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Abstract
The ability to recognize and interpret facial expressions is fundamental to human social cognition, enabling navigation of

complex interpersonal interactions and understanding of others’ emotional states. The extent to which neural patterns

associated with facial expression processing are shared between observers remains unexplored, and no study has yet

examined the neural dynamics specific to different emotional expressions. Additionally, the neural processing dynamics of

facial attributes such as sex and identity in relation to facial expressions have not been thoroughly investigated. In this

study, we investigated the shared neural dynamics of emotional face processing using an explicit facial emotion recog-

nition task, where participants made two-alternative forced choice (2AFC) decisions on the displayed emotion. Our data-

driven approach employed cross-participant multivariate classification and representational dissimilarity analysis on EEG

data. The results demonstrate that EEG signals can effectively decode the sex, emotional expression, and identity of face

stimuli across different stimuli and participants, indicating shared neural codes for facial expression processing. Multi-

variate classification analyses revealed that sex is decoded first, followed by identity, and then emotion. Emotional

expressions (angry, happy, sad) were decoded earlier when contrasted with neutral expressions. While identity and sex

information were modulated by image-level stimulus features, the effects of emotion were independent of visual image

properties. Importantly, our findings suggest enhanced processing of face identity and sex for emotional expressions,

particularly for angry faces and, to a lesser extent, happy faces.

Keywords Multivariate pattern analysis � Electroencephalography � Face processing � Facial expressions �
Emotions

Introduction

The ability to recognize and interpret facial expressions is a

fundamental aspect of human social cognition, enabling us

to navigate complex interpersonal interactions and under-

stand the emotional states of others. While the neural

mechanisms underlying facial expression recognition have

been extensively studied, our understanding of how the

brain simultaneously processes facial expressions along

with other forms of information, such as gender and

identity, remains limited. This is particularly crucial given

that the integration of identity and facial expression

information is essential for social judgments and

interactions.

The primary objective of this study is to characterize the

shared processing dynamics related to the perception of

facial emotions and their interaction with face sex and

identity information. Using data-driven multivariate cross-

classification and representational similarity analyses of

electroencephalographic data, we explored the stimulus-

and participant-independent neural dynamics associated

with these attributes as observers evaluated expressive

faces of unfamiliar identities.

In recent decades, neuroimaging studies have signifi-

cantly advanced our understanding of the neural mecha-

nisms underlying facial emotion processing. Much of the

research in face perception has concentrated on distin-

guishing between the changeable and dynamic aspects

versus the stable and invariant aspects of face perception

(Bernstein et al. 2018). Identity and sex characteristics are

embedded in the consistent features of the face, defined by

the underlying bone structure (Mello-Gentil and Souza-
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Mello 2022), proportions, and skin texture (González-

Álvarez and Sos-Peña, 2022), which remain relatively

stable over time. In contrast, emotional expression is

changeable, manifested through the dynamic movements of

facial muscles, and can vary with an individual’s emotional

state and reactions to external stimuli (Zebrowitz 2011).

While early models propose distinct pathways for face-

emotion processing (Bruce and Young 1986), a substantial

body of research indicates that the processing of facial

identity and facial expression interact at various stages of

the information processing sequence. Indeed, through the

examination of the statistical properties of face images

themselves using principal component analysis (PCA),

certain principal components appear to encode identity,

some encode expression, while others encode both

dimensions concurrently. Notably, shape changes within

the facial features may serve as a coding mechanism for

either characteristic (Calder et al. 2001). This suggests that

the dissociation between identity and expression at the

image level might be partial rather than absolute (Calder

and Young 2005; Young and Bruce 2011).

Functional neuroanatomy. Haxby et al. (2000) pro-

posed that the dissociation between facial identity and

facial expression originates from the utilization of distinct

brain structures within a core face network. These struc-

tures are involved in processing the visuo-structural prop-

erties of these two facial characteristics. According to this

account, subsequent to receiving input from the inferior

occipital gyrus, the fusiform gyrus handles the processing

of the invariant (non-changeable) properties crucial for

coding facial identity. Simultaneously, the superior tem-

poral sulcus (STS) is responsible for processing changeable

aspects of the face, such as facial expressions. Following

this initial processing stage, further cognitive processing

unfolds within the extended face network. For example,

facial identity information undergoes additional processing

in structures located in the anterior and medial temporal

lobe, while facial expression information is channeled into

the amygdala and limbic system for further analysis.

It has become increasingly evident that the distinction

between facial identity and facial expression processing at

the neural level is more nuanced than initially perceived.

Cumulative evidence suggests that both the fusiform face

area (FFA) and the STS structures play reciprocal roles in

expression processing. Notably, these two areas may

extract different types of information concerning facial

expressions. The FFA’s response to facial expression

appears to encompass a broad sensitivity to shape infor-

mation, while the posterior STS-face area (pSTS-FA) may

specifically respond to face shapes conveying emotional

information (Duchaine and Yovel 2015). For instance, the

FFA, traditionally associated with face identity computa-

tion, also demonstrates involvement in expression

processing. Conversely, the STS, typically associated with

biological motion processing, may also play a role in

identity processing, particularly for dynamic stimuli. In this

capacity, it is thought to integrate identity information

transmitted by form and expression information transmit-

ted by motion (Dobs et al. 2018).

This interaction challenges the traditional separation and

hierarchy between facial identity and expression process-

ing, indicating more integrated and interconnected neural

processes governing the perception of facial information.

This perspective aligns with the demands of everyday

social interactions, where the ability to attribute social

meaning relies on tracking changes in expression and gaze

direction across individuals, even as their invariant features

(identity) remain constant.

Behavioral studies From an evolutionary perspective,

prioritizing the detection, processing, and interpretation of

emotional cues likely conferred adaptive advantages, such

as anticipating threats through the recognition of angry

expressions or signaling prosocial intentions and fostering

trust with happy expressions (Feldmann-Wüstefeld et al.,

2011; Hager and Ekman 1979). However, ongoing scien-

tific discourse surrounds how these emotional expressions

are most effectively processed and prioritized, and how

their processing interacts with other cognitive mechanisms

such as attention and memory. Employing similar experi-

mental paradigms and stimuli, previous studies have pro-

duced conflicting outcomes.

A wide variety of investigations propose that angry

faces are prioritized for processing, more readily capture

attention, and are remembered more, indicative of an anger

superiority effect. There also exists a growing body of

evidence that aligns with the presence of a happiness

superiority effect, positing that happy faces are attended to

longer, their processing is prioritized, and more accurately

recalled at a later time point. Zsidó et al. (2021) found that

both children and adults identified happy faces faster than

angry and fearful ones, regardless of the age of the faces.

Similarly, Halamová and colleagues (2023) observed

longer fixation durations for happy faces, followed by

angry faces, in a faces-in-a-crowd study. Fixations on

contemptuous and sad faces were similar to those on

neutral faces. Švegar et al. (2013) reported higher accuracy

and faster response times for happy expressions in a change

detection paradigm. Additionally, several studies have

shown a happy face advantage for future memory

(D’Argembeau and Van der Linden 2007; Liu et al. 2014;

Shimamura et al. 2006). Conversely, angry face superiority

effects were observed in visual search tasks (Dixson et al.

2022; Horstmann and Bauland 2006), Changes in angry

faces are detected more efficiently than those in happy

faces (Lyyra et al. 2014). Additionally, research exists that
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shows an angry face advantage for visual short-term

memory (Jackson et al. 2009, 2014).

Neural dynamics. The temporal dynamics of the pro-

cessing of these features is also a matter of interest, and

Multivariate Pattern Analysis (MVPA) using M/EEG

continues to contribute significantly to the understanding of

the representational dynamics of face processing. The

preliminary phases of visual category-specific discrimina-

tion, distinguishing between faces and non-face stimuli,

unfold remarkably early, manifesting before or at approx-

imately 100 ms after stimulus onset (Carlson et al. 2013;

Kaneshiro et al. 2015; Klink et al. 2023). Face-sex infor-

mation has been reported to emerge at ca. 70 ms after

stimulus onset, and identity at around 70–90 ms (Dobs

et al. 2019; Nemrodov et al. 2016). Face-familiarity

information has been observed to emerge in the ca. 200 to

400 ms (Ambrus 2024; Dalski et al. 2023; Dalski et al.

2022a, b) and 400 to 600 ms (Dobs et al. 2019; Li et al.

2022a, b) time windows.

Recently, multivariate pattern analysis studies have

begun to investigate the temporal dynamics and the net-

work of brain regions involved in the perception and pro-

cessing of facial expressions.

Smith and Smith (2019), using EEG multivariate clas-

sification, investigated how task (implicit and explicit

categorization, i.e., task congruency) modulates the neural

representations of face-identity and expression. The study

was conducted on 15 participants who were asked to cat-

egorize facial expressions or identities (happy, sad, fearful,

disgusted, angry, and surprised) displayed by 3 male and 3

female models. The study found that task context affects

the neural processing of face identity more than that of

expression, with identity being better decoded under

explicit conditions. Both the effects of facial expression

and identity peaked within time-windows centered around

90–170 ms over posterior electrodes. The task context

affected the decoding of identity at early (pre-200 ms)

stages but not the decoding of expression. At later

([ 350 ms) stages, both face categories were better deco-

ded under explicit conditions. The authors interpreted the

independence of early effects in emotion decoding with the

suggetion that emotion processing is relatively automatic

and less influenced by task demands.

Muukkonen et al. (2020) presented color images of four

identities, two male and two female, with angry, happy,

fearful, and neutral expressions, to 17 participants, who

underwent separate EEG and fMRI measurements. Both

the original stimuli and morphs of identity and expression

between stimuli were presented, with participants per-

forming a gender identification task. Decoding and repre-

sentational similarity analysis results revealed that emotion

information is available already at around 100 ms,

spreading from occipital to temporal areas within the first

100 to 250 ms. Signals associated with happy faces peaked

earlier than those linked to angry or fearful faces.

In Li et al. (2022a, b), EEG representational similarity

analysis was conducted with 20 participants viewing ima-

ges of eight identities (half young, half old, half male, half

female) displaying fearful, happy, and neutral expressions.

The images were grayscale, normalized for contrast,

brightness, and spatial frequency, and cropped to exclude

external features using an oval mask. Participants per-

formed a 1-back task during the experiment. The pro-

cessing of emotion began before the extraction of identity,

starting at approximately 120 ms. Identity decoding

occurred considerably later, around 235 ms. Importantly,

the study found no significant effect of sex. The authors

attributed this to the preprocessing of the stimuli, where the

ears and hair were cropped from the facial images, leading

to the loss of gender-specific cues.

In Zhang et al. (2023), 20 participants viewed luminance

and contrast-adjusted grayscale images, cropped to the

inner features, of eight male and female faces displaying

happy, sad, angry, disgusted, fearful, and neutral expres-

sions while performing an orthogonal fixation-cross color

change detection task. Source-localized MEG patterns

from the lateral occipital cortex (LO), fusiform gyrus (FG),

inferior partial cortex (IP), and posterior superior temporal

sulcus (pSTS) were subjected to time-resolved represen-

tational similarity analysis. Their results revealed that all

regions they investigated differentiated between neutral

and expressive facial expressions in the ca. 100 to 150 ms

time window, with the LO and IP representing categorical,

rather than image-level information as early as ca. 100 ms.

The current study. While previous studies have

explored the temporal dynamics of facial expression pro-

cessing using M/EEG MVPA (Li et al. 2022a, b;

Muukkonen et al. 2020; Smith and Smith 2019), the extent

to which neural patterns associated with facial expression

processing are shared between observers remains unin-

vestigated. In past studies we explored the generalizability

of the neural signals for familiarity for faces (Dalski et al.

2023; Dalski et al. 2022a, b; Dalski et al. 2022a, b; Li et al.

2022a, b) as well as other visual object categories (Ambrus

2024; Klink et al. 2023; Ozdemir & Ambrus, submitted).

Furthermore, although the time course of expressive versus

neutral face processing has been described (Zhang et al.

2023), no study has yet examined the neural dynamics

specific to different emotional expressions. Finally, the

neural processing dynamics of facial attributes such as sex

and identity in relation to facial expression, have yet to be

explored. Characterizing the generalizable neural signals of

facial expression processing provide insights into the

neural architecture and processes involved in social cog-

nition and can serve as a steppingstone for investigating
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how these processes are affected in conditions such as

autism, schizophrenia, or social anxiety.

Here, we investigated the shared neural dynamics of

emotional face processing employing an explicit facial

emotion recognition task, where participants made two-

alternative forced choice (2AFC) decisions on the dis-

played emotion. Our approach involved cross-participant

multivariate classification and representational dissimilar-

ity analysis on EEG data. We investigated the effects of

stimulus identity, sex, and emotion, including pairs of

emotions, while also considering the impact of visual

image properties on the observed neural dynamics.

Our results are in line with previous findings demon-

strating that EEG signals can effectively be used to decode

the sex, emotional expression, and identity of face stimuli.

Moreover, these can be decoded across stimuli and par-

ticipants, indicating shared neural codes for facial expres-

sion processing. In terms of the onset of these effects,

multivariate classification analyses revealed that sex is

decoded first, followed by identity, and then emotion.

When analyzing pairs of expressions, emotional expres-

sions (angry, happy, sad) were decoded earlier against

neutral expressions. Representational similarity analyses

indicated that visual image properties reduced the effect of

identity and sex decoding while they had minimal to no

impact on emotion classification. Identity and sex repre-

sentations are strongest in angry faces, followed by happy

and sad faces, compared to neutral faces.

Methods

Participants

Our sample consisted of 24 healthy university students (8

males and 16 females). Participants took part in the study

for partial course credits, and all provided written informed

consent before the experiment. Volunteers were recruited

through the SONA research participation system or per-

sonal contacts. Participants disclosed no history of neuro-

logical conditions, had normal or corrected-to-normal

vision, and were right-handed. The experiment was con-

ducted in accordance with the guidelines of the Declaration

of Helsinki, and with the approval of the ethics committee

of Bournemouth University [Ethics ID: #52261]. Written

informed consent was acquired from all participants.

Stimuli

The stimuli consisted of frontal color photographs featur-

ing eight individuals sourced from the KDEF database

(Lundqvist et al., 1998), including four males (AM10,

AM17, AM24, AM31) and four females (AF07, AF15,

AF26, AF28). These images depicted four distinct (posed)

facial expressions—happy, angry, sad, and neutral—

amounting to a total of 32 images. The images were pre-

sented in a randomized order across runs.

The decision to focus exclusively on happy, angry, sad,

and neutral facial expressions in this present investigation

stems from a deliberate choice based on several consider-

ations. Firstly, the selected emotional expressions represent

a well-established and widely studied core set that captures

fundamental affective states. Anger and disgust have con-

sistently emerged as the least quickly and accurately rec-

ognized facial expressions across existing literature

(Hendel et al. 2023), while fear and surprise are also easily

confused (Zhao et al. 2017). To maintain methodological

clarity and enhance the reliability of our findings, we chose

to exclude surprise, fear and disgust from the current

investigation.

Experimental design

In the context of a 2AFC (Two-Alternative Forced Choice)

design, preceded by the presentation of a fixation cross for

200 ms, each face image was displayed for a duration of

1000 ms, followed by the appearance of a choice screen

featuring the correct emotion and an incorrect emotion and

an interstimulus interval between 500 and 1000 ms

(Fig. 1). Participants were instructed to select the correct

emotion displayed by the presented face using the left or

right arrow key, with no time limit for making their choice.

Each image was repeated 12 times. For each image, the

veridical facial expression displayed was paired with an

incorrect choice 4 times, with the response key assignment

balanced. To ensure a balanced number of correct trials, in

instances where participants provided an incorrect

response, the trial was reintroduced into the trial sequence,

effectively rescheduled for a subsequent time-point. As

such, the dataset for each participant encompassed 12

repetitions of an image, 96 presentations of a facial

expression, and 48 presentations of an identity, totaling 384

trials. The experiment was programmed in and was carried

out using PsychoPy (Peirce 2007; Peirce et al. 2019) on a

Microsoft Windows 10 system.

EEG recording

EEG was recorded using a 64-channel BioSemi Active-

Two system (https://www.biosemi.com/products.htm) from

electrode sites based on the 10–20 international system, in

the EEG laboratory of the Department of Psychology at

Bournemouth University. EEG data was processed in

MNE-Python (Gramfort et al. 2013, 2014); it was bandpass

filtered between 0.1 and 40 Hz, segmented between - 200

and 1200 ms and baseline-corrected to the 200 ms
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preceding the stimulus presentation and downsampled to

200 Hz. To enhance the signal-to-noise ratio and expedite

computation (Grootswagers et al. 2017), for each partici-

pant, evoked responses for trials presenting the same image

were randomly grouped into 3-trial bins and averaged. No

further processing had been performed (Carlson et al. 2020;

Delorme 2023; Grootswagers et al. 2017). Data handling

was carried out using the numpy and scipy packages

(Harris et al. 2020; Virtanen et al. 2020).

Analysis pipeline

Classification analyses. Classification analyses were car-

ried out using scikit-learn (Pedregosa et al. 2011). Linear

discriminant analysis (LDA) classifiers were systematically

trained across participants to categorize the identity, sex,

and facial expression, as well as the combinations of facial

expressions of the presented faces. The procedure followed

a leave-one participant-out scheme. For identity classifi-

cation, classifiers underwent iterative training on three

emotion categories, successively tested on the emotion

category left out. In the case of sex and emotion classifiers,

training was conducted on six distinct identities (three male

and three female) and subsequently tested on one identity

left out. The classification of pairs of emotional expressions

followed a similar logic, with the distinction that only two

emotional expressions were included at a time in the

classification procedure. The training involved six identi-

ties (three male and three female) and was subsequently

tested on one identity that was omitted during training.

Classification accuracies were tested against chance levels

(identity: 0.125, sex: 0.5, emotion: 0.25, pairs of facial

expressions: 0.5, see Supplementary Information Fig-

ure S1). For a similar approach, see Klink et al. (2023). To

investigate the time-course of face identity and sex pro-

cessing across various emotional expressions, cross-clas-

sification was employed (Kaplan et al. 2015). This

involved training on data from trials with neutral expres-

sions and testing the classification performance on trials

featuring one of the emotional expressions, and vice versa,

following the previously described methodology. The

resulting classification accuracies in both directions (e.g.

neutral-to-angry and angry-to-neutral) were averaged

within each participant (Man et al. 2012; Oosterhof et al.

2012) and tested statistically against chance (see Supple-

mentary Information Figure S2).

Time-resolved classification was conducted across all

electrodes and pre-defined regions of interest (ROIs),

encompassing six scalp locations along the median (left

and right) and coronal (anterior, center, and posterior)

planes. The spatio-temporal searchlight procedure sys-

tematically tested each channel by training and testing on

data from that channel and its neighboring electrodes,

applying the same time-resolved analysis logic as previ-

ously described (Ambrus 2024; Dalski et al. 2022a, b).

Representational similarity analyses. Representational

similarity analyses (Kriegeskorte 2008) entailed the cre-

ation of participant-level empirical neural representational

dissimilarity matrices (RDMs) for each time-point. This

was achieved through leave-one-subject-out pairwise

classification of stimulus pairs, resulting in matrices of

dimensions 280 by 32 by 32. The classification was per-

formed following the previously outlined procedure (for a

similar approach, see Ozdemir & Ambrus, submitted).

Subsequently, these matrices were compared to predictor

representational dissimilarity matrices modeling identity,

sex, and facial expression (32 by 32 matrices), as well as

pairs of expressions (16 by 16 matrices), utilizing Spear-

man rank correlations (see Supplementary Information

Figure S3). The resulting correlation values were then

Fisher-transformed. Partial correlations were used to

account for the effects of visual image properties. Model

RDMs were constructed using the Euclidean distances of

maximum cross-correlation (Collin et al. 2022) and face-

descriptors obtained using the dlib package (King 2009).

Statistical testing. A moving average of 35 ms (span-

ning 7 consecutive time points) was applied to all partici-

pant-level classification accuracy data. Ambrus (2024),

Ambrus et al. (2019), (2021), Dalski et al. (2022a, b), Klink

et al. (2023) The statistical evaluation of the results

Fig. 1 Experimental design. The stimuli comprised randomized 32

frontal color photographs of eight individuals (four males and four

females) from the KDEF database, displaying posed happy, angry,

sad, and neutral facial expressions. In a 2AFC design, each face image

appeared for 1000 ms after a 200 ms fixation cross, followed by a

choice screen with the correct and an incorrect emotion. Participants,

with no time limit, were asked to select the correct emotion using the

left or right arrow key. Images were repeated 12 times, totaling 384

trials with 96 facial expression presentations and 48 identity

presentations
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employed both cluster permutation tests and Bayesian

statistical analyses. Classification accuracies underwent

two-sided, one-sample cluster permutation tests (10,000

iterations) against chance, using MNE-Python. The Baye-

sian tests (Teichmann et al. 2022) also employed a two-

sided approach, utilizing a non-directional whole-Cauchy

prior with a medium width (r = 0.707) and excluding an

interval from d = -0.5 to ? 0.5. The resulting Bayes fac-

tors were then thresholded, with values exceeding 10

considered as strong evidence (Moerel et al. 2022; Wetzels

et al. 2011). Bayesian statistical analyses were performed

using the BayesFactor R package (Morey et al. 2015).

Results

Behavioral results

In the description of our behavioral results, we use the

terms ‘correct’ and ‘incorrect’ responses to refer to par-

ticipants’ categorizations relative to the expected responses

defined by the original labels in the KDEF facial expres-

sion stimulus set. These labels serve as a reference for

categorization accuracy. While alternative responses may

arise due to uncertainty or variability in perception, ‘ac-

curacy’ here specifically refers to the match between par-

ticipants’ responses and these predefined stimulus

categories.

Behavioral results are shown in Fig. 2. As mentioned

above, incorrect trials were repeated; this analysis does not

account for those repeated trials. The mean classification

accuracy across all participants was 96.6%, with a standard

deviation of 2.86%. The average of the median response

times across participants was 645 ms (± 105.13). In terms

of response times, no difference was seen between neutral

(0.641 ± 0.1144) and angry faces (0.664 ± 0.0962),

neutral and sad faces (0.673 ± 0.1891), or angry and sad

faces. Response times for angry faces were significantly

higher than those for happy faces (0.635 ± 0.0955). These

results align with previous studies that report faster choice

response times for faces displaying positive expressions

compared to negative or neutral ones, indicating a happy-

face advantage that is theorized to primarily occur at pre-

motor processing stages (Leppänen et al. 2003).

In terms of accuracy, the highest accuracies were seen

for neutral (0.982 ± 0.0299) and happy faces

(0.982 ± 0.0160), followed by angry faces

(0.976 ± 0.0238) and finally sad faces (0.953 ± 0.040).

While accuracy rates for neutral, happy and angry faces

were not different, sad expressions were harder to recog-

nize, most often confused with neutral (2.6%) and angry

(1.7%) faces. Accuracy results also align with prior liter-

ature, with the sad expression being most confused with

neutral and angry emotional displays (Du and Martinez

2011; Goren and Wilson 2006) (Fig. 2).

Classification analyses

Effect onsets

To estimate the onset of effects, various approaches were

considered. Inspecting decoding accuracies or model cor-

relations across all electrodes might overlook weaker

effects due to the curse of dimensionality. Another option,

focusing on a priori regions of interest, could miss effects

not manifesting at those specific scalp locations. Therefore,

we chose to average decoding accuracies in the searchlight

analyses across all electrodes and timepoints, thus pro-

viding a more comprehensive assessment of the temporal

dynamics and mitigating the limitations associated with

other methods. For a visualization of first peak latencies so

Fig. 2 Behavioral results. Left: confusion matrix. The rows corre-

spond to expression categories, while columns denote the responses

selected by participants (happy, angry, sad, neutral). The diagonal

elements signify accurate responses, while off-diagonal elements

indicate errors. The color scale and numerical values within cells

denote the average percentage of occurrences for specific facial

expression and response pairings across participants. Middle and

Right: Response times and accuracy scores; first, second (median),

and third quartiles; whiskers with Q1 - 1.5 IQR and Q3 ? 1.5 IQR.

The dot denotes the mean. Wilcoxon signed rank test,

puncorrected\ 0.05

   45 Page 6 of 18 Cognitive Neurodynamics           (2025) 19:45 

123



calculated, see Fig. 3. Note that the other previously

mentioned analyses yielded similar findings.

The results pertaining to the first peaks and peak

latencies of the effects are as follows. Sex: the effect

spanned from 95 to 485 ms, with a peak at 115 ms and a

peak Bayes Factor of 161.63. Identity: observed between

100 to 140 ms, with a peak at 115 ms and a substantial

peak Bayes Factor of 3024.61. Emotion: extended from

120 to 450 ms, peaking at 160 ms with a remarkably high

peak Bayes Factor of 23,860.78. Angry vs. neutral: span-

ning from 100 to 210 ms, the peak occurred at 160 ms,

accompanied by an exceptionally high peak Bayes Factor

of 1,736,495.2. Happy vs. neutral: Manifesting between

120 to 150 ms, the peak emerged at 135 ms, with a peak

Bayes Factor of 1251.35. Sad vs. Neutral: present from 125

to 190 ms, the peak latency was at 165 ms, yielding a peak

Bayes Factor of 3784.43. Happy vs. angry: taking place

between 155 to 200 ms, the peak was observed at 175 ms,

accompanied by a peak Bayes Factor of 543.72. Happy vs.

sad: ranging from 170 to 200 ms, with the peak occurring

at 175 ms and a peak Bayes Factor of 49.46. Angry vs. sad:

first peak between 215 to 275 ms, the peak was noted at

245 ms, with a peak Bayes Factor of 430.02.

Representational similarity analysis

Time-resolved neural representational dissimilarity matri-

ces were generated by pairwise decoding of EEG data at

each time-point, employing a leave-one-participant-out

strategy. This process involved pairwise classification of all

stimulus pairs, resulting in matrices with one empty off-

diagonal. Subsequently, these matrices underwent evalua-

tion against model representational dissimilarity matrices

(model RDMs) for identity, sex, and facial expression, as

well as pairs of facial expressions, using rank correlations.

The neural representational dissimilarity matrices were

Fig. 3 The onsets of the effects of identity, sex, emotion displayed,

and emotion discrimination. Time-resolved searchlight decoding was

systematically performed on all channels and their neighboring

electrodes. The classifier performance was averaged across all

channels to emphasize the onset and duration of these effects. Onsets

were determined by Bayes factors against chance, with values

exceeding 10 considered indicative of strong evidence (horizontal

significance markers). The left panel shows the entire time course of

the effects in terms of classification accuracy averaged over all

channels; the top right panel displays the effects of identity, sex, and

emotional expression, while the bottom right panel displays the

emotional expression discrimination in log10 Bayes factors, between

50 and 400 ms. The first peak in each effect is indicated
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compared to model RDMs, which featured zeros for

within-class comparisons and ones for cross-class com-

parisons in cells, employing Spearman rank correlations.

To account for the potential impact of image-level

stimulus properties, two visual image similarity metrics

were used. Maximum cross-correlation served as the metric

for assessing lower-level image similarity, whereas higher-

level and face-specific visual features were gauged using

neural network descriptors extracted from a dedicated face

identification model. Maximum cross-correlation resem-

bles pixelwise correlation similarity but is equivalent to

calculating the highest correlation achievable by translating

one image in a pair relative to the other through all possible

positions. This process involves convolving the two ima-

ges, generating a cross-correlation map where the peak

indicates the maximum potential correlation had the ima-

ges been optimally co-registered (Collin et al. 2022). The

neural network feature similarity RDM was calculated by

computing pairwise Euclidean distances between the 128

feature descriptors derived from processing the images

through a neural network specifically trained for face

identification (King 2017).

Results of the representational similarity analysis over

all electrodes are presented in Fig. 4. Model correlations

over all electrodes revealed similar patterns of effects

described for the previous, decoding searchlight-based

analysis. For face identity, Bayesian analyses indicated

evidence for an effect between 100 and 135 ms (peak at

115 ms, bf = 1291.34) that was not picked up by the

cluster permutation tests. Cluster permutation tests identi-

fied an effect at 170 to 345 ms (cluster p = 0.004). Sex-

related effects were evidenced by Bayesian analyses

between 85 and 125 ms (peak at 105 ms, bf = 270.66) and

exhibited a cluster from 180 to 300 ms (cluster p = 0.034).

Emotional face processing showed clusters from 125 to

225 ms (cluster p = 0.02) and 340 to 560 ms (clus-

ter p = 0.005). No significant clusters were found for angry

vs sad or happy vs sad. Bayesian analyses indicated an

early effect for happy vs neutral between 125 and 155 ms

(peak at 135 ms, bf = 49.71). For angry vs neutral, a sig-

nificant cluster emerged at 120 to 600 ms (clus-

ter p = 0.0002), and for sad vs neutral, a cluster was

observed from 125 to 185 ms (cluster p = 0.047) and 935

to 1080 ms (cluster p = 0.023). Happy vs angry exhibited a

cluster at 365 to 475 ms (cluster p = 0.035).

When controlling for low-level and face-specific image

properties, in the case of identity, all effects before ca.

400 ms were attenuated. Partialling out low-level image

properties yielded a ca. 400 to 600 ms identity effect, in

line with results of previous investigations indicating an

image-independent representation of identity in this time

range (Ambrus et al. 2019). Controlling for face-specific

image properties reduced this effect as well. The effects of

face sex were also reduced when controlling for both low-

level and face-specific image properties. The effects seen

for emotion, as well as for pairs of emotions, were essen-

tially unaffected by controlling for either low-level, or

face-specific image properties, indicating that these effects

capture image-independent processing of these factors.

For the results of the representational similarity analysis

in the pre-defined regions of interest, see Supplementary

Information Figures S5 and S6, for detailed statistics,

including Bayesian analyses, see Supplementary Table 1.

Multivariate classification

Results of the multivariate classification analyses for

identity, sex, and emotion are presented in Fig. 5. For

detailed statistics, including Bayesian analyses, see Sup-

plementary Table 2.

Identity. Over all electrodes, two significant clusters

were identified. The first cluster spanned the time window

from 95 to 510 ms, peaking at 115 ms, with a highly sig-

nificant cluster (p\ 0.0001, peak Cohen’s d = 1.6927).

The second cluster, from 550 to 675 ms, peaked at 575 ms

(cluster p = 0.0194, peak Cohen’s d = 0.7775). Further

significant clusters were observed in the right and left

posterior, right central, and right anterior regions of inter-

est. The searchlight analysis yielded a single significant

cluster was identified, spanning from 75 to 1075 ms, with a

peak at 225 ms over PO8 (cluster p\ 0.0001, peak

Cohen’s d = 1.5945).

Sex. For all electrodes, a single significant cluster

emerged in the time window from 155 to 450 ms, peaking

at 195 ms (cluster p = 0.008, peak Cohen’s d = 1.0624).

Significant clusters were observed in all pre-defined

regions of interest as well. In the searchlight analysis, a

significant cluster was found in the time window from 70 to

1195 ms, peaking at 105 ms over POz (cluster p\ 0.0001,

peak Cohen’s d = 1.8928).

Emotion. Three significant clusters were identified for

emotion over all electrodes. The first cluster spanned the

time window from 120 to 225 ms, with a peak at 170 ms

(cluster p = 0.0149, peak Cohen’s d = 1.1992). The sec-

ond cluster, from 245 to 335 ms, peaked at 280 ms (clus-

ter p = 0.0326, peak Cohen’s d = 0.917). The third cluster,

covering 345 to 430 ms, peaked at 410 ms (clus-

ter p = 0.0437, peak Cohen’s d = 0.7775). The pre-defined

regions of interest also yielded significant clusters, with the

exception of the left anterior and left central regions. The

searchlight analysis yielded a significant cluster from 80 to

1145 ms, with a peak at 150 ms over PO7 (clus-

ter p\ 0.0001, peak Cohen’s d = 1.6457).

Results of the multivariate cross-classification analyses

for the differential decoding of facial expressions are
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presented in Fig. 6. For detailed statistics, including

Bayesian analyses, see Supplementary Table 2.

Happy vs Neutral. Two significant clusters were found

for all electrodes. The first cluster spanned the time win-

dow from 250 to 365 ms, with a peak at 280 ms (clus-

ter p = 0.0271, peak Cohen’s d = 0.8811). The second

cluster, from 785 to 890 ms, peaked at 820 ms (clus-

ter p = 0.0427, peak Cohen’s d = 0.5888). In the

searchlight analysis, a significant cluster was found

between 215 to 1145 ms, peaking at 290 ms over channel

P8 (cluster p = 0.0005, peak Cohen’s d = 1.1647).

Angry vs Neutral. Over all electrodes, a single highly

significant cluster was observed across the entire time

window from 100 to 665 ms, with a peak at 160 ms

(cluster p\ 0.0001, peak Cohen’s d = 2.106). The

searchlight analysis identified a significant cluster between

Fig. 4 Representational Similarity Analysis. Results for all electrodes

are presented. Time-resolved neural representational dissimilarity

matrices were formed through pairwise decoding of EEG data,

adopting a leave-one-participant-out approach. These matrices were

then assessed against model RDMs for identity, sex, and facial

expression, along with pairs of facial expressions, utilizing rank

correlations. To control for visual image properties, partial correla-

tions were employed. Solid lines represent model correlations, dashed

lines illustrate results when the effects of maximum cross-correlation

are controlled for, and dotted lines depict results with the effects of

neural network feature distance partialled out. Visual image proper-

ties diminished the effect of identity and sex, but not emotion. The

figure shows the analysis conducted over all electrodes. Light lines

denote significant clusters revealed by the two-sided cluster permu-

tation tests, p\ 0.05; dark lines denote results of the Bayesian

statistical analyses, two-sided one-sample Bayesian t-tests, bf[ 10.

Error ranges denote ± SEM. For detailed statistics, see Supplemen-

tary Table 1
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80 to 1195 ms, peaking at 150 ms over POz (clus-

ter p\ 0.0001, peak Cohen’s d = 1.6915).

Sad vs Neutral. Two significant clusters were identified

over all electrodes. The first cluster spanned the time

window from 115 to 205 ms, with a peak at 160 ms

(cluster p = 0.0313, peak Cohen’s d = 1.0432). The sec-

ond cluster, covering 840 to 1105 ms, peaked at 865 ms

(cluster p = 0.0062, peak Cohen’s d = 0.7572). The

searchlight procedure yielded a significant cluster from 75

to 1195 ms, with a peak at 155 ms over POz (clus-

ter p = 0.0003, peak Cohen’s d = 1.6955).

Happy vs Angry. For all electrodes, a significant cluster

was found in the time window from 145 to 215 ms,

peaking at 175 ms (cluster p = 0.0267, peak Cohen’s d =

1.2307). Two significant clusters were found in the

searchlight analysis. The first cluster spanned from 95 to

260 ms, peaking at 170 ms over channel PO7, (clus-

ter p = 0.0437, peak Cohen’s d = 1.1389). The second

cluster extended from 225 to 1155 ms, peaking at 425 ms

over Oz (cluster p = 0.0098, peak Cohen’s d = 1.1444).

Angry vs Sad. No significant clusters were observed in

this comparison for all electrodes. Significant clusters were

seen in the central and right posterior regions of interest. In

the searchlight analysis, two significant clusters were

identified. The first cluster spanned from 140 to 500 ms,

peaking at 260 ms over channel CP2 (cluster p = 0.0002,

peak Cohen’s d = 1.1469). The second cluster covered the

time window from -200 to -80 ms, with a peak at -120 ms

over CP1 (cluster p = 0.0278, peak Cohen’s d = -0.948).

Happy vs Sad. No significant clusters were found in this

comparison for all electrodes. Significant clusters were

seen in the central regions of interest. The searchlight

analysis yielded no significant clusters either.

The effects of expression on face identity and sex
processing

Results of the multivariate classification analyses for face-

identity and sex decoding in the different emotion condi-

tions are presented in Fig. 7. For detailed statistics,

including Bayesian analyses, see Supplementary Table 3.

Fig. 5 Time-resolved, leave-one-participant-out classification of

identity, sex, and emotion. Classifiers were trained, in a leave-one-

participant-out scheme, to categorize the identity, sex, and facial

expression of the stimulus faces. For identity, classifiers were

iteratively trained on three emotion categories, and tested on the

emotion category left out. For sex and emotion, training was

performed on six identities (3 male and 3 female) and tested on one

left out. Classification accuracies are plotted against chance (identity:

0.125, sex: 0.5, emotion: 0.25). Error ranges denote ± SEM. Color

lines represent regions of interests. Light lines denote significant

clusters revealed by the two-sided cluster permutation tests, p\ 0.05;

dark lines denote results of the Bayesian statistical analyses, two-

sided one-sample Bayesian t-tests, bf[ 10. Spatio-temporal search-

light results are shown as scalp maps, with classification accuracy

scores averaged in 50 ms steps. Sensors and time points belonging to

significant clusters are marked. (Two-sided spatio-temporal cluster

permutation tests, p\ 0.05). For detailed statistics, see Supplemen-

tary Table 2A–C
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Identity

Happy. Over all electrodes, a significant cluster was

observed in the time window from 260 to 360 ms, peaking

at 275 ms (cluster p = 0.0193, peak Cohen’s d = 0.8727).

In the searchlight analysis, a significant cluster was

observed from 140 to 335 ms, with a peak at 190 ms over

P6 (cluster p = 0.0044, peak Cohen’s d = 0.8283).

Angry. Over all electrodes, two significant clusters were

identified. The first cluster spanned from 315 to 395 ms,

with a peak at 355 ms (cluster p = 0.0315, peak

Cohen’s d = 0.9274). The second cluster covered the time

window from 535 to 645 ms, peaking at 585 ms (clus-

ter p = 0.013, peak Cohen’s d = 0.9170). Large significant

clusters were observed over the left and right posterior

regions of interest. The searchlight analysis yielded a sig-

nificant cluster from 85 to 675 ms, with a peak at 110 ms

over O1 (cluster p\ 0.0001, peak Cohen’s d = 1.1285).

Sad. A significant cluster was found over all electrodes

in the time window from 870 to 950 ms, peaking at 870 ms

(cluster p = 0.0283, peak Cohen’s d = -0.4318). The

searchlight analysis identified a significant cluster between

80 to 325 ms, peaking at 275 ms over P9 (clus-

ter p = 0.0104, peak Cohen’s d = 0.7277).

Difference, Angry-Happy. No significant clusters were

found over all electrodes or in the searchlight analysis.

Difference, Angry-Sad. A significant cluster for all

electrodes was observed from 560 to 830 ms, with a peak

at 645 ms (cluster p = 0.001, peak Cohen’s d = 0.6286).

No significant clusters were found in the searchlight

analysis.

Difference, Happy-Sad. Four significant clusters were

identified over all electrodes. The first cluster spanned from

260 to 345 ms, peaking at 300 ms (cluster p = 0.0345,

peak Cohen’s d = 0.5879). The second cluster covered the

time window from 625 to 710 ms, peaking at 650 ms

Fig. 6 Differential decoding of emotional expressions. For the

classification of emotion pairs, training was iteratively performed

on six identities (3 male and 3 female) and tested on one left out.

Classification accuracies are plotted against chance (0.5). Bottom

panels: spatio-temporal searchlight results are shown as scalp maps,

with classification accuracy scores averaged in 50 ms steps. Sensors

and time points forming part of the significant clusters are marked

(Two-sided spatio-temporal cluster permutation tests, p\ 0.05). For

detailed statistics, see Supplementary Table 2D–I
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(cluster p = 0.0215, peak Cohen’s d = 0.7639). The third

cluster extended from 775 to 865 ms, with a peak at

830 ms (cluster p = 0.0286, peak Cohen’s d = 0.7068).

The fourth cluster spanned from 880 to 955 ms, peaking at

940 ms (cluster p = 0.0162, peak Cohen’s d = 1.0248). In

the searchlight analysis, no significant clusters were found.

Sex

Happy. A significant cluster was found in the time window

from 235 to 330 ms, peaking at 305 ms (clus-

ter p = 0.0229, peak Cohen’s d = 0.7960). Significant

clusters were observed in the central, and right anterior and

posterior regions of interest. The searchlight analysis

revealed a significant cluster between 75 and 905 ms, with

a peak at 205 ms over channel P4 (cluster p = 0.0005,

peak Cohen’s d = 0.9495).

Angry. A significant cluster was identified from 210 to

365 ms, with a peak at 340 ms (cluster p = 0.0211, peak

Cohen’s d = 0.7002). Significant clusters were observed in

the bilateral central and right posterior regions of interest.

The searchlight analysis identified a significant cluster

from 75 to 650 ms, with a peak at 390 ms over channel P4

(cluster p = 0.0002, peak Cohen’s d = 0.9530).

Sad. No significant clusters were found over all elec-

trodes, and no significant clusters were seen in the

searchlight analysis.

Difference, Angry-Happy. No significant clusters were

found over all electrodes, and no significant clusters were

seen in the searchlight analysis.

Difference, Angry-Sad. A significant cluster was

observed from 815 to 895 ms, with a peak at 880 ms

(cluster p = 0.038, peak Cohen’s d = 0.8669). The

searchlight analysis yielded a significant cluster from 225

to 340 ms, with a peak at 300 ms over O2 (clus-

ter p = 0.0167, peak Cohen’s d = 0.9104).

Difference, Happy-Sad. No significant clusters were

found over all electrodes, and no significant clusters were

seen in the searchlight analysis.

To better visualize these results, we plotted identity and

sex classification accuracies averaged within time-windows

of interest over all electrodes and the right posterior area

(Fig. 8). The most prominent effects were consistently

observed for the angry facial expression.

Fig. 7 Identity and sex decoding for emotional expressions vs neutral

(classification accuracies for the directions emotion-to-neutral and

neutral-to-emotion averaged). Middle Panels: spatio-temporal search-

light results are shown as scalp maps, with classification accuracy

scores averaged in 50 ms steps. Sensors and time points forming part

of the significant cluster when tested on faces are shown in the top

row, sensors and time points belonging to the significant cluster when

tested on scenes are shown in the bottom row. (Two-sided spatio-

temporal cluster permutation tests, p\ .05). Bottom panels: ROI

analyses. The same analysis as in the top panel but repeated for six

pre-defined electrode clusters separately. RA/LA: right/left anterior,

RC/LC: right/left central, RP/LP: right/left posterior. For detailed

statistics, see Supplementary Table 3
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Discussion

Our study investigated the neural dynamics of emotional

face processing through an explicit facial emotion recog-

nition task employing a two-alternative forced choice

decision on the displayed emotion. We employed cross-

participant multivariate classification and representational

dissimilarity analysis on EEG data to probe the effects of

stimulus identity, sex, and emotion, including pairs of

emotions. Additionally, we explored the impact of visual

image properties (low-level cross-correlation and higher-

level features derived from a face-specific artificial neural

network) on these processing dynamics. The key findings

of our study were the following: (1) The onset of sex and

identity processing occurs early, approximately around

100 ms, but these effects are largely influenced by image

properties. (2) In contrast, facial expression effects, com-

mencing at approximately 120 ms and peaking between

200 and 250 ms, are not significantly influenced by visual

image properties. (3) This independence from visual image

properties also applies to analyses involving pairs of

emotional expressions, with peaks occurring between 100

and 275 ms, suggesting image-independent processing of

emotional expressions. (4) The temporal sequence of

emotional expression processing follows the order of

happy–neutral, angry–neutral, sad–neutral, followed by

happy–angry, happy–sad, and finally angry–sad and (5)

Identity and sex processing are enhanced for angry and

happy expressions compared to sad and neutral faces.

The processing of facial identity and sex occurs
early and is image-dependent

Our findings align with prior research regarding the onset

of face identity and sex effects, indicating a pattern where

sex-related effects precede those related to identity in

alignment with the coarse-to-fine account of face percep-

tion (Goffaux et al. 2011). Using cross-participant multi-

variate patten analysis, we also extended this research by

examining the neural patterns associated with these attri-

butes shared across participants.

The earliest effects of face identity have been shown to

unfold before or around 100 ms. These early effects of

Fig. 8 Sex and identity processing in different emotional expressions

for all electrodes and the right posterior region of interest. The same

data as in Fig. 7, but time-resolved data averaged in different time

bins for better visualization. Boxplots depict first, second (median),

and third quartiles; whiskers with Q1 - 1.5 IQR and Q3 ? 1.5 IQR.

The dot denotes the mean. Asterisks represent uncorrected results of

one-sample t-tests against chance, and paired sample t-test between

emotion conditions. *p\ 0.05, **p\ 0.01, ***p\ 0.001,

****p\ 0.0001
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face-identity tend to be highly image-dependent (Ambrus

et al. 2019), as these effects exhibit a strong correlation

with low-level image properties and can be diminished by

implementing controls to account for these factors. Previ-

ous studies have shown that these identity effects can be

seen even for previously unknown identities (Ambrus et al.

2021; Dobs et al. 2019; Vida et al. 2017). Image-inde-

pendent representations tend to emerge around 200 ms, and

especially 400 ms following stimulus onset (Ambrus et al.

2019; Vida et al. 2017).

Our current findings are in agreement with this pattern.

After accounting for face-independent low-level visual

image properties (maximum cross-correlation), only a

residual identity effect persisted within the time frame of

approximately 400 to 600 ms. Additionally, this remaining

effect was further diminished when controlling for higher-

level, face-dependent image properties, specifically those

extracted from a neural network trained for face recogni-

tion. The effects of stimulus sex were also greatly reduced

by controlling for image properties.

Effects of facial expression follow that of sex
and identity, and are not image-dependent

In our observations, we identified significant and robust

effects related to emotional expressions in general. This

effect was evident in both our time-resolved decoding and

representational dissimilarity analyses, initiating around

120 ms and reaching its peak at approximately 160 ms.

Importantly, the presence of this effect remained unaf-

fected even after implementing controls for image prop-

erties, implying that this emotional expression effect is

independent of visual image characteristics. This finding is

concordant with those of Zhang et al. (2023), who found

that face-selective regions in the lateral occipital and

inferior parietal cortices represented emotional face stimuli

in a categorical, rather than image-dependent manner.

In a prior study by Smith and Smith (Smith and Smith

2019), the authors reported even earlier onsets, 31 to

90 ms, for similar effects, with a comparable peak at

around 150 ms. However, their methodological description

of the train-test procedures did not provide clear indica-

tions that they left an identity out when decoding facial

expressions. Consequently, it is plausible that the earlier

onsets they observed could be attributed to image-depen-

dent effects. Our results are more in line with a recent

EEG-RSA investigation by Li and collaborators (Li et al.

2022a, b) who reported the first emotional expression

effects between 120 and 800 ms with a similar peak around

170 ms.

Evidence for image independence in the behavioral

domain comes from Alais and collaborators (2021), who in

a recent study found that illusory faces displayed positive

serial dependence for perceived facial expression, similar

to human faces, suggesting shared mechanisms for tem-

poral continuity. Furthermore, cross-domain serial depen-

dence of perceived expression was robust between illusory

and human faces when interleaved, leading the authors to

suggest a common mechanism for facial expression pro-

cessing beyond human facial features. It would be inter-

esting to see how these effects manifest on a neural level,

for example by employing cross-dataset classification

(Ambrus 2024; Dalski et al. 2022a, b).

The discrimination of emotional expressions
follows a distinct time course

Our findings unveiled a sequential pattern in the processing

of emotional expressions. Initially, discrimination between

emotional and neutral expressions took precedence. Sub-

sequently, distinctions emerged between different emo-

tional expressions. The temporal sequence of emotional

expression processing adhered to the order of angry–neu-

tral and happy–neutral starting around 100–120 ms, with

an earlier onset but later peak for angry expressions, and

sad–neutral starting at 125 ms and peaking at 165 ms.

Following this, discriminations unfolded between happy–

angry, happy–sad, and ultimately, angry–sad, with onsets at

155, 170, and 215 ms, respectively.

In a recent MEG study conducted by Zhang and col-

leagues (2023), their exploration of emotional facial

expression discrimination revealed a strikingly similar

temporal pattern when compared to neutral expressions.

They observed distinctions between neutral and happy

expressions commencing at 90 ms and peaking at 120 ms,

neutral and angry expressions initiating at 80 ms and

reaching a peak at 150 ms, and neutral and sad expressions

initiating at 120 ms. Our present results not only replicate

but also expand upon these observations by including the

distinctions between different emotional expressions. In

both our representational similarity and classification

analyses, these effects unfolded following those seen

between neutral and emotional expressions. These findings

are in line with the proposal that stimuli carrying emo-

tionally significance are encoded more rapidly than neutral

ones as a result of emotion-facilitated sensory processing

(Schupp et al. 2003). It is noteworthy that the effects
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associated with sad expressions were the last to manifest in

the temporal sequence when compared to neutral faces, as

well as with other emotional expressions (see Figs. 3 and

4).

Face-identity and sex information processing is
enhanced by angry and happy facial expressions

Our findings suggest that the processing of face-identity

and sex information is enhanced when participants are

presented with facial expressions conveying anger, and to a

lesser extent, happiness. In other words, the presence of

these emotional expressions appears to enhance the brain’s

ability to process and distinguish information related to the

identity and sex of faces, offering further evidence that

these facial attributes and facial expressions are not pro-

cessed entirely independently.

D’Argembeau and Van der Linden (2011) suggest that

anger, and in general, negative stimuli have a tendency to

narrow attention towards indicators of threat, while posi-

tive stimuli tend to expand attentional breadth (Derryberry

and Tucker 1994). Thus, they propose that angry faces tend

to automatically direct attention toward facial expressions,

thereby disrupting the process of elaborative processing

(Vuilleumier et al. 2001). This line of argumentation sug-

gests that the influence of facial expressions on memory for

facial identity may stem from the disruptive effects of

angry expressions on the processing of facial identity. In

other words, negative facial expressions draw attention to

the specific features conveying the emotional signals,

interfering with the processing of local features more than

positive expressions. Consequently, this disruption inter-

feres with the identification of a person.

Our results appear to directly contradict this notion.

Although both happy and angry expressions elicited

stronger shared identity and sex-related responses com-

pared to sad expressions, the most stable shared represen-

tations were observed for angry expressions, particularly in

the more posterior regions of interest (Fig. 7). Our findings

suggest that the brain is more sensitive to face-identity and

sex information when it is presented in the context of an

emotional expression, particularly that of anger. This

enhanced processing would predict (Craik and Lockhart

1972) better subsequent memory for angry faces, which is

at odds with studies that find a happy face advantage for

future memory (D’Argembeau and Van der Linden 2007;

Liu et al. 2014; Shimamura et al. 2006). However, our

findings align well with research that shows an angry face

advantage for visual short-term memory (Jackson et al.

2009). In our study, subsequent memory was not tested,

thus the nature of this enhanced processing, and how it

relates to memory-related processing, needs to be the

subject of future research.

Future directions

Although ERP analysis with static stimuli offers the

advantage of clearly defined onset times, it is important to

consider that temporal variations in neural processing can

still occur. Dynamic stimuli—such as videos of facial

expressions—may provide higher ecological validity by

more closely mimicking real-world social interactions,

where facial expressions are fluid and evolve over time

(Trautmann-Lengsfeld et al. 2013). Investigating whether

neural responses differ between static and dynamic stimuli

could further our understanding regarding the processing of

emotional information in more naturalistic settings. Future

cross-classification studies should explore how neural

processing across static and dynamic stimuli evolve to

explore the temporal aspects of emotion categorization.

Additionally, while the current study focused on sensor-

space data from scalp electrode recordings, future research

should consider incorporating frequency-band-related

analyses (Aktürk et al. 2021) on a single-trial level could

offer insights into oscillatory dynamics associated with

facial expression processing, potentially revealing aspects

of neural activity that were not captured by our current

approach.

It is also important to acknowledge that even minor

variations in experimental design and task affordances can

produce substantial effects on behavioral and neural out-

comes (see e.g. Dobs et al. 2018; Lange et al. 2003). This

variability should be considered when extrapolating the

present results to seemingly similar experimental para-

digms or real-world settings. Future research using differ-

ent task instructions (e.g., identity, gender identification, or

incidental exposure) could investigate the similarity of the

neural patterns across these contexts.

Finally, future research could explore affective dimen-

sions such as arousal and valence, as these can vary

between facial expressions (Sutton et al. 2019; Vesker et al.

2018). Cross-classification approaches could be employed

using datasets of affective, non-face stimuli—such as

images of objects or words—to investigate whether neural

patterns generalize across different types of stimuli. This

could help elucidate the broader mechanisms underlying

affective processing beyond facial expressions.

Summary

This study provides insights into the neural mechanisms

underlying the processing of facial expressions, identity,

and sex. Through the use of cross-participant multivariate

classification and representational dissimilarity analysis on

EEG data, we demonstrated that sex, identity, and
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emotional expression can be decoded from EEG signals

across participants. Our findings reveal that shared neural

patterns associated with facial expression processing exist,

indicating a common neural code for the processing of

these kinds of information. Our results also showed that the

processing of emotional versus neutral expressions occurs

earlier than that of pairs of expressive stimuli, and that the

effects of emotion are independent of the visual image

properties, suggesting a robust mechanism for emotion

recognition that transcends image-level features. The

temporal sequence of decoding revealed that sex informa-

tion is processed first, followed by identity, and then

emotion. Furthermore, emotional expressions, particularly

angry and to a lesser extent, happy faces, enhanced the

processing of identity and sex, highlighting the influence of

emotion on these facial attributes. These findings under-

score the complexity and integration of facial expression

processing within the neural architecture, underscoring the

interconnected nature of affective information processing.
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(2023) Anger or happiness superiority effect: a face in the crowd

study involving nine emotions expressed by nine people. Curr

Psychol 42(18):15381–15387. https://doi.org/10.1007/s12144-

022-02762-3

Harris CR, Jarrod Millman K, van der Walt SJ, Gommers R, Virtanen

P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R,

Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A,

Fernández J, del Rı́o M, Wiebe PP, Gérard-Marchant P,

Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C,

Oliphant TE (2020) Array programming with NumPy. Nature

585(7825):357–362. https://doi.org/10.1038/s41586-020-2649-2

Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human

neural system for face perception [Record Supplied By Pub-

lisher]. Trends Cogn Sci 4(6):223–233. https://doi.org/10.1016/

S1364-6613(00)01482-0

Hendel E, Gallant A, Mazerolle M-P, Cyr S-I, Roy-Charland A

(2023) Exploration of visual factors in the disgust-anger

confusion: the importance of the mouth. Cogn Emot

37(4):835–851. https://doi.org/10.1080/02699931.2023.2212892

Horstmann G, Bauland A (2006) Search asymmetries with real faces:

testing the anger-superiority effect. Emotion 6(2):193–207.

https://doi.org/10.1037/1528-3542.6.2.193

Jackson MC, Wu C-Y, Linden DEJ, Raymond JE (2009) Enhanced

visual short-term memory for angry faces. J Exp Psychol Hum

Percept Perform 35(2):363–374. https://doi.org/10.1037/

a0013895

Jackson MC, Linden DEJ, Raymond JE (2014) Angry expressions

strengthen the encoding and maintenance of face identity

representations in visual working memory. Cogn Emot

28(2):278–297. https://doi.org/10.1080/02699931.2013.816655

Kaneshiro B, Perreau Guimaraes M, Kim H-S, Norcia AM, Suppes P

(2015) A representational similarity analysis of the dynamics of

object processing using single-trial EEG classification. PLoS

ONE 10(8):e0135697. https://doi.org/10.1371/journal.pone.

0135697

Kaplan JT, Man K, Greening SG (2015) Multivariate cross-classifi-

cation: applying machine learning techniques to characterize

abstraction in neural representations. Front Human Neurosci.

https://doi.org/10.3389/fnhum.2015.00151

King D (2009) Dlib-ml: a machine learning toolkit. J Mach Learn Res

10:1755–1758. https://doi.org/10.1145/1577069.1755843

King D (2017) High quality face recognition with deep metric

learning. Dlib.Net. http://blog.dlib.net/2017/02/high-quality-

face-recognition-with-deep.html

Klink H, Kaiser D, Stecher R, Ambrus GG, Kovács G (2023) Your
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M, Fehr T (2013) The perception of dynamic and static facial

expressions of happiness and disgust investigated by ERPs and

fMRI constrained source analysis. PLoS ONE 8(6):e66997.

https://doi.org/10.1371/journal.pone.0066997
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