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Abstract The present work introduces an original and new online regression
method that extends the Shrinkage via Limit of Gibbs sampler (SLOG) in the
context of online learning. In particular, we theoretically show how the proposed
Online SLOG (OSLOG) is obtained using the Bayesian framework without resort-
ing to the Gibbs sampler or considering a hierarchical representation. Moreover, in
order to define the performance guarantee of OSLOG, we derive an upper bound on
the cumulative squared loss. It is the only online regression algorithm with sparsity
that gives logarithmic regret. Furthermore, we do an empirical comparison with
two state-of-the-art algorithms to illustrate the performance of OSLOG relying
on three aspects: normality, sparsity and multi-collinearity showing an excellent
achievement of trade-off between these properties.

Keywords Regression · Regularisation · Online learning · Competitive analysis

1 Introduction

Offline L1−regularised regression Tibshirani [1996], known as lasso, has been stud-
ied well in the past. In batch setting the goal is to find the regression model weights,
w, by solving:

wlasso = argmin
w∈Rn

||Y −Xw||22 + λ||w||1 (1)

given training data X, labels vector Y and a hyper-parameter λ. A Bayesian
solution for lasso weights estimation using Gibbs Sampler was proposed in Park
and Casella [2008] and later developed further in Rajaratnam et al. [2016] resulting
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in the deterministic Bayesian lasso or better known as SLOG. By multiplying wlasso

with test data one can obtain predictions in batch setting.

On the other hand, in online learning predictions are made sequentially. On-
line learning is useful when the application lends itself continuous learning (concept
drift) [Sambasivan et al., 2018] or there is too much data that can’t fit into mem-
ory at once. Most of the work related to online L1−regularised regression relies on
gradient descent methods (e.g., sub-gradient, coordinate descent and other prox-
imal algorithms) to compute the estimates of the model weights see for example
[Langford et al., 2009, Gerchinovitz, 2013, Duchi and Singer, 2009, Shalev-Shwartz
and Tewari, 2011].

In contrast, the proposed algorithm learns by updating covariance matrix. At
each trial T = 1, 2, ..., our learning algorithm receives input xT ∈ Rn, makes
prediction γT ∈ R and than receives the actual output yT ∈ R. Arguably the
proposed method might not retain the sparsity properties when implemented with
only one pass over the data. Nevertheless, it will have some degree of sparsity, we
leave this matter for latter part of the paper (please see Remark 2 and Fig 2.).
The fundamental advantage of using covariance-based approach is that one can
obtain logarithmic regret, which is so far not possible when using gradient and
sub-gradient descent approaches to solve the least squares regression problem. In
[Zinkevich, 2003], it is shown that for an arbitrary convex loss function, online
gradient descent has the regret growth rate of

√
T . Moreover in general, for arbi-

trary convex loss function, this can’t be improved. However, it is possible to obtain
logarithmic regret using the online Newton step [Hazan et al., 2007]; but such ap-
proach gives no advantage in terms of time complexity over the covariance-based
approach for regression [Orabona et al., 2012].

It is worth noting that SLOG assumes that the entries of the regressor ma-
trix are drawn from a distribution that is absolutely continuous with respect to
Lebesgue measure [Tibshirani et al., 2013, Rajaratnam et al., 2016]. We will make
no such assumption for OSLOG.

The SLOG algorithm proposed by Rajaratnam et al. [2016] maximises the
posterior distribution w ∈ Rn given the response y ∈ Rn i.e., argmaxw p(w|y).
It is assumed that y|w follows the normal distribution and w follows the Laplace
or double exponential distribution. To derive SLOG, Rajaratnam et al. [2016]
tweaks the approach mentioned by Park and Casella [2008] for Bayesian lasso
algorithm. Both SLOG and the Bayesian lasso consider a hierarchical model by
writing the Laplace distribution as a scale mixture of the Gaussian distribution
[Andrews and Mallows, 1974]. The weight updating rule of the Bayesian lasso is the
joint posterior obtained through the hierarchical model. Then, it is shown that by
using the Gibbs sampler on the joint posterior converges to the L1−regularisation
regression solution. SLOG uses the same approach as the Bayesian lasso with a
different tuning parameter. SLOG replaces the tuning parameter λ > 0 in (1) by
a
√
σ2 with known variance σ2. Consequently, as the limit σ2 → 0 of the Gibbs

sampler, it reduces to a deterministic sequence, giving the weight updating rule
of SLOG. In this work, for OSLOG same weight updating equation as SLOG is
obtained but without the use of Gibbs Sampler. Also, a performance guarantee
for OSLOG is given. So, the major contributions of this paper are:

1. derivation of an algorithm for OSLOG without considering any hierarchical
representation.
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2. formulation of an upper bound on the cumulative square loss of the OSLOG
algorithm.

3. empirical comparison with state-of-the-art.

The organisation of the paper is as follows. The next section introduces the
derivation of OSLOG. Section 3 analyses the performance guarantee followed by
the empirical study. Section 5 concludes the paper.

2 Derivation of OSLOG
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Fig. 1 L1−norm approximation done by OSLOG.

We consider the online protocol which assumes that at each trial the input
arrives. Then, the algorithm predicts the outcome before the actual outcome is
revealed and adjustment of the weights is conducted. We assume the following
prior on weights:

p(w) =
(aη

2

)n
exp

(
−aηw′D−1

wt−1
w
)

(2)

where Dwt−1 denotes the diagonal matrix such that the diagonal vector contains
the absolute value of each element of the weight vector obtained at the previ-
ous trial. The selected prior distribution on weights is inspired by the Laplace
distribution which is written as Tibshirani [1996]:

1

2τ
e||w||1/τ , τ =

1

λ
, λ > 0

In this paper, we consider: τ = 1
aη , where scalar η = 1

2σ2 such that a, η > 0. Also,

we replace ||w||1 by ||D−
1
2

wt−1w||22. Clearly in the expression ||D−
1
2

wt−1w||22 we need
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a restriction on weights. So, at trial T − 1 absolute value of each element of the
weight vector should not to be zero in (2). Despite this restriction Figure 1 shows
reasonable similarity to ||w||1. A visible difference is near the kink point (100, 0).
To overcome the issue of the situation where R

0 , we present the following Lemma:

Lemma 1. For all t = 1, 2, ...(
aD−1

wt−1
+

t∑
s=1

xsx
′
s

)−1

= D
1
2
wt−1

(
aI +D

1
2
wt−1

(
t∑

s=1

xsx
′
s

)
D

1
2
wt−1

)−1

D
1
2
wt−1

Proof. (
aD−1

wt−1
+

t∑
s=1

xsx
′
s

)−1

=

(
aD
− 1

2
wt−1D

− 1
2

wt−1 +
t∑

s=1

xsx
′
s

)−1

= D
1
2
wt−1

(
aI +D

1
2
wt−1

(
t∑

s=1

xsx
′
s

)
D

1
2
wt−1

)−1

D
1
2
wt−1

Lemma 2. For any x, b ∈ Rn and a symmetric positive definite matrix A:

x′Ax− 2b′x = (x−A−1b)′A(x−A−1b)− b′A−1b

Proof. Expanding quadratic form:

(x−A−1b)′A(x−A−1b) = x′Ax− 2b′A−1Ax+ b′A−1AA−1b

= x′Ax− 2b′x+ b′A−1b

Remark 1. From Lemma 2 immediately follows:

w′
(
T−1∑
t=1

xtx
′
t + aD−1

wt−1

)
w − 2w′

(
T−1∑
t=1

xtyt

)
=w −(T−1∑

t=1

xtyt

)′(T−1∑
t=1

xtx
′
t + aD−1

wt−1

)−1
′(T−1∑

t=1

xtx
′
t + aD−1

wt−1

)
w −(T−1∑

t=1

xtyt

)′(T−1∑
t=1

xtx
′
t + aD−1

wt−1

)−1
−

(
T−1∑
t=1

xtyt

)′(T−1∑
t=1

xtx
′
t + aD−1

wt−1

)−1(T−1∑
t=1

xtyt

)
(3)

Lemma 3. If an algorithm follows Bayesian strategy with Gaussian likelihood and
prior (2) such that absolute value of the each element of the weight vector is not
zero, w0 is initialised uniformly and a > 0, then the posterior distribution is:

N

(T−1∑
t=1

xtyt

)′(T−1∑
t=1

xtx
′
t + aD−1

wt−1

)−1

,
1

2σ2

(
T−1∑
t=1

xtx
′
t + aD−1

wt−1

)−1

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Proof. Expanding posterior (6), by using (2) and ignoring the normalising constant
we get:

p(w|ST−1) ∝ exp

(
−η

T−1∑
t=1

(yt − w′xt)2 − aηw′D−1
wt−1

w

)

= exp

(
−η

(
w′
(
T−1∑
t=1

xtx
′
t + aD−1

wt−1

)
w − 2w′

T−1∑
t=1

xtyt +

T−1∑
t=1

y2t

))

= exp

−η(w −(T−1∑
t=1

xtyt

)′(T−1∑
t=1

xtx
′
t + aD−1

wt−1

)−1
′

(
T−1∑
t=1

xtx
′
t + aD−1

wt−1

)w −(T−1∑
t=1

xtyt

)′(T−1∑
t=1

xtx
′
t + aD−1

wt−1

)−1


−

(
T−1∑
t=1

xtyt

)′(T−1∑
t=1

xtx
′
t + aD−1

wt−1

)−1(T−1∑
t=1

xtyt

)

+

(
T−1∑
t=1

xtyt

)′(T−1∑
t=1

xtx
′
t + aD−1

wt−1

)−1(T−1∑
t=1

xtyt

)
+

T−1∑
t=1

y2t

)

∝ exp

−η(w −(T−1∑
t=1

xtyt

)′(T−1∑
t=1

xtx
′
t + aD−1

wt−1

)−1
′

(
T−1∑
t=1

xtx
′
t + aD−1

wt−1

)w −(T−1∑
t=1

xtyt

)′(T−1∑
t=1

xtx
′
t + aD−1

wt−1

)−1
 (4)

The last and the second last equality follows from (8) and (3) respectively. The
last proportionality (4) can be recognised as probability density function of the
multivariate Normal distribution.

Theorem 1. If an algorithm follows a Bayesian strategy with Gaussian likelihood
and prior (2) such that weights at trial T−1 are not null, w0 is initialised uniformly
and a > 0, then the predictive distribution is expressed as:

N

((∑T−1
t=1 xtyt

)′ (∑T−1
t=1 xtx

′
t + aD−1

wt−1

)−1
xT ,

1
2σ2 xT

(∑T−1
t=1 xtx

′
t + aD−1

wt−1

)−1
xT

)

Proof. To obtain the predictive distribution for Normal/Gaussian likelihood with
sequence S we need to solve the following:

p(y|xT , ST−1) =

∫
Rn
p(y|xT , w)p(w|ST−1)dw (5)
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with the prior distribution (2) and the posterior is:

p(w|ST−1) =

(∏T−1
t=1 p(yt|xt, w)

)
p(w)∫

Rn

(∏T−1
t=1 p(yt|xt, w)

)
p(w)dw

(6)

Thus, the predictive distribution at time T for y given the sequence ST−1 =
x1, y1, .., xT−1, yT−1 requires evaluation of the following integral:∫

Rn
1√

2πσ2
e

(w′xT−y)
2

2σ2
∏T−1
t=1

1√
2πσ2

e
(w′xt−yt)2

2σ2 exp
(
− a

2σ2w
′D−1

wt−1
w
)

dw∫
Rn
∏T−1
t=1

1√
2πσ2

e
(w′xt−yt)2

2σ2 exp
(
− a

2σ2w′D
−1
wt−1w

)
dw

(7)

Let η = 1
2σ2 and,

LwT =
T∑
t=1

(yt − w′xt)2 =
T∑
t=1

y2t − 2w′
(

T∑
t=1

xtyt

)
+ w′

(
T∑
t=1

xtx
′
t

)
w (8)

The posterior distribution Lemma 3 can be thought of online variant of the poste-
rior obtained by Park and Casella [2008]. Since the posterior predictive distribution
is a weighted average over parameter space where each parameter is weighted by
its posterior probability (see (5) and for further details see for example [Murphy,
2014]).

By applying Lemma 1 we lift the condition on weights and get the following
explicit algorithm for OSLOG. We place the absolute value of each element of the
weight vector on the diagonal of a matrix that has all off diagonal entries zero and
in the algorithm we denote it as: diag(|wt−1,1|, ..., |wt−1,n|) = diag(abs(w)).

Algorithm 1 OSLOG

Initialise: a > 0,M = 0n×n, b = 0n×1 and w = 1 ∈ Rn×1

FOR t = 1, 2, ...
(1) Read xt ∈ Rn
(2) Dwt−1 = diag(abs(w))
(3) γ = w′xt
(4) M = M + xtx

′
t

(5) A−1 =
√
Dwt−1

(
aI +

√
Dwt−1M

√
Dwt−1

)−1√
Dwt−1

(6) Read yt ∈ R
(7) b = b+ ytxt
(8) w = A−1b

END FOR

Remark 2. In Algorithm 1 line 8 can be allowed to make passes until conver-
gence to have higher level of sparsity. We know from the sequential compactness
theorem (see for example [Kotowicz, 1990]) that any closed and bounded sequence
in Euclidean space converges. Further details can be found in [Abbott, 2001, Rudin
et al., 1976, Tao, 2011]. Theorem 8 in [Rajaratnam et al., 2016] shows that SLOG
converges to the lasso solution under some regularity conditions.
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In Algorithm 1, the matrix A−1 is symmetric and positive definite, so its in-
verse exists at each trial. At each trial, the system of equations solved is unique
without making stochastic assumptions. However, calculating the posterior pre-
dictive distribution involves measures and integrals. Therefore for measure, we
assume consistency with the topological space. It is also assumed that the predic-
tion space is a topological space equipped with σ−algebra, and the set of parameter
w ∈ Θ = Rn is equipped with σ− algebra1.

3 Analysis of the performance guarantee

The goal is to formulate the upper bound on the cumulative squared loss. Theo-
rem 1 implies that the prediction of Algorithm 1 corresponds to the mean of the
posterior predictive parameter w weighted by the posterior probability [Murphy,
2014]. Interestingly, Kivinen and Warmuth [1999] showed that the likelihood of the
weighted average can be interpreted as the loss of the Online Bayesian Strategy.

In the following, we denote the cumulative squared loss
∑T
t=1(yt − w′xt)2 by

LwT and set AT to be
(∑T

t=1 xtx
′
t + aD−1

wt−1

)
.

Theorem 2. For any trial t = 1, 2, ..., T , any a > 0 the following holds:

LT (OSLOG) ≤ inf
w

(
LwT + a||D−

1
2

wt−1w||
2
2

)
+ Y 2

(
2n ln

(
16Y 2

a
√
π

)
+ ln det

AT
8Y 2

)
(9)

where yt ∈ [−Y, Y ] such that Y ≥ 0 and absolute value of each element of the
weight vector at T − 1 is not zero.

Proof. To prove the theorem considering following Lemma and the Remark:

Lemma 4. For prior (2) at time t = 1, 2, ... the cumulative loss of OSLOG is:

Lt(OSLOG) = logβ

∫
Rn
βL

w
T p(w)dw

where β = e−η.

Proof. One could proof the statement by noticing that Bayesian Strategy Q such
that {Qw|w ∈ Rn} with prior p(w) is defined by:

Q =

∫
Rn
Qwp(w)dw

So, the main statement of the Lemma is the definition of logβ Q. Hence, it holds by
the definition of the Bayesian decision rule. This is a popular approach for Online
Bayesian algorithms, see for example [Kakade and Ng, 2005].

Remark 3. From [Kivinen and Warmuth, 1999] we know the equality “ = ” in
the above Lemma is replaced by the inequality “ ≤ ” for η = 1

8Y 2 such that LwT
is (8) and the outcomes are bounded in [−Y, Y ]. In other words for any value of

η > 1
8Y 2 , β(yt−w′xt)2 will not be concave for w′xt.

1 This is a mild assumption which is always satisfied in practice. Not making such assump-
tion will lead to counter intuitive results such as Banach-Tarski paradox. For details see, for
example, [Tao, 2011]
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The problem is reduced to evaluating the integral of Lemma 4. For direct
evaluation of the integral see Theorem 3 of Chapter 2 in [Beckenbach and Bellman,
2012].

logβ

∫
Rn
dw
(aη

2

)n
× exp

(
−ηw′

(
t∑

s=1

xsx
′
s + aD−1

wt−1

)
w + 2η

(
t∑

s=1

ysxs

)
w − η

t∑
s=1

y2s

)
(10)

Remark 4. The integral to be calculated is of the form:∫
Rn
e−f(w)dw = e−f0

πn/2√
detA

where f0 = infw f(w). Notice,

f(w) = −

(
t∑

s=1

2ys(w
′xs)

)
+ w′

(
aD−1

wt−1
+

t∑
s=1

xsx
′
s

)
w +

t∑
s=1

y2s

We proceed by differentiating with respect to w:

Of(w) = −

(
t∑

s=1

2ysxs

)
+ 2w′

(
aD−1

wt−1
+

t∑
s=1

xsx
′
s

)

clearly the second differential is negative implying the infimum is attained and by
substitution the result is obtained.

From (10) and as per the Remark 3:

LT (OSLOG) = logβ

∫
Rn
dw
(aη

2

)n
× exp

(
−ηw′

(
T∑
t=1

xtx
′
t + aD−1

wt−1

)
w + 2η

(
T∑
t=1

ytxt

)
w − η

T∑
t=1

y2t

)

= logβ e
−η inf

(
LwT+a||D

− 1
2

wt−1
w||22

)
πn/2

det η
(∑T

t=1 xtx
′
t + aD−1

wt−1

)
= inf

w

(
LwT + a||D−

1
2

wt−1w||
2
2

)
+ logβ

((aη
2

)n πn/2√
det ηAT

)

= inf
w

(
LwT + a||D−

1
2

wt−1w||
2
2

)
+ logβ

((aη
2

) 2n
2 πn/2√

det ηAT

)

= inf
w

(
LwT + a||D−

1
2

wt−1w||
2
2

)
− 1

2
logβ

((
2

aη

)2n
det ηAT
πn

)

inf
w

(
LwT + a||D−

1
2

wt−1w||
2
2

)
− 1

2
logβ

((
4

a2η2π

)n
det ηAT

)
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= inf
w

(
LwT + a||D−

1
2

wt−1w||
2
2

)
− 1

2

ln
((

4
a2η2π

)n
det ηAT

)
lnβ

≤ inf
w

(
LwT + a||D−

1
2

wt−1w||
2
2

)
− 1

2

ln
((

16Y 4

a2π

)n
det AT

8Y 2

)
− 1

8Y 2

= inf
w

(
LwT + a||D−

1
2

wt−1w||
2
2

)
+ Y 2ln

((
256Y 4

a2π

)n
det

AT
8Y 2

)
= inf

w

(
LwT + a||D−

1
2

wt−1w||
2
2

)
+ Y 2n ln

(
256Y 4

a2π

)
+ Y 2 ln det

AT
8Y 2

= inf
w

(
LwT + a||D−

1
2

wt−1w||
2
2

)
+ Y 2

(
2n ln

(
16Y 2

a
√
π

)
+ ln det

AT
8Y 2

)
(11)

Bounding ||xt||∞ ≤ R and C ≤ ||w||1 ≤ P for t = 1, 2, ..., T and denoting
elements of diagonal matrix Dwt−1 by dij . Now we upper bound the following
expression:

ln detAT = ln det

(
aD−1

wt−1
+

T∑
t=1

xtx
′
t

)
we use Beckenbach and Bellman [2012] Theorem 7 (in Chapter 2) to bound

the determinant i.e.:

ln detAT ≤ ln
n∏
i=1

(
a

dii
+

T∑
t=1

(xt,i)
2

)
≤

n∑
i=1

ln
(
aC−1 + TR2

)

ln detAT ≤ n ln
(
aC−1 + TR2

)
= n ln

a+ CTR2

C
(12)

Corollary 1. For any trial t = 1, 2, ..., T and any a > 0 such that ||xt||∞ ≤ R
and C ≤ ||w||1 ≤ P , the following holds:

LT (OSLOG) ≤ inf
w

(
LwT + a||D−

1
2

wt−1w||
2
2

)
+ nY 2 ln

(
32Y 2(a+ CTR2)

a2Cπ

)
for yt ∈ [−Y, Y ], such that Y ≥ 0 and C 6= 0.

Proof. From Theorem 2 and (12), we write:

LT (OSLOG) ≤ inf
w

(
LwT + a||D−

1
2

wt−1w||
2
2

)
+ Y 2

(
2n ln

16Y 2

a
√
π

+ n ln
a+ CTR2

8Y 2C

)

= inf
w

(
LwT + a||D−

1
2

wt−1w||
2
2

)
+ Y 2

(
n ln

256Y 4

a2π
+ n ln

a+ CTR2

8Y 2C

)
= inf

w

(
LwT + a||D−

1
2

wt−1w||
2
2

)
+ Y 2

(
n ln

(
256Y 4(a+ CTR2)

8a2πY 2C

))
= inf

w

(
LwT + a||D−

1
2

wt−1w||
2
2

)
+ Y 2

(
n ln

(
32Y 2(a+ CTR2)

a2Cπ

))
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We may write the above expression as follows:

LT (OSLOG) ≤ LwT + aP 2C−1 + nY 2 ln

(
32Y 2(a+ CTR2)

a2Cπ

)

AAR mentioned in [Vovk, 2001] has the following guarantee:

LT (AAR) ≤ LwT + aP 2 + nY 2 ln

(
1 +

TR2

a

)
(13)

and the guarantee of OSLOG is as follows:

LT (OSLOG) ≤ LwT + aP 2C−1 + nY 2 ln

(
32Y 2(a+ CTR2)

a2Cπ

)
The following theorem shows that under certain conditions OSLOG has a bet-

ter guarantee:

Theorem 3. If ||xt||∞ ≤ R and C ≤ ||w||1 ≤ P such that C ≥ 1, a ≥ 32Y 2

π , and
n is some positive integer, then ∀t, the following holds:

LUT (OSLOG) ≤ LUT (AAR)

where LUT (.) denotes the upper bound on the cummulative squared loss.

Proof. We show that LUT (OSLOG) − LUT (AAR) ≤ 0. From (13) and Corollary 1
we write:

aP 2

(
1

C
− 1

)
+ nY 2 ln

(
32Y 2(a+ CTR2)

a2Cπ

)
− nY 2 ln

(
a+ TR2

a

)
≤ 0

aP 2

(
1

C
− 1

)
+ nY 2 ln

32Y 2(a+ CTR2)

aCπ(a+ TR2)
≤ 0

For C ≥ 1, aP 2
(

1
C − 1

)
≤ 0. It is clear that ||w|| ≥ ||D−

1
2

w w|| for C ≥ 1. The

condition a ≥ 32Y 2

π ensures that πaC(a+TR2) ≥ 32Y 2(a+CTR2). This concludes
the proof.

4 Empirical study

To show2 the usefulness of our suggested algorithm compared to the baselines,
Aggregation Algorithm for Regression (AAR) and Online Ridge Regression (ORR)
[Vovk, 2001], two real-world datasets, Gaze Data and Istanbul Stock Exchange Data
are used.

Gaze data [Quinonero-Candela et al., 2006] consists of 450 observations of 12
features related to measurements obtained from head-mounted cameras for eye
tracking, estimating the positions of the eyes of the subject when the subject
is looking at the monitor. The dependent variable is the position of the marker

2 All algorithms are avaialble from SOLMA library: https://github.com/proteus-
h2020/proteus-solma
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Table 1 Performance comparison.

Algorithm Mean Variance CSL R2

Gaze data
AAR 504.26 46851.78 7901991 0.747
ORR 507.78 940718.40 406403726 0.042
OSLOG 544.79 41697.51 35829520 0.059
Istanbul Exchange Stock data
AAR 0.002 0.0003 0.032 0.873
ORR 0.002 0.0004 0.0232 0.903
OSLOG 0.002 0.0004 0.0210 0.912

Table 2 Computational efficiency comparison in milliseconds.

Alg. Min. LQ. Mean Median UQ. Max.
Gaze data
AAR 115.30 116.73 120.73 119.80 122.05 150.11
ORR 119.12 121.90 126.06 124.11 1126.55 203.90
OSLOG 65.21 70.58 72.62 72.78 74.03 88.21
Istanbul Exchange Stock data
AAR 111.58 116.21 119.14 118.17 120.32 174.21
ORR 110.95 116.17 119.22 117.60 120.59 160.95
OSLOG 74.74 80.00 82.86 82.59 84.75 127.25

displayed on a computer monitor. We expect cameras to lose their calibration
occasionally (high variance).

Istanbul stock exchange (ISE) Akbilgic et al. [2014] data3 has 536 observations
with 8 attributes that are: S&P 500 Index, Deutscher Aktien Index, FTSE 100
Index, Nikkel Index, Bovespa Index, Bovespa Index, MSCI Europe Index and
MSCU Emerging Markets Index. Day and time sort all the attributes. The goal is
to make the prediction of ISE in USD.

We evaluate their accuracy and efficiency. We use 20% of the data to find the
best tuning parameter a > 0 and then we fit all the algorithms on the data in an
online mode.

For the sake of analysis of the performance, we report the mean, variance,
Cumulative Squared Loss (CSL) and the R2 statistic of the predicted outcomes
for each dataset. Table 1 show that in the case of gaze data, AAR outperforms all
the algorithms, ORR being the worst. On Istanbul Stock Exchange data OSLOG
outperforms all the algorithms, AAR being the worst.

The empirical study shows that when the statistical assumptions of normality is
violated, AAR is likely to perform better than OSLOG. However, when statistical
assumptions are satisfied OSLOG is likely to outperform AAR.

Figure 2 studies the effect of sparsity and multicollinearity on OSLOG. The
true model: y = Xw + ε is considered. To study sparsity, simulation is conducted
using 1000 observations and 100 predictors. The sparsity plot is generated by vary-
ing the number of predictors in the true model from 2 to 100. The plot illustrates
that as the sparsity decreases, the RMSE increases for both AAR and OSLOG.
The aim of the second plot is to study multicollinearity. It shows no clear pat-
tern, which indicates that multicollinearity sometimes helps OSLOG to estimate

3 https://archive.ics.uci.edu/ml/datasets/ISTANBUL+STOCK+EXCHANGE
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the error term. However, this is not the case for AAR. There as multicollinearity
increases, RMSE also increases. On the other hand, OSLOG handles multinco-
linearity and sparsity better, mainly because at each trial OSLOG weights are
updated. This is not done for AAR (there is no explicit update of weights in the
AAR algorithm). The simulation is done by considering correlation in predictors,
i.e., Cov(X)ij = m|i−j|, where m = 0.1, 0.2, ..., 0.9.
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Fig. 2 Effect of sparsity and multicollinearity on AAR and OSLOG.



Online Bayesian Shrinkage Regression 13

5 Conclusion

We proposed an online algorithm for SLOG regression and presented its perfor-
mance guarantee (without making any distributional assumptions) with regret
bounded by a logarithmic function of T . Our online formulation of SLOG does
not require a hierarchical structure. Another fundamental difference in SLOG and
OSLOG is that SLOG requires σ2 → 0, while OSLOG requires σ2 = 4Y 2. In this
sense, OSLOG could be considered as an online variant of the Bayesian lasso with
known fixed σ2.

The empirical study shows that when the assumptions of multicolinearity and
sparsity are violated, OSLOG is much better compared to the other algorithms.
But, when the assumption of normality is violated, AAR performs a little better
compared to OSLOG. Thus, if the underlying statistical properties are unknown,
OSLOG is a better choice as a tradeoff between normality, multicolinearity and
sparsity.

One of the interesting future research direction as a follow-up of this study to
investigate the tightness of the given guarantee. Also as a natural extension, it is
quite appealing to explore other loss functions besides the squared loss function.
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