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Highlights 

 

⚫ Surface information is involved exclusively in scene representation at basic level.  

⚫ Edge information is sufficient and more effective at superordinate level. 

⚫ Role of edge and surface information varies with level of abstraction. 
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Abstract 

The human brain possesses a remarkable ability to recognize scenes depicted in 

line drawings, despite that these drawings contain only edge information. It remains 

unclear how the brain uses this information alongside surface information in scene 

recognition. Here, we combined electroencephalogram (EEG) and multivariate pattern 

analysis (MVPA) methods to distinguish the roles of edge, color, and other surface 

information in scene representation at the basic category level and superordinate 

naturalness level over time. The time-resolved decoding results indicated that edge 

information in line drawings is both sufficient and more effective than in color 

photographs and grayscale images at the superordinate naturalness level. Meanwhile, 

color and other surface information are exclusively involved in neural representation 

at the basic category level. The time-generalization analysis further revealed that edge 

information is crucial for representation at both levels of abstraction. These findings 

highlight the distinct roles of edge, color, and other surface information in dynamic 

neural scene processing, shedding light on how the human brain represents scene 

information at different levels of abstraction. 

Key words: scene representation, edge information, surface information, basic 

level of category, superordinate level of naturalness  
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1. Introduction 

The human brain possesses a remarkable ability to recognize scenes and objects 

depicted in line drawings, despite these drawings containing only edge information, 

such as lines, contours, and shapes, and devoid of surface information that exists in 

the real world, such as color, texture, and luminance (Biederman & Ju, 1988). This 

ability is apparently innate, because even an infant who has no experience with line 

drawings can recognize objects depicted in them (Hochberg & Brooks, 1962; Yonas & 

Arterberry, 1994). It has also been demonstrated that the brain’s response time for 

recognizing scenes in line drawing were comparable to those from color photographs 

(Lowe et al., 2018). Understanding how people recognize scenes from line drawings 

can help unravel the roles of edge and surface features in scene recognition and how 

the human brain represents scenes. 

The role of edge and surface information in scene recognition remains 

controversial. Some researchers suggest that the edge information preserved in line 

drawings plays a primary role in scene categorization. They have demonstrated that 

the structural information retained in line drawings elicited similar neural activity in 

the Parahippocampal Place Area (PPA) and Retrosplenial Complex (RSC) as that 

elicited by color photographs (Walther et al., 2011). Moreover, it has been found that 

edge information receives priority processing in natural scene categorization (Fu et 

al., 2016). Conversely, others argue that surface information, such as texture and 

color, also plays a crucial role in scene recognition. For example, accuracy was 

reduced when scenes lacked color or had inconsistent colors (Oliva & Schyns, 2000; 
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Rousselet et al., 2005), and the PPA has been demonstrated to be sensitive to surface 

information of scenes (Lowe et al., 2017; Park & Park, 2017).  

We noticed that these seemingly opposite suggestions and findings might be due 

to the role of edge and surface information varying with the level of abstraction. The 

basic level representation corresponds to the most common categories (e.g., forests, 

offices), whereas the superordinate level representation corresponds to more abstract 

categories (e.g., natural vs manmade scenes). Some authors pointed out that while 

horizontal and vertical lines dominate the structure of manmade scenes, natural scenes 

exhibit more undulating lines (Oliva & Torralba, 2001). They also observed that 

certain basic scene categories such as city streets and highways share similar 

structural shapes but differ in surface information such as city streets having a higher 

number of elements tend to have rougher textures and richer colors, while highways 

with fewer elements tend to have smoother surface and more uniform colors. 

Additionally, some studies have found that color plays a diagnostic role in certain 

basic categories, such as the overall green tones in forests and the blue waters and 

golden sands in beaches (Goffaux et al., 2005; Oliva & Schyns, 2000; Oliva & 

Torralba, 2006; Vailaya et al., 1998). Therefore, we assume that edge, color, and other 

surface information would play different roles in scene representation at the basic 

level of category and superordinate level of naturalness. 

To test this, we combined EEG and MVPA methods in a one-back detection task, 

in which participants were asked to press a key as quickly and accurately as possible 

when a scene image was repeated consecutively. Compared to traditional univariate 
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analysis that relies on signal averages, the MVPA method analyzes the whole brain 

activation data and enhances the sensitivity to detect differences between different 

conditions (de-Wit et al., 2016; Grootswagers et al., 2017). To examine the roles of 

edge, color, and other surface information in scene representation at the basic 

category level and the superordinate naturalness level, each scene was presented in 

three image versions: color photographs, grayscale images, and line drawings. The 

significant difference in neural responses between color photographs and grayscale 

images would indicate the role of color information in scene representation, while the 

significant difference between grayscale images and line drawings would indicate the 

role of the other surface information such as texture and luminance in scene 

representation. However, as both grayscale images and line drawings share edge 

information, the similarity between grayscale images and line drawings would reflect 

the role of edge information in scene representation. Our results provided novel neural 

evidence for that edge information in line drawings is sufficient and more effective for 

neural scene representation at the superordinate naturalness level, whereas surface 

information is involved exclusively in initial neural scene representation at the basic 

category level.  

2. Methods  

2.1. Participants.  

Twenty university students (11 female, mean age = 23.2, SD = 2.1) voluntarily 

participated in the study, following sample sizes from previous research (Groen et al., 

2013; Harel et al., 2016; Lowe et al., 2018; Yao et al., 2023). All participants had 
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normal or corrected-to-normal vision. Informed consent was obtained from all 

participants, who were financially compensated. The experiment received approval 

from the Institutional Review Board of the Institute of Psychology, Chinese Academy 

of Sciences. 

2.2. Stimuli and experimental design 

The study used 108 scene images (see Fig. 1a), comprising 36 different scenes 

each presented in color photographs, grayscale images, and line drawings. The color 

photographs and line drawings were adopted from a previous study (Walther et al., 

2011), while the grayscale images were created by calculating the weighted average 

of the values from the three RGB channels of the color photographs using MATLAB 

(www.mathworks.com/). Images were divided into six basic level categories (beaches, 

city streets, forests, highways, mountains, and offices) and two superordinate level 

categories (natural, manmade). Stimuli were presented using Psychtoolbox 3 

(Brainard, 1997; Kleiner, 2010) for MATLAB. The size of each image was 800 × 

600, subtending a visual angle of 5.00 × 3.75 degrees at a viewing distance of 60 cm. 

                  



 9 

 

Fig. 1. Stimulus examples and experimental procedure. (a) Stimulus examples. The stimuli 

consisted of six basic level categories and two superordinate naturalness level categories. Each 

scene was presented in color photographs, grayscale images, and line drawings. (b) Experimental 

procedure. Each stimulus was presented for 200 ms following the central fixation cross displayed 

for 900-1100 ms. Participants were asked to pay attention to the central fixation cross and to press 

a button when an image appeared twice consecutively. 

   At the beginning of each block, the first stimulus was presented in the middle of 

the screen for 200 ms following a central fixation cross appeared for 900-1100 ms 

(see Fig. 1b). Participants were instructed to maintain their attention to the fixation 

cross. To ensure their attention on the stimuli, participants were required to perform a 

one-back working memory task, which required a key press as quickly and as 

accurately as possible when an image was repeated consecutively. Regardless of 

whether a response was made, the stimulus in the next trial would start. There were 

135 trials in each block, in which all 108 images were presented in a randomized 
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order, and 27 images were randomly selected to appear consecutively. The repeated 

trials were not included in the EEG data analysis. The experiment consisted of 30 

blocks, for a total of 4050 trials.  

2.3. EEG acquisition and preprocessing.  

The EEG data were recorded with a Neuroscan system using 64 electrodes. The 

left mastoid was served as the online reference and the right mastoid as the offline 

reference. The EEG signals were sampled at 1000 Hz. MATLAB and the EEGLAB 

toolbox (Delorme & Makeig, 2004) were used for offline preprocessing. The data 

were filtered between 0.1 and 30 Hz. Each trial extracted segments from 100 ms 

before the stimulus onset to 800 ms after the stimulus onset, and baseline corrected 

using the 100 ms prior to the stimulus onset. Independent Component Analysis (ICA) 

was conducted to identify and remove stereotypical artifacts such as eye blink 

artifacts. The trials with excessive artifacts (peak-to-peak deflection exceeding ± 100 

μV) and incorrect responses were excluded. Data were downsampled to 200 Hz to 

reduce computational time and improve the signal-to-noise ratio (Grootswagers et al., 

2017; Teichmann et al., 2020). 

2.4. EEG analysis 

Time-resolved decoding analysis. In all of the decoding analyses, patterns of 

brain activity from all electrodes at each time point were extracted for each 

participant. We used linear support vector machines (SVM; libsvm) (Chang & Lin, 

2011) to train a classifier to distinguish conditions of interest, and then evaluated its 

ability to predict these conditions accurately in new data using independent test sets. 
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We conducted training and testing at each time point, with the aim of testing the 

classifier's ability to predict these conditions at any time point (i.e., "classification for 

interpretation") rather than achieving the highest decoding accuracy possible (Hebart 

& Baker, 2018). A 10 ms time window and a step size of 5 ms were used in the 

classification analysis. Decoding accuracy was significantly higher than chance level, 

indicating that the EEG data contained information relevant to the categories. We 

performed all our analyses using the CoSMoMVPA toolbox (Oosterhof et al., 2016). 

For the individual image representation, there were 36 pictures for each version: 

color photographs, grayscale images, and line drawings. Each picture was paired with 

every other picture in the set, resulting in a total of 630 pairs (36 × 35/2 pairs). The 

classification accuracy of paired cross-validation was taken as the measure of 

similarity for each pair. The analysis was performed on each participant in a time-

resolved manner. Initially, we divided all trials of each image into ten groups, in 

which nine groups were randomly selected as training sets and one group designated 

as the test set (i.e., ten-fold cross-validation). Subsequently, binary classification was 

conducted on all 630 pairs, and the classification process was repeated 100 times. The 

average over 100 times of decoding accuracy was taken as the value for the 36×36 

decoding matrix, termed the Representational Dissimilarity Matrix (RDM). This 

matrix is symmetric, with the diagonal undefined. An RDM was required for each 

participant and each time point. 

For basic category level and superordinate naturalness level scene representation, 

we trained classifiers to distinguish six different scene categories and between natural 
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versus manmade scenes for each of the three image versions, respectively. We used 

ten-fold cross-validation and averaged the prediction results across 100 repetitions to 

show how the basic and superordinate level representation of scenes evolved over 

time.  

Spatial-resolved decoding analysis. To evaluate which electrodes contributed 

significantly to the neural decoding of EEG signals elicited by color photographs, 

grayscale images, and line drawings, we conducted decoding analyses on each 

electrode separately. A 50 ms time window with a 50 ms step size was used, covering 

0 to 500 ms after stimulus onset, resulting in 10 time bins (Nemrodov et al., 2016; 

Smith & Smith, 2019). Classifiers were trained to distinguish images from one 

another at the individual image level, the basic level, and the superordinate level.  

Time generalization analysis. To examine whether the three types of images 

elicit similar neural activity, the time generalization analysis was conducted following 

the method used in previous research (Yao et al., 2023). We trained a classifier on 

EEG signals at specific time points elicited by grayscale images and tested it with 

neural activity at all time points induced by color photographs or line drawings of the 

same scene. This process generated two 900 × 900 matrices (-100–800 ms to the 

stimulus onset), capturing the classifier generalization performance. If a classifier 

trained at one time point can predict the test data at other time points, it would suggest 

that the test and training sets exhibit similar neural activity patterns at these time 

points. The matrix's diagonal represented standard time-resolved decoding, while 
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decodable off-diagonal effects indicated temporal asynchrony of information 

processing between training and testing sets. 

Representational similarity analysis (RSA). To explore the contribution of spatial 

frequency and other image attributes to scene representation, we conducted RSA by 

constructing RDMs for the basic level of category, superordinate level of naturalness, 

spatial frequency of grayscale images, and spatial frequency of line drawings. For the 

basic category and the superordinate naturalness RDMs, values were coded as 0 for 

within-category comparisons, and 1 for between-category comparisons. Spatial 

frequency RDMs were generated by first calculating the spatial frequency of each 

image using gradient-based spatial frequency analysis, followed by computing the 

Euclidean distances between the spatial frequency values of all image pairs. The 

spatial frequency RDM for grayscale images captured frequency differences both 

within color photographs and within grayscale images, as the spatial frequency 

content of color photographs was identical to that of grayscale images. In contrast, the 

spatial frequency RDM for line drawing captured frequency differences exclusively 

among line drawings. Finally, we conducted Spearman correlation analysis between 

each of the four RDMs and the time-resolved decoding RDM at the individual image 

level to assess the relationship between image attributes and neural representations. 

Statistical analysis. To evaluate whether the analysis results of the EEG data 

were significantly above chance, we utilized threshold-free cluster enhancement 

(TFCE) (Smith & Nichols, 2009) implemented in the CosMoMVPA toolbox. First, 

we shuffled the trial labels for permutation testing, reanalyzing the data using these 
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shuffled labels. This process was repeated 100 times for each participant, thereby 

creating a null distribution for each participant. Subsequently, a group-level null 

distribution was constructed using Monte Carlo sampling, comprising 1000 

permutations with shuffled labels (Stelzer et al., 2013). This method utilized 

clustering for multiple comparison correction. TFCE created an empirical distribution 

of maximum cluster sizes without applying a specific threshold, and the 95th 

percentile of this distribution was used as the significance threshold (equivalent to p < 

0.05, one-tailed). 

Bootstrap tests were conducted to assess whether there were significant 

differences on the onset latency (i.e., the first time point following stimulus onset 

where decoding accuracy significantly surpassed the chance level), peak latency (i.e., 

the time point at which the maximum accuracy was reached), and peak value (i.e., the 

highest accuracy) of scene representation for different versions of images, as well as 

the training / testing times for maximum decoding accuracy in time generalization. 

Decoding accuracy from participants' time-resolved decoding analysis and time 

generalization analysis was bootstrapped 10,000 times, resulting in empirical 

distributions for onset latency, peak latency, and peak value to establish 95% 

confidence intervals (CIs). To compare the differences between different image types 

in onset latency, peak latency, and peak value, as well as the differences in training 

and testing times corresponding to the maximum decoding accuracy in time 

generalization analysis, we computed the differences between these 10,000 

bootstrapped samples for each dataset. This process produced an empirical 
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distribution of differences. A p-value was defined as the proportion of samples with a 

difference greater than or less than 0 divided by the number of permutations (i.e., a 

two-tailed test), corrected with false discovery rate (FDR). A significant difference 

was indicated if the 95% CI did not include 0. 

To evaluate the statistical significance of the correlations between different 

RDMs, we performed a permutation test. First, we calculated the Spearman 

correlation coefficient (R) for the original image attribute RDMs, then randomly 

shuffled the image labels and recalculated the Spearman’s R. This procedure was 

repeated 10,000 times to obtain an empirical null distribution. The p-value was 

defined as the number of values in the null distribution with an absolute value greater 

than the absolute value of the true correlation, divided by the total number of 

permutations (i.e., a two-tailed test), corrected with false discovery rate (FDR). 

3. Results 

3.2. Behaviroal results  

The mean proportion accuracy of the one-back repetition detection task was 

0.956 (SD = 0.032) for color photographs, 0.918 (SD = 0.048) for grayscale images, 

and 0.933 (SD = 0.042) for line drawings. Repetition trials were excluded from the 

subsequent EEG analysis. 

3.2. EEG decoding results  

We first decoded the EEG signals elicited by color photographs, grayscale 

images, and line drawings at the individual image level as in previous studies (Cichy 

et al., 2014; Dobs et al., 2019; Singer et al., 2023; Yao et al., 2023). Since both basic 
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category level and superordinate naturalness level scene representations can 

contribute to the decoding at the individual image level, we then separately decoded 

the EEG signals elicited by the three types of images at the basic and superordinate 

levels. The time-resolved decoding analysis, the spatial decoding analysis, and the 

time generalization analysis were conducted at each level of analysis. 

3.2.1. Decoding results at the individual image level 

To investigate the role of edge, color, and other surface information in scene 

representation at the individual image level, we trained a classifier to distinguish each 

individual scene image from all other images based on neural activity elicited by color 

photographs, grayscale images, and line drawings. 

Fig. 2a shows the results of the time-resolved decoding. As can be seen from the 

figure, all types of individual scene images were decoded significantly above the 

chance level (0.50). The decoding accuracy for color photographs reached 

significance at 75 ms, and peaked at 130 ms with a value of 0.597; grayscale images 

reached significance at 75 ms, and peaked at 120 ms with a value of 0.598; line 

drawings reached significance at 105 ms, and peaked at 145 ms with a value of 0.56.  
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Fig. 2. Results of the time-resolved decoding for three versions of images at the individual image 

level. (a) Time course of decoding accuracy for color photographs, grayscale images, and line 

drawings, with points below indicating time points where decoding accuracy was significantly 

above chance (p < 0.05, threshold-free cluster enhancement (TFCE) corrected). The shaded areas 

represent one standard error (SE) about the means. (b) Onset latency, peak latency, and peak value 

of the time-course decoding for three versions of images. Error bars depict bootstrapped 95 % 

confidence intervals (CIs). *p < 0.05, ***p < 0.001 (false discovery rate (FDR) corrected). (c) 

Spatial resolved decoding of color photographs, grayscale images, and line drawings. Each map 

depicts whether decoding accuracy at each electrode exceeded chance level within a given time 

window. White stars indicate electrodes with decoding accuracy significantly above chance (p 

< .05, TFCE corrected). (d) Results of the time generalization analysis for the individual image. 

Grayscale images were used as the training set, color photographs or line drawings as the testing 
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sets. The left figures show the decoding accuracy for each time point combination, the white 

outline indicates significant clusters (p < 0.05, TFCE corrected), and the right figures show the 

bootstrap differences between the training set time and testing set time corresponding to the best 

decoding accuracy.   

Fig. 2b shows the onset latency, peak latency, and peak value of the time course 

decoding at the individual image level. The bootstrap test was used to compare the 

onset latency, peak latency, and peak value among three versions of images. It 

revealed that, for both onset latency and peak latency, color photographs (onset 

latency p < 0.001, peak latency p = 0.034, FDR corrected) and grayscale images (all 

ps < 0.001, FDR corrected) were earlier than line drawings. For the peak value, color 

photographs (p < 0.001, FDR corrected) and grayscale images (p < 0.001, FDR 

corrected) were higher than line drawings, while there was no significant difference 

between color and grayscale images. These results suggested that the other surface 

information such as texture, rather than color, played an important role in the speed 

and decoding accuracy of scene representation at the individual image level.  

To examine which electrodes significantly contributed to decoding the individual 

image scene for the three image types, we conducted independent analyses for each 

electrode using a time window of 50 ms (see Fig. 2c). The results showed that for 

color photographs and grayscale images, significant decoding electrodes appeared 

from 51-100 ms, and primarily distributed in the posterior brain regions. In the 

subsequent time window of 101-150 ms, electrodes across the entire brain showed 

significant contributions to this decoding. For line drawings, significant decoding 
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electrodes appeared from 101-150 ms throughout the entire brain, and from 201-250 

ms, the number of significant electrodes began to decrease. 

To examine whether similar neural activity was elicited by the three image 

versions, the time generalization analysis was conducted. Fig. 2d shows the time 

generalization results for the individual image. As in the previous research (Yao et al., 

2023), when a classifier was trained with neural activity by grayscale images and 

tested with those by color photographs or line drawings, the significant decoding 

accuracy at each time point combination indicated that the training and testing sets 

elicited similar neural activity at that time point. The results revealed that when the 

classifier was trained with grayscale images and tested with color photographs, 

significant decoding accuracy was observed over a large time window, and no 

significant shift from the diagonal of the matrix was observed in the best decoding 

accuracy. However, when the classifier was trained with grayscale images and tested 

with line drawings, significant decoding accuracy was still observed across a wide 

time window, but the best decoding accuracy showed a 15 ms shift from the matrix's 

diagonal. These results indicated that at the individual image level, color photographs, 

grayscale images, and line drawings elicited similar neural activity, but the lack of 

surface information such as texture other than color resulted in a slower neural 

representation speed. 

3.2.2. Decoding results at the basic category level  
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To investigate the role of edge, color, and other surface information in basic level 

scene representation, we trained a classifier to distinguish six basic categories based 

on neural activity elicited by color photographs, grayscale images, and line drawings.  

Fig. 3a shows the results of the time-resolved decoding. Decoding accuracy for 

color photographs reached significance at 95 ms, and peaked at 210 ms with a value 

of 0.244; grayscale images reached this at 85 ms, and peaked at 130 ms with a value 

of 0.234; and line drawings reached this at 105 ms, and peaked at 145 ms with a value 

of 0.230.  

 

Fig. 3. Results of the time-resolved decoding for three versions of images at the basic level 

representations. (a) Time course of decoding accuracy for color photographs, grayscale images, 

and line drawings, with points below indicating time points where decoding accuracy was 

significantly above chance (p < 0.05, TFCE, corrected). The shaded areas represent one SE about 
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the means. (b) Onset latency, peak latency, and peak value of the time course decoding for three 

versions of images. Error bars depict bootstrapped 95 % CIs. *p < 0.05, **p < 0.01,***p < 0.001 

(FDR corrected). (c) Spatial-resolved decoding of color photographs, grayscale images, and line 

drawings at the basic level representations. Each map depicts whether decoding at each electrode 

exceeded chance level within a given time window. White stars indicate electrodes with decoding 

accuracy significantly above chance (p < .05, TFCE corrected). (d) Results of the time 

generalization analysis for the basic level. Grayscale images were used as the training set, color 

photographs or line drawings were used as the testing sets, respectively. The left figures show the 

decoding accuracy for each time point combination, the white outline indicates significant clusters 

(p < 0.05, TFCE corrected), and the right figures show the bootstrap differences between the 

training set time and testing set time corresponding to the best decoding accuracy.  

Fig. 3b shows the onset latency, peak latency, and peak value of the time course 

decoding for different image versions. For onset latency, color photographs (p = 

0.002, FDR corrected) and grayscale images (p < 0.001, FDR corrected) were 

significantly earlier than line drawings, indicating that surface information other than 

color influenced the basic level representation. For peak value, color photographs 

were significantly higher than both grayscale images (p = 0.014, FDR corrected) and 

line drawings (p = 0.002, FDR corrected), suggesting that color information affected 

the decoding accuracy of basic level representations. There were no differences on 

peak latency among the three image versions.  

To further investigate the role of color information in representing each of six 

basic categories, we trained a classifier to differentiate neural activities induced by 
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color photographs and grayscale images within the same category (See 

Supplementary Fig. 1). The results revealed significant decoding points for beaches, 

forests, city streets, and offices, but not for highways and mountains. Additionally, a 

bootstrap test on the peak values of these four scene categories showed that the peak 

value for beaches was significantly higher than those for forests, city streets, and 

offices. These results suggest that the role of color in neural representation varies 

across categories, with the most pronounced effect observed for beaches.  

Fig. 3c shows the electrodes significantly contributed to the decoding of basic 

level representation. For color photographs and grayscale images, significant 

decoding electrodes appeared from 51-100 ms, with widespread significant electrodes 

across the entire brain observed in the 101-150 ms time window. However, for line 

drawings, significant decoding electrodes appeared from 101-150 ms over the 

posterior brain regions, became widespread across the entire brain in the 151-200 ms 

window before decreasing. 

The time-generalization analysis revealed that when a classifier used neural 

activity elicited by grayscale images as the training set, significant decoding accuracy 

was observed over a large time window regardless of whether the neural activity by 

color photographs or line drawings were used as the testing set. Additionally, the best 

decoding accuracy did not shift from the diagonal of the matrix (see Fig. 3d). The 

results suggested that the three types of images elicited similar neural activity at the 

basic level, and other surface information did not affect the speed of similar neural 

representation. 
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3.2.3. Decoding results at the superordinate level of naturalness 

To investigate the role of edge, color, and other surface information in the 

superordinate level representation of naturalness in scenes, we trained a classifier to 

distinguish between natural and manmade scenes based on neural activity elicited by 

color photographs, grayscale images, and line drawings.  

Fig. 4a shows the results of the time-resolved decoding. Color photographs were 

significantly decoded above chance level at 110 ms, and peaked at 275 ms with a 

value of 0.564. Grayscale images could be significantly decoded at 105 ms, and 

peaked at 305 ms with a value of 0.56. Line drawings were significantly decoded at 

100 ms, and reached a peak at 135 ms with a value of 0.582.  

 

Fig. 4. Results of the time-resolved decoding for three versions of images at superordinate level 

naturalness representations. (a) The time course decoding accuracy of color photographs, 
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grayscale images, and line drawings with points below indicating time points where decoding 

accuracy was significantly above chance (ps < 0.05, TFCE corrected). The shaded areas represent 

one SE about the means. (b) Onset latency, peak latency, and peak value of the time course 

decoding for the three versions of images. Error bars depict bootstrapped 95 % CIs. *p < 0.05, **p 

< 0.01,***p < 0.001 (FDR corrected). (c) Spatial-resolved decoding of color photographs, 

grayscale images, and line drawings at the superordinate naturalness level representations. Each 

map depicts whether decoding at each electrode exceeded chance level within a given time 

window. White stars indicate electrodes with decoding accuracy significantly above chance (ps 

< .05, TFCE corrected). (d) Results of the time generalization analysis for the superordinate 

naturalness level. Grayscale images were used as the training set, and color photographs and line 

drawings were used as the testing sets, respectively. The left figures show the decoding accuracy 

for each time point combination, the white outline indicates significant clusters (ps < 0.05, TFCE 

corrected), and the right figures show the bootstrap differences between the training set time and 

testing set time corresponding to the best decoding accuracy.  

Fig. 4b shows the onset latency, peak latency, and peak value of the time course 

decoding for three image versions. There were no significant differences on onset 

latency among the three image versions. The peak latency was significantly earlier for 

line drawings than for color photographs (p < 0.001, FDR corrected), and grayscale 

images (p < 0.001, FDR corrected). The peak value was also higher for line drawings 

than for color photographs (p = 0.008, FDR corrected) and for grayscale images (p < 

0.001, FDR corrected).  
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Fig. 4c shows the electrodes significantly contributed to the decoding of 

superordinate naturalness level representation. For line drawings, significant decoding 

electrodes appeared from 101-150 ms across the entire brain, while for color 

photographs and grayscale images, only limited number of electrodes were 

significantly decodable during this time window. Moreover, the decoding peak for 

line drawings corresponded to the time window of 101-150 ms, with higher decoding 

accuracy at the posterior electrodes. However, the decoding peaks for color 

photographs and grayscale images corresponded to the time window of 251-300 ms 

and 301-350 ms separately, with higher decoding accuracy at the anterior electrodes. 

The results of time-generalization analysis showed that when a classifier used 

neural activity elicited by grayscale images as the training set, significant decoding 

accuracy was observed over a large time window, regardless of whether neural 

activity by color photographs or line drawings were used as the testing set. 

Additionally, the best decoding accuracy did not shift from the diagonal of the matrix 

(see Fig. 4d). The results suggested that the three types of images elicited similar 

neural activity at the superordinate naturalness level, and surface information did not 

affect the neural representation speed. 

3.2.4. RSA results of the effect of spatial frequency in scene representation 

To explore the contribution of spatial frequency and other image attributes to 

scene representation, we performed the RSA. The results, shown in Fig. 5, revealed 

that the spatial frequency RDM for both grayscale images (Spearman’s R = 0.195, p < 

0.001) and line drawings (Spearman’s R = 0.206, p < 0.001) were significantly 
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correlated with the basic category RDM. These results suggest that spatial frequency 

differences in both grayscale images and line drawings are associated with different 

categories at the basic level. Interestingly, only the spatial frequency RDM for line 

drawings (Spearman’s R = 0.128, p < 0.01) showed a significant correlation with the 

superordinate naturalness level RDM. This indicates that variations in naturalness at 

the superordinate level are primarily driven by spatial frequency differences in line 

drawings. 

 

Fig. 5. Results of the representational similarity analysis for different image attributes. (a) The 

central panel displays the RDMs for the basic category level, superordinate naturalness level, 

spatial frequency of grayscale images, and spatial frequency of line drawings (with 1 

corresponding to between-category and 0 corresponding to within-category comparisons). *p < 

0.05, **p < 0.01, ***p < 0.001. The panels on the left and right depict the temporal dynamics of 

the Spearman correlation coefficients between each of the four RDMs and the decoding RDM at 
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the individual level. (b) The temporal dynamics of the Spearman correlation coefficients at the 

basic category level and superordinate naturalness level, after controlling for the spatial frequency 

RDM. The markers below the curves indicate the time points where decoding accuracy was 

significantly above chance (p < 0.05, threshold-free cluster enhancement corrected). Shaded areas 

represent one SE about the mean. 

To further explore the contribution of various image attributes to scene 

representation, we conducted Spearman correlation analysis between each of the four 

RDMs and the time-resolved decoding RDMs at the individual image level. For the 

basic category level RDM, significant correlations were observed between 105-580 

ms for color photographs, 115-520 ms for grayscale images, and 115-500 ms for line 

drawings. In contrast, for the superordinate naturalness level RDM, significant 

correlations were observed between 185-340 ms and 450-535 ms for color 

photographs, 220-330 ms for grayscale images, 110-210 ms and 375-455 ms for line 

drawings. These results suggest that the correlation onset latency occurred earlier for 

color photographs than for grayscale images or line drawings at the basic category 

level, but onset latency was earlier for line drawings than for grayscale images and 

color photographs at the superordinate naturalness level, indicating potential 

differences in processing hierarchies.  

Additionally, for the spatial frequency RDM of grayscale images, significant 

correlations were observed between 100-190 ms for color photographs and 90-240 ms 

and 300-345 ms for grayscale images, but no significant correlation was found for 

line-drawings. In contrast, the spatial frequency RDM of line drawings exhibited 
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significant correlations between 90-455 ms for color photographs, 90-470 ms for 

grayscale images, and 90-380 ms for line drawings. These results suggest that the 

spatial frequency of grayscale images is not associated with neural activity induced by 

line drawings, while the spatial frequency of line drawings is related to neural activity 

induced by both color photographs and grayscale images.  

Finally, to investigate whether the higher decoding accuracy for line drawings at 

the superordinate naturalness level representations is driven by abstract scene 

information, or by low-level features such as spatial frequency, we conducted partial 

correlation analyses. Specifically, we controlled for spatial frequency RDM by 

partialling it out from both the basic category and superordinate naturalness level 

RDMs, as well as from the time-resolved decoding RDM at the individual image 

level. The results (Fig. 5b) showed that significant correlations between decoding 

RDM and both the basic category and the superordinate naturalness level RDMs 

persisted even after controlling for the influence of spatial frequency. Specifically, at 

the basic category level, significant correlations were observed between 125-550 ms 

for color photographs, 145-525 ms for grayscale images, and 120-445 ms for line 

drawings. At the superordinate naturalness level, significant correlations were found 

between 180-365 ms, 445-465 ms, and 495-535 ms for color photographs; 220-315 

ms and 450-495 ms for grayscale images; and 105-200 ms and 375-445 ms for line 

drawings. These results suggest that the brain’s higher decoding of line drawings at 

the superordinate naturalness level is not solely attributable to low-level features such 
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as spatial frequency, but genuinely reflects the representation of abstract scene 

information. 

4. Discussion 

The current study combined the EEG technique and the MVPA methods to 

examine the role of edge, color, and other surface information in scene representation 

with different levels of abstraction. The decoding results showed that the peak 

accuracy was significantly higher for color photographs than for grayscale images and 

line drawings at the basic category level, but significantly lower for color photographs 

and grayscale images than for line drawings at the superordinate naturalness level. 

Consistently, the onset latency was significantly faster for color photographs and 

grayscale images than for line drawings at the basic category level, but not at the 

superordinate naturalness level. These results provide neural evidence for how edge, 

color, and other surface information play distinct roles in basic category level and 

superordinate naturalness level scene representations and provide insights into how 

the human brain represents scenes over time. 

Our results revealed that it was other surface information, rather than color 

information, that plays an important role in scene representation at the individual 

image level and at the basic category level. The results showed that the decoding 

onset latency was around 100 ms for all three versions of images, consistent with 

previous findings that scene-related neural activity can be detected in EEG around 

100 ms (Cichy et al., 2017; Lowe et al., 2018; Orima & Motoyoshi, 2023). 

Importantly, we found that the decoding onset latency was significantly earlier for 
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grayscale images than for line drawings at both the individual image level and the 

basic level. This finding indicates that other surface information receives early 

processing and plays a role in initial scene representation at these levels. Previous 

studies found that early basic level scene classification is more similar to texture 

models (Renninger & Malik, 2004). Our findings extend this by showing that other 

surface information contributes to initial scene representation at both the individual 

image level and the basic category level. 

Consistently, we found that for the decoding peak latency, grayscale images were 

significantly earlier than line drawings at the individual image level, but there were no 

significant differences at the basic category level. The difference on the decoding peak 

latency among the three image versions at the individual image level might be due to 

the additional processing of line drawings, which involves filling-in of surface 

information that is not required for the other two versions of images. However, this 

salient fill-in process might not occur at the basic category level, as the representation 

at this level is much more abstract than the individual image level.  

Moreover, our results revealed that the decoding peak value was significantly 

higher for color photographs than for grayscale images at the basic category level. 

Specifically, we found that color influences the neural representation of beaches, 

forests, city streets, and offices, with its effect being most pronounced for beaches. 

These results indicate that color information contributes to the basic category level 

representation. This might be because color can serve as a diagnostic feature for basic 

level scene categories, such as blue for beaches and green for forests (Oliva & 
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Torralba, 2006), but not at the individual image level, where scenes within the same 

category usually share similar colors.  

Importantly, our decoding results showed that edge information depicted in line 

drawings plays a crucial role in scene representation at the superordinate naturalness 

level. At this level, line drawings not only exhibited an earlier peak latency but also a 

higher peak value than color photographs and grayscale images. The results indicate 

that edge information in line drawings is both sufficient and more effective than in 

color photographs and grayscale images at the superordinate naturalness level. The 

peak latency for line drawings was at 135 ms, with higher decoding accuracy at 

posterior electrodes, corresponding to the feature extraction and perception stages of 

scene recognition. Prior ERP research also showed that the differences between 

manmade and natural scenes were detected earlier by ERP responses to line drawings 

than to color photographs (Lowe et al., 2018).  

However, manmade scenes tend to contain more lines and, consequently, exhibit 

much higher spatial frequency compared to natural scenes. This raises concerns about 

whether the early peak observed in the time-resolved decoding reflects the abstract 

scene information necessary for distinguishing between manmade and natural 

environments. To address this, we conducted a representational similarity analysis. 

The results revealed that spatial frequency differences in both grayscale images and 

line-drawings were associated with categories distinctions at the basic level. In 

contrast, variations in naturalness at the superordinate level were primarily linked to 

the spatial frequency differences in line drawings. Moreover, the spatial frequency of 
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grayscale images was not associated with neural activity induced by line drawings, 

whereas the spatial frequency of line drawings was related to neural activity induced 

by color photographs and grayscale image, suggesting distinct neural mechanisms.  

To further investigate the role of abstract scene information, we compared the 

time-resolved decoding RDM at the individual image level with different model 

RDMs representing the basic category level or superordinate naturalness level, while 

controlling for the influence of spatial frequency. The results revealed that line 

drawings continued to exhibit earlier and stronger correlations with superordinate 

naturalness representations, even after partialling out the influence of spatial 

frequency. These findings suggest that the brain’s more accurate and robust decoding 

of line drawings at the superordinate naturalness level is not solely driven by low-

level visual features but genuinely reflects the representation of abstract scene 

information.  

 Our time generalization analysis results revealed that the neural activity patterns 

elicited by line drawings were similar to those evoked by color photographs or 

grayscale images. In this analysis, when grayscale images were used as the training 

set and color images or line drawings as the testing sets, the neural activity patterns 

elicited by grayscale images could be generalized to those elicited by either color 

photographs or line drawings at each level of abstraction. These results provided 

direct neural evidence that the neural activities elicited by the three versions were 

similar. Consistently, previous research found that color photographs and line 

drawings of scenes at the basic category level elicited similar patterns of neural 
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activation, especially in the Parahippocampal Place Area (PPA) (Morgan et al., 2019; 

O'Connell et al., 2018; Walther et al., 2011), which is primarily associated with the 

spatial layout of scenes (Bilalic et al., 2019; Chaisilprungraung & Park, 2021; Park et 

al., 2011). Our previous research also found that color photographs, grayscale images, 

and line drawings of objects at the individual image level elicited similar neural 

activity (Yao et al., 2023). These findings indicate that line drawings preserve 

important spatial structure information of both scenes and objects, which plays a 

crucial role in scene and object recognition (Choo & Walther, 2016; O'Connell et al., 

2018; Walther & Shen, 2014).  

Interestingly, however, the time corresponding to the best decoding accuracy at 

the individual image level was significantly later (approximately 15 ms) for line 

drawings than for grayscale images when grayscale images were used as the training 

set and line drawings as the testing set, but not when the color photographs were used 

as the testing set. These findings suggest that the surface information such as textures 

other than colors can affect scene processing speed at the individual image level. 

However, there were no such differences at the basic category level and superordinate 

naturalness level. There may be two reasons for this. Firstly, neural representation at 

the individual image level is more specific than that at the basic category level or 

superordinate naturalness level, as it requires more detailed information to 

differentiate between two similar scenes, like two different forest scenes. That is, 

surface information is likely to be more important in the scene representation at a 

more specific level rather than at a more abstract level. Secondly, when visual scenes 
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lack surface information, top-down processing may fill the missing information by 

comparing it with stored memory of scenes (Morgan et al., 2019; Mudrik et al., 2014; 

Rahman & Sommer, 2008). This process could have slowed down the processing of 

line drawings in the current experiment.  

5. Conclusion 

To sum up, our findings provide electrophysiological evidence for the distinct 

roles of edge, color, and other surface information in scene representation across 

different levels of abstraction. First, our time decoding results demonstrate that edge 

information is sufficient and more effective at the superordinate naturalness level, 

whereas color and other surface information are exclusively involved in scene 

representation at the basic category level. Second, our time generalization results 

reveal that line drawings evoke neural activity patterns similar to those elicited by 

grayscale images across all levels of scene abstraction. These results highlight the 

crucial role of edge information in scene representation at all levels of abstraction and 

provide insights into the distinct contributions of edge, color and surface information 

to scene recognition. This work advances our understanding of how the human brain 

represents and processes scenes. 
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