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ABSTRACT

Visual Semantic Embedding (VSE) networks aim to extract the semantics of images and their descriptions
and embed them into the same latent space for cross-modal information retrieval. Most existing VSE net-
works are trained by adopting a hard negatives loss function which learns an objective margin between
the similarity of relevant and irrelevant image-description embedding pairs. However, the objective mar-
gin in the hard negatives loss function is set as a fixed hyperparameter that ignores the semantic differ-
ences of the irrelevant image-description pairs. To address the challenge of measuring the optimal simi-
larities between image-description pairs before obtaining the trained VSE networks, this paper presents
a novel approach that comprises two main parts: (1) finds the underlying semantics of image descrip-
tions; and (2) proposes a novel semantically-enhanced hard negatives loss function, where the learning
objective is dynamically determined based on the optimal similarity scores between irrelevant image-
description pairs. Extensive experiments were carried out by integrating the proposed methods into five
state-of-the-art VSE networks that were applied to three benchmark datasets for cross-modal information
retrieval tasks. The results revealed that the proposed methods achieved the best performance and can
also be adopted by existing and future VSE networks.

© 2022 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

In information retrieval, Visual Semantic Embedding (VSE) net-
works aim to create joint representations of images and textual
descriptions and map these in a joint embedding space (i.e. same
latent space) to enable various information retrieval-related tasks,
such as image-text retrieval, image captioning, and visual question
answering [1]. Within the shared embedding space, the aim is to
position the relevant image-description pairs far away from the
irrelevant pairs [2]. Currently, VSE literature can be summarised
into: (1) approaches that extend the cross-modal encoder-decoder
network for improving the learning of latent representations cross-
ing images and descriptions [3]; (2) specifically designed atten-
tion architectures that improve the performance of networks [4];
and (3) networks that are modified based on generative adversar-
ial methods for learning the common representation of images and
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descriptions [5]. The above-mentioned studies aim to improve the
VSE networks for information retrieval and have been evaluated
using the benchmark MS-COCO [6] and Flickr30K [7] datasets. Few
studies focus on exploring the learning potential of VSE networks.
The hard negatives loss function [3] defines the learning objective
of VSE networks, and it is commonly adopted by the current VSE
architectures [8].

Furthermore, the hard negatives loss function learns a fixed
margin that is the optimal difference between the similarity of the
relevant image-description embedding pair and that of the irrel-
evant embedding pair. However, the fixed margin ignores the se-
mantic differences between the irrelevant image-description pairs.
The hard negatives loss function does not consider the distance of
the irrelevant items to the query and sets the same learning ob-
jective (i.e. fixed margin) for both pairs, image-D1 and image-D2
(sample from Fig. 1), even though the semantic differences of the
irrelevant training pairs are useful for training an information re-
trieval model [9]. To illustrate this point, consider Fig. 1, where in
the irrelevant image-D1 pair the image and description are seman-
tically closer than those of the irrelevant image-D2 pair, but the
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Image content: 7wo kids are sitting at a table playing chess.
Irrelevant D1: Two kids are sitting at a table leating.
Irrelevant D2: Two peoplelare climbing a rock wall.

Fig. 1. Sample of irrelevant image-description pairs. Description D1 is the one se-
mantically closer to the image.

hard negatives loss function sets the same learning objective for
both pairs, i.e. image-D1 and image-D2, and this is not suitable. To
solve the limitations of the fixed margin, Wei et al. [10] introduced
a polynomial loss function with an adaptive objective margin, but
their method does not consider the optimal semantic information
from irrelevant image-description pairs.

Our paper aims to semantically enhance the hard negatives loss
function for exploring the learning potential of VSE networks. This
paper (1) proposes a new loss function for improving the learning
efficiency and the cross-modal information retrieval performance
of VSE networks; (2) embeds the proposed loss function within
state-of-the-art VSE networks, and (3) evaluates its efficiency using
benchmark datasets suitable for the task of cross-modal informa-
tion retrieval. The contributions of our paper are as follows.

* A novel approach that infers the semantics of image descrip-
tions by finding the underlying meaning of descriptions us-
ing eigendecomposition and dimensionality reduction (i.e. Sin-
gular Value Decomposition). The derived descriptions are then
utilised by a proposed semantically-enhanced hard negatives
loss function, entitled LSEH, when computing the optimal sim-
ilarities between irrelevant image-description pairs.

A semantically-enhanced hard negatives loss function that re-
defines the learning objective for VSE networks. The proposed
loss function dynamically adjusts the learning objective ac-
cording to the semantic similarities between irrelevant image-
description pairs. Ambiguous training pairs with larger optimal
similarity scores obtain larger gradients that are utilised by the
proposed loss function to improve training efficiency.

The proposed approach and loss function can be integrated into
other VSE networks that improve learning efficiency and cross-
modal information retrieval. Extensive experiments were car-
ried out by integrating the proposed methods into five state-of-
the-art VSE networks that were applied to the Flickr30K, MS-
COCO, and IAPR TC12 datasets, and the results showed that the
proposed methods achieved the best performance.

2. Related work

VSE Networks. VSE networks aim to align embeddings of rel-
evant images and descriptions in the same latent space for cross-
modal information retrieval [1]. Faghri et al. [3] proposed an Im-
proved Visual Semantic Embedding architecture (VSE++). Image re-
gion features extracted by the faster R-CNN [11] and their de-
scriptions were embedded into the same latent space by using a
fully connected neural network and a Gated Recurrent Units (GRU)
network [12]. Most state-of-the-art VSE networks improve upon
VSE++. Li et al. [13] introduced a Visual Semantic Reasoning Net-
work (VSRN) to enhance image features with image region rela-
tionships extracted by a Graph Convolution Network (GCN) [14];
Liu et al. [15] applied a Graph Structured Matching Network
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(GSMN) to build a graph of image features and words and learn the
fine-grained correspondence between image features and words;
Diao et al. [4] proposed the Similarity Graph Reasoning and Atten-
tion Filtration network (SGRAF) that extends the attention mech-
anisms of image and description sets. SGRAF also provides two
individual sub-networks to process the attention results between
the image features and the description - where a Similarity Graph
Reasoning network (SGR) builds a graph of the attention results
for reasoning, and a Similarity Attention Filtration network (SAF)
filters the important information from the attention results. Chen
et al. [8] proposed a variation of the VSE network, VSEoco, that ben-
efits from a generalized pooling operator which discovers the best
strategy for pooling image and description embeddings. Recently,
vision transformer-based networks, that are not relying on the
hard negatives loss function, have become popular for cross-modal
information retrieval [16]. However, compared to traditional VSE
networks, vision transformer-based cross-modal retrieval networks
require a large amount of data for training and the time they re-
quire for retrieving the results of a query makes them unsuitable
for real-world applications [1]. The hashing-based network is an-
other active solution for cross-modal information retrieval [17]. For
example, Liu et al. [18] firstly proposed a hashing framework for
learning varying hash codes of different lengths for the compari-
son between images and descriptions, and the learned modality-
specific hash codes contain more semantics. Hashing-based net-
works are concerned with reducing data storage costs and improv-
ing retrieval speed. Such networks are out of scope for this paper
because the focus herein is on VSE networks which mostly aim to
explore the local information alignment between images and de-
scriptions for improved retrieval performance.

Loss Functions for Cross-modal Information Retrieval. One
of the earliest and most used cross-modal information retrieval
loss functions is the Sum of Hinges Loss (LSH) [19]. LSH is also
known as a negatives loss function, and it learns a fixed margin
between the similarities of the relevant image-description embed-
ding pairs and those of the irrelevant embedding pairs. A more re-
cent hard negatives loss function, the Max of Hinges Loss (LMH)
[3], is adopted in most recent VSE networks, due to its ability to
outperform LSH [20,21]. An improved version of LSH, LMH only
focuses on learning the hard negatives, which are the irrelevant
image-description embedding pairs that are nearest to the rel-
evant pairs. Song et al. [9] presented a margin-adaptive triplet
loss for the task of cross-modal information retrieval that uses a
hashing-based method which embeds the image and text into a
low-dimensional Hamming space. Liu et al. [22] applied a variant
triplet loss function into their novel VSE network for cross-modal
information retrieval, where the input text embedding for the loss
is replaced by the reconstructed image embedding of the network.
Recently, Wei et al. [10] proposed a polynomial [23] based Univer-
sal Weighting Metric Loss (LUWM) with flexible objective margins,
and that has been shown to outperform existing hard negatives
loss functions.

A summary of the limitations of the existing loss functions are
as follows. (1) The learning objectives of LSH [19] and LMH [3] are
not flexible because of their fixed margins. (2) The adaptive mar-
gin in [9] is not optimal, because it relies on the computed sim-
ilarities between irrelevant image-description embedding pairs by
the training network which is optimising. (3) The modified ranking
loss of [22] cannot be integrated into other networks. (4) LUWM
[10] does not consider the optimal semantic information from ir-
relevant image-description pairs.

VSE Networks with a Negatives Loss Function. LMH was pro-
posed by Faghri et al. [3], and thereafter other VSE networks
adopted LMH. For improving the attention mechanism, Lee et al.
[24] proposed an approach to align the image region features with
keywords of the relevant image-description pair; and Diao et al.
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[4] built an architecture that deeply extends the attention mecha-
nisms of image-image, text-text, and image-text tasks. For extract-
ing high-level semantics, Li et al. [13] utilised GCN [14] to explore
the relations of image objects. For aggregating the image and de-
scription embeddings, Chen et al. [8] proposed a special pooling
operator. Wang et al. [25] proposed an end-to-end VSE network
without relying on a pre-trained CNN for image feature extraction
tasks.

Methods for Finding the Underlying Meaning of Descriptions.
BERT [26] is a supervised and widely used deep neural network for
NLP tasks [29]. Singular Value Decomposition (SVD) [27] is an un-
supervised matrix decomposition method and an established ap-
proach in NLP and information retrieval [28]. BERT and SVD both
have dimensionality reduction capabilities that enable them to find
the underlying semantic similarity between texts (e.g. sentences,
image captions, documents).

3. Proposed semantically-enhanced hard negatives loss
function

Let X ={(I,D;)li=1...n} denote a training set containing
paired images and descriptions, where each image I; corresponds
to its relevant description D;; i is the index and n is the size of
set X. Let X' = {(upli=1...n} be a set of image-description
embedding pairs output by a VSE network, where each ith rel-
evant pair consists of an image embedding v; and its relevant
description embedding u;. Let #; = {v;|j=1...n,j#i} denote a
set of all image embeddings from X' irrelevant to u;, and ; =
{ujli=1...n j#i} denote a set of all description embeddings

from X that are irrelevant to v;. LSH, LMH, and the proposed ap-
proach and loss function that are used during the training of VSE
networks are computed as follows.

3.1. Related methods and notation

LSH Description. The basic negatives loss function, LSH, is
shown in Eq. (1):

LSH(v;, ) = ) [ +s(v;, ;) — s(vi, up) ]+

Uj

+ ) lo+s(uy, B7) — sy, u) ] (1)

where [x]. = max(x,0), and o serves as a margin parameter. Let
s(v;,u;) be the similarity score between the relevant image em-
bedding v; and description embedding u;; let s(v;, iI;) be the set of
similarity scores of the image embedding v; with its all irrelevant
description embeddings 1;; and let s(u;, 0;) be the set of similar-
ity scores of the description embedding u; with its all irrelevant
image embeddings ;. Given a relevant pair of image-description
embeddings (v;, u;), the result of the function takes the sum from
irrelevant pairs s(v;, 4;) and s(u;, ;) respectively.

LMH Description. The hard negatives loss function, LMH, is an
improved version of LSH, that only focuses on the hard negatives
[3]

LMH (v;, 1) = max[er 4 s(v;, i) — s(v;, up) ]+
uj
+max[o + s(u;, U;) — s, up) ]+ (2)
vl
As shown in Eq. (2), given a relevant image-description pair

(v, u;), the result of the function only takes the max value of the
irrelevant pairs s(v;, ;) and s(u;, U;) respectively.
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Fig. 2. Based on the joint relations between D; with [;, v;, and u;, D;. can simultane-
ously represent the semantics of I;, D;, v;, and u;.

3.2. Proposed LSEH loss function

The proposed Semantically-Enhanced Hard negatives Loss func-
tion (LSEH) is an improved version of LMH and it is defined in
Eq. (3):

LSEH(v;. u;) = max[ar + (s(v;. ;) + f(v;, ;) — s(v;, uy) ]+
+mﬁé_lX[01 + (s, 0) + f(ui, 7)) — s, up) ]y (3)

LSEH introduces two sets of semantic factors f(v;, ;) and
f(u;, ;) for the image-description embedding pairs (v;, ;) and
the description-image embedding pairs (u;, 7;) respectively, and
f(;, ;) and f(u;, U;) can be obtained via Eq. (4):

f ) = A xS, 1), fu, 0;) = A x S(u;, ;) (4)

where A serves as a temperature hyperparameter, and let S(v;, ;)
denote the optimal semantic similarity scores of the irrele-
vant image-description embedding pairs (v;, i;), and S(u;, ;) de-
note the optimal semantic similarity scores of the irrelevant
description-image embedding pairs (u;, 7;). Therefore, the question
is to compute the semantic factors f(v;, ;) and f(u;, 0;).

The semantic factors are computed by finding the underlying
meaning of descriptions using SVD. After pre-processing [30], the
descriptions set {Di|i =1 n} is converted to a matrix A of size
n x w, where n is the number of descriptions, w is the total num-
ber of unique terms found in the set of descriptions, and each ith
row of A corresponds to each ith description D;. Then the truncated
SVD is applied as shown in Eq. (5) [31]:

~ T
Aan ~ UnxkAkka kxw> ank = AnXW wxk (5)

where k is the number of singular values. The reduced matrix B
containing n rows of description vectors (k dimension) is obtained
by multiplying the original descriptions matrix Apxy with matrix
vnxk' ,

Let a set C={D;li= 1...n} contain the reduced description
vectors, and be derived from matrix B, where each ith element
D; is each ith row vector of B, therefore D; represents the extracted
semantic of each ith description D;. Also, as shown in Fig. 2, de-
scription D; is relevant to image I;, and embeddings u; and v; are
output from D; and I; respectively, hence D; can also simultane-
ously represent the semantics of I;, v;, and u;.

Therefore, let D; = {D/jlj =1...n,j#1i} denote a set of reduced

vectors of descriptions from set C, where each jth vector D; simul-

taneously represents the optimal semantics of v; and u; from sets
U; and u; respectively, then S(v;, 4i;) and S(u;, 7;) can be alterna-
tively calculated using Eq. (6):

S(v;, 1) = S(u;, ;) = (D}, D)) (6)

where s(D;, ﬁ:) € [-1, 1] computes a set of cosine similarity scores
of D; with D;, thus:

F@i, @) = f(u;, 5) = A x s(D;, D)) (7)
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Fig. 3. Illustrations of LSEH. LSEH dynamically adjusts the learning objective for
the VSE network, and takes the maximum gradients from the ambiguous image-
description pairs.

Furthermore, as a recent popular pre-trained language model, BERT
[26] can also find the underlying meaning of descriptions. BERT
relies on a large amount of data for training and is known to per-
form well in processing long documents [26]. The experiment in
Section 4.7 compares the performance of LSEH when using SVD
and when using BERT. Finally, integrating Eq. (7) into Eq. (3),
LSEH is computed as Eq. (8):

LSEH(v;, ;) = max[a + s(v;, ) + A x s(D;, [3;.) — s, up]s
1
+max(o +s(u;, ) + A x SO, D) — s uply  (8)
Vi

Illustration of LSEH. As shown in Fig. 3, the learning objective
of LSEH, defined by margin «, is dynamically adjusted for every
irrelevant image-description pair based on their optimal semantic
similarity (see Eq. (7)). LSEH has two purposes: (1) it dynami-
cally adjusts the learning objective for the VSE network for flexible
learning; and (2) performs efficient training by taking the maxi-
mum gradients from the ambiguous image-description pairs be-
cause their large optimal similarity scores that cause the large gra-
dients.

3.3. Process of training VSE networks using LSEH

Algorithm (1) shows the process of using LSEH to train a VSE

Algorithm 1 Pseudocode of training a VSE network using LSEH.

Input:X training set (image-description pairs),

E training epochs, Vstep validation step

Output:LSEH

1: Obtain set C based on set X > Formula 5

2: Apply the VSE network

3: for epoch in E do

4 Split sets (X, C) to mini-batches

5 for mini-batch (X,,Cp) in (X,C) do
6: Embed set X, to set X},
7
8
9

H /
for v;, u; in X;, do ‘
Use Cp to compute the semantic factors > Formula 7
: Use the semantic factors to compute LSEH > Formula 8
10: end for

11: Backpropagate LSEH for updating network

12: if mini-batches number == Vstep then

13: Validate the model

14: if the overall performance is the best then
15: Save the current model

16: end if

17: end if

18:  end for

19: end for

network. Initially, the descriptions from the train set X are repre-
sented as a set of reduced vectors C (line 1). Thereafter the VSE
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Table 1
Dataset split of Flickr30K, MS-COCO, and IAPR TC-12.

Dataset Train Validate  Test

Flickr30K 29,000 1014 1000

MS-COCO 113,287 1000 1000 and 5000
IAPRTC-12 18,000 1000 1000

network is applied as follows (line 2). In every epoch, the train set
X is split into mini-batches and then the corresponding set of vec-
tors are obtained from C such that {(X.C) = (X,.Cp)[p=1...m},
where p is the index and m is the number of mini-batches (lines
3-4).

For each mini-batch (Xp,Cp), the network outputs a set Xz;
of embeddings from X, (lines 5-6). Thereafter, for every relevant
image-description embedding pair (v;, u;) in set Xz;' the semantic
factors are computed using set C, (Eq. (7)), then the LSEH value is
computed (Eq. (8)) (lines 7-10). Finally, the LSEH value from the
mini-batch is used for backpropagation (line 11). Furthermore, if
the number of mini-batches reaches the validation step Vstep, the
network is validated and the model that achieved the best overall
performance is saved (lines 12-17).

4. Experiments
4.1. Experiment setup

Datasets and Protocols. The datasets utilised in the experi-
ments are Flickr30K [7] and MS-COCO [6], and these datasets are
typically used for evaluating the performance of VSE networks [3].
This paper also utilises the IAPR TC-12 dataset [32]. The datasets
were split into train, test and validation sets as shown in Table 1
[3]. In the Flickr30K and MS-COCO datasets, every image is asso-
ciated with five relevant textual descriptions. IAPR TC-12 includes
pictures of different sports and actions, photographs of people, an-
imals, cities, landscapes and many other aspects of contemporary
life. Each image in IAPR TC-12 is associated with one relevant tex-
tual description [32].

The descriptions were pre-processed with lowercase, stemming,
removing punctuation and alphabetic, filtering out stop words and
short words, and the term frequency-inverse document frequency
(TFIDF) text vectorizer was applied to transform the descriptions
into usable vectors [33]. The number of singular values k for SVD
was set as 400 for all datasets. The process of representing descrip-
tions in a reduced dimensional space is described in Section 3. SVD
is computed once for each dataset. LSEH takes the vector from ma-
trix B, (see Eq. (5)) to compute the cosine similarity between
vectors from the matrix. Therefore, the cost for LSEH is only the
cosine similarity computation. Section 4.6 compares LSEH, LMH,
and LUWM on computation time.

Network Implementations. The experiments tested VSE++[3],
VSRN [13], SGRAF (sub-networks SGRAF-SAF and SGRAF-SGR) [4],
VSE oo [8], and GSMN [15]. For consistency of comparisons, VSE++,
VSRN, SGRAF, VSEco, and GSMN have been tuned using the image
region feature (size of 36 x 2048) that was pre-extracted by the
modified faster R-CNN [11], where the architecture of the faster R-
CNN includes a backbone of ResNet-101 that was pre-trained on
ImageNet [34] and Visual Genome [35]. The architectures of VSE++,
VSRN, and SGRAF (sub-networks SGRAF-SAF and SGRAF-SGR) fol-
low those described in [3,4,13] respectively. For VSEco, the image
region mode of architecture was used, and it follows the one de-
scribed in [8]. For GSMN the sparse mode of architecture was used,
and it follows the one described in [15]. The source-code files of
the abovementioned networks when using the proposed LSEH loss
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Table 2
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Hyperparameters with different settings for LMH1, LMH2, LSEH, and LUWM, in terms of Margin, Learning Rate (LR), and

epochs to update learning rate (Update).

Flickr30K MS-COCO IAPR TC-12

Loss Margin LR Update Margin LR Update Margin LR Update
VSE+

LMH1 0.20 0.0002 15 0.20 0.0002 15 0.20 0.0002 25

LMH2 0.16 0.0020 0.16 0.0030 4 0.16 0.0008 5

LSEH 0.16-0.21  0.0020 3 0.16-0.21  0.0030 4 0.16-0.21  0.0008 5
VSRN

LMH1 0.20 0.0002 10 0.20 0.0002 15 0.20 0.0005 20

LMH2 0.16 0.0004 0.16 0.0004 6 0.16 0.0005 20

LSEH 0.16-0.21  0.0004 5 0.16-0.21  0.0004 6 0.16-0.21  0.0005 20

SGRAF-SAF

LMH1 0.20 0.0002 20 0.20 0.0002 10 0.20 0.0002 20

LMH2 0.16 0.0004 16 0.16 0.0004 6 0.16 0.0004 15

LSEH 0.16-0.21  0.0004 16 0.16-0.21  0.0004 6 0.16-0.21  0.0004 15

SGRAF-SGR

LMH1 0.20 0.0002 30 0.20 0.0002 10 0.20 0.0002 30

LMH2 0.16 0.0004 20 0.16 0.0004 6 0.16 0.0004 20

LSEH 0.16-0.21  0.0004 20 0.16-0.21  0.0004 6 0.16-0.21  0.0004 20
VSEco

LMH1 0.20 0.0005 15 0.20 0.0005 15 0.20 0.0005 15

LMH2 0.16 0.0008 10 0.16 0.0010 10 0.16 0.0009 10

LSEH 0.16-0.21  0.0008 10 0.16-0.21  0.0010 10 0.16-0.21  0.0009 10
GSMN

LMH1 0.20 0.0002 15 0.20 0.0005 5 - - -

LUWM - 0.0002 15 - 0.0005 5 - - -

LSEH 0.16-0.21  0.0004 10 0.16-0.21  0.0006 4 - - -

function and their loss functions are provided in our GitHub repos-
itory!.

Network Training Hyperparameters. The benchmark hyperpa-
rameter settings for each network are described in [3,4,8,10,13] re-
spectively, where the benchmark hyperparameter settings on the
new IAPRTC-12 refer to Flickr30K because they contain a similar
number of images. Let LMH1 denote LMH with the benchmark
hyperparameters of each network and LMH2 denote LMH with
LSEH’s hyperparameter settings, then all the hyperparameters ex-
cept those shown in Table 2 for using LMH1, LMH2, LUWM, and
LSEH refer to each network’s benchmark-settings.

The hyperparameters shown in Table 2 were selected experi-
mentally and tuned as follows: (1) for LSEH the learning and up-
date learning rates can be set to a larger value at an earlier epoch
than for LMH1; and (2) LSEH sets the margin « as 0.185 and the
semantic factor temperature hyperparameter A as 0.025. All of the
experiments were conducted on a workstation with NVIDIA Titan
GPU. For a fair comparison, all software programs were set with
the same random seed.

Evaluation Measures. To evaluate the performance of the net-
works two evaluation measures were used: Recall@k and M-Recall.

Recall@k. The evaluation measure for the cross-modal informa-
tion retrieval experiments is the commonly used Recall at rank k
(Recall@k), which is defined as the percentage of relevant items
in the top k retrieved results [3]. The experiments evaluate the
performance of the network in retrieving any one of the relevant
items from the list of relevant items and computed the average
Recall of the results of the test queries [3].

M-Recall. Defined as Eq. (9) [3]:

1,5,10

M — Recall = 5 Z (Recallj,r @k + Recally,@k) (9)
X

where M-Recall is the Mean of average Recall@1, 5, and 10 from
both image-to-text (I12T) and text-to-image (T2I) retrieval. M-Recall
is used for evaluating the overall performance of a network during
the validation stages.

1 https://github.com/yangong23/VSEnetworksLSEH

4.2. Comparison of LMH and LSEH on training efficiency

This section compares the learning performance of VSE++,
VSRN, SGRAF-SAF, SGRAF-SGR, and VSEco when using LMHI,
LMH2, and LSEH using the train and validation sets of the
Flickr30K, MS-COCO, and IAPR TC-12 datasets. Obtaining the op-
timal trained model for the VSE networks is through validating
the middle-trained model on the overall performance using the M-
Recall evaluation measure. Validation occurs at every 1000 mini-
batches for SGRAF [4], and at every 500 mini-batches for the VSEoo
[8], VSRN [13], and VSE++ [3].

Graphic and Quantitative Results. Fig. 4 compares the training
performance of networks using LMH1, LMH2, and LSEH. The com-
parison considers the number of epochs that each network needs
to reach its largest M-Recall value. The comparison is illustrated in
Fig. 4.

Table 3 quantifies the improvement in training efficiency of
each network when using LMH and the proposed LSEH loss func-
tions. In Table 3, for the comparison of LMH1 and LSEH M-
Recalljyy; is LMH1’s largest M-Recall value. epochs;yy; is the
number of epochs needed to achieve M-Recalljyy; by LMHI.
epochs;sgy is the number of epochs needed to achieve M-
Recall;yy1 by LSEH. Same interpretation applies for the compari-
son of LMH2 and LSEH (right side of Table 3).

Difference is computed using Eq. (10).

h — h
Difference = (epoc SLSEH — €POC SLMH)%, (10)

epochs| g

where LMH is either LMH1 or LMH2. A negative Difference value
denotes an improvement in performance when using LSEH. As
shown in Table 3, when using LSEH, the epochs needed to exceed
the largest M-Recall values with LMH1 and LMH2 could be reduced
by 53.2% and 74.7% on Flickr30K, by 43.0% and 52.1% on MS-COCO,
and by 48.5% and 69.8% on IAPR TC-12 respectively with LSEH. The
largest improvement was for VSE++, where the training efficiency
on IAPR TC-12 was improved by approximately 80.5% with LSEH.
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Table 3
Comparison of training efficiency of each network when using LMH and the proposed LSEH loss function. Difference is calculated as shown in Eq. (10).
Comparison of LMH1 and LSEH Comparison of LMH2 and LSEH

Network M-Recallpy epochs vy epochs;sgy Difference M-Recallynz epochs iz epochs sgy Difference
Flickr30K

VSE+ 57.1 6.0 1.8 -4.2 (-70.0%) 59.1 8.4 2.0 -6.4 (-76.2%)

VSRN 78.0 12.0 4.9 -7.1 (-59.2%) 79.4 115 5.3 -6.2 (-53.9%)

SGRAF-SAF 81.4 29.0 13.9 -15.1 (-52.1%) 80.9 29.0 10.0 -19.0 (-65.5%)

SGRAF-SGR  81.0 38.6 20.1 -18.5 (-47.9%) 1.6 7.0 0.8 -6.2 (-88.6%)

VSEco 85.9 16.8 10.6 -6.2 (-36.9%) 81.8 24.0 2.6 -21.4 (-89.2%)

Average -10.2 (-53.2%) -11.8 (-74.7%)
MS-COCO

VSE+ 72.5 2.9 2.3 -0.6 (-20.7%) 213 16.0 0.2 -15.8 (-98.8%)

VSRN 86.8 15.6 6.6 -9.0 (-57.7%) 86.7 10.2 6.4 -3.8 (-37.3%)

SGRAF-SAF 88.0 19.8 8.0 -11.8 (-59.6%) 88.0 14.8 8.0 -6.8 (-45.9%)

SGRAF-SGR ~ 88.4 17.8 8.1 -9.7 (-54.5%) 87.8 14.0 6.3 -7.7 (-55.0%)

VSEco 89.4 16.9 13.1 -3.8 (-22.5%) 89.5 17.1 13.1 -4.0 (-23.4%)

Average -7.0 (-43.0)% -7.6 (-52.1%)
IAPR TC-12

VSE+ 50.0 19.0 3.7 -15.3 (-80.5%) 9.3 16.0 2.0 -14.0 (-87.5%)

VSRN 86.7 36.0 21.0 -15.0 (-41.7%) 87.2 31.0 22.0 -9.0 (-29.0%)

SGRAF-SAF 87.3 29.0 16.0 -13.0 (-44.8%) 16.8 19.2 1.0 -18.2 (-94.8%)

SGRAF-SGR  87.1 39.6 19.0 -20.6 (-52.0%) 10.9 40.0 1.0 -39.0 (-97.5%)

VSEco 92.7 17.0 13.0 -4.0 (-23.5%) 92.5 20.0 12.0 -8.0 (-40.0%)

Average -13.6 (-48.5%) -17.6 (-69.8%)

Table 4

Results of cross-modal information retrieval by LMH1, LMH2, and LSEH on the Flickr30K dataset in terms of average
Recall@k (%).

Image-to-Text Retrieval Text-to-Image Retrieval

Network Loss R@1 R@5 R@10 Mean R@1 R@5 R@10 Mean

VSE+ LMH1 389 68.0 785 61.8 (+£16.8) 29.7 587 698 52.7 (£16.9)
LMH2 413 71.0 822 64.8 (£17.3) 333 615 720 55.6 (+£16.3)
LSEH 459 740 827 67.5 (+£15.7) 332 622 733 56.2 (+16.9)

VSRN LMH1 698 89.0 944 84.4 (+10.6) 52.1 788  86.6 72.5 (+14.8)
LMH2 711 915 958 86.1 (+£10.8) 548 81.0 874 744 (£14.1)
LSEH 73.0 928 957 87.2 (+£10.1) 558 819 888 75.5 (£14.2)

SGRAF-SAF LMH1 755 936 97.0 88.7 (+£9.4) 553 817 885 75.2 (£14.3)
LMH2 740 936 97.0 88.2 (+£10.1) 546 80.6 87.0 74.1 (£14.0)
LSEH 76.2 938 972 89.1 (+9.2) 57.7 823 888 76.3 (£13.4)

SGRAF-SGR  LMH1 742 925  96.5 87.7 (£9.7) 554 80.6 859 74.0 (+£13.3)
LMH2 03 13 2.0 1.2 (£0.7) 0.4 1.5 2.8 1.6 (£1.0)
LSEH 782 943 96.8 89.8 (+8.2) 57.6 825 879 76.0 (+£13.2)

VSEco LMH1 80.8 964 983 91.8 (£7.8) 626 869 917 80.4 (+£12.7)
LMH2 744 917 963 87.5 (+£9.4) 56.1 823  89.0 75.8 (£14.2)
LSEH 824 960 98.6 92.3 (£7.1) 63.7 871 925 81.1 (+£12.5)

Table 5
Results of cross-modal information retrieval by LMH1, LMH2, and LSEH on the MS-COCO1K dataset in terms of
average Recall@k (%).

Image-to-Text Retrieval Text-to-Image Retrieval

Network Loss R@1 R@5 R@10 Mean R@1 R@5 R@10  Mean

VSE+ LMH1 545 849 917 77.0 (£16.2) 40.8 756 863 67.6 (£19.4)
LMH2 119 385 530 34.5 (+£17.0) 25 8.6 13.8 8.3 (+4.6)
LSEH 56.3 853 922 77.9 (+15.6) 41.2 761 86.6 68.0 (+19.4)

VSRN LMH1 764 942 976 89.4 (+£9.3) 63.1 894 943 82.3 (£13.7)
LMH2 735 947 98.1 88.8 (+£10.9) 61.7 893 948 81.9 (+£14.5)
LSEH 765 957 984 90.2 (+9.7) 62.0 901 95.1 82.4 (+14.6)

SGRAF-SAF  LMH1 80.2 966  98.7 91.8 (+8.3) 645 905 96.0 83.7 (£13.7)
LMH2 788 963 98.6 91.2 (+8.8) 640 906 955 83.4 (+£13.8)
LSEH 80.1 97.3 98.7 92.0 (+8.5) 64.6 909 96.0 83.8 (+13.8)

SGRAF-SGR  LMH1  79.7 97.0 988 91.8 (+8.6) 64.0 905 957 83.4 (+£13.9)
LMH2 797 963 98.6 91.5 (+£8.4) 63.7 905 955 83.2 (+£14.0)
LSEH 80.1 97.7 99.1 92.3 (+8.6) 639 90.7 959 83.5 (+14.0)

VSEco LMH1 808 97.0 99.0 92.3 (+8.1) 66.0 917 96.1 84.6 (£13.3)
LMH2 810 968 99.0 92.3 (+8.0) 664 920 96.0 84.8 (£13.1)
LSEH 822 969 986 92.6 (+7.4) 66.5 919 96.2 84.9 (+£13.1)
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VSE++ on IAPR TC-12
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Fig. 4. Comparison of training efficiency when using LMH1, LMH2, and LSEH to train various VSE networks on Flickr30K, MS-COCO, and IAPR TC-12. Recall (in Y-axis) is M-
Recall (%). The largest M-Recall values of LMH1 and LMH2 are denoted by the vertical dashed lines of orange and green respectively. The vertical dashed blue lines indicate
that LSEH’s M-Recall has exceeded the best performance of LMH1 or LHM2. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

4.3. Comparison of LMH and LSEH on cross-modal information

retrieval

This section compares the cross-modal information retrieval
performance between the optimal models of VSE++, VSRN, SGRAF-

SAF, SGRAF-SGR, and VSEco with using LMH1, LMH2, and LSEH on

the Flickr30K, MS-COCO1K, MS-COCO5K, and IAPR TC-12 test sets.
Tables 4, 5, 6, and 7 show the results of the comparisons of LMH1,

LMH2, and LSEH when integrated into various networks and ap-
plied to the datasets of Flickr30K (see Table 4), MS-COCO1K (see
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Results of cross-modal information retrieval by LMH1, LMH2, and LSEH on the MS-COCO5K dataset in terms of average Recall@k (%).

Image-to-Text Retrieval

Text-to-Image Retrieval

Network Loss R@1 R@5 R@10 Mean R@1 R@5 R@10 Mean

VSE+ LMH1 27.6 56.6 69.5 51.2 (£17.5) 20.0 45.7 59.0 41.6 (£16.2)
LMH2 3.0 12.8 20.9 12.2 (£7.3) 0.4 2.2 3.7 2.1 (£1.3)
LSEH 28.5 57.6 70.3 52.1 (£17.5) 19.3 46.2 60.0 41.8 (+16.9)

VSRN LMH1 49.4 79.3 88.5 72.4 (+£16.7) 384 69.3 79.8 62.5 (£17.6)
LMH2 493 79.4 88.4 724 (+£16.7) 375 68.3 79.7 61.8 (£17.8)
LSEH 50.3 80.3 88.6 73.1 (+£16.5) 38.6 69.6 80.6 62.9 (+17.8)

SGRAF-SAF LMH1 54.4 82.9 91.0 76.1 (+£15.7) 40.1 69.7 80.3 63.4 (£17.0)
LMH2 54.8 82.8 90.2 75.9 (£15.2) 39.9 69.3 80.0 63.1 (£17.0)
LSEH 56.4 835 90.7 76.9 (+14.8) 40.6 69.7 80.7 63.7 (£16.9)

SGRAF-SGR LMH1 56.8 83.1 91.1 77.0 (£14.7) 40.8 69.7 80.6 63.7 (+£16.8)
LMH2 55.9 83.4 90.8 76.7 (£15.0) 39.6 68.9 79.7 62.7 (£16.9)
LSEH 57.8 83.7 91.0 77.5 (£14.2) 40.6 69.8 80.6 63.7 (£16.9)

VSEco LMH1 58.3 84.7 91.8 78.3 (£14.4) 42.5 72.7 83.0 66.1 (£17.2)
LMH2 58.9 84.9 92.2 78.7 (£14.3) 42.2 72.4 82.8 65.8 (£17.2)
LSEH 58.8 85.4 92.6 78.9 (+14.5) 431 73.2 83.2 66.5 (+17.0)

Table 7

Results of cross-modal information retrieval by LMH1, LMH2, and LSEH on the IAPR TC-12 dataset in terms of average Recall@k (%).

Image-to-Text Retrieval

Text-to-Image Retrieval

Network Loss R@1 R@5 R@10 Mean R@1 R@5 R@10 Mean

VSE+ LMH1 25.0 56.5 70.7 50.7 (£19.1) 27.4 60.9 73.5 53.9 (£19.5)
LMH2 5.0 14.2 23.1 14.1 (£7.4) 0.7 3.5 6.1 3.4 (£2.2)
LSEH 35.7 69.6 82.5 62.6 (+19.7) 36.2 71.3 83.2 63.6 (+20.0)

VSRN LMH1 71.5 92.9 96.4 86.9 (+11.0) 71.8 92.8 96.0 86.9 (+£10.7)
LMH2 71.4 934 96.5 87.1 (£11.2) 70.8 93.3 96.5 86.9 (+£11.4)
LSEH 73.9 93.8 96.2 88.0 (+10.0) 733 93.2 96.0 87.5 (+10.1)

SGRAF-SAF LMH1 70.7 94.4 97.4 87.5 (+11.9) 73.1 93.4 97.2 87.9 (+£10.6)
LMH2 9.8 25.5 37.1 24.1 (£11.2) 1.9 8.7 14.0 8.2 (£5.0)
LSEH 74.5 95.1 97.8 89.1 (+10.4) 73.7 94.5 97.7 88.6 (+10.6)

SGRAF-SGR LMH1 70.9 933 97.8 87.3 (+£11.8) 721 92.8 96.7 87.2 (+£10.8)
LMH2 4.3 12.7 19.0 12.0 (£6.0) 2.3 9.7 15.2 9.1 (£5.3)
LSEH 751 95.6 98.1 89.6 (+10.3) 75.1 94.9 98.0 89.3 (+10.1)

VSEco LMH1 81.5 97.3 99.0 92.6 (+£7.9) 79.1 96.4 98.8 91.4 (+8.8)
LMH2 81.0 96.7 98.8 92.2 (+£7.9) 80.7 95.8 97.9 91.5 (+£7.7)
LSEH 83.7 97.7 98.8 93.4 (+£6.9) 814 96.9 98.5 92.3 (+7.7)

Table 8
Mean average Recall of each network for each dataset. A summary derived from
Tables 4, 5, 6, and 7.

Flickr30k MS-COCO1K
Method  Image-Text Text-Image Image-Text Text-Image
LMH1 82.9 (+15.6) 71.0 (£17.3) 88.8 (£10.9)  80.3 (+£16.3)
LMH2 65.6 (+35.1) 56.3 (+£31.3) 79.7 (£25.2)  68.3 (+£32.6)
LSEH 85.2 (+13.8) 73.0 (+16.6) 89.0 (+11.8) 80.5 (+16.4)
MS-COCO5K IAPR TC-12
Method Image-Text Text-Image Image-Text Text-Image
LMH1 71.0 (+18.8) 59.4 (£19.2) 81.0 (£20.0)  81.5 (+18.8)
LMH2 63.2 (+£29.2) 51.1 (£29.0) 459 (+£37.1)  39.8 (+41.0)
LSEH 71.7 (£18.5)  59.7 (+19.3) 84.5 (+£16.5) 84.3 (+16.3)

Table 5), MS-COCO5K (see Table 6), and IAPR TC-12 (see Table 7)
respectively. Recall values @1, @5, and @10 show the average Recall
values across all queries found in each of the test sets (see Table 1).
The last column of Tables 4, 5, 6, and 7 shows the mean of the
average Recall values (i.e. the average of columns 3-5). Table 8
summarises the mean average Recall across five networks for each
dataset from Tables 4, 5, 6, and 7, and below is a summary of the
main findings for each dataset.

(1) Flickr30K. The proposed LSEH reached a Recall of 85.2%
for image-to-text, and a Recall of 73.0% for text-to-image retrieval.
LSEH outperformed LMH1 by 2.3% and 2.0% for image-to-text and
text-to-image retrieval, respectively. LSEH outperformed LMH2 by

19.6% for image-to-text retrieval and by 16.7% for text-to-image re-
trieval.

(2) MS-COCO1K. For LSEH, Recall reached 89.0% for image-to-
text retrieval and 80.5% for text-to-image retrieval, and outper-
formed LMH1 by 0.2% and 0.2% for those tasks, respectively. LSEH
also outperformed LMH2 for image-to-text and text-to-image re-
trieval by 9.3% and 12.2%, respectively.

(3) MS-COCO5K. For image-to-text retrieval, LSEH’s Recall
reached 71.7% which outperformed LMH1 by 0.7% and LMH2 by
8.5%. For text-to-image retrieval, the Recall of the proposed LSEH
reached 59.7% which outperformed LMH1 by 0.3% and LMH2 by
8.6%.

(4) IAPR TC-12. LSEH’s Recall values for image-to-text and text-
to-image retrieval were 84.5% and 84.3% respectively, and these
outperformed the results of LMH1 by 3.5% and 2.8% respectively.
The proposed LSEH outperformed LMH2 for image-to-text and
text-to-image retrieval by 38.6% and 44.5% respectively.

4.4. Comparison of LSEH with polynomial loss

This section compares the training efficiency and cross-modal
information retrieval performance of the proposed LSEH with the
LUWM polynomial loss function [10]. In Wei et al. [10] LUWM was
tested using GSMN, and hence the experiments included herein
adopt the GSMN. This will facilitate the comparison of the perfor-
mance of GSMN when using the LUWM and the proposed LSEH.

Training Efficiency. Fig. 5 compares the training efficiency of
GSMN using LUWM and LSEH on the Flickr30K and MS-COCO
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Average Recall@k (%) of GSMN when using the LUWM and LSEH loss functions for cross-modal information retrieval across datasets.

Image-to-Text Retrieval

Text-to-Image Retrieval

Network Loss R@1 R@5 R@10 Mean R@1 R@5 R@10 Mean
Flickr30K
GSMN [15] LMH1 71.4 92.0 96.1 86.5 (+10.8) 53.9 79.7 87.1 73.6 (£14.2)
GSMN [10] LUWM 73.1 92.7 96.8 87.5 (+10.3) 54.2 79.9 87.3 73.8 (£14.2)
GSMN LSEH 74.1 93.3 96.5 88.0 (+9.9) 55.4 81.2 87.2 74.6 (+13.8)
MS-COCO1K
GSMN [15] LMH1 76.1 95.6 98.3 90.0 (+9.9) 60.4 88.7 95.0 81.4 (+15.0)
GSMN [10] LUWM 76.8 96.2 98.5 90.5 (+9.7) 60.9 89.0 95.5 81.8 (+15.0)
GSMN LSEH 79.7 96.4 98.9 91.7 (£8.5) 63.2 90.3 95.4 83.0 (+14.1)
MS-COCO5K
GSMN [10] LUWM 54.7 82.2 89.7 75.5 (£15.0) 38.5 67.6 78.9 61.7 (£17.0)
GSMN LSEH 54.3 82.4 90.2 75.6 (+15.4) 39.0 68.4 79.5 62.3 (+17.1)
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Fig. 5. Comparison of training efficiency when using LUWM and LSEH to train
GSMN on Flickr30K and MS-COCO respectively.

datasets, where the validation step for GSMN is at every 1000
mini-batches. Fig. 5 shows that GSMN with LSEH achieved a larger
M-Recall than with LUWM, at fewer epochs on both datasets.

Cross-modal Information Retrieval Performance. Table 9
shows the results of the comparisons of LUWM and LSEH when
integrated into GSMN and applied to the datasets. The last column
of Table 9 shows the mean average Recall values (i.e. the average of
columns 3-5), and the main findings from each dataset are sum-
marised as follows.

(1) Flickr30K. The proposed LSEH reached a Recall of 88.0% for
image-to-text, a Recall of 74.6% for text-to-image retrieval, and out-
performed LUWM by 0.5% and 0.8% for those tasks, respectively.

(2) MS-COCO1K. For image-to-text retrieval, LSEH’s Recall
reached 91.7% which outperformed LMH1 by 1.2%. For text-to-
image retrieval, LSEH’s Recall reached 83.0% which outperformed
LUWM by 1.2%.

(3) MS-COCO5K. For LSEH, Recall reached 75.6% for image-
to-text and 62.3% for text-to-image retrieval. LSEH outperformed
LMH1 by 0.1% and 0.6% for image-to-text and text-to-image re-
trieval, respectively.

4.5. Discussion on quantitative results of graph-based VSE networks

Graph-based VSE networks such as SGRAF-SGR, VSRN, and
GSMN consider the local information of images and descriptions
for cross-modal information retrieval. The results described in
Section 4.2-4.4 revealed that the above graph-based VSE networks
performed better than when using the LMH and LUWM loss func-
tions. When using LMH1, SGRAF-SGR needed 38.6 training epochs
to achieve its higher M-Recall value (81.0%) on the Flickr30K

0.0 - T T T T T T T
029 058 087 116 145 174 203 232 261 29
Number of Training Samples (X 10%)

Fig. 6. Computation time at 1 epoch when using LMH1, LUWM, and LSEH to train
VSEoo.

dataset, compared to needing 20.1 epochs when using LSEH. Hence
when using LSEH the number of training epochs needed by SGRAF-
SGR were reduced by 47.9%. In terms of retrieval performance us-
ing the mean average Recall evaluation metric, (1) VSRN using
LSEH reached the Recall of 87.2% and 75.5% for image-to-text and
text-to-image retrieval respectively on the Flickr30K dataset, and
outperformed VSRN when using LMH1 by 2.8% and 3.0% for those
tasks, respectively; and (2) GSMN using LSEH reached a Recall of
91.7% for image-to-text, and a Recall of 83.0% for text-to-image re-
trieval on the MS-COCO1K dataset, and outperformed GSMN when
using LUWM by 1.2% and 1.2% for those tasks, respectively.

4.6. Comparisons on computation time

Fig. 6 shows the computation time of one epoch when train-
ing VSEoo [8] using LMH1, LUWM, and LSEH. These experiments
utilised the training set from Flickr30K [7]. In Fig. 6, for each loss
function the network is trained 10 times with various numbers
of training samples (increased from 2900 to 29,000 in steps of
2900), and the computation time is recorded. The three lines that
fit the data points of LMH1, LUWM, and LSEH follow the equa-
tions of Ty (n) =147.8n—6.4, Tiywm(n) = 1104.6n — 14.7, and
Tisen(n) = 144.4n — 1.7 respectively. Note that the lines of LSEH
and LMH1 are almost aligned. The computation time of LSEH is
almost the same as that of LMH1, and six times faster than LUWM.

4.7. Comparison of LSEH-SVD and LSEH-BERT

This section compares LSEH when using SVD (LSEH-SVD) and
when using BERT (LSEH-BERT) for cross-modal information re-
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Average Recall@k (%) of VSEco when using the LSEH-SVD and LSEH-BERT for cross-modal information retrieval across the datasets.

Image-to-Text Retrieval

Text-to-Image Retrieval

Loss Method R@1 R@5 R@10 Mean R@1 R@5 R@10 Mean
Flickr30K
LMH1 - 80.8 96.4 98.3 91.8 (£7.8) 62.6 86.9 91.7 80.4 (+12.7)
LSEH BERT 81.0 96.1 97.7 91.6 (£7.5) 63.1 87.1 92.7 81.0 (+12.8)
LSEH SVD 824 96.0 98.6 92.3 (+7.1) 63.7 87.1 925 81.1 (+12.5)
MS-COCO1K
LMH1 . 80.8 97.0 99.0 92.3 (£8.1) 66.0 91.7 96.1 84.6 (+13.3)
LSEH BERT 82.0 97.1 98.7 92.6 (£7.5) 66.2 92.0 96.2 84.8 (+13.3)
LSEH SVD 82.2 96.9 98.6 92.6 (+8.5) 66.5 91.9 96.2 84.9 (+13.1)
MS-COCO5K
LMH1 - 58.3 84.7 91.8 78.3 (+£14.4) 425 72.7 83.0 66.1 (+£17.2)
LSEH BERT 59.1 85.3 92.6 79.0 (+14.4) 420 72.7 83.1 65.9 (+£17.4)
LSEH SVD 58.8 85.4 92.6 789 (+£14.5) 43.1 73.2 83.2 66.5 (+17.0)
IAPR TC-12
LMH1 - 81.5 97.3 99.0 92.6 (£7.9) 79.1 96.4 98.8 91.4 (+8.8)
LSEH BERT 82.9 97.4 98.5 92.9 (£7.1) 80.6 96.5 97.9 91.7 (+£7.8)
LSEH SVD 83.7 97.7 98.8 93.4 (+6.9) 814 96.9 98.5 92.3 (+7.7)
100 of-the-art image graph reasoning network that provides the means
of visualising its results.
&0 Reasoning with Training Efficiency. When the queries are
" looped in a mini-batch during training, LMH1 and LSEH select one
3 ’ I SEH-BERT-Flickr30K irrelevant embedding from a set of irrelevant embeddings as the
& 10 —— LSEH-SVD-Flickr30K hard negative sample for the query embedding, because of the max
TSEH BERTCOCO operation in LMH1 and LSEH (as shown in Eq. (2) and Eq. (8)).
5 —— LSEH-SVD-COCO However, some irrelevant embeddings may be repeatedly selected
—— LSEH-BERT-IAPR TC-12 . . .
[ SEH.SVDAPRTC-12 as the hard negative samples and this leads to low efficiency when
o : 10 5 o o utilising embeddings (see Section 3). In this experiment, to il-
Epochs lustrate and compare the training efficiency of VSRN when using

Fig. 7. Comparison of training efficiency when using LSEH-SVD and LSEH-BERT to
train VSEoco on the Flickr30K, MS-COCO, and IAPR TC-12 datasets.

trieval in the Flickr30K, MS-COCO, and IAPR TC-12 benchmark
datasets. The experiments employ the latest VSE network (i.e.
VSEco) to test LSEH-SVD and LSEH-BERT. VSEco using LSEH-
BERT employs the pre-trained BERT-base model [26] and follows
the hyperparameter settings of VSEco using LSEH-SVD (shown in
Table 2).

Training Efficiency. Fig. 7 compares the training efficiency of
VSEoco using LSEH-SVD and LSEH-BERT, where the validation step
for VSEco is at every 500 mini-batches. Fig. 7 shows that VSEoco
with LSEH-SVD reached a larger M-Recall than with LSEH-BERT at
fewer epochs on the Flickr30K and IAPR TC-12 datasets. Observing
the curves of VSEco using LSEH-SVD and LSEH-BERT on the MS-
COCO dataset, their lines are close to overlapping and hence they
are similar with regards to M-Recall and training efficiency.

Cross-modal Information Retrieval Performance. As shown
in Table 10, compared to the baseline (LMH1), both LSEH-SVD
and LSEH-BERT have outperformed LMH1 for cross-modal infor-
mation retrieval on all datasets. The performance of LSEH-BERT is
lower than that of LSEH-SVD. LSEH-BERT outperformed LSEH-SVD
only for the task of image-to-text retrieval on the dataset of MS-
COCO5K, where LSEH-BERT reached a mean average Recall value
of 79.0% and outperformed LSEH-SVD by 0.1%. However, LSEH-SVD
outperformed LSEH-BERT on all the rest of the tasks and datasets
in Table 10.

4.8. Reasoning with the results of the proposed LSEH using
visualisation

For reasoning with how the proposed LSEH improved the train-
ing of VSE networks, VSRN [13] was adopted because it is a state-

10

LMHT1 and the proposed LSEH loss function, the number of unique
image- and description- embeddings (denoted as #ImEmbs and
#DesEmbs respectively), that are used as the hard negative sam-
ples, are counted within each mini-batch and across a range of
training epochs.

The results of each dataset are shown in Fig. 8 and described as
follows.

(1) Flickr30K. LSEH reached its largest number of unique #De-
sEmbs and #ImEmbs (i.e. both 85) at 1.1 epochs, whereas LMH1
needed 2.9 epochs (i.e. #DesEmbs and #ImEmbs were both 87).

(2) MS-COCO. LSEH needed 0.2 epochs to reach its largest
number of #DesEmbs (91) and #ImEmbs (i.e. 96), whereas LMH1
needed 1.7 epochs to obtain its largest number of unique #De-
sEmbs and #ImEmbs with values 89 and 93 respectively.

(3) IAPR TC-12. LSEH reached its largest number of unique
#DesEmbs (i.e. 88) and #ImEmbs (i.e. 87) in 2.2 epochs, whereas
LMH1 needed 10 epochs to obtain its largest number of unique
#DesEmbs (i.e 87) and #ImEmbs (i.e 85). The proposed LSEH out-
performed LMH1 on the efficiency of utilising unique embeddings,
which visually reasons the improvement in training efficiency by
LSEH.

Illustrating one Hard Negative Sample Selected by LMH1 and
LSEH. For visually comparing LMH1 and LSEH when selecting
hard negative samples, the irrelevant images to each textual query
found in a mini-batch are ranked by LMH1 and LSEH respectively
according to the descending order of their gradients. The top eight
irrelevant images to a sample textual query are presented in Fig. 9.
Images selected by LMH1 in Fig. 9 (a) contain no semantic sim-
ilarity relevant to the query description. However, in comparison
to the set of results retrieved by LSEH and shown in set (b) of
Fig. 9, the selected images are more semantically relevant to the
query, e.g. more images were retrieved of ‘a man’ or which relate
to the clothes described in the query. The ranked top eight irrele-
vant images selected by LSEH have a higher probability of being in-
correctly retrieved than those irrelevant images selected by LMH1,
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Flickr30K MS-COCO IAPR TC-12
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Fig. 8. Results of reasoning with training efficiency of VSRN using LMH1 and LSEH on various datasets. The Y-axis presents the numbers of unique image embeddings
(#ImEmbs) and description embeddings (#DesEmbs) that are used as hard negative samples in each mini-batch, and the X-axis is the number of training epochs.

Query: A man wearing camouflage shorts and a white t-shirt shines the black dress shoes of a man wearing black dress slacks.

)

Fig. 9. Examples (a) and (b) are the top eight irrelevant images in a mini-batch to the query description that is selected by LMH1 and LSEH respectively according to the
descending order of their gradients. The images in (b) are semantically closer to the query’s textual description than the images in (a), which are hard negative samples.

input image

epochl

less-more

attention scale

epochl

epochl3

Fig. 10. Visual comparison of LMH1 (a) and LSEH (b) on the various attention regions of an image processed by VSRN during training. The degree of attention is indicated

on the attention scale.

hence why it is more efficient to use LSEH’s hard negative samples
during the training.

Visualisation of Learning with LMH1 and LSEH. For visually
comparing the learning progress of VSRN when using LMH1 and
LSEH, the various attention regions of an image processed by VSRN
during the training are presented, where the method for generat-
ing the attention region heating maps follows that of Li et al. [13].
VSRN using LMH1, as shown in Fig. 10 (a) only focused some at-
tention on the main objects of the image (e.g. ‘people’ and ‘trees’)
on epochs one and three. On the contrary, as shown in Fig. 10 (b),
the VSRN using the proposed LSEH has paid much attention to the
main objects of the image on epoch one.

5. Conclusion

Existing Visual Semantic Embedding (VSE) networks are trained
by a hard negatives loss function that learns an objective mar-
gin between the similarity of the relevant and irrelevant image-
description embedding pairs and ignores the semantic differ-
ences between the irrelevant pairs. This paper proposes a novel
Semantically-Enhanced Hard negatives Loss function (LSEH) for

1

Cross-modal Information Retrieval that considers the semantic dif-
ferences between irrelevant training pairs, to dynamically adjust
the learning objectives of VSE networks to make their learning
flexible and efficient. Extensive experiments were carried out by
integrating the proposed methods into five state-of-the-art VSE
networks (VSE++, VSRN, SGRAF-SAF, SGRAF-SGR, and VSEco) that
were applied to the Flickr30K, MS-COCO, and IAPR TC-12 datasets.
The experiments revealed that the proposed LSEH function, when
integrated into VSE networks, improves their training efficiency
and cross-modal information retrieval performance. With regards
to training time, LSEH reduced the training epochs of LMH on av-
erage by 53.2% on the Flickr30K dataset, 43.0% on the MS-COCO
dataset, and 48.5% on the IAPR TC-12 dataset. In terms of re-
trieval performance using the mean average Recall evaluation met-
ric, LSEH outperformed LMH1 by (1) 2.3% for image-to-text and
2.0% for text-to-image retrieval on the Flickr30K dataset; (2) 0.2%
for image-to-text and 0.2% for text-to-image retrieval on the MS-
COCO1K dataset; (3) 0.7% for image-to-text and 0.3% for text-to-
image retrieval on the MS-COCO5K dataset; and (4) 3.5% for image-
to-text and 2.8% for text-to-image retrieval on the IAPR TC-12
dataset. Section 4.7 describes our experimental results using SVD
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and BERT and the findings revealed that SVD outperformed BERT
when these are embedded in the proposed loss function. From this
perspective, it is more efficient to use an unsupervised approach
because such approaches do not need labels or computationally
expensive training processes. The focus of the paper has been on
the application of VSE networks for cross-modal information re-
trieval. Future work includes applying the proposed loss function
to other similar cross-modal tasks such as hashing-based networks
for cross-modal retrieval and text-to-video retrieval. Future work
will also focus on extracting image description semantics using
other supervised and unsupervised feature extraction methods and
comparing those to the methods (i.e. SVD and BERT) that have al-
ready been utilised for the task. Finally, future work also includes
embedding the proposed methods into a next generation cross-
modal search engine and evaluating its capabilities with real-word
datasets.
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