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Abstract: Integrating intelligent grids with the internet increases the amount of unau-
thorized input data which directly or indirectly influences electrical system control and
decision-making. Photovoltaic (PV) farms that are linked to the power grid are susceptible
to cyber attacks which may disrupt energy infrastructure and compromise the security,
stability, and resilience of the electrical system. This research proposes a new model for
cyber threat detection in PV farm, named as Cyber Detection in PV farm (CDPV), which
makes use of deep learning methods based solely on point-of-common coupling (PCC)
detectors. In this paper, a thorough cyber attack model for a photovoltaic (PV) farm is de-
veloped, where the simulation of four kinds of cyber attacks is provided. Furthermore, this
paper evaluates the role of three deep learning techniques including convolutional neural
network (CNN), artificial neural network (ANN), and long short-term memory (LSTM),
in PV cyber threat detection. The findings demonstrate that, at the DC/DC converter and
DC/AC inverter sides, the proposed CDPV model based on deep learning techniques
(CNN, ANN, and LSTM) can improve the cyber detection accuracy and resilience under
various attack scenarios.

Keywords: cyber-attack; photovoltaic farm; machine learning; power electronic converters;
cyber-physical system; cyber security

1. Introduction

In many nations, strategies addressing climate change must include Renewable Energy
Source (RES) technologies, which are also critical to decarburization initiatives. Due to its
eco-friendliness, sustainability, and lack of operating costs, solar photovoltaic (PV) is one of
the most significant potential distributed energy resources when considering generating
variety in the energy industry [1]. Over the past 20 years, there has been a remarkable,
huge percentage rise in the nominal capacity of solar photovoltaic systems. Although there
are many advantages to PV systems, PV systems” unpredictable behavior makes managing
the power system complex [2]. To maintain the stable operation of PV systems generation,
the MPPT (Maximum Power Point Tracking) controller is required [3].

The integration of new technical components into an intelligent grid has been achieved
through the combination of photovoltaic systems (PVs) and other renewable energy source
(RES) technologies to control and manage power flow. These components, collectively
referred to as Information and Communication Technologies (ICT), include innovations
such as the Internet of Things (IoT), Supervisory Control and Data Acquisition (SCADA)
systems, among others, which are integral to the operation of the intelligent electrical
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network [4,5]. However, critical elements of the connected power grid are vulnerable to
cyberattacks and other threats. Depending on their severity, such attacks could undermine
the monitoring capabilities of the intelligent grid, adversely affecting the security, stability,
resilience, and overall reliability of the power system, either in the short term or over an
extended period [6].

As previously explained, integrating intelligent grids with the internet increases the
influx of unauthorized input data, which directly or indirectly influences the control and
decision-making processes of electrical systems. The interaction between cyber networks
and power systems has gradually transformed these systems into multifunctional, diverse,
and complex cyber-physical power systems (CPPSs) [7]. The technical capabilities of cyber
systems in CPPSs play a pivotal role in enhancing the observability and controllability
of electrical networks [8]. Given the interdependence of cyber and physical systems, the
performance of cyber systems significantly affects the operation of physical power systems.
CPPSs encompass all critical areas of energy systems, including electricity generation,
transmission, distribution, utilization, and marketing [9]. However, the transfer of infor-
mation and data over the internet is vulnerable to cyber threats, such as Data Integrity
Attacks (DIAs), which aim to modify data unauthorizedly to deceive systems into making
erroneous decisions. Extensive research has explored DIAs in legacy electrical infrastruc-
ture, including smart grids and DC microgrids. To address these vulnerabilities, both
model-based and data-driven techniques have been developed to mitigate the risks [10].

2. Problem Statement

Photovoltaic (PV) farms linked to the power grid are susceptible to cyberattacks, which
have the potential to disrupt energy infrastructure and compromise the security, stability,
and resilience of the electrical system. Therefore, it is essential to evaluate the potential
impacts of such attacks on PV farms and develop effective methods for their detection.
In previous studies, researchers utilized the Micro Phasor Measurement Unit (WPMU) to
gather data aimed at optimizing the attack detection process. By employing low sampling
rates from raw electrical waveforms and signals—such as voltage, current, harmonics, and
frequency—they extracted valuable information about the stability of electrical grids. These
studies utilized pPMU to collect low sampling rates of raw electrical waveform data and
improve the detection of assaults on electrical grids. In contrast, we leverage the full range
of electrical signal data without relying on uPMU to achieve higher accuracy in detecting
and diagnosing attacks. Specifically, this paper evaluates deep learning techniques in
cyber security detection within PV farm-based point-of-common coupling (PCC) detectors.
Furthermore, there is a lack of accurate data, which involves several attack scenarios on
PV farms. Therefore, this paper introduces a PV farm dataset that simulates critical attacks
on PV farms. This dataset facilitates the accurate evaluation of deep learning techniques
in cyber attack detection in PV farms. Moreover, this paper focuses on detecting Data
Integrity Attacks (DIA) in photovoltaic (PV) systems, covering four attack scenarios, two of
which are introduced and analyzed for the first time in this study. The following problem
is discussed in this paper: how can the deep sequence learning approach identify the cyber
threats in PV farms utilizing one phase of the current signal and the voltage signal without
using uPMU?

This paper proposes a new model for cyber threat detection in PV farm, named as
Cyber Detection in PV farm (CDPV), which makes use of deep learning methods based
solely on point-of-common coupling (PCC) detectors. In CDPV, PV systems employ a
single voltage sensor and a single current sensor at the PCC to identify and handle many
cyber-attacks on the DC/DC and the DC/AC power electronic converting devices. In
practical applications, encrypting the communication route may guarantee waveform
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data security. ANN, CNN, and LSTM are the three data-driven methodologies used as
comparative techniques in this research.

3. Contributions

The developments and the contributions of our work are

1.  Propose a novel PV model designed to simulate four critical cyberattacks that signifi-
cantly compromise data integrity. Unlike earlier PV models, the proposed structure
incorporates individual converter controls for each PV unit and employs an LC in-
verter filter for enhanced performance and realism.

2. Propose a new model for cyber threat detection in PV farms, named Cyber Detection
in PV farm (CDPV). CDPV employs several deep learning methods to detect security
issues in PV farms. These methods include CNN, ANN, and LSTM.

3. This paper presents a novel PV farm dataset featuring various attack scenarios aimed
at compromising the data integrity of PV systems. The primary objective of creating
this dataset is to facilitate the evaluation of deep learning techniques for detecting
cyberattacks on PV systems.

4.  In-depth evaluation of deep learning techniques in PV cyber attack detection. Specif-
ically, a new evaluation methodology is adopted based on multiclass classification
with a high sample rate from the waveform to enhance the attack detection.

4. Paper Organization

The paper is organized as follows: Section 5 provides background and related work;
Section 6 explores the Proposed Cyber Detection model in PV (CDPV). Section 7 focuses on
model evaluation and Implementation. Section 8 presents and discusses the results. Finally,
Section 9 presents the conclusions.

5. Background and Related Work
5.1. Background

PV panels, DC/DC converters, DC/AC inverters, a controlling device, and an elec-
tricity meter make up typical PV farms. The PV array is linked to the network through an
on-grid inverter. Many of the PV panels, DC/DC converter, and DC/AC inverter can be
connected in parallel to form the PV farm, as shown in Figure 1.
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Figure 1. PV Farm configuration.
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The photovoltaic panel and the DC/AC inverter are connected via a DC/DC converter.
To guarantee that the greatest amount of power is taken during varied irradiance and
temperature circumstances, the converter performs maximum power point tracking (MPPT)
on the comprehensive I/V characteristics of the photovoltaic array. To maximize the power
extracted from the PV array, the DC/DC converter is typically constructed as a step-up
converter, and the DC/DC controller is MPPT, which applies a perturb and observe (P&O)
approach. Throughout this process, the PV array’s voltage and power output vary. For
each cycle, the tracker measures the voltage and current of the PVs. By analyzing power
variations, it calculates the actual solar power generated by the PV system and adjusts
the pulse width modulation (PWM) to regulate the switch’s input signal. This process is
integrated into the Maximum Power Point Tracking (MPPT) mechanism [11]. Advanced
converters utilize a variety of MPPT techniques [12].

Energy storage systems (ESSs) and solar energy facilities collaborate to charge batteries
during the day and discharge them at night [13]. Control devices collect measurement
data from various sensors distributed throughout the photovoltaic (PV) system, including
temperature, irradiation, energy, power, voltage, and current data. This data is used to
monitor the efficiency of the PV system, enabling the identification of degradation and
failures that could impact the system’s flexibility and reliability [14]. Multiple sensors
continuously assess PV system efficiency and detect potential degradation, such as in
the DC-link capacitor, which is critical for minimizing ripple in the output waveforms
between DC devices. Filters play a vital role in reducing harmonic distortion between
the power grid and the inverter, enhancing system performance. The inverter regulator
typically facilitates the transfer of electricity from the DC circuit to the AC network. The
PV arrays, inverter, and grid are interconnected through a wireless communication system
that gathers operational data. Figure 1 illustrates the cyber-physical connections within the
PV farm. The total electricity generated by PV farms is monitored using meters installed
for residential and commercial users [15]. Advanced control strategies and integration
inverters enable PV farms to provide grid support and meet customer demands as large-
scale PV farms become increasingly integrated into the power system. The cyber-physical
attacks which occur on PV systems can be classified into four main types [16,17]:

(a) Type One: This category involves direct physical attacks on hardware, such as
tampering with wires, inverters, combiner boxes, or PV modules. A notable example
includes the widespread removal and theft of photovoltaic panels, which has been among
the most prevalent attacks in recent years.

(b) Type Two: This type refers to an attack that targets the inverter itself, the inverter
controller, and its algorithms.

(c) Type Three: This type of attack involves injecting false information into the data to
deceive operators and manipulate sensor readings, targeting the monitoring and diagnostic
systems. The increasing digitalization of solar energy plants and the widespread use of
IoT devices for data collection, transmission, and communication within PV systems make
such attacks feasible. In response, many inverter manufacturers are strengthening their
devices and placing a higher emphasis on cybersecurity.

(d) Type Four: This category encompasses attacks targeting the electrical network,
potentially compromising the overall safety and functionality of the plant. Examples
include falsifying electricity demand or isolating the PV system from the network. By
manipulating voltage levels or triggering breakers, attackers can disconnect PV inverters
from the electrical system.
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5.2. Related Work

This section provides an explanation of the appropriate literature that represents the
basis for further investigation of cyber security in PV farms’ power electronics. PV farms
are subject to cyber-attacks which aim to compromise their sensors, control signals, and
data communication capabilities.

Several studies have focused on the vulnerabilities of the control converters which
can be utilized by cyber attacks. A survey by [1] highlights the importance of balancing
systems performance and cyber-physical interactions to ensure robust and resilient control
strategies. Various cases on grid-tied power converters, including DFIG, HVDC, STAT-
COM, DSTATCOM, and microgrids, are performed in this study. On the other hand, a
parallel control framework is proposed in [18], which introduces a model predictive con-
troller (MPC) and a proportional integral controller (PIC), aiming at improving converters’
dynamic performances in hydropower plants. Specifically, in the study [19] focuses on
enhancing IoT cyber security and improving real-time cyber-attack detection by using
sensor data processing techniques that facilitate the exploration of physical layer security,
low-complexity encryption, and authentication methods. Similarly, vulnerabilities and
cyber threats in PV systems are studied and analyzed in [20]. Precisely, a range of cyber
threats in PV, including Denial of Service (DoS), Distributed Denial of Service (DDoS),
Man-in-the-Middle (MITM) attacks, and Data Integrity attacks (DIAs) are discussed and
analyzed in this study.

Critical energy infrastructures are becoming more vulnerable as hackers broaden
their attack vectors to cover more parts of PV systems and communication networks.
Regarding cyber-attack detection approaches, attack detection challenges are analyzed
in [21]. Specifically, this study provided an in-depth analysis of the obstacles to the cyber
and physical attack detection on the PV systems, in particular, the PV system grid-connected
via the HCADI (High-Dimensional Data-Driven Cyber Physical Attack Detection and
Identification) technique, which requires a training stage as well as offering significant
enhancements. On the other hand, a defensive mechanism for grid-tied photovoltaic
(PV) systems is proposed in [22], which is based on dynamic watermarking. Specifically,
this research examined the performance of a single-phase inverter using a safeguarding
method where data manipulation detection is achieved via signals. Furthermore, the
study concluded that this dynamic technique effectively mitigates threats and enhances
system stability by analyzing individual events and their impacts. This approach utilizes
the DC-link voltage as a constant voltage source while disregarding the effects of the
MPPT method.

Machine learning and deep learning techniques have been pivotal in detecting cyber
attacks targeting physical infrastructures [23]. Specifically, an analysis of data-driven
methods in PV farms such as Decision Trees (DT), Convolutional Neural Networks (CNN),
k-Nearest Neighbors (KNN), Support Vector Machines (SVM), Artificial Neural Networks
(ANN), and Long Short-Term Memory (LSTM) was presented in [24]. The effectiveness
of these techniques, leveraging data from the Micro Phasor Measurement Unit (uPMU),
was evaluated for enhancing attack detection. The benefits of data-driven approaches in
managing complex power grids were highlighted in [25]. This study addressed device-
level security for power electronics converters and proposed a cyber-physical security
architecture for a 980 kW PV farm. The PV farm features seven converters connected
in parallel to the electrical grid. This architecture offers a chance to examine the impact
of cyber attacks on control loops by using reduced PMU data sampling rates to achieve
effective detection by comparing two data-driven approaches, LSTM and support vector
machine (SVM).
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Regarding PV attack detection accuracy when using data-driven methods, authors
in [26] introduced a defence strategy which integrates a one-class recognition approach
with a breach diagnostic model. Finally, the research in [27] explored machine learning
techniques, specifically convolutional neural networks (CNNs), to detect cyberattacks in
photovoltaic (PV) farms integrated into a large grid with 37 buses, following the IEEE
standard. This approach achieved high detection accuracy and resilience across various
attack scenarios. Additionally, a defense strategy was developed using a multi-layer
Long Short-Term Memory (LSTM) model to effectively identify the presence of attacks on
PV farms.

In Summary, several previous attempts have been made to address the challenges of
cyber attacks detection in PV using data-driven models and automated defense methods
based on machine learning and deep learning techniques. These attempts show several
limitations in detection accuracy, efficiency, and performance. Table 1 presents a compila-
tion of the related works that explore and propose models of cyber attack detection in the

context of PV farms.

Table 1. The comparison of the previous cyber attack detection techniques.

Ref. Method Strength Weaknesses
It does not address the
Provide a unique method that congtramts a§soc1ated
. . . with adopting the
combines binary matrix suewested approach in
[21] HCADI factorization for attack 58 Pprod
. o . real time and putting the
diagnosis with leveraging di : bef
score-based attack detection 1agnNOsIS process berote
' detection for enhanced
detection attacks.
Introduce a comprehensive
. explanation of the defensive .
Dynamic . The defensive system
[22] . mechanism and several . C
watermarking . . requires validation.
possible assault strategies
utilizing a 5 kw PV farm.
Present an analysis of The suggested approach
research results that validate  lacks practical application
[24] Data driven the possibility of using uPMU and does not provide

for attack detection in the
photovoltaic (PV) farm.

analysis details for each
attack.

[25] LSTM, SVM

Conduct an analysis of the
effects of the DIAs on various
control loops within the
Photovoltaic (PV) farm.

Detecting attacks is a
binary classification issue
in that the data is
classified into two
categories: normal and
abnormal.

The suggested technique has
been assessed in a PV smart
grid benchmark model using

A one-class detection
approach is used to

[26] MLSTM, data comprehensive quantitative determine if a
driven analysis. A applying photovoltaic (PV) farm is
comparison, the traditional being targeted by an
data-driven methodologies attack.

have assessed.
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Table 1. Cont.
Ref. Method Strength Weaknesses
Provide a comprehensive
examination and comparison of
several forms of cyber-attacks Does not explore the
and physical faults that may mechanism used to prevent
. . occur in photovoltaic (PV) farms. oversampling of data and
271 Machin learning These include attacks on data address the suggested
integrity, replay assaults, strategy’s limitations in
open-circuit faults, short-circuit resolving this problem.
faults, and advanced
cyber threats.

6. The Proposed Detection Model in PV (CDPV)

Due to the limitations of cyber attack detection methods mentioned earlier, this paper
presents a new detection model, named as Cyber Detection in PV (CDPV), which assesses
and identifies cyberattacks occur in the controllers of PV system converters. In contrast to
conventional methods that employ waveform sensors in every PV converter, the CDPV
relies on dependable sensing that helps capturing live PV data. CDPV collects data from
PV farm sensors to investigate potential attacks on the controllers of PV converters. The
second major step that the CDPV achieves is to apply a deep learning detection model on
the collected data, aiming to detect cyber attacks with optimal predicted efficiency. The
deep learning detection model is in Figure 2.

Attack case 4
Attack case 3

Attack case 2

Normal e —— Attack
Operation & Dataset ‘ profile Data
Data

’ SMOTE |

1

| Preprocessing |

: |

[ Training Dataset ]

|

| CNN,MLSTM,ANN ‘

Attack case 1

Class of Attack

Test Dataset

Class of Normal

Figure 2. Flowchart of the CDPV detection model.

Model Overview

The CDPV model has the following main components, as pictured in Figure 2: Dataset
generation, SMOTE, Preprocessing, Training and Testing Dataset, Deep learning (CNN,
MLSTM, ANN), and Model (Attack Classification). The details of how these components
work is deferred until Section 7.

e Data collection: In this phase, live data is collected from PV sensors, which will
be fed into the training and testing model. For the CDPV evaluation purpose, we
introduced a dataset generation method involving four PV farm attack cases. More
details regarding dataset generation and PV farm modelling are deferred to Section 7.1.

e  SMOTE: After generating the dataset, the SMOTE technique is applied. SMOT ad-
dresses the class imbalance in the dataset by creating synthetic examples of the minor-
ity class (in this case, unusual or attack cases).
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e  Preprocessing: After making the classes balance in the dataset, data preparation
converts unstructured data into a comprehensible format and eliminates unforeseen
distortions generated by Simulink simulations to avert inaccuracies in the data sample.

e Training and Testing Dataset: The dataset is divided into training and testing sets.
Training data instructs algorithm models by parameter adjustment while testing data
assesses model performance and generalization by evaluating its predictive capability
on unseen data.

e Deep learning (CNN, MLSTM, ANN): We have used three well-known supervised ap-
proaches: ML/DL multiclass classification algorithms, including ANNs, LSTMs, and
CNNs. The processing capabilities of each approach vary according to the complexity
of the model; by comparing and evaluating them, we can determine which is best.

e  Model (Attack Classification): Finally, the trained model is used to classify new data
into two categories: usual (non-attack) and unusual (attack). This classification is
based on the patterns learned during the training phase. The model’s output will
indicate whether a particular data point is standard or an attack, helping identify
potential threats.

7. Model Implementation and Evaluation
7.1. Dataset Generation

In this phase, live data is collected from PV sensors, which will be fed into the training
and testing model. For the CDPV evaluation purpose, we introduced a dataset generation
method involving four PV farm attack cases. The dataset should contain various data
points, including both usual and unusual cases (or attacks and non-attacks), which will
help the model learn to distinguish between them. The proposed data generation method
involves two key steps: modelling of the PV farm and the threats model. These two steps
are explained in detail in the following subsections.

Modelling of PV Farm

This section presents the design and implementation of the PV farm model to simulate
real-world conditions when subjected to malicious activity attempts. The PV farm model
design is implemented in MATLAB to simulate 2-MW PV farm, as shown in Figure 3.
The design shows that the photovoltaic system and inverter are connected via a DC/DC
connection to maximize the energy extracted from the PV array. Furthermore, the PV farm
model connects two parallel inverters to an electrical grid with all the required systems for
control. The PV panel model can be given by the dynamic equation of the V-I relationship
as in Equations (1) and (2) [28]:

Ipy =Ipy — Ip — Igp, 1)

Ipy =Ipy — Ip X [exp [((Q x Vp)/n X k x T — 1) — Vp/Rgyl] ()

where the “Vp” is diode voltage, “Ip” is reverse saturation current, “Q” is for electron
charge, “n” is the number of cells per module, “k” for Boltzmann factor, “T” represents
the absolute temperature in Kelvin, “Ipy” is PV current, “Ip” is diode current, and “Ig;,” is
shunt resistor current.

The DC/DC converter is typically designed as the step-up converter. The ideal duty
cycle for the step-up converter control is produced by the DC/DC regulator. The model of

the step-up converter applied in Equations (3) and (4).

Ipy — I, 3)

Vpy =
Cpv
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- Vpy— (1—-D) xV,
[ = 2 ( L) DC @)

where the L stands for the DC/DC system inductor, “D” is the duty cycle, “Vpc” is the DC
link capacitor’s voltage, “I;” is the inductance current, and “Ipy” and “Vpy” are the current
and voltage of the PV farm.
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—.» Cyber Connection - Control S
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Figure 3. PV Farm System Configuration.

The association involving “Vpy “and “Vpc” in a steady state may be calculated as

follows Equation (5) [29]:
Vpe 1
Vpy 1-D ©)
The following Equation (6) are employed to represent the inverter and LC filter of the
inverter in Equations (7)-(10) [26,30,31]:

V, = ch+rf1a+LfL1
Lflu = —Vef— 7’f1a +V; (6)
. Ve r Vy

lo=—17 —rl+1;

While only Phase “a” is illustrated, Phases “b” and “c” follow similar mathematical

“ "1

formulations. The voltage of the phase “a” is V, the current of the phase “a” is 1, V, f is
the capacitor voltage in the filter circuit, 7y represent the internal resistance of the filter, I,
representing the current rate of change over time and Ly the inductance of the inductor in
the filter.

The voltages and currents in regular distribution power networks should exhibit
stability, as shown in the following Equation (7):

V, = Vé)c (ZSa — Sy — Sc)
. Vi .
I, = - Lflu + XEC (2511 -5, — Sc)

Ly Ly f
V reo. (7)
I, —Liff - ff;zb + %(—sa +25, — S¢)
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where i'ﬂ, i'b, i'c are the current of each phase, S;, Sy, S¢ are the switches of the three-phase
inverter, which are the control signals.

Ucr = Vg
I, = Ig + ICf. (8)
I, = Ig =+ Cf Ucf

Transfer to dq_model

1y = —%—%id—wzq—i—ffsd
Ucyg rfo. . (9)
ig = L—f—qzq—i-wzd—i-ﬂ Sq
ind:Cf qud+wauch} (10)
icrg = Cf Ucg — G w Ucya

"oy "o

iy” and “i;” are the system line currents of the grid in the d,q frame; “Ucy” and
“Ucg,” are the LC capacitor voltages in the d,q frame; and Vp, is the voltage of the dc link

“uy

capacitor. “I¢” is the inductance current in the LC filter in the d,q frame.

7.2. Threats Model

The issue of cyber-attacks affecting the electrical waveforms at the Point of Common
Coupling (PCC) should be addressed due to their detrimental impact on the stability
and integrity of the PV system. Specifically, when an unauthorized user gains access to
the grid-connected PV farm asset, any changes to sensor readings can threaten the PV
controller, can potentially destabilize the power grid. This instability may result in severe
failures and substantial economic losses. To analyze these attacks on a PV farm, a threat
model was designed to simulate potential cyber risks using a targeted attack vector based
on the developed PV system model. The threat model specifically includes four attack
scenarios targeting the integrity of PV data within the simulated PV model. To illustrate the
impact of data integrity attacks (DIA) on output waveforms, two key components of the
simulated PV farm system—the DC/DC converter and the DC/AC inverter—are subjected
to these attacks. The parameters from sensors DC/DC and DC/AC controls collected as in
Equation (11):

y(t) = [Vev().Ipy (), V() L4, Uc(t)] (11)

where “Vpy(t), Ipy(t)” are the voltage and the current of the PV farm, “Vpc(t)” is the DC
link voltage, “Ift), Uc(t)” are the current and voltage of LC filter.

Table 2 explains four scenarios of DIA, which imposed two attacks on the DC/DC
and the other on the DC/AC. The faked measurement (y°) and actual measurement (y)
are modelled to illustrate cyber attacks on the sensor. Subsequently, the expression for the
cyberattack that alters sensor input can be formulated as shown in Equation (12).

y/\(t) =X y(t - tdelay) (12)

where the t € T_attack, and the constrain of the weight of attack o= z 1 for falsifying

the original value of PV data. The attack vector of the current coefficients represents «j,
and the attack vector of the voltage coefficients as ocy measuring in the photovoltaic panel.
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Table 2. Threats description.

Case of DIA Description of Case
Attackcase 1 ~ Modifying the inputs sensor of DC/DC control.
Attack case2  Alter the incremental value of the MPPT algorithm for the DC/DC controller.

Attack case 3 Inject delay time to signal control of DC/AC
Attack case 4 Modifying the VDC feedback sensor to DC/AC controller

e Attackcasel

In this scenario, the attack seeks to manipulate or inject false data into the converter’s
control system by altering voltage and current measurements. In our threat model, these
measurements serve as inputs to the DC/DC control (MPPT) and are targeted by the
attacker. To modify or increase the input sensor value by setting the voltage oy € (5, 0.2)
and the current o € (3, 0.4), which affects the MPPT controller at 0.5 sec to simulate proper
data entry. In this way, based on Equations (2), (3) and (5), the attack coefficients alter the
original data, resulting in disturbances in the output waveform of current at the side of the
grid (the PCC). The data collected from this attack scenario is labeled as “DC/DC1,” with
the PCC data derived from the waveform pattern observed during the attack, as shown in
Figure 4.

Grid Current (A)

x10% Grid Valtage (V)

0.4 0.45 0.5 0.55 0.6 0.65 04 045 0.5 0.55 0.6 0.65
Time (s) Time (s)

Figure 4. Attack case 1 against DC/DC at the side of the grid (voltage, current).

e  Attack case 2

The second attack scenario involves altering data within the Maximum Power Point
(MPP) control. This attack disrupts the current waveform by modifying the duty cycle in
the MPP parameter (the incremental value used to adjust the duty cycle DD). The controller
algorithm is manipulated to operate with an increment value exceeding its normal range.
Typically, DD is set to 0.01 under standard conditions, but during the attack, this value is
changed to 0.1, affecting the operation of the inverter and the entire system, as described
in Equation (5). In this scenario, “DC/DC2” represents the collected data, illustrated in
Figure 5.

Grid Current (A)

x10% Grid Valtage (V)
20+
m 7
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=
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>
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Figure 5. Attack case 2 against DC/DC at the side of the grid (voltage, current).
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e Attack case 3

In this scenario, an attack introduces a delay in the DC/AC inverter. This attack targets
the inverter control signal, inadvertently delaying the feedback of the DC/AC inverter. The
delay generates harmonics in the system, as described by Equation (10), which degrades
the controller’s performance. To simulate this attack, a 10 ms delay is applied to the control
signal, as depicted in Figure 6. The data collected from this attack, labeled “DC/AC1”, is
subsequently input into the deep learning algorithms.

" .
3 = 1? T Grld Valt:age (v): Grid Current (A)
200 . : I
2
1 100}
0 ol
-1
100
2
3t . I I : . ; -200( . . . ‘ . .
035 04 045 05 055 06 0.65 04 045 05 055 06 0.65
Time (s) Time (s)

Figure 6. Attack case 3: Voltage and current waveforms during attack 3 at DC/AC inverter.

e  Attack case 4

The final attack targets the feedback from the VDC sensor in the inverter control,
causing incorrect data to be merged with the correct data according to Equation (9). When
the attack vector is set to 0.6, this results in the VDC being higher than its actual value, which
then affects the voltage and current patterns on the grid side. This is reflected in Figure 7,
which illustrates the attack on the DC/AC converter. The information gathered from this
attack scenario was called “DC/AC2” and used as input for the deep learning algorithm.

4><1o“ i _ Grid Valtage (V) i Grid Current (A)
200f 1 f f
3
2 100
1 ANNANNAAN
AMAREIARR
0 O LN
-1
-100
-2
i ‘ -200}
4 1 i | A L | L i L
0.4 045 05 055 0.6 065 04 045 05 055 0.6 065
Time (s) Time (s)

Figure 7. Voltage and Current waveforms during attack 4 at DC/AC inverter.

Normal operations: All the attack scenarios mentioned above are compared with the
system’s normal operation data. The dataset collected during normal operation, which uses
a single voltage and a single current sensor, is based on the current and voltage waveforms
at the PCC for the system. The waveform sensor at the PCC was assumed to be reliable and
secure, as shown in Figure 8. The term “normal” refers to the data collected during standard
operations, which were used as inputs for the deep learning algorithms in all cases.
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Figure 8. Voltage and current waveforms during normal operation condition.

This section presents the waveform results for each condition and the impact attack
information on the system. In the AC power grid, the waveform sensors provide data on
the three-phase current [I] = [Ia, Ib, Ic] and the recorded three-phase voltage [V] = [Va, Vb,
Vc] at the connection point (PCC).

Effective detection and diagnosis of attacks at a high sample rate used to implement
power electronic converters in photovoltaic (PV) farms. Electrical waveforms provide more
significant benefits for detecting cyber attacks [27]. Every instance of sampling time yielded
a data vector with six dimensions, denoted by Equation (13) which is used at the PCC of
the inverter [32].

X", = [ Va, Vb, Vq, Ia, Ib,1c]" (13)

where ("f) represents the observed normal waveform data for AC power grids, typically
modeled as sinusoidal functions, to analyze the impact of various attacks on the waveform.
Since the system operates in a stable state, the formulas for all three phases are identical.
Consequently, using only the current and voltage of phase (a) provides essential tracking
information, including the waveform’s magnitude, phase angle, and frequency, which are
the features collected over time. A data column is generated following Equation (14).

wat = [ Mva, Fya, Ova , My, /Flurelu]T (14)

where My, and M|, represent the mean value of the one-phase of the voltage and the
current, respectively. The frequency of phase (a) voltage and current are Fy,, Fj,, phase
angle of current and voltage are 6y, 01,. So, the data collected from five classes (four attacks
and routine operation) includes seven features over time. These features are continuous,
and the dataset size for training is 7 x 22,819. To the best of our knowledge, this is the first
attempt to use data from a single phase instead of all three phases of current and voltage.
The collected data is shown in Table 3.

Table 3. The data collected from each class.

Class Name Data
Normal operation Normal
Attack case 1 DC/DC1
Attack case 2 DC/DC2
Attack case 3 DC/AC1
Attack case 4 DC/AC2

7.3. SMOTE (Synthetic Minority Over-Sampling Technique)

After generating the dataset, the SMOTE technique is applied. SMOT addresses the
class imbalance in the dataset by creating synthetic examples of the minority class (in this
case, unusual or attack cases). This ensures that the model does not become biased towards
the majority class (usual or non-attack cases) and improves its ability to detect the minority
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class effectively. This technique is essential to ensure high performance of attack detection
and diagnosis due to the outperformance of simple oversampling, and it is often used to
enhance randomized oversampling [33].

Figure 9 shows the class distribution of attacks in the dataset, with corresponding
percentages assigned based on the fact that some attacks are restricted to specific periods
during the electrical system’s operation in each case. Class distribution results revealed
that some classes have very large rate sampling, such as Normal and DC/DC2 data, and
others have less rate sampling than DC/AC1 data. This distribution refers to the class
data imbalance which helps to assess the impact of the attack on the electrical system’s
performance. When entering data without SMOTE into any algorithm for training data and
testing data, it tends to use the high-rate data of the class, causing oversampling. It neglects
low-rate class data, which causes a decrease in the accuracy of the results and failure to
detect attacks with low rates.

Class Distribution Class Distribution After SMOTE

Normal

DC/DC1

DC/AC2 Normal

. DC/ACL
DC/DC2 DC/DC1
DC/AC2

DC/AC1

Figure 9. Class distribution before and after using SMTOE.

The right image of Figure 9 illustrates the balanced distribution of the five classes
after applying SMOTE, with each class receiving an equal share of 20%. This indicates that
SMOTE effectively ensures an even distribution of data across all classes, resulting in a
more balanced dataset.

7.4. Preprocessing

In this step, the dataset is preprocessed to prepare it for model training. The prepro-
cessing process involves tasks such as normalizing or standardizing the data, handling
missing values, and encoding categorical variables. This step ensures the data is clean,
consistent, and in the correct format for the model to process.

e  We began by eliminating the unexpected distortion introduced by the SIMULINK
simulation at the start of the data sample, as it could have led to inaccurate results.

e  We normalized all collected data to the range [0,1] using the Z-score, due to the wide
range of values across different features. For instance, the voltage value exceeds 23 kV,
while the frequency is 50 Hz.

7.5. Training Dataset

Once the dataset is preprocessed, it is split into training and testing sets. The training
dataset is the portion of the data used to train the model, allowing it to learn the patterns
and relationships between features that indicate usual and unusual (attack) cases.
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Using this method, we can estimate the generalization performance and determine

the model hyperparameter. The training set is the primary dataset utilized for training and

adjusting the model’s parameters, including 80% of the datasets employed in the training

procedure. In contrast, the testing set usually consists of the smallest dataset, with 20%

allocated for the testing procedure.

7.6. CNN, MLSTM, ANN (Convolutional Neural Network, Multilayer Long Short-Term Memory,
Artificial Neural Neural Network)

In this step, the pre-processed and balanced training data is fed into three different

types of neural networks. The proposed model’s intrinsic difficulty means that each

approach may address the issue with a varied processing capacity.

CNN (Convolutional Neural Network): Typically used for image and spatial data.
CNNss can also be applied to time-series or structured data to capture spatial or local
patterns because of their structural hierarchy, robust extracted feature capabilities, and
ability to extract detailed, insightful characteristics. As shown in Algorithm 1, A time
series data sample of a certain length may be inputted into a (CNN) like an image by
converting it into a matrix [34].

Algorithm 1: CNN method

Initialize CNN filters, weights, and biases

For each epoch:
For each data sample:
# Convolution Layer
For each filter:
convolved_output = apply_filter(input_data, filter)
# Pooling Layer
pooled_output = max_pooling(convolved_output)
# Flatten Layer
flattened_output = flatten(pooled_output)
# Fully Connected Layer
output = softmax(weights * flattened_output + bias)
# Calculate error (loss function)
error = target — output
# Backpropagation
For each layer:
gradient = error * derivative_of_activation_function
Update filters, weights, and biases using gradient descent
Repeat until convergence

Output: Attack detection classification (normal/attack)

MLSTM (Multilayer Long Short-Term Memory): An LSTM is a recurrent neural
network (RNN) which is effective for sequence prediction. MLSTM refers to using
multiple LSTM layers to better capture temporal dependencies in the data. As shown
in Algorithm 2, It was created to offer a means of transferring historical data between
time steps to address the disappearing gradient problem of RNN. In our work, data is
cached for subsequent use to avoid the progressive disappearance of previous training
data. Due to its versatility, LSTM can handle complete data sequences, particularly
time-series data and single information points [35].
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Algorithm 2: MLSTM method

Initialize MLSTM cells with weights and biases for each input feature
For each epoch:
For each time step in the multivariate data sequence:
input_t = data_at_time_t (for each feature)
prev_hidden_state = previous_hidden_state
prev_cell_state = previous_cell_state

# LSTM Computation for each feature

Forget_gate = sigmoid(weights_f * input_t + bias_f)
Input_gate = sigmoid(weights_i * input_t + bias_i)
Cell_gate = tanh(weights_c * input_t + bias_c)

# Update cell state and hidden state
cell_state = Forget_gate * prev_cell_state + Input_gate * Cell_gate
hidden_state = tanh(cell_state) * Output_gate

# Output Classification
output = softmax(weights_o * hidden_state + bias_o)

# Calculate error (loss function)
error = target — output

# Backpropagation through time (BPTT) for each feature
For each time step (from end to start):
gradient = error * derivative_of_output_function
Update MLSTM weights using BPTT

Repeat the training process until convergence (loss is minimized)

Output: Attack detection classification (normal/attack)

e  ANN (Artificial Neural Network): ANN is used for classification and regression tasks,
learning from the training data to make predictions. Serving as the foundation of
deep learning. ANN may employ any data that can be converted to a numeric format.
A high number of inputs and nonlinear data make for an effective model. While
ANN works well for basic problems, it is typically utilized as the output layer of an
additional sophisticated network when the issue becomes deeper [36], see Algorithm
3. These networks work together or individually to learn complex patterns in the data,
allowing the model to differentiate between usual and unusual activities.

Figures 10a and 10b respectively illustrate the structures of the deep learning methods,
including the CNN and LSTM models, used in this work. The most crucial factor of CNN,
LSTM, and ANN models is hypermeters, which also affect the performance of these models
like accuracy and speed converges. Furthermore, these hypermeters are contained in
Table 4, which is used in deep learning methods adopted in this work.
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Algorithm 3: ANN method

Initialize network weights and biases
For each epoch:
For each data sample:
# Forward Propagation
input = data_sample
For each layer:

output = activation(weights * input + bias)

input = output
# Calculate error (loss function)
error = target — output
# Backpropagation

For each layer (starting from the output layer):
gradient = error * derivative_of_activation_function
Update weights and biases using gradient descent

Repeat until convergence (loss is minimized)

Output: Attack detection classification (normal/attack)
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Figure 10. The architecture for classified data using (a) LSTM (b) CNN.

Hypermeters CNN LSTM ANN
Bach size 32 32 32
learning rate 0.001 0.001 0.001
the number of layers 4 4 3

Input activation function ReLU RelLU ReLU
output activation function SoftMax SoftMax SoftMax
Kernel size 2 - -
Number of Dropouts 1 3 -

Max pooling layer 1 -

Fully connected layer 1 2 3
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7.7. Classification of Attack (Usual, Unusual)

Recognizing the occurrence of an attack is crucial, but identifying multiple simultane-
ous attacks can be challenging. While many studies focus on attack diagnosis and detection
by splitting data into two categories (normal and abnormal) for binary classification, this
study adopts multiclass classification to achieve higher detection performance. The data
is divided into five categories: normal, DIA in DC/AC controllers 1 and 2, and DIA in
DC/DC controllers 3 and 4. For attack diagnosis, the categorical_crossentropy loss function
is used to accurately identify different types of attacks, enabling fast diagnostic and classifi-
cation tasks [37]. This approach handles large datasets (over 200 k samples), in contrast to
research studies that use smaller, lower-rate sampling.

8. Results

The experimental findings are shown in Figure 11a—e. The results show that by using
the confusion matrix to visually analyze each model, we can effectively assess and achieve
optimal attack detection and precise diagnosis of attack classes. The confusion matrix
enables a comparison between the actual class labels (representing the true types of attacks)
and the predicted labels, providing valuable insights. It offers a visual representation of
accurate attack detection. The diagonal cells in the matrix represent correct identifications
of attacks or normal conditions, while the off-diagonal elements indicate misclassifications.
The y-axis represents the predicted labels, and the x-axis represents the true labels, as
shown in Figure 11a—c.
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Figure 11. Detection and diagnosis of attacks using (a) ANN, (b) LTSM, (c) CNN, (d) testing process,
and (e) training process.

All models demonstrated high detection accuracy, with most predictions matching the
actual attack categories. For example, the CNN model exhibited exceptional performance in
identifying attacks, with only a few instances of misclassification. The confusion matrix for
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the ANN model, a basic neural network structure, accurately identified most scenarios but
showed some misclassifications between the “normal” class and certain attack categories,
indicating incorrectly flagged attacks.

Figure 11d,e show the ROC curves for the three model methods, each requiring
100 epochs for training and 30 epochs for testing. It is evident that the CNN model demon-
strated highly efficient performance due to its neural network architecture, which processes
input data through convolutional layers that extract local features and share weights. This
results in significantly better performance compared to other artificial intelligence models
like ANNs and LSTMs. Comparatively, Table 5 shows that CNN performs better than all
other models across the board (accuracy of 98.4939%). We attribute this to its potent feature
extraction and latent information extraction capabilities. This indicates that CNN is capable
of processing big data in addition to its exceptional image processing skills.

Table 5. Detection efficiency by applying the metrics evaluation method.

Model\Metrics Accuracy Precision Recall F1
ANN 96.1733 96.3256 96.2079 96.2115
LSTM 96.5114 96.5259 96.5114 96.5259
CNN 98.4939 98.5575 98.4939 98.50295

On the other hand, Table 6 presents the detection time per epoch for the three models.
Both CNN and MLSTM demonstrated faster prediction processes, achieving results in a
shorter time compared to the ANN model. However, deep learning techniques continue
to outperform other approaches, with the performance gap widening as the situations
become more complex. It is important to note that LSTM is well-known for its ability
to effectively handle time-series data due to its superior memory capabilities. However,
surprisingly, the ANN model outperforms LSTM in both performance and stability. This
may be because the time-series data in this case is relatively simple, limiting LSTM’s ability
to fully demonstrate its advantages.

Table 6. Detection time.

Model Time (s)
ANN 2.39
LSTM 1.69
CNN 1.47

To assess the performance of the strategy, we use accuracy, precision, recall, and
Fl-scores derived from the confusion matrix as detection and classification metrics, as
shown in Table 5. The four values from the confusion matrix are True Negative (TN), False
Negative (FN), True Positive (TP), and False Positive (FP). The metrics are defined by the
following Equations (15)—(18):

TN +TP

Aceuraty = mN TPy FP+ N (15)

TP

Precision = ———— 1
recision = = ~FD (16)
TP

Recall = ———— 17
T TPYEN 17)

2TP
Flscores = (18)

2TP+FP+FN
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9. Conclusions

To guarantee reliable power system operation, smart grid security concerns require
greater attention. A new cyber detection model in PV, named as CDPV, is introduced in
this paper. To determine how DIA affects different control mechanisms in a PV operation
system utilizing the MATLAB Simulink to generate the dataset, this paper looks at both
mathematical evaluations and case studies. First, DIA on the solar energy farm incorporated
into the distributed energy system was examined. A PV system converter with two stages is
created, and the DIA model is constructed for validation. This research presents theoretical
evaluation and case studies to ascertain the consequences of DIA. This study examines
several forms of database intrusions in this work and creates five distinct datasets with both
attack and normal occurrences. Then, the different rates of samples for each case create a
challenge to avoid excessive bias in data for one case over the other SMOTE used, which
contributes to supporting more accurate evaluations of deep learning techniques, especially
through the use of multi-class classification at a high sample rate of the wave to improve
the accuracy of attack detection. Then, three data-driven approaches are compared: ANN,
CNN, and LSTM. The results of this study show that the CNN performs better than all
other models with a high accuracy of 98.4939%. The suggested technique has been tested
using Google Colab and has significantly better attack detection and diagnostic capabilities.
The futur work of the paper involves detecting cyber and physical attacks in photovoltaic
farms integrated with IEEE bus systems, addressing challenges like solar energy variability
and grid integration using advanced machine learning techniques. Simulations will be
conducted to ensure robustness and contribute to renewable energy security in smart grids.
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