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Abstract— This study examines the regional data in 

transportation carbon emissions across China and investigates the 

shifting trends of the carbon emission centroid over time. Using 

the IPCC (2006) carbon emission calculation formula, emissions 

data from 30 provinces for the years 2005, 2010, 2015, and 2020 

were analyzed using an Exploratory Spatial Data Analysis (ESDA) 

model. The Economic Centroid Model and standard deviation 

ellipse were applied to assess the movement of the carbon emission 

centroid, which was consistently located in Henan Province. 

Further analysis using the Kaya model identifies the key factors 

influencing transportation carbon emissions in Henan from 2005 

to 2020. The findings offer insights into regional carbon reduction 

strategies and the challenges in achieving China's dual carbon 

goals.  

Keywords— carbon emissions, transportation sector, ridge 

regression 

I. INTRODUCTION  

With the ongoing deterioration of the global climate and 
environment, extreme weather events are becoming increasingly 
frequent worldwide. It is becoming clear that sacrificing the 
environment for economic growth is not sustainable. 
Consequently, more countries and regions are now pursuing 
green and sustainable development. As the world's second-
largest economy and the largest emitter of carbon dioxide, China 
has set ambitious goals to peak carbon emissions by 2030 and 
achieve carbon neutrality by 2060. In 2021, carbon emissions 
from the transportation sector accounted for approximately 10% 
of China's total emissions. These dual carbon goals present 
significant challenges to the development of China's 
transportation sector. The International Energy Agency (IEA) 
has emphasised that reducing carbon emissions in transportation 
is crucial for achieving global emissions reductions in the near 
term. The "Action Plan for Peaking Carbon Emissions by 2030," 
issued by the State Council in 2021, highlights the need to 
accelerate the development of green and low-carbon 
transportation methods to ensure that carbon emission growth in 
this sector remains within reasonable limits. Research on 
regional differences in carbon emissions is essential for 
implementing precise carbon reduction measures. Like the 
regional disparities in economic development, carbon emissions 
also show significant regional variations. Due to the uneven 
economic development, resource distribution, and differences in 
transportation infrastructure across China, there are substantial 

variations in transportation carbon emissions among different 
regions. Therefore, in our rapidly changing world, it is crucial to 
continuously monitor the shifting national transportation carbon 
emission centroid, analyse the key factors influencing 
transportation carbon emissions, and make predictions to help 
achieve these dual carbon goals. 

To comprehensively examine carbon emissions in China's 
regional transportation and logistics sectors, this study will 
adopt a multifaceted analytical approach, beginning with the 
application of the carbon emission calculation formula as 
proposed by the Intergovernmental Panel on Climate Change 
(IPCC) in 2006. This well-established methodology will be used 
to accurately compute carbon emissions across various 
provinces, providing a detailed and standardized measure of 
transportation-related emissions. The first phase of the study 
involves the collection of relevant data across China's 
transportation sector, spanning the years 2005, 2010, 2015, and 
2020. This data will be gathered from authoritative sources, 
including governmental databases, transportation records, and 
environmental reports. The IPCC (2006) carbon emission 
calculation formula will be employed to convert this data into 
quantifiable carbon emissions. This formula considers factors 
such as fuel consumption, vehicle type, and emission 
coefficients, ensuring a robust and reliable estimate of emissions 
for each province. Following the computation of carbon 
emissions, the study will implement an Exploratory Spatial Data 
Analysis (ESDA) model to investigate the spatial distribution of 
these emissions across the selected provinces. This analysis will 
reveal regional data differences in transportation sector carbon 
emissions, highlighting areas with significantly high or low 
emissions, and providing insights into the underlying 
geographic, economic, and infrastructural factors. To capture 
the dynamic nature of carbon emissions over time, the study will 
utilize the Economic Centroid Model and the standard deviation 
ellipse technique. The Economic Centroid Model will calculate 
the centroid's position based on emission data, while the 
standard deviation ellipse will illustrate the dispersion and 
directional trends of emissions relative to this trend. By applying 
this model to Henan Province, the study will identify and 
quantify the relative contributions of these factors to the region’s 
transportation carbon emissions from 2005 to 2020. This 
analysis will provide valuable insights into the socioeconomic 
and technological factors driving emissions in Henan, offering a 
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nuanced understanding of the challenges and opportunities for 
carbon reduction in this pivotal region. 

The rest of paper is organized as follows. Section II provides 
a brief introduction to the relevant background and context, 
outlining the importance of carbon emissions reduction in 
China's transportation sector and setting the stage for the 
subsequent analysis. Section III presents the methodology used 
in the study, detailing the carbon emission calculation formula 
based on IPCC (2006), the application of the Exploratory Spatial 
Data Analysis (ESDA) model, the Economic Centroid Model, 
and the standard deviation ellipse. Section VI reports the results 
of the analysis, including the spatial distribution of 
transportation carbon emissions across the provinces, the 
shifting trends of the carbon emission centroid over time, and 
the key factors influencing emissions in Henan Province as 
identified by the Kaya model. Section V concludes the paper by 
summarizing the key insights and contributions of the study and 
suggesting directions for future research to further explore the 
dynamics of transportation-related carbon emissions in China. 

II. LITERATURE REVIEW 

Currently, scholars have systematically analysed the 
spatiotemporal evolution of transportation carbon emissions at 
various spatial scales, making significant advances in 
understanding their spatial characteristics. For example, Zhao et 
al. [1] used the geographic detector method to explore the spatial 
differentiation and driving factors of transportation carbon 
emissions across provinces involved in the Belt and Road 
Initiative (BRI). Similarly, Lv et al. [2] employed the 
Geographically and Temporally Weighted Regression (GTWR) 
model to examine the influence of transportation carbon 
emission efficiency and its spatiotemporal heterogeneity. 
Further, Li et al. [3] and Xu et al. [4] utilised methods such as 
map visualisation and kernel density estimation to study the 
spatiotemporal evolution of urban carbon emission intensity. In 
recent years, many scholars have adopted Exploratory Spatial 
Data Analysis (ESDA) methods to investigate the spatial 
distribution patterns and differences in carbon emissions across 
China. For instance, Zeng et al. [5] applied ESDA to analyse the 
spatiotemporal distribution of transportation emissions, while 
Zhang et al. [6] and Yuan et al. [7] used ESDA along with spatial 
connectivity and super-efficiency SBM models to measure 
carbon emission efficiency. Other researchers like Zhao et al. [8], 
Song et al. [9], and Gao et al. [10] have also focused on the 
spatiotemporal evolution of China's energy consumption carbon 
emissions using the ESDA method. From the above literature, it 
is evident that different scholars have used various methods to 
study the spatial distribution of transportation sector carbon 
emissions. Among these, the ESDA method offers a 
comprehensive analytical framework, considering spatial 
distribution patterns, correlations, and spatiotemporal evolution 
characteristics. Given its comprehensive nature, this study will 
also employ the ESDA method to analyse the spatial distribution 
of carbon emissions in China's transportation sector. 

The theory of economic centroids has been widely applied 
in studying regional development differences across different 
industries. For example, Xie et al. [11] used the theory of 
centroid displacement to calculate the movement trajectories of 
three economic attributes' centroids—ecosystem service value, 

urbanisation rate, per capita GDP, and per capita fiscal budget 
expenditure—in Sichuan Province for the years 2000, 2010, and 
2020. Their results indicated that from 2000 to 2020, Sichuan 
Province's ecological value centroid shifted towards the 
southeast, while the economic centroid moved towards the 
northeast. Similarly, Li et al. [12] used the centroid model to 
study the migration characteristics of population and economic 
centroids in the Beijing-Tianjin-Hebei region between 2006 and 
2017, revealing that both centroids deviated from the geometric 
centroid, showing a significant trend. Chen et al. [13] also 
employed the economic centroid model to analyse the migration 
characteristics and equilibrium of China's economic centroid 
from 2003 to 2012, identifying a semi-equilibrium trend in the 
migration of the country's economic centroid. Given that this 
theory effectively reveals the spatial distribution and migration 
trends of economic activities, helping researchers and 
policymakers understand dynamic changes in regional 
economic development, this study introduces the economic 
centroid theory to examine carbon emissions in the 
transportation sector. This approach will quantify the spatial 
dynamic evolution of transportation carbon emissions. In the 
analysis of carbon emission influencing factors, many domestic 
and international scholars have researched the factors affecting 
transportation carbon emissions using various models and 
methods. For instance, Shi [14] analysed the impact of 
population pressure on global carbon emissions using the 
STIRPAT model, while Wang [16] applied the same model to 
study the factors influencing energy-related CO2 emissions in 
Guangdong Province, China. Martínez-Zarzoso et al. [17] 
examined the effect of urbanisation on carbon emissions in 
developing countries using the STIRPAT model. Lv et al. [19] 
explored how factors like population, per capita GDP, the added 
value of the tertiary industry, and urbanisation levels influenced 
carbon emissions from automobile transportation in the Beijing-
Tianjin-Hebei region, using the STIRPAT and spatial 
econometric models. Solaymani [20] analysed transportation-
related carbon emissions in seven countries using the LMDI 
method, finding that economic growth and energy structure were 
the main drivers. Zhang et al. [21] used the Kaya identity to 
assess the impact of various factors on the carbon footprint of 
Xi'an, while Tang [22], using the Kaya model, compared the 
carbon emission peaking process among OECD and non-OECD 
economies, including China. Compared to the LMDI method 
and the STIRPAT model, the Kaya identity is more intuitive, as 
it decomposes carbon emissions into four factors—population, 
GDP, energy intensity, and carbon intensity—making it easier 
to understand each factor's contribution to emissions. Therefore, 
this study extends the Kaya identity to analyse the driving 
factors influencing transportation carbon emissions in Henan 
Province. 

III. RESEARCH METHODOLOGY  

A. Calculation Methods for Transportation Carbon 

Emissions  

Currently, two commonly used methods for calculating 
carbon emissions in China are the activity-based approach and 
the emission factor approach. The activity-based approach relies 
on measured physical consumption quantities, while the 
emission factor approach uses emission factors to convert 
energy consumption into standard coal heat equivalents for 
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statistical purposes. Due to the lack of clear monitoring data on 
carbon emissions from the transportation sector in China, this 
study estimates carbon emissions in each province based on 
energy consumption in the transportation sector using the IPCC 
emission factor approach. The model for calculating carbon 
emissions is represented by Equation (1): 

                CF = ∑ Ei
n
i=1 × Fi × Oi  (i=1, 2, …, 7)             (1) 

Where CF represents the total carbon emissions from fossil fuel 
combustion, Ei denotes energy consumption, Fi  signifies the 
adjusted carbon emission coefficient, and Oi  stands for the 
emission factor. With advancements in technology, most fuel 
combustion processes now exhibit high efficiency, with an 
oxidation rate typically reaching 100%. Consequently, this value 
is assumed to be 1 by default. The variable i represents various 
energy sources, including seven types of fossil fuels: raw coal, 
gasoline, kerosene, diesel, fuel oil, natural gas, and liquefied 
petroleum gas. Although the IPCC provides comprehensive 
guidelines for calculating national greenhouse gas emission 
inventories, variations in energy statistics across different 
countries and regions often lead to the adoption of diverse 
operational methods based on these guidelines. These 
differences necessitate adjustments to ensure the accuracy and 
comparability of emission calculations. In this study, we will 
utilize the carbon emission coefficients from the IPCC (2006) 
guidelines, as detailed in Table I, along with standardized coal 
consumption data to compute carbon emissions for China's 
transportation and logistics sector. The carbon emission 
coefficients provided by the IPCC represent the amount of 
carbon dioxide emitted per unit of energy consumed, and they 
are tailored to different types of fuels and energy sources. By 
applying these coefficients to the energy consumption data—
specifically, the standardized coal equivalent—we can 
accurately estimate the carbon emissions for each province. 
Furthermore, the use of standardized coal, which serves as a 
common energy unit to compare different fuels, allows for the 
integration of various energy sources into a single metric. This 
standardization is crucial for accurately assessing carbon 
emissions across provinces with diverse energy mixes and 
consumption patterns. These calculated emissions will then 
serve as the foundation for further spatial and temporal analysis, 
including the exploration of regional disparities in transportation 
sector emissions and the investigation of shifting trends in the 
carbon emission centroid. 

TABLE I. CARBON EMISSION COEFFICIENTS OF VARIOUS ENERGY SOURCES IN 

CHINA 

 

B. Exploratory Spatial Data Analysis (ESDA) 

 In Exploratory Spatial Data Analysis (ESDA), global 
Moran's I and hotspot analysis are key methods used to examine 
the global spatial autocorrelation and clustering characteristics 

of spatial data. This study uses the ESDA model to analyse the 
spatial distribution of carbon emissions in China's transportation 
industry. Global spatial autocorrelation is typically measured 
using Moran's I statistic, which assesses whether a particular 
feature exhibits significant clustering or dispersion across a 
geographic area. In this study, Moran's I statistic is used to 
measure the global autocorrelation of transportation carbon 
emissions. The index ranges from -1 to 1. When the Z value 
passes a significance test and Moran's I is positive, it indicates 
that transportation carbon emissions exhibit clustering, meaning 
that neighbouring areas in space have similar observations. A 
negative Moran's suggests dispersion of transportation carbon 
emissions, while a value of 0 indicates a random distribution. 
The closer the absolute value is to 1, the more pronounced the 
trend. Hotspot analysis (Getis-Ord Gi*) is another important 
method used in ESDA. It calculates the z-value and p-value for 
each feature in the data to identify clusters of high or low values 
in space. The formula used for this analysis are: 
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In this study, the z-value of transportation carbon emissions for 
each province is calculated annually and then categorised into 
four emission levels: high-value cluster area, moderately high-
value cluster area, moderately low-value cluster area, and low-
value cluster area, based on the natural breaks method. A higher 
and significant z-value indicates a high-value cluster area for 
transportation carbon emissions, while a lower and negative z-
value indicates a low-value cluster area.  

C. Dynamic Evolution of Carbon Emissions in the Chinese 

Transportation Industry  

To further investigate the dynamic evolution of carbon 
emissions in China's transportation industry, this study 
introduces the theory of the economic gravity centre to analyse 
the trajectory of carbon emissions within this sector. 
Additionally, the standard deviation ellipse (SDE) is utilised to 
reveal the directional characteristics of the spatial distribution of 
economic geographical elements. 

In this study, the "centre" is defined as the weighted average 
point of the geographical locations and carbon emissions from 
the transportation industry across various provinces in China. 
This approach aims to quantify and visualise the geographical 
distribution characteristics of carbon emissions. By combining 
carbon emission data with the geographical locations of each 
province, the weighted average centre of carbon emissions in the 
transportation industry is calculated. This point represents the 
"centre of gravity" or the average concentration of carbon 

Energy 

Type 
Emission Factor Energy Type Emission Factor 

Raw Coal 
0.5399（t CO2/t standard 

coal） 
Fuel Oil 0.8836（t CO2/t fuel oil） 

Gasoline 0.8149（t CO2/t gasoline） Natural Gas 0.5447（t CO2/thousand m³） 

Kerosene 0.8408（t CO2/t kerosene） 
Liquefied Petroleum 

Gas 

0.8644（t CO2/t liquefied 

petroleum gas） 

Diesel 0.8627（(t CO2/t diesel）   

 



emissions relative to geographical locations in space. The model 
for the coordinates of the centre of gravity is as follows: 

                                     X =
∑ xi×n

i=1 Ci

∑ Ci
n
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The standard deviation ellipse (SDE) method is then employed 
to intricately characterise and explore the trajectory and 
dispersion trend of the centre of mass migration of inter-
provincial transportation carbon emissions in China over four 
selected years (2005, 2010, 2015, 2020) during the sample 
period. The relevant formulae are as follows: 
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Where, ( X, Y ) represents the geographic coordinates of the 
centroid of the ellipse, where (xi, yi) denotes the spatial weight 
of city 𝑖, representing the carbon emissions from transportation 
in different provinces. ( xi, yi ) represents the geographic 
coordinates of the centroid point of city 𝑖, indicating the 
difference between these coordinates and the centroid. 𝜎𝑥 and 
𝜎𝑦 represent the standard deviations of the ellipse's x (major) 
and y (minor) axes, respectively. The angle 𝜃 denotes the 
directional angle of the spatial distribution pattern (with the 
major axis as the reference, where 0° represents north, and 
rotation is clockwise). 𝑆 denotes the area of the ellipse. 

D. Kaya Identity 

In 1989, Japanese scholar Kaya proposed the Kaya Identity, 
which identifies the driving factors of carbon emissions as the 
carbon emission coefficient, energy intensity, per capita GDP, 
and population size. The principle behind the Kaya Identity is to 
break down carbon emissions into the product of several 
variables and analyse the contribution of each variable to carbon 
emissions. The general form of the Kaya Identity is expressed 
as:                                                      

                               C =
𝐶

𝐸
×

𝐸

𝑋
×

𝑋

𝑍
×

𝑍

𝑃
× 𝑃                               (12) 

Where C represents carbon emissions from the transportation 
sector, E represents total energy consumption in the 

transportation sector, X represents the GDP of the transportation 
sector, Z represents the GDP of a specific province, and P 
represents the population size of the province. According to 
Equation (12), the driving factors of carbon emissions in the 
transportation sector can be broken down into five explanatory 
variables: carbon intensity of energy consumption in the 

transportation sector 
𝐶

𝐸
, energy intensity of the transportation 

sector 
𝐸

𝑋
, economic share of the transportation sector 

𝑋

𝑍
, per 

capita GDP (
𝑍

𝑃
), and population size ( 𝑃 ). To address the 

inconsistency in the units of the explanatory variables, both sides 
of Equation (13) are logarithmised. The model can then be 
expressed as: 

    ln 𝐶 = 𝛽1 ln 𝐸𝑆 + 𝛽2 ln 𝐸𝐹 + 𝛽3 ln 𝐿 + 𝛽4 ln 𝑃𝐺 +
                                            𝛽5 ln 𝑃 + ε                                 (13)  

In this model, C denotes carbon emissions from a specific 
province's transportation sector; ES represents energy 
consumption carbon intensity in the transportation sector; EF 
denotes energy intensity of the transportation sector; L 
represents the industrial structure of the transportation sector; 
PG denotes per capita GDP; and P represents population size. 

IV. RESULTS ANALYSIS   

This paper uses data from Henan Province for the years 

2005-2020 as the research dataset. The data for energy 

consumption in the transportation sector, GDP of the 

transportation industry, provincial GDP, per capita GDP, 

population size, and urbanisation rate were sourced from the 

"China Statistical Yearbook," "China Energy Statistical 

Yearbook," provincial greenhouse gas inventory guidelines, 

and the "Henan Statistical Yearbook" for the years 2005-2020. 

Some of the data were derived through calculations. Currently, 

the statistical yearbooks do not provide separate data for energy 

consumption and GDP specifically for the transportation sector; 

instead, they combine data for transportation, warehousing, and 

postal services. Since the warehousing and postal sectors 

account for a smaller share, this paper uses the combined 

energy consumption and GDP of transportation, warehousing, 

and postal services to represent the energy consumption and 

GDP of the transportation sector.  

A. Spatiotemporal Distribution of Carbon Emissions in the 

Transportation Sector 

 Using the Jenks natural breaks method, the Z values derived 
from Equation (5) were categorized into four distinct clusters: 
low cluster area, lower-middle cluster area, upper-middle cluster 
area, and high cluster area. Given that carbon emissions from 
transportation logistics tend to be relatively stable over short 
periods, the years 2005, 2010, 2015, and 2020 were selected at 
regular intervals for cluster analysis. The results of this analysis 
are illustrated in Figure 1. It shows that overall carbon emissions 
from transportation in China are higher in the east and lower in 
the west, decreasing progressively from the eastern coastal areas 
to the west. In 2005, Beijing, Tianjin, Hebei, Jiangsu, Zhejiang, 
Anhui, and Jiangxi were all in the high cluster area. By 2010, 
Shanxi, Shandong, and Hubei had also shifted from the upper-
middle to the high cluster area, regions which are largely the 
focus of the nation's emission reduction strategies. However, 



after 2015, transportation carbon emissions in the Beijing-
Tianjin-Hebei area dropped to the upper-middle cluster area, 
indicating to some extent that the government's emission 
reduction policies for high-emission areas were effective. 
Qinghai remained in the low cluster area throughout these years, 
while Gansu was in the lower-middle emission area in 2005 but 
then rose to the upper-middle emission area, and by 2015, along 
with Ningxia, it became a low emission area. Notably, in 2015, 
carbon emissions from transportation logistics in most provinces 
decreased. However, in 2020, there was a "rebound" in this  

 

 

 

 

Figure 1 the spatial evolution of transportation carbon emissions from 2005 to 
2020 

trend, with the emission pattern resembling that of 2010, but 
with high cluster areas becoming more concentrated. 
Additionally, Xinjiang's carbon emissions from transportation  

 

Figure 3 the distribution direction and path transition of carbon emission in 
Transportation Sector from 2005 to 2020 

 

shifted from the lower-middle to the upper-middle area, while 
Gansu moved from the upper-middle to the lower-middle area.  

The overall trend shows a decrease in transportation carbon 

emissions across most provinces from 2005 to 2015, which 

aligns with the emission reduction efforts. However, the 

rebound observed in 2020 indicates that some regions 

experienced increased emissions again, with a more 

pronounced concentration in high-emission areas. Moreover, 

the persistent low emissions in Qinghai and the shifting 

emission levels in Gansu and Xinjiang highlight the dynamic 

nature of regional emission patterns and the varying 

effectiveness of emission reduction policies across different 

provinces. These findings highlight the regional disparities in 

transportation carbon emissions and the effects of emission 

reduction strategies over time. The analysis indicates both 

progress in reducing emissions in some areas and challenges in 

managing the rebound effect in others. 



B. Spatiotemporal Shift and Dispersion Trend of the Carbon 

Emission Centroid 

The analysis of the carbon emission centroid provides 
insights into the spatial distribution and intensity of 
transportation carbon emissions across China. The carbon 
emission centroid represents areas with the highest 
concentration of emissions, while the standard deviation ellipse 
illustrates the spatial dispersion of carbon intensity across 
different provinces. The analysis tracks the migration and 
dispersion trends of the carbon emission centroid at four key 
time points: 2005, 2010, 2015, and 2020. According to Figure 2, 
The carbon emission centroid for transportation consistently 
remains in Henan Province across all four time points, 
fluctuating within the coordinates of 113.756-114.243°E and 
33.300-33.683°N. This centroid is positioned southeast of 
China’s geometric center (103°E, 36°N), indicating a higher 
overall intensity of transportation carbon emissions in the 
eastern and southern regions compared to the western and 
northern regions. The migration trajectory shows that in 2005, 
the centroid was located at the junction of Luohe and Zhoukou 
cities (114.243°E, 33.683°N). By 2010, it shifted 0.08 km 
southwest to Luohe, then moved 1.80 km northwest to Zhoukou 
in 2015, and finally settled 2.35 km southwest in Zhumadian. 
Overall, from 2005 to 2020, the centroid has shifted 
approximately 2.43 km southwest and 1.80 km northwest, 
indicating a predominant southward and westward movement of 
transportation carbon emissions. Furthermore, the standard 
deviation ellipse, which reflects the spatial dispersion of 
transportation carbon intensity, predominantly covers the 
southern and northern regions of China, with a noticeable 
southward movement over the period analyzed. The ellipse 
displayed a "northeast-southwest" distribution pattern. The area 
of the ellipse increased by 6% in 2015 compared to 2005, but 
decreased by 3.3% in 2020. This trend signifies a shift from a 
more dispersed to a more concentrated pattern of transportation 
carbon intensity over the 15-year period. The angle of the ellipse 
remained relatively stable, ranging from 18.78° to 21.26°, 
indicating minimal change in the directional distribution. The 
major axis of the ellipse extended from 833.15 km to 885.54 km, 
reflecting increased concentration of emissions along the north-
south direction. Conversely, the minor axis shortened from 
1087.33 km to 1053.34 km, indicating a broader dispersion in 
the east-west direction. These findings highlight a general trend 
of increasing concentration of transportation carbon emissions 
along the north-south axis while maintaining broader dispersion 
across the east-west axis. The centroid's migration towards the 
southwest and the changes in the standard deviation ellipse 
reflect dynamic shifts in transportation carbon emission patterns 
across China. 

C. Study on the Factors Affecting Transportation Carbon 

Emissions 

This study employs SPSS software to conduct a multiple 

regression analysis to identify the factors affecting 

transportation carbon emissions in China from 2005 to 2020. 

The analysis includes variables such as the carbon intensity of 

energy consumption, energy intensity, output structure, per 

capita GDP, and population size. The results, presented in Table 

II, reveal that the Variance Inflation Factor (VIF) values for 

industrial structure and population size are significantly greater 

than 10, indicating issues with multicollinearity. Additionally, 

the R² value equals 1, suggesting potential overfitting. These 

issues render the coefficients from the ordinary least squares 

(OLS) regression unreliable for inferential purposes. To 

address these challenges, ridge regression analysis was 

performed using SPSS. Ridge regression is a technique that 

provides biased estimates to counteract multicollinearity, 

improving the reliability of the regression coefficients. The 

ridge regression analysis, conducted with a ridge parameter 

K=0.15K = 0.15K=0.15, shows that the ridge trace stabilizes, 

and the F-test yields a significance level (P-value) of 0.000, 

which indicates statistical significance and supports the 

regression relationship between the independent and dependent 

variables. The model demonstrates excellent performance with 

a goodness of fit (R²) of 0.984. The parameters and indicators 

from the ridge regression are detailed in Table II. The resulting 

regression equation is as follows: 

𝑙𝑛𝐶 = −59.617 + 1.658𝑙𝑛𝐸𝑆 + 0.844𝑙𝑛𝑆 + 0.168𝑙𝑛𝐿 +

0.594𝑙𝑛𝐺 + 9.049𝑙𝑛𝑃           (14) 

The results indicate that transportation energy intensity, per 

capita GDP, and population size significantly impact the carbon 

emissions of the transportation sector in Henan province. 

Firstly, transportation energy carbon intensity is a major 

contributor to emissions. Specifically, a 1% increase in 

transportation energy carbon intensity results in a 1.658% 

increase in total transportation carbon emissions. This 

underscores how the carbon intensity of the energy used in 

transportation directly impacts overall emissions levels. 

Similarly, a 1% rise in transportation energy intensity leads to 

a 0.844% increase in total carbon emissions. This indicates that 

the efficiency of energy use in transportation also plays a 

crucial role in determining emission levels. The economic share 

of the transportation sector is another significant factor. A 1% 

increase in this share results in a 0.168% rise in total carbon 

emissions. This suggests that a larger economic contribution 

from the transportation sector is associated with higher 

emissions. Moreover, changes in the industrial structure affect 

emissions as well. A 1% increase in industrial structure 

corresponds to a 0.594% rise in total transportation carbon 

emissions. This reflects how shifts in industrial activities 

influence transportation-related emissions. The most 

substantial effect comes from population size. A 1% increase in 

population size leads to a significant 9.049% increase in total 

transportation carbon emissions. This highlights the strong 

relationship between population growth and increased 

transportation demand, which drives up emissions. These 

model coefficients provide a detailed understanding of how 

various factors drive transportation carbon emissions in Henan 

province. The findings emphasize the importance of addressing 

energy carbon intensity, energy efficiency, economic 

contributions of the transportation sector, industrial structure, 

and population growth to effectively manage and reduce 

transportation emissions. By focusing on these areas, Henan 

can develop targeted strategies to mitigate the impact of these 

factors on overall carbon emissions from transportation. 

 



TABLE II. CARBON EMISSIONS OF THE TRANSPORTATION SECTOR IN CHINA 

 
From the regression results, it is evident that: Firstly, the most 

significant factor driving the increase in transportation carbon 

emissions is the growth in population size and density. As the 

population rises, the demand for travel and energy intensifies, 

leading to higher energy consumption and, consequently, 

increased carbon emissions. To address this, Henan should 

implement targeted energy-saving and emission-reduction 

strategies that account for population growth. Secondly, energy 

consumption carbon intensity and energy intensity are the 

second and third major factors affecting Henan's transportation 

carbon emissions, respectively. This is due to the rapid 

development of the transportation sector without widespread 

adoption of new and clean energy sources and without an 

increase in energy utilization efficiency. Hence, accelerating 

energy transition and enhancing energy utilization efficiency 

are crucial for constructing a transportation energy-saving and 

emission-reduction system. Thirdly, Per capita GDP is also a 

major factor affecting transportation carbon emissions. 

Adjustments in the industrial structure to develop the tertiary 

sector, which consumes less transportation energy, can reduce 

transportation carbon emissions while maintaining stable 

economic growth. Lastly, the economic share of the 

transportation sector also has a strong carbon emission effect, 

primarily because freight turnover in Henan province relies 

heavily on rail and road transport, both of which are high-

energy-consuming modes of transportation. Therefore, 

adjusting the freight modal mix in Henan is one of the important 

ways to accelerate carbon emission reduction in the 

transportation sector. 

V. CONCLUSION AND RECOMMENDATIONS   

     This study employed the Exploratory Spatial Data Analysis 

(ESDA) model to investigate the regional distribution of 

transportation carbon emissions across 30 Chinese provinces 

from 2005 to 2020, with findings indicating that Henan 

Province consistently serves as a central hub of emissions. The 

use of ridge regression analysis further identified key factors 

driving these emissions, notably transportation energy 

intensity, per capita GDP, and population size. To achieve 

meaningful emission reductions in Henan, the study 

recommends focusing on several strategies: promoting clean 

energy, accelerating the transition to more sustainable energy 

sources, and encouraging the widespread adoption of electric 

vehicles. Despite these robust findings, the study acknowledges 

several limitations. For instance, the analysis did not include 

detailed energy consumption data, which could provide a more 

nuanced understanding of the emission drivers. Additionally, 

external factors such as global economic fluctuations were not 

considered, which might influence the transportation sector's 

carbon emissions. Looking ahead, future research will aim to 

develop a hybrid forecasting model to predict carbon emissions 

in Henan Province's transportation sector over the coming 

years. This model will incorporate a broader range of variables 

and expand the sample size to improve the accuracy and 

applicability of the predictions, ensuring that the research can 

better inform policy decisions and contribute to the ongoing 

efforts to reduce carbon emissions. 
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