
Distinguishing the roles of edge, color, and other surface information in 
basic and superordinate scene representation

Liansheng Yao a,b, Qiufang Fu a,b,*, Chang Hong Liu c , Jianyong Wang d, Zhang Yi d

a State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
b Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
c Department of Psychology, Bournemouth University, Fern Barrow, Poole, UK
d Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, China

A R T I C L E  I N F O

Keywords:
Scene representation
Edge information
Surface information
Basic level of category
Superordinate level of naturalness

A B S T R A C T

The human brain possesses a remarkable ability to recognize scenes depicted in line drawings, despite that these 
drawings contain only edge information. It remains unclear how the brain uses this information alongside surface 
information in scene recognition. Here, we combined electroencephalogram (EEG) and multivariate pattern 
analysis (MVPA) methods to distinguish the roles of edge, color, and other surface information in scene repre-
sentation at the basic category level and superordinate naturalness level over time. The time-resolved decoding 
results indicated that edge information in line drawings is both sufficient and more effective than in color 
photographs and grayscale images at the superordinate naturalness level. Meanwhile, color and other surface 
information are exclusively involved in neural representation at the basic category level. The time generalization 
analysis further revealed that edge information is crucial for representation at both levels of abstraction. These 
findings highlight the distinct roles of edge, color, and other surface information in dynamic neural scene pro-
cessing, shedding light on how the human brain represents scene information at different levels of abstraction.

1. Introduction

The human brain possesses a remarkable ability to recognize scenes 
and objects depicted in line drawings, despite these drawings containing 
only edge information, such as lines, contours, and shapes, and devoid of 
surface information that exists in the real world, such as color, texture, 
and luminance (Biederman and Ju, 1988). This ability is apparently 
innate, because even an infant who has no experience with line drawings 
can recognize objects depicted in them (Hochberg and Brooks, 1962; 
Yonas and Arterberry, 1994). It has also been demonstrated that the 
brain’s response time for recognizing scenes in line drawings was 
comparable to those from color photographs (Lowe et al., 2018). Un-
derstanding how people recognize scenes from line drawings can help 
unravel the roles of edge and surface features in scene recognition and 
how the human brain represents scenes.

The role of edge and surface information in scene recognition re-
mains controversial. Some researchers suggest that the edge information 
preserved in line drawings plays a primary role in scene categorization. 
They have demonstrated that the structural information retained in line 
drawings elicited similar neural activity in the Parahippocampal Place 

Area (PPA) and Retrosplenial Complex (RSC) as that elicited by color 
photographs (Walther et al., 2011). Moreover, it has been found that 
edge information receives priority processing in natural scene catego-
rization (Fu et al., 2016). Conversely, others argue that surface infor-
mation, such as texture and color, also plays a crucial role in scene 
recognition. For example, accuracy was reduced when scenes lacked 
color or had inconsistent colors (Oliva and Schyns, 2000; Rousselet 
et al., 2005), and the PPA has been demonstrated to be sensitive to 
surface information of scenes (Lowe et al., 2017; Park and Park, 2017).

We noticed that these seemingly opposite suggestions and findings 
might be due to the role of edge and surface information varying with 
the level of abstraction. The basic level representation corresponds to 
the most common categories (e.g., forests, offices), whereas the super-
ordinate level representation corresponds to more abstract categories (e. 
g., natural vs. manmade scenes). Some authors pointed out that while 
horizontal and vertical lines dominate the structure of manmade scenes, 
natural scenes exhibit more undulating lines (Oliva and Torralba, 2001). 
They also observed that certain basic scene categories such as city streets 
and highways share similar structural shapes but differ in surface in-
formation such as city streets having a higher number of elements tend 
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to have rougher textures and richer colors, while highways with fewer 
elements tend to have smoother surface and more uniform colors. 
Additionally, some studies have found that color plays a diagnostic role 
in certain basic categories, such as the overall green tones in forests and 
the blue waters and golden sands in beaches (Goffaux et al., 2005; Oliva 
and Schyns, 2000; Oliva and Torralba, 2006; Vailaya et al., 1998). 
Therefore, we assume that edge, color, and other surface information 
would play different roles in scene representation at the basic level of 
category and superordinate level of naturalness.

To test this, we combined EEG and MVPA methods in a one-back 
detection task, in which participants were asked to press a key as 
quickly and accurately as possible when a scene image was repeated 
consecutively. Compared to traditional univariate analysis that relies on 
signal averages, the MVPA method analyzes the whole brain activation 
data and enhances the sensitivity to detect differences between different 
conditions (de-Wit et al., 2016; Grootswagers et al., 2017). To examine 
the roles of edge, color, and other surface information in scene repre-
sentation at the basic category level and the superordinate naturalness 
level, each scene was presented in three image versions: color photo-
graphs, grayscale images, and line drawings. The significant difference 
in neural responses between color photographs and grayscale images 
would indicate the role of color information in scene representation, 
while the significant difference between grayscale images and line 
drawings would indicate the role of the other surface information such 
as texture and luminance in scene representation. However, as both 
grayscale images and line drawings share edge information, the simi-
larity between grayscale images and line drawings would reflect the role 
of edge information in scene representation. Our results provided novel 
neural evidence for that edge information in line drawings is sufficient 
and more effective for neural scene representation at the superordinate 
naturalness level, whereas surface information is involved exclusively in 
initial neural scene representation at the basic category level.

2. Methods

2.1. Participants

Twenty university students (11 female, mean age = 23.2, SD = 2.1) 
voluntarily participated in the study, following sample sizes from pre-
vious research (Groen et al., 2013; Harel et al., 2016; Lowe et al., 2018; 
Yao et al., 2023). All participants had normal or corrected-to-normal 
vision. Informed consent was obtained from all participants, who were 
financially compensated. The experiment received approval from the 
Institutional Review Board of the Institute of Psychology, Chinese 
Academy of Sciences.

2.2. Stimuli and experimental design

The study used 108 scene images (see Fig. 1a), comprising 36 
different scenes each presented in color photographs, grayscale images, 
and line drawings. The color photographs and line drawings were 
adopted from a previous study (Walther et al., 2011), while the gray-
scale images were created by calculating the weighted average of the 
values from the three RGB channels of the color photographs using 
MATLAB (www.mathworks.com/). Images were divided into six basic 
level categories (beaches, city streets, forests, highways, mountains, and 
offices) and two superordinate level categories (natural, manmade). 
Stimuli were presented using Psychtoolbox 3 (Brainard, 1997; Kleiner, 
2010) for MATLAB. The size of each image was 800 × 600, subtending a 
visual angle of 5.00 × 3.75◦ at a viewing distance of 60 cm.

At the beginning of each block, the first stimulus was presented in the 
middle of the screen for 200 ms following a central fixation cross 
appeared for 900–1100 ms (see Fig. 1b). Participants were instructed to 
maintain their attention to the fixation cross. To ensure their attention 
on the stimuli, participants were required to perform a one-back 
working memory task, which required a key press as quickly and as 
accurately as possible when an image was repeated consecutively. 
Regardless of whether a response was made, the stimulus in the next 
trial would start. There were 135 trials in each block, in which all 108 
images were presented in a randomized order, and 27 images were 

Fig. 1. Stimulus examples and experimental procedure. (a) Stimulus examples. The stimuli consisted of six basic level categories and two superordinate naturalness 
level categories. Each scene was presented in color photographs, grayscale images, and line drawings. (b) Experimental procedure. Each stimulus was presented for 
200 ms following the central fixation cross displayed for 900–1100 ms. Participants were asked to pay attention to the central fixation cross and to press a button 
when an image appeared twice consecutively.
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randomly selected to appear consecutively. The repeated trials were not 
included in the EEG data analysis. The experiment consisted of 30 
blocks, for a total of 4050 trials.

2.3. EEG acquisition and preprocessing

The EEG data were recorded with a Neuroscan system using 64 
electrodes. The left mastoid was served as the online reference and the 
right mastoid as the offline reference. The EEG signals were sampled at 
1000 Hz. MATLAB and the EEGLAB toolbox (Delorme and Makeig, 
2004) were used for offline preprocessing. The data were filtered be-
tween 0.1 and 30 Hz. Each trial extracted segments from 100 ms before 
the stimulus onset to 800 ms after the stimulus onset, and baseline 
corrected using the 100 ms prior to the stimulus onset. Independent 
Component Analysis (ICA) was conducted to identify and remove ste-
reotypical artifacts such as eye blink artifacts. The trials with excessive 
artifacts (peak-to-peak deflection exceeding ± 100 μV) and incorrect 
responses were excluded. Data were downsampled to 200 Hz to reduce 
computational time and improve the signal-to-noise ratio (Grootswagers 
et al., 2017; Teichmann et al., 2020).

2.4. EEG analysis

Time-resolved decoding analysis. In all of the decoding analyses, pat-
terns of brain activity from all electrodes at each time point were 
extracted for each participant. We used linear support vector machines 
(SVM; libsvm) (Chang and Lin, 2011) to train a classifier to distinguish 
conditions of interest, and then evaluated its ability to predict these 
conditions accurately in new data using independent test sets. We con-
ducted training and testing at each time point, with the aim of testing the 
classifier’s ability to predict these conditions at any time point (i.e., 
"classification for interpretation") rather than achieving the highest 
decoding accuracy possible (Hebart and Baker, 2018). A 10 ms time 
window and a step size of 5 ms were used in the classification analysis. 
Decoding accuracy was significantly higher than chance level, indi-
cating that the EEG data contained information relevant to the cate-
gories. We performed all our analyses using the CoSMoMVPA toolbox 
(Oosterhof et al., 2016).

For the individual image representation, there were 36 pictures for 
each version: color photographs, grayscale images, and line drawings. 
Each picture was paired with every other picture in the set, resulting in a 
total of 630 pairs (36 × 35/2 pairs). The classification accuracy of paired 
cross-validation was taken as the measure of similarity for each pair. The 
analysis was performed on each participant in a time-resolved manner. 
Initially, we divided all trials of each image into ten groups, in which 
nine groups were randomly selected as training sets and one group 
designated as the test set (i.e., ten-fold cross-validation). Subsequently, 
binary classification was conducted on all 630 pairs, and the classifi-
cation process was repeated 100 times. The average over 100 times of 
decoding accuracy was taken as the value for the 36×36 decoding ma-
trix, termed the Representational Dissimilarity Matrix (RDM). This 
matrix is symmetric, with the diagonal undefined. An RDM was required 
for each participant and each time point.

For basic category level and superordinate naturalness level scene 
representation, we trained classifiers to distinguish six different scene 
categories and between natural versus manmade scenes for each of the 
three image versions, respectively. We used ten-fold cross-validation 
and averaged the prediction results across 100 repetitions to show how 
the basic and superordinate level representation of scenes evolved over 
time.

Spatial-resolved decoding analysis. To evaluate which electrodes 
contributed significantly to the neural decoding of EEG signals elicited 
by color photographs, grayscale images, and line drawings, we con-
ducted decoding analyses on each electrode separately. A 50 ms time 
window with a 50 ms step size was used, covering 0 to 500 ms after 
stimulus onset, resulting in 10 time bins (Nemrodov et al., 2016; Smith 

and Smith, 2019). Classifiers were trained to distinguish images from 
one another at the individual image level, the basic level, and the su-
perordinate level.

Time generalization analysis. To examine whether the three types of 
images elicit similar neural activity, the time generalization analysis was 
conducted following the method used in previous research (Yao et al., 
2023). We trained a classifier on EEG signals at specific time points 
elicited by grayscale images and tested it with neural activity at all time 
points induced by color photographs or line drawings of the same scene. 
This process generated two 900 × 900 matrices (− 100–800 ms to the 
stimulus onset), capturing the classifier generalization performance. If a 
classifier trained at one time point can predict the test data at other time 
points, it would suggest that the test and training sets exhibit similar 
neural activity patterns at these time points. The matrix’s diagonal 
represented standard time-resolved decoding, while decodable 
off-diagonal effects indicated temporal asynchrony of information pro-
cessing between training and testing sets.

Representational similarity analysis (RSA). To explore the contribution 
of spatial frequency and other image attributes to scene representation, 
we conducted RSA by constructing RDMs for the basic level of category, 
superordinate level of naturalness, spatial frequency of grayscale im-
ages, and spatial frequency of line drawings. For the basic category and 
the superordinate naturalness RDMs, values were coded as 0 for within- 
category comparisons, and 1 for between-category comparisons. Spatial 
frequency RDMs were generated by first calculating the spatial fre-
quency of each image using gradient-based spatial frequency analysis, 
followed by computing the Euclidean distances between the spatial 
frequency values of all image pairs. The spatial frequency RDM for 
grayscale images captured frequency differences both within color 
photographs and within grayscale images, as the spatial frequency 
content of color photographs was identical to that of grayscale images. 
In contrast, the spatial frequency RDM for line drawings captured fre-
quency differences exclusively among line drawings. Finally, we con-
ducted Spearman correlation analysis between each of the four RDMs 
and the time-resolved decoding RDM at the individual image level to 
assess the relationship between image attributes and neural 
representations.

Statistical analysis. To evaluate whether the analysis results of the 
EEG data were significantly above chance, we utilized threshold-free 
cluster enhancement (TFCE) (Smith and Nichols, 2009) implemented 
in the CosMoMVPA toolbox. First, we shuffled the trial labels for per-
mutation testing, reanalyzing the data using these shuffled labels. This 
process was repeated 100 times for each participant, thereby creating a 
null distribution for each participant. Subsequently, a group-level null 
distribution was constructed using Monte Carlo sampling, comprising 
1000 permutations with shuffled labels (Stelzer et al., 2013). This 
method utilized clustering for multiple comparison correction. TFCE 
created an empirical distribution of maximum cluster sizes without 
applying a specific threshold, and the 95th percentile of this distribution 
was used as the significance threshold (equivalent to p < 0.05, 
one-tailed).

Bootstrap tests were conducted to assess whether there were signif-
icant differences in the onset latency (i.e., the first time point following 
stimulus onset where decoding accuracy significantly surpassed the 
chance level), peak latency (i.e., the time point at which the maximum 
accuracy was reached), and peak value (i.e., the highest accuracy) of 
scene representation for different versions of images, as well as the 
training / testing times for maximum decoding accuracy in time 
generalization. Decoding accuracy from participants’ time-resolved 
decoding analysis and time generalization analysis was bootstrapped 
10,000 times, resulting in empirical distributions for onset latency, peak 
latency, and peak value to establish 95 % confidence intervals (CIs). To 
compare the differences between different image types in onset latency, 
peak latency, and peak value, as well as the differences in training and 
testing times corresponding to the maximum decoding accuracy in time 
generalization analysis, we computed the differences between these 
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10,000 bootstrapped samples for each dataset. This process produced an 
empirical distribution of differences. A p-value was defined as the pro-
portion of samples with a difference greater than or less than 0 divided 
by the number of permutations (i.e., a two-tailed test), corrected with 
false discovery rate (FDR). A significant difference was indicated if the 
95 % CI did not include 0.

To evaluate the statistical significance of the correlations between 
different RDMs, we performed a permutation test. First, we calculated 
the Spearman correlation coefficient (R) for the original image attribute 
RDMs, then randomly shuffled the image labels and recalculated the 
Spearman’s R. This procedure was repeated 10,000 times to obtain an 
empirical null distribution. The p-value was defined as the number of 
values in the null distribution with an absolute value greater than the 
absolute value of the true correlation, divided by the total number of 
permutations (i.e., a two-tailed test), corrected with FDR.

3. Results

3.1. Behaviroal results

The mean proportion accuracy of the one-back repetition detection 
task was 0.956 (SD = 0.032) for color photographs, 0.918 (SD = 0.048) 
for grayscale images, and 0.933 (SD = 0.042) for line drawings. Repe-
tition trials were excluded from the subsequent EEG analysis.

3.2. EEG decoding results

We first decoded the EEG signals elicited by color photographs, 
grayscale images, and line drawings at the individual image level as in 
previous studies (Cichy et al., 2014; Dobs et al., 2019; Singer et al., 2023; 
Yao et al., 2023). Since both basic category level and superordinate 
naturalness level scene representations can contribute to the decoding at 
the individual image level, we then separately decoded the EEG signals 
elicited by the three types of images at the basic and superordinate 
levels. The time-resolved decoding analysis, the spatial decoding anal-
ysis, and the time generalization analysis were conducted at each level 

Fig. 2. Results of the time-resolved decoding for three versions of images at the individual image level. (a) Time course of decoding accuracy for color photographs, 
grayscale images, and line drawings, with points below indicating time points where decoding accuracy was significantly above chance (p < 0.05, TFCE corrected). 
The shaded areas represent one standard error (SE) about the means. (b) Onset latency, peak latency, and peak value of the time-course decoding for three versions of 
images. Error bars depict bootstrapped 95 % confidence intervals (CIs). *p < 0.05, ***p < 0.001 (FDR corrected). (c) Spatial resolved decoding of color photographs, 
grayscale images, and line drawings. Each map depicts whether decoding accuracy at each electrode exceeded chance level within a given time window. White stars 
indicate electrodes with decoding accuracy significantly above chance (p < 0.05, TFCE corrected). (d) Results of the time generalization analysis for the individual 
image. Grayscale images were used as the training set, color photographs or line drawings as the testing sets. The left figures show the decoding accuracy for each 
time point combination, the white outline indicates significant clusters (p < 0.05, TFCE corrected), and the right figures show the bootstrap differences between the 
training set time and testing set time corresponding to the best decoding accuracy.
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of analysis.

3.2.1. Decoding results at the individual image level
To investigate the role of edge, color, and other surface information 

in scene representation at the individual image level, we trained a 
classifier to distinguish each individual scene image from all other im-
ages based on neural activity elicited by color photographs, grayscale 
images, and line drawings.

Fig. 2a shows the results of the time-resolved decoding. As can be 
seen from the figure, all types of individual scene images were decoded 
significantly above the chance level (0.50). The decoding accuracy for 
color photographs reached significance at 75 ms, and peaked at 130 ms 
with a value of 0.597; grayscale images reached significance at 75 ms, 
and peaked at 120 ms with a value of 0.598; line drawings reached 
significance at 105 ms, and peaked at 145 ms with a value of 0.56.

Fig. 2b shows the onset latency, peak latency, and peak value of the 
time course decoding at the individual image level. The bootstrap test 
was used to compare the onset latency, peak latency, and peak value 
among three versions of images. It revealed that, for both onset latency 
and peak latency, color photographs (onset latency p < 0.001, peak la-
tency p = 0.034, FDR corrected) and grayscale images (all ps < 0.001, 
FDR corrected) were earlier than line drawings. For the peak value, color 
photographs (p < 0.001, FDR corrected) and grayscale images (p <
0.001, FDR corrected) were higher than line drawings, while there was 
no significant difference between color and grayscale images. These 
results suggested that the other surface information such as texture, 
rather than color, played an important role in the speed and decoding 
accuracy of scene representation at the individual image level.

To examine which electrodes significantly contributed to decoding 
the individual image scene for the three image types, we conducted 
independent analyses for each electrode using a time window of 50 ms 
(see Fig. 2c). The results showed that for color photographs and gray-
scale images, significant decoding electrodes appeared from the time 
window of 51–100 ms, and primarily distributed in the posterior brain 
regions. In the subsequent time window of 101–150 ms, electrodes 
across the entire brain showed significant contributions to this decoding. 
For line drawings, significant decoding electrodes appeared from the 
time window of 101–150 ms throughout the entire brain, and from the 
time window of 201–250 ms, the number of significant electrodes began 
to decrease.

To examine whether similar neural activity was elicited by the three 
image versions, the time generalization analysis was conducted. Fig. 2d
shows the time generalization results for the individual image. As in the 
previous research (Yao et al., 2023), when a classifier was trained with 
neural activity by grayscale images and tested with those by color 
photographs or line drawings, the significant decoding accuracy at each 
time point combination indicated that the training and testing sets eli-
cited similar neural activity at that time point. The results revealed that 
when the classifier was trained with grayscale images and tested with 
color photographs, significant decoding accuracy was observed over a 
large time window, and no significant shift from the diagonal of the 
matrix was observed in the best decoding accuracy. However, when the 
classifier was trained with grayscale images and tested with line draw-
ings, significant decoding accuracy was still observed across a wide time 
window, but the best decoding accuracy showed a 15 ms shift from the 
matrix’s diagonal. These results indicated that at the individual image 
level, color photographs, grayscale images, and line drawings elicited 
similar neural activity, but the lack of surface information such as 
texture other than color resulted in a slower neural representation 
speed.

3.2.2. Decoding results at the basic category level
To investigate the role of edge, color, and other surface information 

in basic level scene representation, we trained a classifier to distinguish 
six basic categories based on neural activity elicited by color photo-
graphs, grayscale images, and line drawings.

Fig. 3a shows the results of the time-resolved decoding. Decoding 
accuracy for color photographs reached significance at 95 ms, and 
peaked at 210 ms with a value of 0.244; grayscale images reached this at 
80 ms, and peaked at 130 ms with a value of 0.234; and line drawings 
reached this at 105 ms, and peaked at 145 ms with a value of 0.230.

Fig. 3b shows the onset latency, peak latency, and peak value of the 
time course decoding for different image versions. For onset latency, 
color photographs (p = 0.002, FDR corrected) and grayscale images (p <
0.001, FDR corrected) were significantly earlier than line drawings, 
indicating that surface information other than color influenced the basic 
level representation. For peak value, color photographs were signifi-
cantly higher than both grayscale images (p = 0.014, FDR corrected) and 
line drawings (p = 0.002, FDR corrected), suggesting that color infor-
mation affected the decoding accuracy of basic level representations. 
There were no differences on peak latency among the three image 
versions.

To further investigate the role of color information in representing 
each of six basic categories, we trained a classifier to differentiate neural 
activities induced by color photographs and grayscale images within the 
same category (See Supplementary Fig. 1). The results revealed signif-
icant decoding points for beaches, forests, city streets, and offices, but 
not for highways and mountains. Additionally, a bootstrap test on the 
peak values of these four scene categories showed that the peak value for 
beaches was significantly higher than those for forests, city streets, and 
offices. These results suggest that the role of color in neural represen-
tation varies across categories, with the most pronounced effect 
observed for beaches.

Fig. 3c shows the electrodes significantly contributed to the decoding 
of basic level representation. For color photographs and grayscale im-
ages, significant decoding electrodes appeared from the time window of 
51–100 ms, with widespread significant electrodes across the entire 
brain observed in the 101–150 ms time window. However, for line 
drawings, significant decoding electrodes appeared from the time win-
dow of 101–150 ms over the posterior brain regions, became widespread 
across the entire brain in the 151–200 ms window before decreasing.

The time generalization analysis revealed that when a classifier used 
neural activity elicited by grayscale images as the training set, signifi-
cant decoding accuracy was observed over a large time window 
regardless of whether the neural activity by color photographs or line 
drawings were used as the testing set. Additionally, the best decoding 
accuracy did not shift from the diagonal of the matrix (see Fig. 3d). The 
results suggested that the three types of images elicited similar neural 
activity at the basic level, and other surface information did not affect 
the speed of similar neural representation.

3.2.3. Decoding results at the superordinate level of naturalness
To investigate the role of edge, color, and other surface information 

in the superordinate level representation of naturalness in scenes, we 
trained a classifier to distinguish between natural and manmade scenes 
based on neural activity elicited by color photographs, grayscale images, 
and line drawings.

Fig. 4a shows the results of the time-resolved decoding. Color pho-
tographs were significantly decoded above chance level at 110 ms, and 
peaked at 275 ms with a value of 0.564. Grayscale images could be 
significantly decoded at 105 ms, and peaked at 305 ms with a value of 
0.56. Line drawings were significantly decoded at 100 ms, and reached a 
peak at 135 ms with a value of 0.582.

Fig. 4b shows the onset latency, peak latency, and peak value of the 
time course decoding for three image versions. There were no significant 
differences on onset latency among the three image versions. The peak 
latency was significantly earlier for line drawings than for color pho-
tographs (p < 0.001, FDR corrected), and grayscale images (p < 0.001, 
FDR corrected). The peak value was also higher for line drawings than 
for color photographs (p = 0.008, FDR corrected) and for grayscale 
images (p < 0.001, FDR corrected).

Fig. 4c shows the electrodes significantly contributed to the decoding 
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of superordinate naturalness level representation. For line drawings, 
significant decoding electrodes appeared from the time window of 
101–150 ms across the entire brain, while for color photographs and 
grayscale images, only limited number of electrodes were significantly 
decodable during this time window. Moreover, the decoding peak for 
line drawings corresponded to the time window of 101–150 ms, with 
higher decoding accuracy at the posterior electrodes. However, the 
decoding peaks for color photographs and grayscale images corre-
sponded to the time window of 251–300 ms and 301–350 ms separately, 
with higher decoding accuracy at the anterior electrodes.

The results of time generalization analysis showed that when a 
classifier used neural activity elicited by grayscale images as the training 
set, significant decoding accuracy was observed over a large time win-
dow, regardless of whether neural activity by color photographs or line 
drawings were used as the testing set. Additionally, the best decoding 
accuracy did not shift from the diagonal of the matrix (see Fig. 4d). The 
results suggested that the three types of images elicited similar neural 
activity at the superordinate naturalness level, and surface information 
did not affect the neural representation speed.

3.2.4. RSA results of the effect of spatial frequency in scene representation
To explore the contribution of spatial frequency and other image 

attributes to scene representation, we performed the RSA. The results, 
shown in Fig. 5, revealed that the spatial frequency RDM for both 
grayscale images (Spearman’s R = 0.195, p < 0.001) and line drawings 
(Spearman’s R = 0.206, p < 0.001) were significantly correlated with 
the basic category RDM. These results suggest that spatial frequency 
differences in both grayscale images and line drawings are associated 
with different categories at the basic level. Interestingly, only the spatial 
frequency RDM for line drawings (Spearman’s R = 0.128, p < 0.01) 
showed a significant correlation with the superordinate naturalness 
level RDM. This indicates that variations in naturalness at the superor-
dinate level are primarily driven by spatial frequency differences in line 
drawings.

To further explore the contribution of various image attributes to 
scene representation, we conducted Spearman correlation analysis be-
tween each of the four RDMs and the time-resolved decoding RDMs at 
the individual image level. For the basic category level RDM, significant 
correlations were observed in the time window of 105–580 ms for color 
photographs, 115–520 ms for grayscale images, and 115–500 ms for line 

Fig. 3. Results of the time-resolved decoding for three versions of images at the basic level representations. (a) Time course of decoding accuracy for color pho-
tographs, grayscale images, and line drawings, with points below indicating time points where decoding accuracy was significantly above chance (p < 0.05, TFCE, 
corrected). The shaded areas represent one SE about the means. (b) Onset latency, peak latency, and peak value of the time course decoding for three versions of 
images. Error bars depict bootstrapped 95 % CIs. *p < 0.05, **p < 0.01,***p < 0.001 (FDR corrected). (c) Spatial-resolved decoding of color photographs, grayscale 
images, and line drawings at the basic level representations. Each map depicts whether decoding at each electrode exceeded chance level within a given time 
window. White stars indicate electrodes with decoding accuracy significantly above chance (p < 0.05, TFCE corrected). (d) Results of the time generalization analysis 
for the basic level. Grayscale images were used as the training set, color photographs or line drawings were used as the testing sets, respectively. The left figures show 
the decoding accuracy for each time point combination, the white outline indicates significant clusters (p < 0.05, TFCE corrected), and the right figures show the 
bootstrap differences between the training set time and testing set time corresponding to the best decoding accuracy.
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drawings. In contrast, for the superordinate naturalness level RDM, 
significant correlations were observed in the time windows of 185–340 
ms and 450–535 ms for color photographs, 220–330 ms for grayscale 
images, 110–210 ms and 375–455 ms for line drawings. These results 
suggest that the correlation onset latency occurred earlier for color 
photographs than for grayscale images or line drawings at the basic 
category level, but onset latency was earlier for line drawings than for 
grayscale images and color photographs at the superordinate natural-
ness level, indicating potential differences in processing hierarchies.

Additionally, for the spatial frequency RDM of grayscale images, 
significant correlations were observed in the time window of 100–190 
ms for color photographs, 90–240 ms and 300–345 ms for grayscale 
images, but no significant correlation was found for line drawings. In 
contrast, the spatial frequency RDM of line drawings exhibited signifi-
cant correlations in the time window of 90–455 ms for color photo-
graphs, 90–470 ms for grayscale images, and 90–380 ms for line 
drawings. These results suggest that the spatial frequency of grayscale 
images is not associated with neural activity induced by line drawings, 
while the spatial frequency of line drawings is related to neural activity 

induced by both color photographs and grayscale images.
Finally, to investigate whether the higher decoding accuracy for line 

drawings at the superordinate naturalness level representations is driven 
by abstract scene information, or by low-level features such as spatial 
frequency, we conducted partial correlation analyses. Specifically, we 
controlled for spatial frequency RDM by partialling it out from both the 
basic category and superordinate naturalness level RDMs, as well as 
from the time-resolved decoding RDM at the individual image level. The 
results (Fig. 5b) showed that significant correlations between decoding 
RDM and both the basic category and the superordinate naturalness 
level RDMs persisted even after controlling for the influence of spatial 
frequency. Specifically, at the basic category level, significant correla-
tions were observed in the time window of 125–550 ms for color pho-
tographs, 145–525 ms for grayscale images, and 120–445 ms for line 
drawings. At the superordinate naturalness level, significant correla-
tions were found in the time windows of 180–365 ms, 445–465 ms, and 
495–535 ms for color photographs; 220–315 ms and 450–495 ms for 
grayscale images; and 105–200 ms and 375–445 ms for line drawings. 
These results suggest that the brain’s higher decoding of line drawings at 

Fig. 4. Results of the time-resolved decoding for three versions of images at superordinate level naturalness representations. (a) The time course decoding accuracy 
of color photographs, grayscale images, and line drawings with points below indicating time points where decoding accuracy was significantly above chance (ps <
0.05, TFCE corrected). The shaded areas represent one SE about the means. (b) Onset latency, peak latency, and peak value of the time course decoding for the three 
versions of images. Error bars depict bootstrapped 95 % CIs. *p < 0.05, **p < 0.01,***p < 0.001 (FDR corrected). (c) Spatial-resolved decoding of color photographs, 
grayscale images, and line drawings at the superordinate naturalness level representations. Each map depicts whether decoding at each electrode exceeded chance 
level within a given time window. White stars indicate electrodes with decoding accuracy significantly above chance (ps < 0.05, TFCE corrected). (d) Results of the 
time generalization analysis for the superordinate naturalness level. Grayscale images were used as the training set, and color photographs and line drawings were 
used as the testing sets, respectively. The left figures show the decoding accuracy for each time point combination, the white outline indicates significant clusters (ps 
< 0.05, TFCE corrected), and the right figures show the bootstrap differences between the training set time and testing set time corresponding to the best decod-
ing accuracy.
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the superordinate naturalness level is not solely attributable to low-level 
features such as spatial frequency, but genuinely reflects the represen-
tation of abstract scene information.

4. Discussion

The current study combined the EEG technique and the MVPA 
methods to examine the role of edge, color, and other surface informa-
tion in scene representation with different levels of abstraction. The 
decoding results showed that the peak accuracy was significantly higher 
for color photographs than for grayscale images and line drawings at the 
basic category level, but significantly lower for color photographs and 
grayscale images than for line drawings at the superordinate naturalness 
level. Consistently, the onset latency was significantly faster for color 
photographs and grayscale images than for line drawings at the basic 
category level, but not at the superordinate naturalness level. These 
results provide neural evidence for how edge, color, and other surface 
information play distinct roles in basic category level and superordinate 
naturalness level scene representations and provide insights into how 
the human brain represents scenes over time.

Our results revealed that it was other surface information, rather 
than color information, that plays an important role in scene represen-
tation at the individual image level and at the basic category level. The 
results showed that the decoding onset latency was around 100 ms for all 
three versions of images, consistent with previous findings that scene- 
related neural activity can be detected in EEG around 100 ms (Cichy 
et al., 2017; Lowe et al., 2018; Orima and Motoyoshi, 2023). Impor-
tantly, we found that the decoding onset latency was significantly earlier 

for grayscale images than for line drawings at both the individual image 
level and the basic level. This finding indicates that other surface in-
formation receives early processing and plays a role in initial scene 
representation at these levels. Previous studies found that early basic 
level scene classification is more similar to texture models (Renninger 
and Malik, 2004). Our findings extend this by showing that other surface 
information contributes to initial scene representation at both the in-
dividual image level and the basic category level.

Consistently, we found that for the decoding peak latency, grayscale 
images were significantly earlier than line drawings at the individual 
image level, but there were no significant differences at the basic cate-
gory level. The difference on the decoding peak latency among the three 
image versions at the individual image level might be due to the addi-
tional processing of line drawings, which involves filling-in of surface 
information that is not required for the other two versions of images. 
However, this salient fill-in process might not occur at the basic category 
level, as the representation at this level is much more abstract than the 
individual image level.

Moreover, our results revealed that the decoding peak value was 
significantly higher for color photographs than for grayscale images at 
the basic category level. Specifically, we found that color influences the 
neural representation of beaches, forests, city streets, and offices, with 
its effect being most pronounced for beaches. These results indicate that 
color information contributes to the basic category level representation. 
This might be because color can serve as a diagnostic feature for basic 
level scene categories, such as blue for beaches and green for forests 
(Oliva and Torralba, 2006), but not at the individual image level, where 
scenes within the same category usually share similar colors.

Fig. 5. Results of the representational similarity analysis for different image attributes. (a) The central panel displays the RDMs for the basic category level, su-
perordinate naturalness level, spatial frequency of grayscale images, and spatial frequency of line drawings (with 1 corresponding to between-category and 0 cor-
responding to within-category comparisons). *p < 0.05, **p < 0.01, ***p < 0.001. The panels on the left and right depict the temporal dynamics of the Spearman 
correlation coefficients between each of the four RDMs and the decoding RDM at the individual level. (b) The temporal dynamics of the Spearman correlation 
coefficients at the basic category level and superordinate naturalness level, after controlling for the spatial frequency RDM. The markers below the curves indicate the 
time points where decoding accuracy was significantly above chance (p < 0.05, TFCE corrected). Shaded areas represent one SE about the mean.
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Importantly, our decoding results showed that edge information 
depicted in line drawings plays a crucial role in scene representation at 
the superordinate naturalness level. At this level, line drawings not only 
exhibited an earlier peak latency but also a higher peak value than color 
photographs and grayscale images. The results indicate that edge in-
formation in line drawings is both sufficient and more effective than in 
color photographs and grayscale images at the superordinate natural-
ness level. The peak latency for line drawings was at 135 ms, with higher 
decoding accuracy at posterior electrodes, corresponding to the feature 
extraction and perception stages of scene recognition. Prior ERP 
research also showed that the differences between manmade and natural 
scenes were detected earlier by ERP responses to line drawings than to 
color photographs (Lowe et al., 2018).

However, manmade scenes tend to contain more lines and, conse-
quently, exhibit much higher spatial frequency compared to natural 
scenes. This raises concerns about whether the early peak observed in 
the time-resolved decoding reflects the abstract scene information 
necessary for distinguishing between manmade and natural environ-
ments. To address this, we conducted a representational similarity 
analysis. The results revealed that spatial frequency differences in both 
grayscale images and line drawings were associated with categories 
distinctions at the basic level. In contrast, variations in naturalness at the 
superordinate level were primarily linked to the spatial frequency dif-
ferences in line drawings. Moreover, the spatial frequency of grayscale 
images was not associated with neural activity induced by line drawings, 
whereas the spatial frequency of line drawings was related to neural 
activity induced by color photographs and grayscale image, suggesting 
distinct neural mechanisms.

To further investigate the role of abstract scene information, we 
compared the time-resolved decoding RDM at the individual image level 
with different model RDMs representing the basic category level or su-
perordinate naturalness level, while controlling for the influence of 
spatial frequency. The results revealed that line drawings continued to 
exhibit earlier and stronger correlations with superordinate naturalness 
representations, even after partialling out the influence of spatial fre-
quency. These findings suggest that the brain’s more accurate and robust 
decoding of line drawings at the superordinate naturalness level is not 
solely driven by low-level visual features but genuinely reflects the 
representation of abstract scene information.

Our time generalization analysis results revealed that the neural 
activity patterns elicited by line drawings were similar to those evoked 
by color photographs or grayscale images. In this analysis, when gray-
scale images were used as the training set and color images or line 
drawings as the testing sets, the neural activity patterns elicited by 
grayscale images could be generalized to those elicited by either color 
photographs or line drawings at each level of abstraction. These results 
provided direct neural evidence that the neural activities elicited by the 
three versions were similar. Consistently, previous research found that 
color photographs and line drawings of scenes at the basic category level 
elicited similar patterns of neural activation, especially in the Para-
hippocampal Place Area (PPA) (Morgan et al., 2019; O’Connell et al., 
2018; Walther et al., 2011), which is primarily associated with the 
spatial layout of scenes (Bilalic et al., 2019; Chaisilprungraung and Park, 
2021; Park et al., 2011). Our previous research also found that color 
photographs, grayscale images, and line drawings of objects at the in-
dividual image level elicited similar neural activity (Yao et al., 2023). 
These findings indicate that line drawings preserve important spatial 
structure information of both scenes and objects, which plays a crucial 
role in scene and object recognition (Choo and Walther, 2016; O’Connell 
et al., 2018; Walther and Shen, 2014).

Interestingly, however, the time corresponding to the best decoding 
accuracy at the individual image level was significantly later (approxi-
mately 15 ms) for line drawings than for grayscale images when gray-
scale images were used as the training set and line drawings as the 
testing set, but not when the color photographs were used as the testing 
set. These findings suggest that the surface information such as textures 

other than colors can affect scene processing speed at the individual 
image level. However, there were no such differences at the basic 
category level and superordinate naturalness level. There may be two 
reasons for this. Firstly, neural representation at the individual image 
level is more specific than that at the basic category level or superor-
dinate naturalness level, as it requires more detailed information to 
differentiate between two similar scenes, like two different forest scenes. 
That is, surface information is likely to be more important in the scene 
representation at a more specific level rather than at a more abstract 
level. Secondly, when visual scenes lack surface information, top-down 
processing may fill the missing information by comparing it with stored 
memory of scenes (Morgan et al., 2019; Mudrik et al., 2014; Rahman 
and Sommer, 2008). This process could have slowed down the pro-
cessing of line drawings in the current experiment.

5. Conclusion

To sum up, our findings provide electrophysiological evidence for 
the distinct roles of edge, color, and other surface information in scene 
representation across different levels of abstraction. First, our time 
decoding results demonstrate that edge information is sufficient and 
more effective at the superordinate naturalness level, whereas color and 
other surface information are exclusively involved in scene representa-
tion at the basic category level. Second, our time generalization results 
reveal that line drawings evoke neural activity patterns similar to those 
elicited by grayscale images across all levels of scene abstraction. These 
results highlight the crucial role of edge information in scene repre-
sentation at all levels of abstraction and provide insights into the distinct 
contributions of edge, color, and surface information to scene recogni-
tion. This work advances our understanding of how the human brain 
represents and processes scenes.

CRediT authorship contribution statement

Liansheng Yao: Writing – review & editing, Writing – original draft, 
Visualization, Methodology, Investigation, Formal analysis, Data cura-
tion, Conceptualization. Qiufang Fu: Writing – review & editing, Project 
administration, Methodology, Funding acquisition, Conceptualization. 
Chang Hong Liu: Writing – review & editing, Methodology, Concep-
tualization. Jianyong Wang: Writing – review & editing, Visualization. 
Zhang Yi: Writing – review & editing, Conceptualization.

Declaration of competing interest

We declare that we have no financial and personal relationship with 
other people or organization that can inappropriately influence our 
work, and there is no professional or other personal interest of any na-
ture or kind in any service or company that could be construed as 
influencing the review of the manuscript entitled.

Data and code availability

The available data and code can be found at https://doi.org/1 
0.57760/sciencedb.psych.00262.

Acknowledgements

The research was funded by the National Key Research and Devel-
opment Program of China (No. 2021ZD0204202) and the National 
Natural Science Foundation (32471112).

Supplementary materials

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.neuroimage.2025.121100.

L. Yao et al.                                                                                                                                                                                                                                      NeuroImage 310 (2025) 121100 

9 

https://doi.org/10.57760/sciencedb.psych.00262
https://doi.org/10.57760/sciencedb.psych.00262
https://doi.org/10.1016/j.neuroimage.2025.121100


References

Biederman, I., Ju, G., 1988. Surface versus edge-based determinants of visual 
recognition. Cogn. Psychol. 20 (1), 38–64. https://doi.org/10.1016/0010-0285(88) 
90024-2.

Bilalic, M., Lindig, T., Turella, L., 2019. Parsing rooms: the role of the PPA and RSC in 
perceiving object relations and spatial layout. Brain Struct. Funct. 224 (7), 
2505–2524. https://doi.org/10.1007/s00429-019-01901-0.

Brainard, D.H., 1997. The psychophysics toolbox. Spat. Vis. 10 (4), 433–436. https://doi. 
org/10.1163/156856897x00357.

Chaisilprungraung, T., Park, S., 2021. Scene" from inside: the representation of 
observer’s space in high-level visual cortex. Neuropsychologia 161. https://doi.org/ 
10.1016/j.neuropsychologia.2021.108010. Article 108010. 

Chang, C.C., Lin, C.J., 2011. LIBSVM: a library for support vector machines. ACM. Trans. 
Intell. Syst. Technol. 2 (3). https://doi.org/10.1145/1961189.1961199.

Choo, H., Walther, D.B., 2016. Contour junctions underlie neural representations of 
scene categories in high-level human visual cortex. Neuroimage 135, 32–44. https:// 
doi.org/10.1016/j.neuroimage.2016.04.021.

Cichy, R.M., Khosla, A., Pantazis, D., Oliva, A., 2017. Dynamics of scene representations 
in the human brain revealed by magnetoencephalography and deep neural networks. 
Neuroimage 153, 346–358. https://doi.org/10.1016/j.neuroimage.2016.03.063.

Cichy, R.M., Pantazis, D., Oliva, A., 2014. Resolving human object recognition in space 
and time. Nat. Neurosci. 17 (3), 455–462. https://doi.org/10.1038/nn.3635.

de-Wit, L., Alexander, D., Ekroll, V., Wagemans, J., 2016. Is neuroimaging measuring 
information in the brain? Psychon. Bull. Rev. 23 (5), 1415–1428. https://doi.org/ 
10.3758/s13423-016-1002-0.

Delorme, A., Makeig, S., 2004. EEGLAB: an open source toolbox for analysis of single- 
trial EEG dynamics including independent component analysis. J. Neurosci. Methods 
134 (1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009.

Dobs, K., Isik, L., Pantazis, D., Kanwisher, N., 2019. How face perception unfolds over 
time. Nat. Commun. 10. https://doi.org/10.1038/s41467-019-09239-1. Article 
1258. 

Fu, Q.F., Liu, Y.J., Dienes, Z., Wu, J.H., Chen, W.F., Fu, X.L., 2016. The role of edge-based 
and surface-based information in natural scene categorization: evidence from 
behavior and event-related potentials. Conscious. Cogn. 43, 152–166. https://doi. 
org/10.1016/j.concog.2016.06.008.

Goffaux, V., Jacques, C., Mouraux, A., Oliva, A., Schyns, P.G., Rossion, B., 2005. 
Diagnostic colours contribute to the early stages of scene categorization: behavioural 
and neurophysiological evidence. Vis. cogn. 12 (6), 878–892. https://doi.org/ 
10.1080/13506280444000562.

Groen, I.I.A., Ghebreab, S., Prins, H., Lamme, V.A.F., Scholte, H.S., 2013. From image 
statistics to scene gist: evoked neural activity reveals transition from low-level 
natural image structure to scene category. J. Neurosci. 33 (48), 18814–18824. 
https://doi.org/10.1523/jneurosci.3128-13.2013.

Grootswagers, T., Wardle, S.G., Carlson, T.A., 2017. Decoding dynamic brain patterns 
from evoked responses: a tutorial on multivariate pattern analysis applied to time 
series neuroimaging data. J. Cogn. Neurosci. 29 (4), 677–697. https://doi.org/ 
10.1162/jocn_a_01068.

Harel, A., Groen, I.I.A., Kravitz, D.J., Deouell, L.Y., Baker, C.I., 2016. The temporal 
dynamics of scene processing: a multifaceted EEG investigation. eNeuro 3 (5). 
https://doi.org/10.1523/ENEURO.0139-16.2016.

Hebart, M.N., Baker, C.I., 2018. Deconstructing multivariate decoding for the study of 
brain function. Neuroimage 180, 4–18. https://doi.org/10.1016/j. 
neuroimage.2017.08.005.

Hochberg, J., Brooks, V., 1962. Pictorial recognition AS an unlearned ability - a study of 
1 childs performance. Am. J. Psychol. 75 (4). https://doi.org/10.2307/1420286, 
624-&. 

Kleiner, M., 2010. Visual stimulus timing precision in Psychtoolbox-3: tests, pitfalls and 
solutions. Perception 39, 189. https://doi.org/10.1177/03010066100390S101.

Lowe, M.X., Rajsic, J., Ferber, S., Walther, D.B., 2018. Discriminating scene categories 
from brain activity within 100 milliseconds. Cortex 106, 275–287. https://doi.org/ 
10.1016/j.cortex.2018.06.006.

Lowe, M.X., Rajsic, J., Gallivan, J.P., Ferber, S., Cant, J.S., 2017. Neural representation of 
geometry and surface properties in object and scene perception. Neuroimage 157, 
586–597. https://doi.org/10.1016/j.neuroimage.2017.06.043.

Morgan, A.T., Petro, L.S., Muckli, L., 2019. Scene representations conveyed by cortical 
feedback to early visual cortex can Be described by line drawings. J. Neurosci. 39 
(47), 9410–9423. https://doi.org/10.1523/jneurosci.0852-19.2019.

Mudrik, L., Shalgi, S., Lamy, D., Deouell, L.Y., 2014. Synchronous contextual 
irregularities affect early scene processing: replication and extension. 

Neuropsychologia 56, 447–458. https://doi.org/10.1016/j. 
neuropsychologia.2014.02.020.

Nemrodov, D., Niemeier, M., Mok, J.N.Y., Nestor, A., 2016. The time course of individual 
face recognition: a pattern analysis of ERP signals. Neuroimage 132, 469–476. 
https://doi.org/10.1016/j.neuroimage.2016.03.006.

O’Connell, T.P., Sederberg, P.B., Walther, D.B., 2018. Representational differences 
between line drawings and photographs of natural scenes: a dissociation between 
multi-voxel pattern analysis and repetition suppression. Neuropsychologia 117, 
513–519. https://doi.org/10.1016/j.neuropsychologia.2018.06.013.

Oliva, A., Schyns, P.G., 2000. Diagnostic colors mediate scene recognition. Cogn. 
Psychol. 41 (2), 176–210. https://doi.org/10.1006/cogp.1999.0728.

Oliva, A., Torralba, A., 2001. Modeling the shape of the scene: a holistic representation of 
the spatial envelope. Int. J. Comput. Vis. 42 (3), 145–175. https://doi.org/10.1023/ 
a:1011139631724.

Oliva, A., Torralba, A., 2006. Building the gist of a scene: the role of global image 
features in recognition. S. MartinezConde, S. L. Macknik, L. M. Martinez, J. M. 
Alonso, & P. U. Tse. In: Visual Perception, Pt 2: Fundamentals of Awareness: Multi- 
Sensory Integration and High-Order Perception, 155, pp. 23–36. https://doi.org/ 
10.1016/s0079-6123(06)55002-2.

Oosterhof, N.N., Connolly, A.C., Haxby, J.V., 2016. CoSMoMVPA: multi-modal 
multivariate pattern analysis of neuroimaging data in Matlab/GNU Octave. Front. 
Neuroinform. 10, 27. https://doi.org/10.3389/fninf.2016.00027.

Orima, T., Motoyoshi, I., 2023. Spatiotemporal cortical dynamics for visual scene 
processing as revealed by EEG decoding. Front. Neurosci. 17, 1167719. https://doi. 
org/10.3389/fnins.2023.1167719.

Park, J., Park, S., 2017. Conjoint representation of texture ensemble and location in the 
parahippocampal place area. J. Neurophysiol. 117 (4), 1595–1607. https://doi.org/ 
10.1152/jn.00338.2016.

Park, S., Brady, T.F., Greene, M.R., Oliva, A., 2011. Disentangling scene content from 
spatial boundary: complementary roles for the parahippocampal place area and 
lateral occipital complex in representing real-world scenes. J. Neurosci. 31 (4), 
1333–1340. https://doi.org/10.1523/jneurosci.3885-10.2011.

Rahman, R.A., Sommer, W., 2008. Seeing what we know and understand: how 
knowledge shapes perception. Psychon. Bull. Rev. 15 (6), 1055–1063. https://doi. 
org/10.3758/pbr.15.6.1055.

Renninger, L.W., Malik, J., 2004. When is scene identification just texture recognition? 
Vision Res. 44 (19), 2301–2311. https://doi.org/10.1016/j.visres.2004.04.006.

Rousselet, G.A., Joubert, O.R., Fabre-Thorpe, M., 2005. How long to get to the "gist" of 
real-world natural scenes? Vis. Cogn. 12 (6), 852–877. https://doi.org/10.1080/ 
13506280444000553.

Singer, J.J.D., Cichy, R.M., Hebart, M.N., 2023. The spatiotemporal neural dynamics of 
object recognition for natural images and line drawings. J. Neurosci. 43 (3), 
484–500. https://doi.org/10.1523/jneurosci.1546-22.2022.

Smith, F.W., Smith, M.L., 2019. Decoding the dynamic representation of facial 
expressions of emotion in explicit and incidental tasks [Article]. Neuroimage 195, 
261–271. https://doi.org/10.1016/j.neuroimage.2019.03.065.

Smith, S.M., Nichols, T.E., 2009. Threshold-free cluster enhancement: addressing 
problems of smoothing, threshold dependence and localisation in cluster inference. 
Neuroimage 44 (1), 83–98. https://doi.org/10.1016/j.neuroimage.2008.03.061.

Stelzer, J., Chen, Y., Turner, R., 2013. Statistical inference and multiple testing 
correction in classification-based multi-voxel pattern analysis (MVPA): random 
permutations and cluster size control. Neuroimage 65, 69–82. https://doi.org/ 
10.1016/j.neuroimage.2012.09.063.

Teichmann, L., Quek, G.L., Robinson, A.K., Grootswagers, T., Carlson, T.A., Rich, A.N., 
2020. The influence of object-color knowledge on emerging object representations in 
the brain. J. Neurosci. 40 (35), 6779–6789. https://doi.org/10.1523/ 
jneurosci.0158-20.2020.

Vailaya, A., Jain, A., Zhang, H.J., 1998. On image classification: city images vs. 
landscapes. Pattern. Recognit. 31 (12), 1921–1935.

Walther, D.B., Chai, B., Caddigan, E., Beck, D.M., Fei-Fei, L., 2011. Simple line drawings 
suffice for functional MRI decoding of natural scene categories. Proc. Natl. Acad. Sci. 
U.S.A. 108 (23), 9661–9666. https://doi.org/10.1073/pnas.1015666108.

Walther, D.B., Shen, D.D., 2014. Nonaccidental properties underlie Human 
categorization of complex natural scenes. Psychol. Sci. 25 (4), 851–860. https://doi. 
org/10.1177/0956797613512662.

Yao, L.S., Fu, Q.F., Liu, C.H., 2023. The roles of edge-based and surface-based 
information in the dynamic neural representation of objects. Neuroimage 283. 
https://doi.org/10.1016/j.neuroimage.2023.120425. Article 120425. 

Yonas, A., Arterberry, M.E., 1994. Infants perceive spatial structure specified by line 
junctions. Perception 23 (12), 1427–1435. https://doi.org/10.1068/p231427.

L. Yao et al.                                                                                                                                                                                                                                      NeuroImage 310 (2025) 121100 

10 

https://doi.org/10.1016/0010-0285(88)90024-2
https://doi.org/10.1016/0010-0285(88)90024-2
https://doi.org/10.1007/s00429-019-01901-0
https://doi.org/10.1163/156856897x00357
https://doi.org/10.1163/156856897x00357
https://doi.org/10.1016/j.neuropsychologia.2021.108010
https://doi.org/10.1016/j.neuropsychologia.2021.108010
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1016/j.neuroimage.2016.04.021
https://doi.org/10.1016/j.neuroimage.2016.04.021
https://doi.org/10.1016/j.neuroimage.2016.03.063
https://doi.org/10.1038/nn.3635
https://doi.org/10.3758/s13423-016-1002-0
https://doi.org/10.3758/s13423-016-1002-0
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1038/s41467-019-09239-1
https://doi.org/10.1016/j.concog.2016.06.008
https://doi.org/10.1016/j.concog.2016.06.008
https://doi.org/10.1080/13506280444000562
https://doi.org/10.1080/13506280444000562
https://doi.org/10.1523/jneurosci.3128-13.2013
https://doi.org/10.1162/jocn_a_01068
https://doi.org/10.1162/jocn_a_01068
https://doi.org/10.1523/ENEURO.0139-16.2016
https://doi.org/10.1016/j.neuroimage.2017.08.005
https://doi.org/10.1016/j.neuroimage.2017.08.005
https://doi.org/10.2307/1420286
https://doi.org/10.1177/03010066100390S101
https://doi.org/10.1016/j.cortex.2018.06.006
https://doi.org/10.1016/j.cortex.2018.06.006
https://doi.org/10.1016/j.neuroimage.2017.06.043
https://doi.org/10.1523/jneurosci.0852-19.2019
https://doi.org/10.1016/j.neuropsychologia.2014.02.020
https://doi.org/10.1016/j.neuropsychologia.2014.02.020
https://doi.org/10.1016/j.neuroimage.2016.03.006
https://doi.org/10.1016/j.neuropsychologia.2018.06.013
https://doi.org/10.1006/cogp.1999.0728
https://doi.org/10.1023/a:1011139631724
https://doi.org/10.1023/a:1011139631724
https://doi.org/10.1016/s0079-6123(06)55002-2
https://doi.org/10.1016/s0079-6123(06)55002-2
https://doi.org/10.3389/fninf.2016.00027
https://doi.org/10.3389/fnins.2023.1167719
https://doi.org/10.3389/fnins.2023.1167719
https://doi.org/10.1152/jn.00338.2016
https://doi.org/10.1152/jn.00338.2016
https://doi.org/10.1523/jneurosci.3885-10.2011
https://doi.org/10.3758/pbr.15.6.1055
https://doi.org/10.3758/pbr.15.6.1055
https://doi.org/10.1016/j.visres.2004.04.006
https://doi.org/10.1080/13506280444000553
https://doi.org/10.1080/13506280444000553
https://doi.org/10.1523/jneurosci.1546-22.2022
https://doi.org/10.1016/j.neuroimage.2019.03.065
https://doi.org/10.1016/j.neuroimage.2008.03.061
https://doi.org/10.1016/j.neuroimage.2012.09.063
https://doi.org/10.1016/j.neuroimage.2012.09.063
https://doi.org/10.1523/jneurosci.0158-20.2020
https://doi.org/10.1523/jneurosci.0158-20.2020
http://refhub.elsevier.com/S1053-8119(25)00102-8/sbref0041
http://refhub.elsevier.com/S1053-8119(25)00102-8/sbref0041
https://doi.org/10.1073/pnas.1015666108
https://doi.org/10.1177/0956797613512662
https://doi.org/10.1177/0956797613512662
https://doi.org/10.1016/j.neuroimage.2023.120425
https://doi.org/10.1068/p231427

	Distinguishing the roles of edge, color, and other surface information in basic and superordinate scene representation
	1 Introduction
	2 Methods
	2.1 Participants
	2.2 Stimuli and experimental design
	2.3 EEG acquisition and preprocessing
	2.4 EEG analysis

	3 Results
	3.1 Behaviroal results
	3.2 EEG decoding results
	3.2.1 Decoding results at the individual image level
	3.2.2 Decoding results at the basic category level
	3.2.3 Decoding results at the superordinate level of naturalness
	3.2.4 RSA results of the effect of spatial frequency in scene representation


	4 Discussion
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data and code availability
	Acknowledgements
	Supplementary materials
	References


