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Abstract—Reconstructing human figures from a single view-
point has long intrigued researchers, particularly for augmented
reality (AR) applications. While significant progress has been
made in single-human body reconstruction, densely populated
scenes with substantial occlusions pose complex challenges. This
paper introduces 3DCrowd+, an advanced two-stage methodology
for 3D reconstruction of human meshes in crowded environments.
Building on the 3DCrowdNet framework, our model refines
HRNet 2D pose estimation and integrates Lite-HRNet with
Shuffle Block and CoordAttention modules, achieving robust
feature extraction and lightweight performance. 3DCrowd+ com-
bines an attention mechanism with a model pruning algorithm,
demonstrating high accuracy and efficiency on various datasets.
This research bridges the gap between complex crowd scenes
and detailed 3D reconstruction, offering a promising solution for
precise crowd modeling in AR environments.

Index Terms—3D Reconstruction, Augmented Reality (AR),
Crowd Modeling, Pose Estimation, Computer Vision

I. INTRODUCTION

Recent advancements in artificial intelligence-generated
content (AIGC) have revolutionized digital imaging and recon-
struction, particularly in reconstructing 3D character meshes
from 2D photos, impacting industries like gaming and film.
For example, Unreal Engine’s MetaHuman Animator [4] al-
lows users to create digital human depictions easily. This
progress is vital for augmented reality (AR) and the metaverse,
but applying it to crowd scenarios remains complex due to
diverse poses, interactions, and frequent occlusions. The main
challenges in 3D crowd estimation are maintaining spatial
resolution and managing occlusions.

Preserving spatial resolution is essential as scene complex-
ity increases, but models often struggle with high-resolution
individual depiction. Managing occlusions in dense scenes,
where individuals overlap or conceal each other, is also
challenging. Existing models [31, 15] often have to choose
between capturing a scene’s expanse and preserving individual
details, frequently missing the precise attributes and postures
of obscured individuals.

This paper introduces the 3DCrowd+ human reconstruction
network, inspired by existing models. It integrates HRNet
[29] with the Shuffle Block module [17] and CoordAttention
[9], maintaining high-resolution portrayals while processing
image attributes of individuals in crowds. Using these 2D
depictions, the model predicts individual depth, combining

this information into a specialized 3D network. The result is a
mesh capable of accurately handling occlusions within crowds.
The following sections will explore this 3D reconstruction
approach and its implications for AR applications.

II. RELATED WORK

A. Multi-person Pose Estimation

Deep learning-based multi-person pose estimation operates
under two paradigms: top-down and bottom-up.

1) Top-down Paradigm: The top-down strategy detects in-
dividuals first, then assesses each person’s pose [30, 5, 29]. It
is effective for single-person pose estimation but can be slow
and struggles in crowded environments due to overlapping
bounding boxes and occlusions.

2) Bottom-up Paradigm: The bottom-up approach [14, 2]
identifies all body parts or keypoints first, then links them
to individuals. OpenPose [20] exemplifies this method, which
is more efficient as it bypasses initial individual segmentation.
However, it can be challenging to correctly associate keypoints
in dense crowds with significant occlusions. These methods
often lack shape data, crucial for detailed applications.

B. Multi-person Pose and Shape Estimation

Pose estimation focuses on body joints, while shape es-
timation captures individual physique contours. Extracting a
3D body mesh from a single RGB image is challenging
due to limited 3D information and various distortions like
background, lighting, and clothing texture.

Hogg et al. [8] introduced the WALKER model, translating
images into textual human attributes. Subsequent research [23,
7] used iterative optimization to refine 3D body models based
on 2D annotations. Recent efforts combine parametric human
models with deep learning [28], reducing data requirements
by leveraging parametric blueprints. Lassner et al. [13] used
convolutional neural networks to detect keypoints for 3D
reconstruction but still required extensive annotated data. Re-
searchers are now using 2D pose datasets [22, 6] to minimize
keypoint detection needs.

1) Parametric Body Models: Key parametric models in 3D
reconstruction include SCAPE [1] and SMPL [18], offering
detailed triangular mesh representations. SMPL is more pre-
cise and compatible with rendering engines, capable of deriv-



ing 3D keypoints directly from its surface. It has significantly
advanced 3D human shape reconstruction.

2) Multi-stage vs. Single-stage: Some 3D models use two-
stage frameworks, reconstructing each detected person in-
dividually. Jiang et al. [12] developed CRMH, refining it
with penetration and perceptual loss but struggled with ac-
curate dimension reconstructions. Choi et al. [3] introduced
3DCrowdNet to handle occlusion using HRNet, effective in
dense environments but computationally demanding. Single-
stage solutions [34, 25, 26] offer efficient end-to-end mesh
recovery but rely on low-resolution inputs, limiting high-
resolution capabilities and yielding only relative depths.

III. METHODOLOGY

A. Model

This research introduces 3DCrowd+, a resilient two-stage
method for 3D human mesh reconstruction in dense, occluded
settings. 3DCrowd+ modifies the HRNet 2D pose estimation
architecture from 3DCrowdNet by integrating Lite-HRNet for
a lightweight structure. By combining Shuffle Block [19] and
CoordAttention, we maintain feature extraction capabilities
while achieving a lightweight framework, enabling precise 3D
mesh estimation in crowded environments.

1) Baseline Networks:
• HRNet [2]: HRNet preserves high-resolution features

using parallel pathways, avoiding spatial detail loss from
downsampling and upsampling. It combines outputs from
each stage for accurate 2D models that support detailed
3D meshes in 3DCrowd+.

• Lite-HRNet [33]: Lite-HRNet is a streamlined version
of HRNet, optimized for human pose estimation. It re-
duces channel dimensions and redundant computations
while maintaining spatial data integrity, merging multi-
resolution representations efficiently to balance efficacy
and efficiency.

• CoordAttention [9]: CoordAttention enhances feature ex-
traction by integrating x and y coordinate data, improving
positional precision and reducing confusion in overlap-
ping figures without significant computational overhead.

Fig. 1. CoordAttention Structure
[9]

• Shuffle Block [35]: Shuffle Block, part of ShuffleNetV1,
reduces computational complexity and parameters using
Pointwise Group Convolutions and Channel Shuffle. Ma
et al. [19] improved this with the Channel Split technique,
creating a dual-branch structure. One branch undergoes
1x1 and 3x3 convolutions, while the other remains un-
touched. Outputs are fused and channels are rearranged
using Channel Shuffle.

2) Structural Innovations: To balance feature extraction
and efficiency, we introduce the Shuffle Attention Block
by merging Shuffle Block with CoordAttention. Conditional
Channel Weight (CCW) [36] is also incorporated to optimize
time complexity. The structure is visualized in Figure 3.

Fig. 2. Shuffle Block Structure
[19]

Fig. 3. The presented Shuffle Atten-
tion Block structure

The conditional channel weighting method has a complexity
that is linear to the number of input channels. Time complexity
is significantly lower compared to 1×1 point-by-point convo-
lution. Furthermore, the method effectively replaces the role
of 1x1 point-by-point convolution using weights H and F
as a bridge of information exchange between channels from
other branches and the resolution. In HRNet, the s stage
has s parallel branches and the corresponding s weight maps
W , W2, ...,Ws. The weight maps of all channels at different
branching rates are computed cross-channel by the lightweight
module H (Cross-resolution Weight Computation), which can
be represented as Figure 4. X denotes the different branch
input feature maps, X1 is the maximum branching rate feature
map and Xs is the minimum resolution feature map.

Fig. 4. Cross-resolution weight formula

To produce a specific output size X′ , we begin by generating
the input feature map using adaptive average pooling. This
output size is then spliced to obtain the weighted feature map
by following the steps described in Figure 5.

Therefore the use of the lightweighting module H (Spatial
Weight Computation) to accept weight maps from different



Fig. 5. Weighted feature map formula

branches with different resolutions can serve to exchange
information across channels and resolutions. After the output
of the lightweighting module H has been convolved with a
depth of 3×3 as an input into the module F . The module
calculates the spatial weights for each of the different splitting
rates by calculating the weight vectors ws; which are the same
for all positions, and the spatial weights depend on all the
pixels of the input channel, which can be represented as Figure
6.

Fig. 6. Spatial weight computation formula

The implementation flow of module F can be represented
as Figure 7.

Fig. 7. Global channel capture formula

It can be seen that the use of the on structure can exploit the
correlation between the input feature map passes to capture the
channel scale dependencies from the global. The computation
introduced by the Shuffle Attention Block is only marginally
higher than the base Shuffle Block. Its design not only
allows adaptive weighting from multi-resolution inputs and
network channels but also excels at harnessing cross-channel
information both spatially and directionally. By integrating the
Shuffle Attention Block into Stages 2-4, we’ve crafted the
lightweight pose estimation network central to this study, with
its architecture presented in Figure 8.

Fig. 8. Human posture estimation network structure

3) Stage Integration: 3DCrowd+ adopts a dual-phase ap-
proach. In the first phase, it leverages the lightweight human
pose estimation network presented in this study for 2D human
pose recognition. During the subsequent 3D human mesh
reconstruction phase, 3DCrowd+ is built upon the foundational
architecture of 3DCrowdnet. Its primary goal is to discern
depth and shape disparities within the focal figure, relying
on the image features extracted from the 2D phase. To sustain

the spatial activation specific to the target figure, 3DCrowd+
incorporates the union-based regressor from 3DCrowdnet.
This ensures the distinction of individual features amidst a
crowd. The methodology zeroes in on isolating image features
rooted in the joint positions of the focal person, enabling
it to differentiate from non-target individuals. Consequently,
in scenarios with dense crowds and frequent interpersonal
occlusions, 3DCrowd+ can adeptly pinpoint and reconstruct
the 3D human mesh.

B. Dataset

The MS COCO 2017 dataset [27] was used to train the
human pose estimation network in 3DCrowd+. COCO pro-
vides annotations for 17 keypoints, including joints like the
nose, eyes, shoulders, and ankles. It offers a wide range of
human postures, activities, interactions, and occlusions, mak-
ing it a robust training environment. Each keypoint annotation
includes (x, y) coordinates and visibility indicators, which help
model human postures even in crowded scenes. The diversity
and challenges in COCO allow for a thorough evaluation of the
model’s resilience and precision. For testing, we used the 3D
Poses in the Wild dataset [16], which offers precise 3D pose
annotations in natural environments. It includes 60 sequences
with over 51,000 frames featuring 7 actors in 18 different
outfits. This dataset provides valuable diversity for testing and
training. Unlike HumanEva [24] and H3.6M [11], which focus
on controlled indoor settings, 3D Poses in the Wild offers
accurate 3D pose data in complex outdoor scenarios.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To validate the efficacy of the algorithm developed in this
thesis, the necessary software platforms were installed based
on the algorithm’s requirements and prevailing conditions. An
experimental framework was constructed within the testing
environment, and pertinent datasets were chosen. These mea-
sures were taken to guarantee a stable and consistent exper-
imental environment, thereby ensuring accurate validation of
the algorithm.

A. Experimental Environment

All experiments in this paper are based on the Linux
operating system, and the specific experimental environment
configuration is shown in the following Figure 9.

Fig. 9. Experimental Environment

The experiments use PyTorch deep learning framework, and
the specific steps for building the system environment are
shown below.

• Installation of a Linux dual system on top of a Windows
10 system.



• Installation of Miniconda virtual environment and con-
figuration of header files, library file settings.

• Install Pytorch 1.7.1, Python 3.7.3 and its dependencies.

B. Model Training

Figures 10 show the accuracy curve and model loss curve
of the proposed model with 280 batches of training. From the
figure, it can be seen that the model loss starts to converge
at 170 batches of training, and the final model accuracy can
reach about 82%.

Fig. 10. Accuracy and Loss after trained 280 epoch

C. Evaluation Standards

We employ both quantitative and qualitative methods for
evaluation. Quantitatively, we benchmark the refined 2D pose
and 3D mesh estimation networks in 3DCrowd+ against ex-
isting high-performing models. Qualitatively, we compare 3D
mesh outputs from 3DCrowd+ with the original 3DCrowdNet.

1) Quantitative Evaluation: We benchmarked our algo-
rithms against state-of-the-art models using the COCO2017
dataset. Larger networks included Hourglass, CPN, Sim-
pleBaseLine [32], and HRNet; smaller ones included Mo-
bileNetV2 [21], Shuffle NetV2, and Small HRnet. The results
are shown in Figure 11.

With a 256×192 input image, our model has 1.76M pa-
rameters and 0.42GFLOPs, achieving an AP score of 67.3.
For a 384x288 input, it maintains 1.76M parameters with
0.95GFLOPs, reaching an AP of 70.3, demonstrating high
accuracy with a lightweight structure.

Fig. 11. Posture estimation networks

To evaluate 3D mesh estimation, we use Mean Per Joint
Position Error (MPJPE), Procrustes-Aligned MPJPE (PA
MPJPE), and Mean Per Joint Position Error Posture (MPVPE).
We compare our model with previous methods [10, 12, 26] and
the baseline 3DCrowdNet using real-world 3D pose datasets.
The new 3DCrowd+ model shows improvements of 3.25%

in MPJPE, 5.92% in PA MPJPE, and 1.81% in MPVPE
over 3DCrowdNet, demonstrating its efficacy in 3D pose
estimation.

Fig. 12. 3d mesh reconstruction networks
[3]

2) Qualitative Evaluation:
• A side-by-side qualitative comparison between our

3DCrowd+ model and the BASELINE 3DCrowdNet is
presented in Figure 13. When both models are tested
using the specified ”3D Poses in the Wild” dataset, it’s
evident that 3DCrowd+ offers a more resilient 3D mesh
representation in complex, crowded scenarios. Further-
more, it demonstrates superior performance in capturing
spatial relationships.

Fig. 13. Validation results of 3D Poses in the Wild dataset

• In Figure 14, this paper further evaluates the effectiveness
of the 3DCrowd+ model in various application scenarios
by selecting multi-person images of different sizes and in
different scenarios.

V. CONCLUSION AND FURTHER WORKS

This thesis presented 3DCrowd+, an enhanced version of
3DCrowdNet, designed for 3D reconstruction in crowded
scenes. By integrating an attention mechanism and model
pruning algorithm, 3DCrowd+ performs robustly on field
datasets with lightweight parameters.

However, 3DCrowd+ has limitations, such as difficulties in
capturing subtle details like hand nuances and inconsistencies
in character positioning on a uniform ground plane (Figure
14). Future work will address these issues by enhancing



Fig. 14. Verification results of real application scenarios

adaptive models for specific character detection and refining
character bit value predictions. Integrating this method into
AR devices will allow user perception experiments, aiding in
optimization of user interactions with reconstructed scenes.
Future research will focus on:

• Specialized Hand Detection: Developing a network ded-
icated to hand detection to improve accuracy.

• Uniform Ground Plane Constraints: Creating strategies to
maintain consistent character positioning in larger scenes.

• Reducing Dependency on Pre-trained Models: Decreasing
reliance on SMPL models for greater robustness.

• Enhancing Detection of Smaller Characters: Improving
sensitivity to smaller characters for comprehensive scene
representation.

In conclusion, 3DCrowd+ shows significant advancements
in 3D reconstruction from crowded scenes, but further re-
finement is needed. By incorporating this method into AR
devices and conducting user perception experiments, we aim to
enhance user interaction and experience in augmented reality
environments.
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