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Bournemouth University, Department of Computing and Informatics, Poole, BH12 5BB, UK

ABSTRACT

In this paper, regularised regression for sequential data is investigated and new ridge regression al-
gorithm is proposed. It uses the Aggregating Algorithm (AA) to devise an iterative version of ridge
regression (IRR). This algorithm is called AAIRR. A competitive analysis is conducted to show that
the guarantee on the performance of AAIRR is better than that of the known online ridge regression
algorithms. Moreover, an empirical study is carried out on real-world datasets to demonstrate the su-
perior performance over those state-of-the-art algorithms.

c© 2025 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of online regularised regression aims to predict the outcome, lying on a real number line, for a given sequence

of data examples. In such a setting, the algorithm receives the sequence example by example and attempts to predict the outcome

for each element before seeing the ground truth (actual outcome). If there is a discrepancy between the predicted outcome and the

true one, the algorithm suffers a loss. This loss adds up over the whole sequence to obtain the total loss. The exact description of

a learning environment can be thought of a game defined by triple (Ω,Γ, λ) indicating a set of possible outcomes, a set of allowed

predictions and a function measuring the loss respectively.

The protocol of online learning assumes that at each step t, the learner receives a data example xt ∈ Rn which is processed by

a decision pool (i.e., set of experts) w ∈ Θ, whose prediction is denoted by γw
t = w′xt. Ridge regression in this online setting was

studied by (Vovk, 2001; Azoury and Warmuth, 2001) leading to the following upper bound on the cumulative square loss:

LT (AAR) ≤ L∗T + aW2 + nY2 ln

(

1 +
TR2

a

)

(1)

where the data examples are taken from ℓ∞−ball {x ∈ Rn : ‖x‖∞≤ R}, the decision pool Θ = {w ∈ Rn : ‖w‖1≤ W} and y ∈ [−Y,Y]
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such that Y ≥ 0, a > 0, and L∗
T

is the best linear forecaster in hindsight, given by:

L∗T = inf
w

T
∑

t=1

(w′xt − yt)
2

The algorithm introduced by Vovk (2001) is derived using a Bayesian strategy, while the algorithm proposed by Azoury and Warmuth

(2001) exploits the duality properties of the exponential family distributions. A simplification of the analysis is presented in (Forster,

1999) using min-max optimisation. Essentially the learner’s prediction can be obtained by solving the following optimisation prob-

lem:

(2)argmin sup
y ∈[−Y,Y]















LT (Learner) − inf
w∈Rn















a‖w‖22 +
T

∑

t=1

(yt − γw
t )2





























Later Cesa-Bianchi and Lugosi (2006) obtained a similar bound as (1) by using a gradient-based forecaster with time varying

elliptical potentials.

To derive the proposed learning algorithm AAIRR, we will rely on the approach described by Forster (1999). We will then

follow the approach by Vovk (2001) to obtain a guarantee for AAIRR and thus providing a connection with Laplace prior which is

well understood within the statistical literature on similar matter.

Most of the existing literature proves the performance guarantee for ℓ2 norm. However, the Iterative Ridge Regression (IRR)

has not been studied in the online setting. For instance, Schmidt (2005); Tibshirani (1996), and Fan and Li (2001) proposed some

algorithms for offline ridge regression by considering wk+1 ∈ Rn where k denotes the number of passes with the condition wi 6= 0

for i = 1, 2, · · · , n:

‖wk+1‖1≈
n

∑

i=1

(

wk+1
i

)2

|wk
i
|
= ‖D−

1
2

wk wk+1‖22 (3)

such that D
− 1

2

wk = diag(1/

√

|wk
1
|, ..., 1/

√

|wk
n|). In (Fan and Li, 2001), it is argued that (3) is a good approximation to ℓ1 norm due to

its similarity with the Newton’s method; see for example (Kelley, 2003).

In the present work, it is shown that by scaling the ridge penalty, one can obtain a better regret than (1) under certain circum-

stances. For the sake of comparison we bound the input, output and the decision pool. The proposed AAIRR is compared against

the Aggregating Algorithm for Regression (AAR) theoretically and empirically.

In summary, the major contributions of this work are as follows:

1. Derivation of AAIRR.

2. Provision of a competitive analysis for AAIRR to show the circumstances under which it is better than the algorithm proposed

in (Vovk, 2001) and (Azoury and Warmuth, 2001).

3. Carrying out an empirical study and comparing AAIRR against the state-of-the-art algorithms.



3

The organisation of the rest of this paper is as follows. Section 2 describes the AAIRR algorithm. Section 3 and 4 presents

mathematical and empirical analysis of AAIRR before concluding in Section 5.

2. Problem formulation and Derivation of AAIRR

Given a sequence of instances and their corresponding outcomes i.e. (x1, y1), · · · , (xt, yt). Let γw
t : Θ→ Γ denote the prediction

given by the decision strategy/expert at time t. Let wt,i (i = 1, · · · , n) denotes the i−th component of the decision vector wt at

time t and γt is the prediction given by the learner. Then the operational cycle of the proposed AAIRR follows Protocol 1. The

Protocol 1. Online Regression

FOR t = 1, 2, ...

(1) Read input xt ∈ Rn

(2) Learner outputs γt ∈ Γ
(3) Receive outcome yt ∈ [−Y,Y]

(4) Update weights w ∈ Θ
END FOR

overarching goal is to ensure that the loss of the learner:

Lt(Learner) =

t
∑

s=1

(ys − γs)
2 (4)

is almost as good as the loss of the best expert w (optimal weight vector):

Lt(w) :=

t
∑

s=1

(ys − γw
s )2 (5)

Assuming that the input is taken from the ℓ∞− ball of radius R: {xt ∈ Rn : ‖x‖∞≤ R} and the vector w is indexed by Θ = {w ∈ Rn :

‖w‖1≤ W}. Let us define the following quantities:

bt :=

t
∑

s=1

ysxs ∈ Rn (6)

At :=















aD−1 +

t
∑

s=1

xs ⊗ xs















∈ Rn×n, a > 0 (7)

and

D−1 = diag(1/C, ..., 1/C) (8)

where ‖w‖1≥ C 6= 0 and let w to be initialised in R
n uniformly. Let also ▽ f (w) denote the first derivative of f and H▽ f (w)

the second derivative with respect to w and H is the Hessian matrix. The aim is to compete against the iterative ridge regression

algorithm (IRR), which was suggested as an approximate solution for the following problem:

inf
w∈Rn

(Lt(w) + a‖w‖1) (9)
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where a > 0. The problem (9) is very difficult to bound because ℓ1 norm is not differentiable, but it is convex. Hence, one may

use sub-differentiation. Unfortunately, the problem is that the sub-differentiation of ℓ1 norm does not lead to a unique dual vector.

Thus, given the training data X ∈ Rp×n and the corresponding target output Y ∈ Rp, substituting (3) into (9)1 gives an expression

similar to that of ridge regression, which is as follows (see Equation (22) in (Schmidt, 2005) and Equation (7) in (Rajaratnam et al.,

2016)):

wk+1 =
(

X′X + aD−1
wk

)−1
X′Y (10)

where D
− 1

2

wk = diag(1/

√

|wk
1
|, ..., 1/

√

|wk
n|). Notice that this formulation corresponds to the offline learning setting. The online setting

requires solving the following optimisation problem:

inf
w∈Rn

(

Lt(w) + a‖D− 1
2 w‖22

)

(11)

For the sake of comparison and interpretation, we use Cauchy-Schwartz inequality to obtain following:

(12)inf
w ∈Rn

(

Lt(w) + a‖D− 1
2 w‖22

)

≤ inf
w∈Rn

(

Lt(w) +
a

C
‖w‖22

)

This is inequality will be proven later. Like AAR, we consider the exponential discounting of the predictions:

Pt(dw) = e
− 1

2Y2 (yt−γw
t )2

Pt−1(dw) (13)

for all measurable set E ∈ Rn:

Pt(E) =

∫

E

e
− 1

2Y2 (yt−γw
t )2

Pt−1(dw)

We set the prior for all t to be:

P0 =















a 1
2Y2

2















n

exp

(

−a
1

2Y2

W2

C

)

(14)

such that C ≤ ‖w‖1≤ W, C 6= 0 and w is initialised with the vector 1. Essentially, we replace e
−a 1

2Y2 ‖w‖22 in the Gaussian prior by

e
−a 1

2Y2 w′D−1w
and

(

a 1

2Y2

π

)

1
2

by
a 1

2Y2

2
. While in AAR only the initial distribution, P0, is set to be Gaussian prior, in AAIRR the selected

distribution over the weights is inspired by the Laplace distribution.

The Laplace distribution (Tibshirani, 1996) is written as:

P0 =
1

2τ
e‖w‖1 |/τ

where τ = 1
λ

and λ > 0. In this paper, τ = 1
aη

(a > 0) and η = 1
2Y2 . This leads to the following Lemma:

1For details on the derivation of the offline IRR algorithm, see Section 4.4.2 in (van Wieringen, 2018)
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Lemma 1. For a prior (14), denoted by P0, and 0 < C ≤ ‖w‖1≤ W, w0 = 1 on the topology of Γ ∈ R and t = 1, 2, ..., the cumulative

loss of the Modified-Aggregating-Pseudo-Algorithm (MAPA) is:

Lt(MAPA) ≤ logβ

∫

Θ

βLt(w)P0(dw)

where β = e
− 1

2Y2

Proof. We use induction to prove the Lemma. The pseudo-prediction is defined as:

gt(y) = logβ

∫

Θ

β(yt−γw
t )2

P∗t−1(dw)

where P∗
t−1

(dw) =
Pt−1(dw)

Pt−1(Θ)
such that Pt(Θ) =

∫

Θ
Pt(dw). For t = 1, then Lt(MAPA) = g1(y) (assuming this holds for t − 1). We

consider Lt(MAPA) = gt(y) + Lt−1(MAPA), the following holds:

(15)Lt(MAPA) = logβ

∫

Θ
β(yt−γw

t )2

Pt−1(dw)

Pt−1(Θ)
+ logβ

∫

Θ

βLt−1(w)P0(dw)

For 0 < C ≤ ‖w‖1≤ W, eq. (13) can be written as:

(16)
Pt−1(dw) = β(yt−1−γw

t−1
)2+...+(y1−γw

1
)2















a 1
2Y2

2















n

exp

(

−a
1

2Y2

W2

C

)

= βLt−1(w)P0(dw)

It follows that:

(17)Lt(MAPA) ≤ logβ

∫

Θ
β(yt−γw

t )2+Lt−1(w)P0(dw)

Pt−1(Θ)
+ logβ

∫

Θ

βLt−1(w)Pt−1(dw)

βLt−1(w)

(18)Lt(MAPA) ≤ logβ

∫

Θ
β(yt−γw

t )2+Lt−1(w)P0(dw)

Pt−1(Θ)
+ logβ Pt−1(Θ)

= logβ
Pt−1(Θ)

∫

Θ
β(yt−γw

t )2+Lt−1(w)P0(dw)

Pt−1(Θ)
= logβ

∫

Θ

βLt(w)P0(dw) (19)

Therefore, the statement holds ∀t ≥ 1.

In the previous lemma, we confirmed that the foundation on which the prediction stand is correct. Now we optimise the weights,

that is, we choose the best expert (strategy) from the decision pool using the following Lemma.

Lemma 2. For all t ≥ 0, f (w) := a‖D− 1
2 w‖2

2
+Lt(w) is minimal at a unique point w and the function f (w) is given as follows:

w = A−1
t bt and f (w) =

t
∑

s=1

y2
s − b′t A

−1
t bt

such that none of the elements of the weight vector has its absolute value at any step equal to zero. The definition of bt, At, D−
1
2 and

Lt(w) is given in (6), (7), (8) and (5) respectively.
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Proof. Please see Appendix A.1.

Theorem 1. Let the distribution on the weights of the decision pool be (14). The prediction γt given by AAIRR is b′
t−1

A−1
t xt, where

bt and At are as defined in (6) and (7) respectively.

Proof. Please see Appendix A.2.

The following Lemma can be used to lift the condition of C 6= 0 in (8), to obtain line 4 in Protocol 2 for formulating the AAIRR

protocol.

Lemma 3. For all s = 1, 2, ..., t, a > 0















aD−1 +

t
∑

s=1

xs ⊗ xs















−1

= D
1
2















aI + D
1
2















t
∑

s=1

xs ⊗ xs















D
1
2















−1

D
1
2

Proof. From the properties of a diagonal matrix, it follows that:















aD−1 +

t
∑

s=1

xs ⊗ xs















−1

=















aD−
1
2 D−

1
2 +

t
∑

s=1

xs ⊗ xs















−1

= D
1
2















aI + D
1
2















t
∑

s=1

xs ⊗ xs















D
1
2















−1

D
1
2

Protocol 2. AAIRR

Initialise: a > 0, A = 0n×n, b = 0n×1 and

w = 1 ∈ Rn×1.

FOR t = 1, 2, ...,

(1) Read xt ∈ Rn

(2) D = diag(
√

abs(w)) (Regularisation)

(3) A = A + xt ⊗ xt (Covariance matrix)

(4) A−1 = D (aI + DAD)−1 D (Lemma 3)

(5) γt = b′A−1xt (Corollary 1)

(6) Read yt ∈ R
(7) b = b + yt xt (convention)

(8) w = A−1b (Lemma 2)

END FOR

3. Analysis

The following corollary presents the limiting behaviour of AAIRR. It shows that as ‖xt‖→ ∞, γt → 0, thus making AAIRR less

likely to overestimate predictions in comparison to the usual convex optimisation methods that predict by multiplying the optimal

decision strategy from the decision pool by xt (Cesa-Bianchi and Lugosi, 2006).
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Corollary 1. For all s = 1, 2, ..., t, the AAIRR’s prediction is is follows:

γt =
st

1 + x′t D
1
2

(

aI + D
1
2

(

∑t−1
s=1 xs ⊗ xs

)

D
1
2

)−1
D

1
2 xt

where

st =

















t−1
∑

s=1

ysxs

















′

D
1
2

















aI + D
1
2

















t−1
∑

s=1

xs ⊗ xs

















D
1
2

















−1

D
1
2 xt

Proof. Please see Appendix A.3.

The rest of this section provides the upper bounds on the cumulative square loss for AAIRR. The main objective is to deduce

the circumstances under which AAIRR has a better regret than AAR (i.e., it has better upper bound on the cumulative square loss

in the online setting). To achieve this goal first the performance guarantee of AAIRR is obtained. Then, the input and weights are

bounded to simplify the comparison. Finally, the regret of AAIR and AAIRR is compared.

Lemma 4. The following upper bound on the cumulative square loss holds:

Lt(AAIRR) ≤ logβ

∫

Θ

βLt(w)P0(dw)

Proof. The square loss function is η−mixable. For details on mixability of the loss functions see (Haussler et al., 1994; Vovk,

1990).

Lemma 5. For D ∈ Rm×n with entries ai j and w ∈ Rn with entries w j

‖Dw‖22≤ ‖D‖
2
F‖w‖22

Proof. From Cauchy-Schwartz inequality:
















m
∑

i=1

n
∑

j=1

a2
i j

















n
∑

k=1

wk

=

m
∑

i=1

















n
∑

j=1

a2
i j

n
∑

k=1

(wk)2

















≥
m

∑

i=1

















n
∑

j=1

ai jw j

















2

Remark 1. For n = m in Lemma 5
















m
∑

i=1

m
∑

j=1

a2
i j

















m
∑

k=1

wk ≥
m

∑

i=1

















m
∑

j=1

ai jw j

















2

By definition ‖D‖2
F
= Tr(DDH), where Tr denotes the trace of a matrix and DH is the conjugate transpose. In other words, ‖D‖2

F
is

the Sum of Squares (SS) of the absolute value of the entries of D. Also, if D is a diagonal matrix, then ‖D‖2
F

is the sum of squares

of diagonal elements. This justifies the inequality (12).
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Bounding ‖xt‖∞≤ R and ‖w‖1≤ W for s = 1, 2, ..., t, then from Lemma 5, we have:

wD−1w ≤
‖w‖2

2

C
≤
‖w‖2

1

C
≤ W2

C
(20)

We also need to upper bound the following:

ln det At = ln det















aD−1 +

t
∑

s=1

xs ⊗ xs















To do that, we use (Beckenbach and Bellman, 1961), Theorem 7 in Chapter 2, to obtain:

ln det At ≤ n ln
(

aC−1 + tR2
)

= n ln
a +CtR2

C
(21)

We now bound the loss of AAIRR, by using Lemma 4 and Remark 1.

Theorem 2. For any point in time s = 1, 2, ..., t and any a > 0 such that ‖xt‖∞≤ R and C ≤ ‖w‖1≤ W, the following holds:

Lt(AAIRR) ≤ L∗t + aW2C−1 + nY2 ln

(

8Y2(a +CtR2)

a2Cπ

)

such that C 6= 0.

Proof. From Lemma 4, Lt(AAIRR) ≤ Lt(MAPA) and the rest of the proof is shown in Appendix A.4.

Remark 2. Lt(IRR) = infw

(

Lt(w) + a‖D− 1
2 w‖2

2

)

can be written as
∑T

t=1 y2
t − b′A−1b (see Lemma 2), where A−1 is defined as in

Lemma 3, and (21) becomes n ln(aW + tW2R2). Also, the upper bound on the determinant of AAIRR is ln 16Y4

a2π
(W(a + tWR2))

compare to AAR’s one which is ln a+tR2

a
. When W ≤ 1, then infw

(

Lt(w) + a‖w‖2
2

)

= Lt(RR) ≤ Lt(IRR). By setting a ≥ 16Y4

π
one can

ensure that ln 16Y4

a2π
(W(a + tWR2)) ≤ ln a+tR2

a
, because ln

16Y4(W(a+tWR2))

aπ(a+tR2)
≤ 0. Nevertheless, this way of analysis does not provide a

clean comparison of AAR and AAIRR. It however indicates that AAIRR has a better bound when ‖w‖1≤ 1 and the noise term has a

greater influence on the prediction accuracy than the true regression function.

The following Theorem presents circumstances under which the regret of AAIRR is better than AAR’s.

Theorem 3. Let Rt = Lt(Learner) − Lt(w) (see eqs. (4) and (5)) ‖xt‖∞≤ R, C ≤ ‖w‖1≤ W and n be some positive integer. Then ∀t,

Rt(AAIR) ≤ Rt(AAR) when C ≥ 1 and a ≥ 8Y2

π
.

Proof. To prove this Theorem, it is sufficient to show that Rt(AAIR) − Rt(AAR) ≤ 0. From (1) and Theorem 2, we have the

following:

aW2

(

1

C
− 1

)

+ nY2 ln

(

8Y2(a +CtR2)

a2Cπ

)

− nY2 ln

(

a + tR2

a

)

≤ 0

Thus,

aW2

(

1

C
− 1

)

+ nY2 ln
8Y2(a +CtR2)

aCπ(a + tR2)
≤ 0
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Fig. 1. AAR’s penalty vs. AAIRR’s penalty.

C ≥ 1, aW2
(

1
C
− 1

)

≤ 0. Also, from Lemma 5, it is clear that ‖w‖2
2
≥ ‖D− 1

2 w‖2
2

for C ≥ 1. The condition a ≥ 8Y2

π
ensures that

πaC(a + tR2) ≥ 8Y2(a +CtR2). This concludes the proof.

Remark 3. Figure 1 shows that AAIRR penalty resembles ℓ1−norm (also known as LASSO) in contrast to AAR’s ℓ2−norm (also

known as ridge penalty).

Table 1. Statistical properties of the datasets: Cook distance, mean and variance

dataset max.cook.dist min.cook.dist med.cooks.dist label mean label variance lr.model variance

Gaze 1.90 × 10−1 1.35 × 10−8 7.18 × 10−4 5.44 × 102 6.31 × 104 3.29 × 103

ISE 1.37 × 10−1 7.28 × 10−10 4.23 × 10−4 1.55 × 10−3 4.46 × 10−4 3.23 × 10−5

NO2 4.25 × 10−2 3.11 × 10−8 7.52 × 10−4 2.18 × 10−6 1.00 × 100 4.98 × 10−1

F − 16 5.10 × 10−2 1.50 × 10−6 2.30 × 10−5 −8.68 × 10−4 1.69 × 10−7 3.01 × 10−8

Weather 9.18 × 10−6 1.61 × 10−15 9.83 × 10−4 1.09 × 10 1.14 × 102 1.15 × 100

4. Empirical study

In the following we show the empirical performance of AAIRR through a set of experiments. Specifically, we will com-

pare it against state-of-the-art algorithms: RLS (Hayes, 1996), AROWR(Crammer et al., 2009), AAR/ORR(Vovk, 2001), ONS

(Orabona et al., 2012) and the optimal offline solution. To achieve a fair comparison, five (5) datasets are considered differing from

each other in terms of amount of outliers, noise, complexity (dimensionality) and volume (size). In the following, a brief description

of the datasets:

• The Istanbul stock exchange (ISE) dataset (Akbilgic et al., 2014) - 536 observations with 8 attributes that are: S&P 500 Index,

Deutscher Aktien Index, FTSE 100 Index, Nikkel Index, Bovespa Index, Bovespa Index, MSCI Europe Index and MSCU

Emerging Markets Index. This dataset is chosen due to its simplicity. There is no noise or outlier(s).
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Table 2. Performance of the algorithms on 5 real-world dataset

Algorithm RMSE R2 MAE LQE MQE UQE
dataset: Gaze

AROWR 4.88 × 1014 5.91 × 10−5 3.21 × 1013 −3.31 × 1012 −1.20 × 1012 −3.69 × 1011

RLS 2.19 × 1017 1.19 × 10−4 1.35 × 1016 −6.26 × 1014 −6.23 × 1012 −7.61 × 1011

ORR 2.19 × 1017 1.19 × 10−4 1.35 × 1016 −6.26 × 1014 −1.55 × 1010 −1.77 × 109

AAR 1.48 × 105 7.63 × 10−3 1.26 × 105 −1.84 × 104 −1.26 × 105 −6.23 × 104

ONS 5.33 × 103 9.91 × 10−4 1.06 × 103 −5.52 × 102 −5.84 × 10 6.69 × 102

AAIRR 1.61 × 102 6.65 × 10−1 1.03 × 102 −2.04 × 10 4.37 × 10 1.13 × 102

Naive 3.66 × 102 3.44 × 10−3 2.99 × 102 −2.70 × 102 1.95 × 10 2.73 × 102

Xw∗ 5.65 × 10 9.49 × 10−1 4.48 × 10 −3.94 × 10 −2.25 × 100 3.51 × 100

dataset: F−16

AROWR 1.29 × 1011 1.22 × 10−4 1.15 × 1010 −1.22 × 108 1.21 × 107 4.66 × 108

RLS 1.25 × 1011 2.70 × 10−4 1.10 × 1010 −1.37 × 108 1.44 × 107 5.09 × 108

ORR 1.75 × 107 2.83 × 10−4 1.60 × 106 −2.30 × 104 3.17 × 103 8.50 × 104

AAR 4.62 × 10−1 1.64 × 10−4 1.41 × 10−1 −4.70 × 10−2 8.49 × 10−4 4.84 × 10−2

ONS 2.30 × 104 1.11 × 10−2 1.79 × 104 −1.23 × 104 1.29 × 103 1.72 × 104

AAIRR 2.08 × 10−4 7.82 × 10−1 1.51 × 10−4 −7.32 × 10−5 4.21 × 10−5 1.39 × 10−4

Naive 2.75 × 10−4 6.05 × 10−1 2.09 × 10−3 −1.00 × 10−4 −1.00 × 10−4 −1.00 × 10−4

Xw∗ 1.73 × 10−4 8.24 × 10−1 1.27 × 10−4 −9.15 × 10−5 3.36 × 10−6 9.98 × 10−5

dataset: NO2

AROWR 3.11 × 105 1.09 × 10−1 1.40 × 105 −5.02 × 104 −4.29 × 103 3.81 × 104

RLS 3.15 × 105 1.14 × 10−1 1.46 × 105 −5.90 × 104 −5.63 × 103 4.27 × 104

ORR 8.90 × 102 1.59 × 10−1 4.78 × 102 −2.38 × 102 −2.51 × 10 1.69 × 102

AAR 4.35 × 10 1.95 × 10−1 3.24 × 10 −3.16 × 10 5.71 × 100 1.37 × 10

ONS 8.25 × 10−1 4.04 × 10−1 6.23 × 10−1 −4.78 × 10−1 2.07 × 10−2 5.11 × 10−1

AAIRR 7.31 × 10−1 4.69 × 10−1 5.72 × 10−1 −3.56 × 10−1 1.48 × 10−1 5.58 × 10−1

Naive 1.09 × 100 1.58 × 10−1 8.19 × 10−1 −6.04 × 10−1 −2.74 × 10−2 5.99 × 10−1

Xw∗ 7.01 × 10−1 5.07 × 10−1 5.47 × 10−1 −4.13 × 10−1 3.65 × 10−2 4.62 × 10−1

dataset: ISE

AROWR 1.80 × 10−2 3.00 × 10−1 1.30 × 10−2 −8.62 × 10−3 9.20 × 10−4 1.01 × 10−2

RLS 1.01 × 10−1 5.94 × 10−1 7.17 × 10−2 −5.72 × 10−2 −1.42 × 10−2 1.28 × 10−2

ORR 2.79 × 10−2 4.85 × 10−1 1.98 × 10−2 −1.58 × 10−2 −4.04 × 10−4 1.23 × 10−2

AAR 2.00 × 10−2 3.77 × 10−1 1.48 × 10−2 −1.19 × 10−3 2.04 × 10−3 1.22 × 10−2

ONS 2.08 × 10−2 5.50 × 10−1 1.56 × 10−2 −9.54 × 10−3 2.57 × 10−3 1.34 × 10−2

AAIRR 7.61 × 10−3 8.77 × 10−1 5.07 × 10−3 −4.25 × 10−3 −1.47 × 10−4 3.21 × 10−3

Naive 2.87 × 10−2 5.22 × 10−3 2.14 × 10−2 −1.77 × 10−2 −1.38 × 10−3 1.61 × 10−2

Xw∗ 5.64 × 10−3 9.29 × 10−1 4.30 × 10−3 −3.351 × 10−3 3.02 × 10−4 3.24 × 10−3

dataset: Weather

AROWR − − − − − −
RLS − − − − − −
ORR 5.38 × 1015 1.55 × 10−5 1.34 × 1014 −9.16 × 1010 −3.60 × 108 4.46 × 109

AAR 3.90 × 107 3.16 × 10−4 1.53 × 106 −7.72 × 105 5.06 × 105 −2.56 × 105

ONS 5.73 × 105 5.17 × 10−1 5.51 × 105 −6.63 × 105 −5.58 × 105 4.50 × 105

AAIRR 1.09 × 100 9.89 × 10−1 8.49 × 10−1 −7.33 × 10−1 −1.13 × 10−1 6.56 × 10−1

Naive 1.81 × 100 9.71 × 10−1 1.21 × 10−1 −9.00 × 10−1 −2.22 × 10−2 9.22 × 10−1

Xw∗ 1.07 × 100 9.89 × 10−1 8.43 × 10−1 −7.29 × 10−1 −1.05 × 10−1 6.61 × 10−1

• Gaze dataset (Quinonero-Candela et al., 2006) consists of 450 observations of 12 features related to measurements obtained

from head-mounted cameras for eye tracking, estimating the positions of the eyes of the subject when the subject is looking

at the monitor. This dataset is chosen due to the presence of outlier(s).

• The NO2 dataset (Vlachos and Meyer, 2005) consists of 500 observations from a road air pollution study collected by the

Norwegian Public Roads Administration, measured at Alnabru in Oslo, Norway, between October 2001 and August 2003.

There are 7 predictor variables: the logarithm of the number of cars per hour, temperature (×2), wind speed and direction,
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hour of the day and the date when the observations were taken. This dataset is chosen because it shows non-linearity.

• Ailerons (F − 16) dataset (Van Rijn et al., 2013) consists of 13750 observations with a total of 40 attributes that describe

the status of the F − 16. This dataset is chosen due to its complexity; it has the highest number of features and illustrates

algorithms shrinkage ability.

• Weather dataset (Budincsevity, 2016) has historical weather around Szeged, Hungary, from 2006 to 2016 with 9 features

namely: temperature, apparent temperature, humidity, wind speed, wind bearing, visibility, cloud cover, precipitation type

and summary. In total there are 96453 observations. This dataset is chosen due to its considerable size; it has the highest

number of observations among all datasets.

Table 1 shows the statistical properties of the datasets.

.

To run the experiments, we observed the following:

• For all algorithms setting tuning parameter or the learning rate as 1
T

, where T denotes the length/size of the dataset. Clearly,

it is assumed that the length of the dataset is known in advance.

• The naive baseline (using yt−1 as prediction for yt) is also reported.

• We consider a solution optimal after exhausting the whole dataset, that is: Xw∗, where X ∈ R
T×n since it has direct link to

the theoretical results (see Lemma 2). The bounds given are compared against L∗
T
= infw‖Y − Xw‖2

2
, which is the optimal

loss considered and w∗ = argminw‖Y − Xw‖2
2
. This means the baseline uses the optimal weights, where the optimal loss is

achieved.

Table 2 reports the root mean square error (RMSE), coefficient of determination (R2), mean absolute error (MAE) and error

quantiles: lower quantile error (LQE (25%)), mean quantile error (MQE (50%)) and upper quantile error (UQE (75%)). The main

outcomes of the comparison are:

• AAIRR is overall the best algorithm in terms of RMS E, R2 and MAE among the algorithms (AROWR and RLS fail to give

a sensible result on the weather dataset).

• None of the algorithms is able to outperform Xw∗ on any of the datasets. However, on the weather dataset, AAIRR is very

close to the optimal solution in terms of RMSE and MAE. AAIRR achieves the optimal solution in terms of R2 outperforming

the naive baseline on all datasets.
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5. Conclusion

In this paper, we proposed a new algorithm, AAIRR, and showed its performance guarantees. The theoretical analysis indicates

that AAIRR has a better guarantee than AAR by setting C > 1 - see Theorem 3. The empirical study on number of real-world

datasets shows the superiority of AAIRR.

In the future, the presented analysis will be extended to the stochastic setting and to study the algorithm using different loss

functions (i.e., the logarithmic loss). Also, it is worth noting that tightness of AAR and AAIR bound is still an open problem.
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Appendix A. Proofs

Appendix A.1. Proof of Lemma 2

By definition, we have:

f (w) = a‖D− 1
2 w‖22+

t
∑

s=1

(ys − w′xs)
2

= aw′D−1w +

t
∑

s=1

(y2
s − 2ysw

′xs + w′(xs ⊗ xs)w)

=

t
∑

s=1

y2
s − 2w′

t
∑

s=1

ysxs + w′














aD−1 +

t
∑

s=1

xs ⊗ xs















w

=

t
∑

s=1

y2
s − 2w′bt + w′At

=

t
∑

s=1

y2
s −















t
∑

s=1

2ysw
′xs















+ w′














aD−1 +

t
∑

s=1

xs ⊗ xs















w

https://www.kaggle.com/budincsevity/szeged-weather
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Differentiating f (w) with respect to w (treating wt−1 as a constant), we obtain:

▽ f (w) = 2

t
∑

s=1

ysxs + 2w′














aD−1 +

t
∑

s=1

xs ⊗ xs















=⇒ H▽ f (w) = 2aD−1 + 2

t
∑

s=1

xs ⊗ xs

Having ▽ f (w) = 0 − 2bt + 2Atwt and H▽ f (w) = 2At indicates that f is convex and to attain its minimum, we set ▽ f (w) = 0 which

gives w = b′t A
−1
t . Thus,

f (w) = f (b′t A
−1
t ) =

t
∑

s=1

y2
s − 2b′t A

−1
t bt + b′t A

−1
t AtA

−1
t bt

=

t
∑

s=1

y2
s − b′t A

−1
t bt

Appendix A.2. Proof of Theorem 1

In relation to Protocol 1, we use Lemma 2 to write:

arg inf
γt∈R

sup
yt∈[−Y,Y]















t
∑

s=1

(ys − γs)
2 −

t
∑

s=1

y2
s + b′t A

−1
t bt















(A.1)= arg inf
γt∈R

sup
yt∈[−Y,Y]















t
∑

s=1

(ys − γs)
2 −

t
∑

s=1

y2
s + bt−1A−1

t bt−1 + 2ytb
′
t−1A−1

t xt + y2
t x′t A

−1
t xt















=⇒ arg inf
γt∈R

sup
yt∈[−Y,Y]

(

−2ytγt + γ
2
t + 2ytb

′
t−1A−1

t xt + y2
t x′t A

−1
t xt

)

(A.2)= arg inf
γt∈R

sup
yt∈[−Y,Y]

(

2yt(b
′
t−1A−1

t xt − γt) + y2
t (x′t A

−1
t xt) + γ

2
t

)

Given that yt ∈ [−Y,Y] and At is positive definite, γt should be chosen in a way that:

2Y
(

bt−1A−1
t xt − γt

)

+ γ2
t (A.3)

(A.3) is minimised according to the following cases:

• Case 1: bt−1A−1
t xt ∈ [−Y,Y]. If bt−1A−1

t xt ≥ Y , then (A.3) decreases when γt ≤ Y and increases when γt ≥ Y . Similar

argument holds for the case when bt−1A−1
t xt ≥ −Y . Thus, (A.3) is attained at Y .

• Case 2: γt ≤ bt−1A−1
t xt attains its minimum on the domain min(Y, bt−1A−1

t xt).

• Case 3: γt ≥ bt−1A−1
t xt attains the minimum on the domain max(−Y, bt−1A−1

t xt).

Therefore, (A.1) attains the minimum for γt = bt−1A−1
t xt.
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Appendix A.3. Proof of Corollary 1

The learner’s prediction is:

γt =

















t−1
∑

s=1

ysxs

















′

D
1
2















aI + D
1
2















t
∑

s=1

xs ⊗ xs















D
1
2















−1

D
1
2 xt

=

















t−1
∑

s=1

ysxs

















′

D
1
2

















aI + D
1
2

















t−1
∑

s=1

xs ⊗ xs

















D
1
2

















−1

D
1
2 xt

−
















t−1
∑

s=1

ysxs

















′
(

D
1
2

(

aI + D
1
2

(

∑t−1
s=1 xs ⊗ xs

)

D
1
2

)−1
D

1
2 xt

)

1 + x′t D
1
2

(

aI + D
1
2

(

∑t−1
s=1 xs ⊗ xs

)

D
1
2

)−1
D

1
2 xt

×

(

D
1
2

(

aI + D
1
2

(

∑t−1
s=1 xs ⊗ xs

)

D
1
2

)−1
D

1
2 xt

)′

1 + x′t D
1
2

(

aI + D
1
2

(

∑t−1
s=1 xs ⊗ xs

)

D
1
2

)−1
D

1
2 xt

xt

After some algebraic manipulation, we obtain:

γt =
st

1 + x′t D
1
2

(

aI + D
1
2

(

∑t−1
s=1 xs ⊗ xs

)

D
1
2

)−1
D

1
2 xt

(A.4)

Appendix A.4. Proof of Theorem 2

The bound on MAPA’s loss is given as follows:

Lt(MAPA) ≤ logβ

∫

Rn

dw















a 1
2Y2

2















n

× exp

(

− 1

2Y2
w′















t
∑

s=1

xs ⊗ xs + aD−1















w

+ 2
1

2Y2















t
∑

s=1

ysxs















w − 1

2Y2

t
∑

s=1

y2
t

)

(A.5)

Let Q(w) = w′Atw + bt−1w + x′tw, where At is symmetric positive definite matrix and xt,w, bt ∈ R
n. Using Theorem 3 in

(Beckenbach and Bellman, 1961), we have:

∫

Rn

eQ(w)dw = e−Q0
πn/2

√

det At

(A.6)

where Q0 = infw Q(w). Using (A.5) and (A.6), we obtain:

Lt(MAPA) ≤ inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

+ logβ

















































a 1
2Y2

2















n
πn/2

√

det
1

2Y2
At
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= inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

+ logβ

















































a 1
2Y2

2















2n
2

πn/2

√

det
1

2Y2
At



































= inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

− 1

2
logβ































2

a 1
2Y2















2n
det 1

2Y2 At

πn

















= inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

− 1

2
logβ

































4

a2 1
2Y2

2
π

















n

det
1

2Y2
At

















= inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

− 1

2

ln

((

4

a2 1

2Y2

2
π

)n

det 1
2Y2 At

)

ln β

= inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

− 1

2

ln
((

16Y4

a2π

)n
det At

2Y2

)

− 1
2Y2

= inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

+ Y2ln

((

16Y4

a2π

)n

det
AT

2Y2

)

= inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

+ Y2

(

n ln

(

16Y4

a2π

)

+ ln

(

det
At

2Y2

)

)

Lt(AAIRR) ≤ inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

+Y2

(

2n ln

(

4Y2

a
√
π

)

+ ln det
At

2Y2

)

Finally from (21), we obtain:

Lt(AAIRR) ≤ inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

+Y2

(

2n ln
4Y2

a
√
π
+ n ln

a +CtR2

2Y2C

)

= inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

+ Y2

(

n ln
16Y4

a2π
+ n ln

a +CtR2

2Y2C

)

= inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

+ Y2

(

n ln

(

16Y4(a +CtR2)

2a2πY2C

))

= inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

+ Y2

(

n ln

(

8Y2(a +CtR2)

a2Cπ

))

= inf
w

(

Lt(w) + a‖D− 1
2 w‖22

)

+ nY2 ln

(

8Y2(a +CtR2)

a2Cπ

)

(20) proves the statement.
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