transformation of the COPD severity samples, capturing crucial basis 
vectors representing the high-variance directions in the eigenspace. 

Fig. 4. Boxplots of average, sensitivity, and specificity of 100 random trials of stratified K-fold on the SVC and LGC models.

Table 8 
Results for the 100 random stratified K-fold COPD severity classification of the 
SVC and LGC models.

Results of 100 Random Stratified k-Fold COPD Severity Classification

Model Average Sensitivity Specificity

Mean 95 % IC Mean 95 % IC Mean 95 % IC

SVC 77 % 86 % 93 % 100 % 97 % 100 %
LGC 77 % 84 % 93 % 100 % 90 % 100 %
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This transformation highlights discriminative features while sup
pressing noise and irrelevant variations.

5. Machine Learning Classification: We apply four machine learning 
algorithms to classify COPD severities. Data is split into training and 
testing sets for evaluation, focusing on comparing classification 
performance with and without projection onto the eigenspaces.

6. Machine Classification Metrics: Our evaluation includes various 
metrics for comparing classification without and with the projection 
method.

The potential impact of this research is significant. A future, more 
accurate and automated COPD severity classification system can assist 
healthcare professionals in making critical, informed decisions. This can 
lead to earlier interventions by clinical and nursing professionals with 
personalised treatment plans. These are expected to improve patient 
outcomes, benefiting from smart clinical practice and patient care. Our 
ultimate goal here is to contribute to the development of reliable COPD 
diagnostics and prognostics in the future. This will undoubtedly and 
positively impact the lives of COPD patients and the healthcare com
munity as a whole.

Our study represents an early promising advancement in classifying 
COPD severities using Artificial Intelligence (AI). Our methods are 
enhanced by the application of SVD and the projection matrix to lung 
respiratory audio signals for the classification of COPD severity. Note 
also that this innovative approach incorporates the concept of transfer 
learning, which draws valuable insights from one distinct dataset and 
applies it to another. Our results underscore the substantial contribution 
of this methodology to the precise categorisation of COPD severity 
levels, carrying promising implications for clinical practice and health
care management. The ability to accurately differentiate between COPD 
severity categories holds profound consequences for clinical decision- 
making and healthcare administration. The potential for future inte
gration of our method into medical practice equips healthcare pro
fessionals with a valuable tool to inform treatment plans and 
interventions. Early detection and understanding of the various sever
ities from mild, moderate, and severe to very severe conditions has the 
potential to facilitate proactive medical strategies, thereby reducing 
hospitalisations and enhancing overall patient outcomes in the near 
future.

Moreover, our research foundational framework is currently at a 
benchmarking work stage for developing portable and non-invasive 
diagnostic and prognostic tools for COPD severity assessments. How
ever, it is imperative to acknowledge the limitations inherent in our 
study at this moment in time. The relatively modest size of our dataset 
for model training and testing raises questions about the generalizability 
of our findings to broader populations. The absence of external valida
tion datasets further obscures the actual robustness of our models on 
unseen data. In addition, the classifiers’ performance might be suscep
tible to the quality of audio recordings, external noise, and variations in 
auscultation practices.

As we look ahead, the future research path opens up promising op
portunities for us. Scaling up the dataset to encompass a more diverse 
and extensive sample size holds the potential to fortify the classifiers’ 
reliability. Our models can be better equipped to tackle genuine clinical 
scenarios by incorporating real-world noise and variability in audio 
recordings. Additionally, more knowledge discovery and explainable AI 
could support further research in understanding COPD and respiratory 
audio, especially with extra clinical and demographic variables, such as 
age, height, chest size and smoking history, leading to a more compre
hensive evaluation of COPD severity audio signals.

8. Conclusion

This study marks a noteworthy advancement in COPD severity 
classification through auscultation audio signals. By leveraging knowl
edge transfer techniques, we have achieved notable improvements in 

classification accuracy, underlining the potential of this approach for 
practical implementation in clinical settings. Identifying critical features 
within principal components of the eigenvectors adds depth to our un
derstanding of the intricacies involved in COPD severity assessment and 
diverges from rank reduction methods. However, it is essential to 
acknowledge this study’s early stages and limitations. The relatively 
modest size of our dataset may pose challenges to the broader general
isations of our findings. The absence of external validation datasets 
further underscores the need for caution in interpreting the robustness of 
our models on unseen data. External factors such as audio recording 
quality, ambient noise, and variations in auscultation practices could 
influence classifier performance.

Future research avenues should prioritise scaling up the dataset to 
encompass a more diverse and extensive sample size. This expansion can 
enhance the reliability of classifiers and better simulate real-world 
clinical scenarios, accounting for variations in audio recordings.

Nonetheless, this study brings in novel benchmarks for addressing 
lung respiratory signals through targeted pre-processing and transforms 
to relevant feature spaces such as the representative eigenspaces of the 
audio signals Discrete Fourier Transform matrices to discover the best 
performing AI algorithms which understand and distinguish subtleties 
amongst the various types of progressing severities of COPD. Thus, 
future research efforts are warranted to address existing limitations and 
propel the field towards more robust and clinically applicable solutions. 
Our team is indeed on the journey towards enhancing diagnostics and 
prognostics precisions for detecting the nuanced features of COPD 
severity using AI, together with future-generated larger volumes of data 
in our laboratory activities with the participation of more cohorts of 
COPD patients in our region and beyond.
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