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a b s t r a c t 

Visual Semantic Embedding (VSE) networks aim to extract the semantics of images and their descriptions 

and embed them into the same latent space for cross-modal information retrieval. Most existing VSE net- 

works are trained by adopting a hard negatives loss function which learns an objective margin between 

the similarity of relevant and irrelevant image–description embedding pairs. However, the objective mar- 

gin in the hard negatives loss function is set as a fixed hyperparameter that ignores the semantic differ- 

ences of the irrelevant image–description pairs. To address the challenge of measuring the optimal simi- 

larities between image–description pairs before obtaining the trained VSE networks, this paper presents 

a novel approach that comprises two main parts: (1) finds the underlying semantics of image descrip- 

tions; and (2) proposes a novel semantically-enhanced hard negatives loss function, where the learning 

objective is dynamically determined based on the optimal similarity scores between irrelevant image–

description pairs. Extensive experiments were carried out by integrating the proposed methods into five 

state-of-the-art VSE networks that were applied to three benchmark datasets for cross-modal information 

retrieval tasks. The results revealed that the proposed methods achieved the best performance and can 

also be adopted by existing and future VSE networks. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In information retrieval, Visual Semantic Embedding (VSE) net- 

orks aim to create joint representations of images and textual 

escriptions and map these in a joint embedding space (i.e. same 

atent space) to enable various information retrieval-related tasks, 

uch as image–text retrieval, image captioning, and visual question 

nswering [1] . Within the shared embedding space, the aim is to 

osition the relevant image–description pairs far away from the 

rrelevant pairs [2] . Currently, VSE literature can be summarised 

nto: (1) approaches that extend the cross-modal encoder-decoder 

etwork for improving the learning of latent representations cross- 

ng images and descriptions [3] ; (2) specifically designed atten- 

ion architectures that improve the performance of networks [4] ; 

nd (3) networks that are modified based on generative adversar- 

al methods for learning the common representation of images and 
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escriptions [5] . The above-mentioned studies aim to improve the 

SE networks for information retrieval and have been evaluated 

sing the benchmark MS-COCO [6] and Flickr30K [7] datasets. Few 

tudies focus on exploring the learning potential of VSE networks. 

he hard negatives loss function [3] defines the learning objective 

f VSE networks, and it is commonly adopted by the current VSE 

rchitectures [8] . 

Furthermore, the hard negatives loss function learns a fixed 

argin that is the optimal difference between the similarity of the 

elevant image–description embedding pair and that of the irrel- 

vant embedding pair. However, the fixed margin ignores the se- 

antic differences between the irrelevant image–description pairs. 

he hard negatives loss function does not consider the distance of 

he irrelevant items to the query and sets the same learning ob- 

ective (i.e. fixed margin) for both pairs, image–D1 and image–D2 

sample from Fig. 1 ), even though the semantic differences of the 

rrelevant training pairs are useful for training an information re- 

rieval model [9] . To illustrate this point, consider Fig. 1 , where in

he irrelevant image–D1 pair the image and description are seman- 

ically closer than those of the irrelevant image–D2 pair, but the 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Sample of irrelevant image–description pairs. Description D1 is the one se- 

mantically closer to the image. 
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ard negatives loss function sets the same learning objective for 

oth pairs, i.e. image–D1 and image–D2, and this is not suitable. To 

olve the limitations of the fixed margin, Wei et al. [10] introduced 

 polynomial loss function with an adaptive objective margin, but 

heir method does not consider the optimal semantic information 

rom irrelevant image–description pairs. 

Our paper aims to semantically enhance the hard negatives loss 

unction for exploring the learning potential of VSE networks. This 

aper (1) proposes a new loss function for improving the learning 

fficiency and the cross-modal information retrieval performance 

f VSE networks; (2) embeds the proposed loss function within 

tate-of-the-art VSE networks, and (3) evaluates its efficiency using 

enchmark datasets suitable for the task of cross-modal informa- 

ion retrieval. The contributions of our paper are as follows. 

• A novel approach that infers the semantics of image descrip- 

tions by finding the underlying meaning of descriptions us- 

ing eigendecomposition and dimensionality reduction (i.e. Sin- 

gular Value Decomposition). The derived descriptions are then 

utilised by a proposed semantically-enhanced hard negatives 

loss function, entitled LSEH, when computing the optimal sim- 

ilarities between irrelevant image–description pairs. 
• A semantically-enhanced hard negatives loss function that re- 

defines the learning objective for VSE networks. The proposed 

loss function dynamically adjusts the learning objective ac- 

cording to the semantic similarities between irrelevant image–

description pairs. Ambiguous training pairs with larger optimal 

similarity scores obtain larger gradients that are utilised by the 

proposed loss function to improve training efficiency. 
• The proposed approach and loss function can be integrated into 

other VSE networks that improve learning efficiency and cross- 

modal information retrieval. Extensive experiments were car- 

ried out by integrating the proposed methods into five state-of- 

the-art VSE networks that were applied to the Flickr30K, MS- 

COCO, and IAPR TC12 datasets, and the results showed that the 

proposed methods achieved the best performance. 

. Related work 

VSE Networks. VSE networks aim to align embeddings of rel- 

vant images and descriptions in the same latent space for cross- 

odal information retrieval [1] . Faghri et al. [3] proposed an Im- 

roved Visual Semantic Embedding architecture (VSE++). Image re- 

ion features extracted by the faster R-CNN [11] and their de- 

criptions were embedded into the same latent space by using a 

ully connected neural network and a Gated Recurrent Units (GRU) 

etwork [12] . Most state-of-the-art VSE networks improve upon 

SE++. Li et al. [13] introduced a Visual Semantic Reasoning Net- 

ork (VSRN) to enhance image features with image region rela- 

ionships extracted by a Graph Convolution Network (GCN) [14] ; 

iu et al. [15] applied a Graph Structured Matching Network 
2 
GSMN) to build a graph of image features and words and learn the 

ne-grained correspondence between image features and words; 

iao et al. [4] proposed the Similarity Graph Reasoning and Atten- 

ion Filtration network (SGRAF) that extends the attention mech- 

nisms of image and description sets. SGRAF also provides two 

ndividual sub-networks to process the attention results between 

he image features and the description – where a Similarity Graph 

easoning network (SGR) builds a graph of the attention results 

or reasoning, and a Similarity Attention Filtration network (SAF) 

lters the important information from the attention results. Chen 

t al. [8] proposed a variation of the VSE network, VSE ∞ , that ben-

fits from a generalized pooling operator which discovers the best 

trategy for pooling image and description embeddings. Recently, 

ision transformer-based networks, that are not relying on the 

ard negatives loss function, have become popular for cross-modal 

nformation retrieval [16] . However, compared to traditional VSE 

etworks, vision transformer-based cross-modal retrieval networks 

equire a large amount of data for training and the time they re- 

uire for retrieving the results of a query makes them unsuitable 

or real-world applications [1] . The hashing-based network is an- 

ther active solution for cross-modal information retrieval [17] . For 

xample, Liu et al. [18] firstly proposed a hashing framework for 

earning varying hash codes of different lengths for the compari- 

on between images and descriptions, and the learned modality- 

pecific hash codes contain more semantics. Hashing-based net- 

orks are concerned with reducing data storage costs and improv- 

ng retrieval speed. Such networks are out of scope for this paper 

ecause the focus herein is on VSE networks which mostly aim to 

xplore the local information alignment between images and de- 

criptions for improved retrieval performance. 

Loss Functions for Cross-modal Information Retrieval. One 

f the earliest and most used cross-modal information retrieval 

oss functions is the Sum of Hinges Loss (LSH) [19] . LSH is also

nown as a negatives loss function, and it learns a fixed margin 

etween the similarities of the relevant image–description embed- 

ing pairs and those of the irrelevant embedding pairs. A more re- 

ent hard negatives loss function, the Max of Hinges Loss (LMH) 

3] , is adopted in most recent VSE networks, due to its ability to 

utperform LSH [20,21] . An improved version of LSH, LMH only 

ocuses on learning the hard negatives, which are the irrelevant 

mage–description embedding pairs that are nearest to the rel- 

vant pairs. Song et al. [9] presented a margin-adaptive triplet 

oss for the task of cross-modal information retrieval that uses a 

ashing-based method which embeds the image and text into a 

ow-dimensional Hamming space. Liu et al. [22] applied a variant 

riplet loss function into their novel VSE network for cross-modal 

nformation retrieval, where the input text embedding for the loss 

s replaced by the reconstructed image embedding of the network. 

ecently, Wei et al. [10] proposed a polynomial [23] based Univer- 

al Weighting Metric Loss (LUWM) with flexible objective margins, 

nd that has been shown to outperform existing hard negatives 

oss functions. 

A summary of the limitations of the existing loss functions are 

s follows. (1) The learning objectives of LSH [19] and LMH [3] are 

ot flexible because of their fixed margins. (2) The adaptive mar- 

in in [9] is not optimal, because it relies on the computed sim- 

larities between irrelevant image–description embedding pairs by 

he training network which is optimising. (3) The modified ranking 

oss of [22] cannot be integrated into other networks. (4) LUWM 

10] does not consider the optimal semantic information from ir- 

elevant image–description pairs. 

VSE Networks with a Negatives Loss Function. LMH was pro- 

osed by Faghri et al. [3] , and thereafter other VSE networks 

dopted LMH. For improving the attention mechanism, Lee et al. 

24] proposed an approach to align the image region features with 

eywords of the relevant image–description pair; and Diao et al. 
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Fig. 2. Based on the joint relations between D i with I i , v i , and u i , D 
′ 
i 

can simultane- 

ously represent the semantics of I i , D i , v i , and u i . 
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4] built an architecture that deeply extends the attention mecha- 

isms of image-image, text-text, and image-text tasks. For extract- 

ng high-level semantics, Li et al. [13] utilised GCN [14] to explore 

he relations of image objects. For aggregating the image and de- 

cription embeddings, Chen et al. [8] proposed a special pooling 

perator. Wang et al. [25] proposed an end-to-end VSE network 

ithout relying on a pre-trained CNN for image feature extraction 

asks. 

Methods for Finding the Underlying Meaning of Descriptions. 

ERT [26] is a supervised and widely used deep neural network for 

LP tasks [29] . Singular Value Decomposition (SVD) [27] is an un- 

upervised matrix decomposition method and an established ap- 

roach in NLP and information retrieval [28] . BERT and SVD both 

ave dimensionality reduction capabilities that enable them to find 

he underlying semantic similarity between texts (e.g. sentences, 

mage captions, documents). 

. Proposed semantically-enhanced hard negatives loss 

unction 

Let X = 

{
(I i , D i ) | i = 1 . . . n 

}
denote a training set containing 

aired images and descriptions, where each image I i corresponds 

o its relevant description D i ; i is the index and n is the size of

et X . Let X 
′ = 

{
(v i , u i ) | i = 1 . . . n 

}
be a se t of image–description 

mbedding pairs output by a VSE network, where each i th rel- 

vant pair consists of an image embedding v i and its relevant 

escription embedding u i . Let ˆ v i = 

{
v j | j = 1 . . . n, j � = i 

}
denote a 

et of all image embeddings from X 
′ 

irrelevant to u i , and ˆ u i = 

u j | j = 1 . . . n, j � = i 
}

denote a set of all description embeddings 

rom X 
′ 

that are irrelevant to v i . LSH, LMH, and the proposed ap-

roach and loss function that are used during the training of VSE 

etworks are computed as follows. 

.1. Related methods and notation 

LSH Description. The basic negatives loss function, LSH, is 

hown in Eq. (1) : 

SH (v i , u i ) = 

∑ 

ˆ u i 

[ α + s (v i , ˆ u i ) − s (v i , u i )] + 

+ 

∑ 

ˆ v i 

[ α + s (u i , ˆ v i ) − s (v i , u i )] + (1) 

here [ x ] + ≡ max (x, 0) , and α serves as a margin parameter. Let

 (v i , u i ) be the similarity score between the relevant image em- 

edding v i and description embedding u i ; let s (v i , ˆ u i ) be the set of

imilarity scores of the image embedding v i with its all irrelevant 

escription embeddings ˆ u i ; and let s (u i , ˆ v i ) be the set of similar-

ty scores of the description embedding u i with its all irrelevant 

mage embeddings ˆ v i . Given a relevant pair of image–description 

mbeddings (v i , u i ) , the result of the function takes the sum from

rrelevant pairs s (v i , ˆ u i ) and s (u i , ˆ v i ) respectively. 

LMH Description. The hard negatives loss function, LMH, is an 

mproved version of LSH, that only focuses on the hard negatives 

3] . 

MH (v i , u i ) = max 
ˆ u i 

[ α + s (v i , ˆ u i ) − s (v i , u i )] + 

+ max 
ˆ v i 

[ α + s (u i , ˆ v i ) − s (v i , u i )] + (2) 

s shown in Eq. (2) , given a relevant image–description pair 

v i , u i ) , the result of the function only takes the max value of the

rrelevant pairs s (v , ˆ u ) and s (u , ˆ v ) respectively. 
i i i i 

3 
.2. Proposed LSEH loss function 

The proposed Semantically-Enhanced Hard negatives Loss func- 

ion (LSEH) is an improved version of LMH and it is defined in 

q. (3) : 

SEH (v i , u i ) = max 
ˆ u i 

[ α + (s (v i , ˆ u i ) + f (v i , ˆ u i )) − s (v i , u i )] + 

+ max 
ˆ v i 

[ α + (s (u i , ˆ v i ) + f (u i , ˆ v i )) − s (v i , u i )] + (3) 

SEH introduces two sets of semantic factors f (v i , ˆ u i ) and 

f (u i , ˆ v i ) for the image–description embedding pairs (v i , ˆ u i ) and 

he description–image embedding pairs (u i , ˆ v i ) respectively, and 

f (v i , ˆ u i ) and f (u i , ˆ v i ) can be obtained via Eq. (4) : 

f (v i , ˆ u i ) = λ × S(v i , ˆ u i ) , f (u i , ˆ v i ) = λ × S(u i , ˆ v i ) (4) 

here λ serves as a temperature hyperparameter, and let S(v i , ˆ u i ) 

enote the optimal semantic similarity scores of the irrele- 

ant image–description embedding pairs (v i , ˆ u i ) , and S(u i , ˆ v i ) de- 

ote the optimal semantic similarity scores of the irrelevant 

escription–image embedding pairs (u i , ˆ v i ) . Therefore, the question 

s to compute the semantic factors f (v i , ˆ u i ) and f (u i , ˆ v i ) . 
The semantic factors are computed by finding the underlying 

eaning of descriptions using SVD. After pre-processing [30] , the 

escriptions set 
{

D i | i = 1 . . . n 
}

is converted to a matrix A of size 

 × w , where n is the number of descriptions, w is the total num-

er of unique terms found in the set of descriptions, and each i th

ow of A corresponds to each i th description D i . Then the truncated 

VD is applied as shown in Eq. (5) [31] : 

 n ×w 

≈ U n ×k �k ×k V 

T 
k ×w 

, B n ×k = A n ×w 

V w ×k (5) 

here k is the number of singular values. The reduced matrix B 

ontaining n rows of description vectors ( k dimension) is obtained 

y multiplying the original descriptions matrix A n ×w 

with matrix 

 n ×k . 

Let a set C = 

{
D 

′ 
i 
| i = 1 . . . n 

}
contain the reduced description 

ectors, and be derived from matrix B n ×k , where each i th element 

 

′ 
i 

is each i th row vector of B , therefore D 

′ 
i 

represents the extracted

emantic of each i th description D i . Also, as shown in Fig. 2 , de-

cription D i is relevant to image I i , and embeddings u i and v i are

utput from D i and I i respectively, hence D 

′ 
i 

can also simultane- 

usly represent the semantics of I i , v i , and u i . 

Therefore, let ˆ D 

′ 
i 
= 

{
D 

′ 
j 
| j = 1 . . . n, j � = i 

}
denote a se t of reduced 

ectors of descriptions from set C, where each jth vector D 

′ 
j 

simul- 

aneously represents the optimal semantics of v j and u j from sets 

ˆ 
 i and ˆ u i respectively, then S(v i , ˆ u i ) and S(u i , ˆ v i ) can be alterna- 

ively calculated using Eq. (6) : 

(v i , ˆ u i ) = S(u i , ˆ v i ) = s (D 

′ 
i , 

ˆ D 

′ 
i 
) (6) 

here s (D 

′ 
i 
, ˆ D 

′ 
i 
) ∈ [ −1 , 1] computes a set of cosine similarity scores

f D 

′ 
i 

with 

ˆ D 

′ 
i 
, thus: 

f (v i , ˆ u i ) = f (u i , ˆ v i ) = λ × s (D 

′ 
i , 

ˆ D 

′ 
i 
) (7) 
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Fig. 3. Illustrations of LSEH. LSEH dynamically adjusts the learning objective for 

the VSE network, and takes the maximum gradients from the ambiguous image–

description pairs. 

F

[

r  

f

S

a

L

L

o

i

s

c

l

m

c

d

3

A

1

1

1

1

1

1

n

s

Table 1 

Dataset split of Flickr30K, MS-COCO, and IAPR TC-12. 

Dataset Train Validate Test 

Flickr30K 29,000 1014 1000 

MS-COCO 113,287 1000 1000 and 5000 

IAPRTC-12 18,000 1000 1000 

n

X
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w
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urthermore, as a recent popular pre-trained language model, BERT 

26] can also find the underlying meaning of descriptions. BERT 

elies on a large amount of data for training and is known to per-

orm well in processing long documents [26] . The experiment in 

ection 4.7 compares the performance of LSEH when using SVD 

nd when using BERT. Finally, integrating Eq. (7) into Eq. (3) , 

SEH is computed as Eq. (8) : 

SEH (v i , u i ) = max 
ˆ u i 

[ α + s (v i , ˆ u i ) + λ × s (D 

′ 
i , 

ˆ D 

′ 
i 
) − s (v i , u i )] + 

+ max 
ˆ v i 

[ α + s (u i , ˆ v i ) + λ × s (D 

′ 
i , 

ˆ D 

′ 
i 
) − s (v i , u i )] + (8) 

Illustration of LSEH. As shown in Fig. 3 , the learning objective 

f LSEH, defined by margin α, is dynamically adjusted for every 

rrelevant image–description pair based on their optimal semantic 

imilarity (see Eq. (7) ). LSEH has two purposes: (1) it dynami- 

ally adjusts the learning objective for the VSE network for flexible 

earning; and (2) performs efficient training by taking the maxi- 

um gradients from the ambiguous image–description pairs be- 

ause their large optimal similarity scores that cause the large gra- 

ients. 

.3. Process of training VSE networks using LSEH 

Algorithm (1) shows the process of using LSEH to train a VSE 

lgorithm 1 Pseudocode of training a VSE network using LSEH. 

Input: X training set (image–description pairs), 

E training epochs, V step validation step 

Output: LSEH 

1: Obtain set C based on set X � Formula 5 

2: Apply the VSE network 

3: for epoch in E do 

4: Split sets (X, C) to mini-batches 

5: for mini-batch (X p , C p ) in (X, C) do 

6: Embed set X p to set X ′ p 
7: for v i , u i in X ′ p do 

8: Use C p to compute the semantic factors � Formula 7 

9: Use the semantic factors to compute LSEH � Formula 8 

0: end for 

11: Backpropagate LSEH for updating network 

2: if mini-batches number == V step then 

3: Validate the model 

14: if the overall performance is the best then 

5: Save the current model 

6: end if 

17: end if 

18: end for 

9: end for 

etwork. Initially, the descriptions from the train set X are repre- 

ented as a set of reduced vectors C (line 1). Thereafter the VSE 
4 
etwork is applied as follows (line 2). In every epoch, the train set 

is split into mini-batches and then the corresponding set of vec- 

ors are obtained from C such that 
{
(X, C ) = (X p , C p ) | p = 1 . . . m 

}
, 

here p is the index and m is the number of mini-batches (lines 

–4). 

For each mini-batch (X p , C p ) , the network outputs a set X 
′ 
p 

f embeddings from X p (lines 5–6). Thereafter, for every relevant 

mage–description embedding pair (v i , u i ) in set X 
′ 
p , the semantic 

actors are computed using set C p ( Eq. (7) ), then the LSEH value is

omputed ( Eq. (8) ) (lines 7–10). Finally, the LSEH value from the 

ini-batch is used for backpropagation (line 11). Furthermore, if 

he number of mini-batches reaches the validation step V step, the 

etwork is validated and the model that achieved the best overall 

erformance is saved (lines 12–17). 

. Experiments 

.1. Experiment setup 

Datasets and Protocols. The datasets utilised in the experi- 

ents are Flickr30K [7] and MS-COCO [6] , and these datasets are 

ypically used for evaluating the performance of VSE networks [3] . 

his paper also utilises the IAPR TC-12 dataset [32] . The datasets 

ere split into train, test and validation sets as shown in Table 1 

3] . In the Flickr30K and MS-COCO datasets, every image is asso- 

iated with five relevant textual descriptions. IAPR TC-12 includes 

ictures of different sports and actions, photographs of people, an- 

mals, cities, landscapes and many other aspects of contemporary 

ife. Each image in IAPR TC-12 is associated with one relevant tex- 

ual description [32] . 

The descriptions were pre-processed with lowercase, stemming, 

emoving punctuation and alphabetic, filtering out stop words and 

hort words, and the term frequency-inverse document frequency 

TFIDF) text vectorizer was applied to transform the descriptions 

nto usable vectors [33] . The number of singular values k for SVD 

as set as 400 for all datasets. The process of representing descrip- 

ions in a reduced dimensional space is described in Section 3 . SVD 

s computed once for each dataset. LSEH takes the vector from ma- 

rix B n ×k (see Eq. (5) ) to compute the cosine similarity between 

ectors from the matrix. Therefore, the cost for LSEH is only the 

osine similarity computation. Section 4.6 compares LSEH, LMH, 

nd LUWM on computation time. 

Network Implementations. The experiments tested VSE++ [3] , 

SRN [13] , SGRAF (sub-networks SGRAF-SAF and SGRAF-SGR) [4] , 

SE ∞ [8] , and GSMN [15] . For consistency of comparisons, VSE++, 

SRN, SGRAF, VSE ∞ , and GSMN have been tuned using the image 

egion feature (size of 36 × 2048) that was pre-extracted by the 

odified faster R-CNN [11] , where the architecture of the faster R- 

NN includes a backbone of ResNet-101 that was pre-trained on 

mageNet [34] and Visual Genome [35] . The architectures of VSE++, 

SRN, and SGRAF (sub-networks SGRAF-SAF and SGRAF-SGR) fol- 

ow those described in [3,4,13] respectively. For VSE ∞ , the image 

egion mode of architecture was used, and it follows the one de- 

cribed in [8] . For GSMN the sparse mode of architecture was used, 

nd it follows the one described in [15] . The source-code files of 

he abovementioned networks when using the proposed LSEH loss 
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Table 2 

Hyperparameters with different settings for LMH1, LMH2, LSEH, and LUWM, in terms of Margin, Learning Rate (LR), and 

epochs to update learning rate (Update). 

Flickr30K MS-COCO IAPR TC-12 

Loss Margin LR Update Margin LR Update Margin LR Update 

VSE + 

LMH1 0.20 0.0002 15 0.20 0.0002 15 0.20 0.0002 25 

LMH2 0.16 0.0020 3 0.16 0.0030 4 0.16 0.0008 5 

LSEH 0.16-0.21 0.0020 3 0.16-0.21 0.0030 4 0.16-0.21 0.0008 5 

VSRN 

LMH1 0.20 0.0002 10 0.20 0.0002 15 0.20 0.0005 20 

LMH2 0.16 0.0004 5 0.16 0.0004 6 0.16 0.0005 20 

LSEH 0.16-0.21 0.0004 5 0.16-0.21 0.0004 6 0.16-0.21 0.0005 20 

SGRAF-SAF 

LMH1 0.20 0.0002 20 0.20 0.0002 10 0.20 0.0002 20 

LMH2 0.16 0.0004 16 0.16 0.0004 6 0.16 0.0004 15 

LSEH 0.16-0.21 0.0004 16 0.16-0.21 0.0004 6 0.16-0.21 0.0004 15 

SGRAF-SGR 

LMH1 0.20 0.0002 30 0.20 0.0002 10 0.20 0.0002 30 

LMH2 0.16 0.0004 20 0.16 0.0004 6 0.16 0.0004 20 

LSEH 0.16-0.21 0.0004 20 0.16-0.21 0.0004 6 0.16-0.21 0.0004 20 

VSE ∞ 

LMH1 0.20 0.0005 15 0.20 0.0005 15 0.20 0.0005 15 

LMH2 0.16 0.0008 10 0.16 0.0010 10 0.16 0.0009 10 

LSEH 0.16-0.21 0.0008 10 0.16-0.21 0.0010 10 0.16-0.21 0.0009 10 

GSMN 

LMH1 0.20 0.0002 15 0.20 0.0005 5 - - - 

LUWM - 0.0002 15 - 0.0005 5 - - - 

LSEH 0.16-0.21 0.0004 10 0.16-0.21 0.0006 4 - - - 
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unction and their loss functions are provided in our GitHub repos- 

tory 1 . 

Network Training Hyperparameters. The benchmark hyperpa- 

ameter settings for each network are described in [3,4,8,10,13] re- 

pectively, where the benchmark hyperparameter settings on the 

ew IAPRTC-12 refer to Flickr30K because they contain a similar 

umber of images. Let LMH1 denote LMH with the benchmark 

yperparameters of each network and LMH2 denote LMH with 

SEH’s hyperparameter settings, then all the hyperparameters ex- 

ept those shown in Table 2 for using LMH1, LMH2, LUWM, and 

SEH refer to each network’s benchmark-settings. 

The hyperparameters shown in Table 2 were selected experi- 

entally and tuned as follows: (1) for LSEH the learning and up- 

ate learning rates can be set to a larger value at an earlier epoch 

han for LMH1; and (2) LSEH sets the margin α as 0.185 and the 

emantic factor temperature hyperparameter λ as 0.025. All of the 

xperiments were conducted on a workstation with NVIDIA Titan 

PU. For a fair comparison, all software programs were set with 

he same random seed. 

Evaluation Measures. To evaluate the performance of the net- 

orks two evaluation measures were used: Recall@k and M-Recall. 

Recall@k . The evaluation measure for the cross-modal informa- 

ion retrieval experiments is the commonly used Recall at rank k 

Recall@k), which is defined as the percentage of relevant items 

n the top k retrieved results [3] . The experiments evaluate the 

erformance of the network in retrieving any one of the relevant 

tems from the list of relevant items and computed the average 

ecall of the results of the test queries [3] . 

M-Recall . Defined as Eq. (9) [3] : 

 − Recall = 

1 

6 

1 , 5 , 10 ∑ 

k 

( Recall I2 T @ k + Recall T 2 I @ k ) (9) 

here M-Recall is the Mean of average Recall@1, 5, and 10 from 

oth image-to-text ( I2 T ) and text-to-image ( T 2 I) retrieval. M-Recall

s used for evaluating the overall performance of a network during 

he validation stages. 
1 https://github.com/yangong23/VSEnetworksLSEH 

a

l

o

5

.2. Comparison of LMH and LSEH on training efficiency 

This section compares the learning performance of VSE++, 

SRN, SGRAF-SAF, SGRAF-SGR, and VSE ∞ when using LMH1, 

MH2, and LSEH using the train and validation sets of the 

lickr30K, MS-COCO, and IAPR TC-12 datasets. Obtaining the op- 

imal trained model for the VSE networks is through validating 

he middle-trained model on the overall performance using the M- 

ecall evaluation measure. Validation occurs at every 10 0 0 mini- 

atches for SGRAF [4] , and at every 500 mini-batches for the VSE ∞ 

8] , VSRN [13] , and VSE++ [3] . 

Graphic and Quantitative Results. Fig. 4 compares the training 

erformance of networks using LMH1, LMH2, and LSEH. The com- 

arison considers the number of epochs that each network needs 

o reach its largest M-Recall value. The comparison is illustrated in 

ig. 4 . 

Table 3 quantifies the improvement in training efficiency of 

ach network when using LMH and the proposed LSEH loss func- 

ions. In Table 3 , for the comparison of LMH1 and LSEH M- 

ecall LMH1 is LMH1’s largest M-Recall value. epochs LMH1 is the 

umber of epochs needed to achieve M-Recall LMH1 by LMH1. 

pochs LSEH is the number of epochs needed to achieve M- 

ecall LMH1 by LSEH. Same interpretation applies for the compari- 

on of LMH2 and LSEH (right side of Table 3 ). 

Difference is computed using Eq. (10) . 

ifference = 

(
epochs LSEH 

− epochs LMH 

epochs LMH 

)
% , (10) 

here LMH is either LMH1 or LMH2. A negative Difference value 

enotes an improvement in performance when using LSEH. As 

hown in Table 3 , when using LSEH, the epochs needed to exceed 

he largest M-Recall values with LMH1 and LMH2 could be reduced 

y 53.2% and 74.7% on Flickr30K, by 43.0% and 52.1% on MS-COCO, 

nd by 48.5% and 69.8% on IAPR TC-12 respectively with LSEH. The 

argest improvement was for VSE++, where the training efficiency 

n IAPR TC-12 was improved by approximately 80.5% with LSEH. 

https://github.com/yangong23/VSEnetworksLSEH
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Table 3 

Comparison of training efficiency of each network when using LMH and the proposed LSEH loss function. Difference is calculated as shown in Eq. (10) . 

Comparison of LMH1 and LSEH Comparison of LMH2 and LSEH 

Network M-Recall LMH1 epochs LMH1 epochs LSEH Difference M-Recall LMH2 epochs LMH2 epochs LSEH Difference 

Flickr30K 

VSE + 57.1 6.0 1.8 –4.2 (–70.0%) 59.1 8.4 2.0 –6.4 (–76.2%) 

VSRN 78.0 12.0 4.9 –7.1 (–59.2%) 79.4 11.5 5.3 –6.2 (–53.9%) 

SGRAF-SAF 81.4 29.0 13.9 –15.1 (–52.1%) 80.9 29.0 10.0 –19.0 (-65.5%) 

SGRAF-SGR 81.0 38.6 20.1 –18.5 (–47.9%) 1.6 7.0 0.8 –6.2 (-88.6%) 

VSE ∞ 85.9 16.8 10.6 –6.2 (–36.9%) 81.8 24.0 2.6 –21.4 (–89.2%) 

Average –10.2 (–53.2%) –11.8 (–74.7%) 

MS-COCO 

VSE + 72.5 2.9 2.3 –0.6 (–20.7%) 21.3 16.0 0.2 –15.8 (–98.8%) 

VSRN 86.8 15.6 6.6 –9.0 (–57.7%) 86.7 10.2 6.4 –3.8 (–37.3%) 

SGRAF-SAF 88.0 19.8 8.0 –11.8 (–59.6%) 88.0 14.8 8.0 –6.8 (-45.9%) 

SGRAF-SGR 88.4 17.8 8.1 –9.7 (–54.5%) 87.8 14.0 6.3 –7.7 (–55.0%) 

VSE ∞ 89.4 16.9 13.1 –3.8 (–22.5%) 89.5 17.1 13.1 –4.0 (–23.4%) 

Average –7.0 (–43.0)% –7.6 (–52.1%) 

IAPR TC-12 

VSE + 50.0 19.0 3.7 –15.3 (–80.5%) 9.3 16.0 2.0 –14.0 (-87.5%) 

VSRN 86.7 36.0 21.0 –15.0 (–41.7%) 87.2 31.0 22.0 –9.0 (–29.0%) 

SGRAF-SAF 87.3 29.0 16.0 –13.0 (–44.8%) 16.8 19.2 1.0 –18.2 (–94.8%) 

SGRAF-SGR 87.1 39.6 19.0 –20.6 (–52.0%) 10.9 40.0 1.0 –39.0 (–97.5%) 

VSE ∞ 92.7 17.0 13.0 –4.0 (–23.5%) 92.5 20.0 12.0 –8.0 (–40.0%) 

Average –13.6 (–48.5%) –17.6 (-69.8%) 

Table 4 

Results of cross-modal information retrieval by LMH1, LMH2, and LSEH on the Flickr30K dataset in terms of average 

Recall@k (%). 

Image-to-Text Retrieval Text-to-Image Retrieval 

Network Loss R@1 R@5 R@10 Mean R@1 R@5 R@10 Mean 

VSE + LMH1 38.9 68.0 78.5 61.8 ( ±16.8) 29.7 58.7 69.8 52.7 ( ±16.9) 

LMH2 41.3 71.0 82.2 64.8 ( ±17.3) 33.3 61.5 72.0 55.6 ( ±16.3) 

LSEH 45.9 74.0 82.7 67.5 ( ±15.7) 33.2 62.2 73.3 56.2 ( ±16.9) 

VSRN LMH1 69.8 89.0 94.4 84.4 ( ±10.6) 52.1 78.8 86.6 72.5 ( ±14.8) 

LMH2 71.1 91.5 95.8 86.1 ( ±10.8) 54.8 81.0 87.4 74.4 ( ±14.1) 

LSEH 73.0 92.8 95.7 87.2 ( ±10.1) 55.8 81.9 88.8 75.5 ( ±14.2) 

SGRAF-SAF LMH1 75.5 93.6 97.0 88.7 ( ±9.4) 55.3 81.7 88.5 75.2 ( ±14.3) 

LMH2 74.0 93.6 97.0 88.2 ( ±10.1) 54.6 80.6 87.0 74.1 ( ±14.0) 

LSEH 76.2 93.8 97.2 89.1 ( ±9.2) 57.7 82.3 88.8 76.3 ( ±13.4) 

SGRAF-SGR LMH1 74.2 92.5 96.5 87.7 ( ±9.7) 55.4 80.6 85.9 74.0 ( ±13.3) 

LMH2 0.3 1.3 2.0 1.2 ( ±0.7) 0.4 1.5 2.8 1.6 ( ±1.0) 

LSEH 78.2 94.3 96.8 89.8 ( ±8.2) 57.6 82.5 87.9 76.0 ( ±13.2) 

VSE ∞ LMH1 80.8 96.4 98.3 91.8 ( ±7.8) 62.6 86.9 91.7 80.4 ( ±12.7) 

LMH2 74.4 91.7 96.3 87.5 ( ±9.4) 56.1 82.3 89.0 75.8 ( ±14.2) 

LSEH 82.4 96.0 98.6 92.3 ( ±7.1) 63.7 87.1 92.5 81.1 ( ±12.5) 

Table 5 

Results of cross-modal information retrieval by LMH1, LMH2, and LSEH on the MS-COCO1K dataset in terms of 

average Recall@k (%). 

Image-to-Text Retrieval Text-to-Image Retrieval 

Network Loss R@1 R@5 R@10 Mean R@1 R@5 R@10 Mean 

VSE + LMH1 54.5 84.9 91.7 77.0 ( ±16.2) 40.8 75.6 86.3 67.6 ( ±19.4) 

LMH2 11.9 38.5 53.0 34.5 ( ±17.0) 2.5 8.6 13.8 8.3 ( ±4.6) 

LSEH 56.3 85.3 92.2 77.9 ( ±15.6) 41.2 76.1 86.6 68.0 ( ±19.4) 

VSRN LMH1 76.4 94.2 97.6 89.4 ( ±9.3) 63.1 89.4 94.3 82.3 ( ±13.7) 

LMH2 73.5 94.7 98.1 88.8 ( ±10.9) 61.7 89.3 94.8 81.9 ( ±14.5) 

LSEH 76.5 95.7 98.4 90.2 ( ±9.7) 62.0 90.1 95.1 82.4 ( ±14.6) 

SGRAF-SAF LMH1 80.2 96.6 98.7 91.8 ( ±8.3) 64.5 90.5 96.0 83.7 ( ±13.7) 

LMH2 78.8 96.3 98.6 91.2 ( ±8.8) 64.0 90.6 95.5 83.4 ( ±13.8) 

LSEH 80.1 97.3 98.7 92.0 ( ±8.5) 64.6 90.9 96.0 83.8 ( ±13.8) 

SGRAF-SGR LMH1 79.7 97.0 98.8 91.8 ( ±8.6) 64.0 90.5 95.7 83.4 ( ±13.9) 

LMH2 79.7 96.3 98.6 91.5 ( ±8.4) 63.7 90.5 95.5 83.2 ( ±14.0) 

LSEH 80.1 97.7 99.1 92.3 ( ±8.6) 63.9 90.7 95.9 83.5 ( ±14.0) 

VSE ∞ LMH1 80.8 97.0 99.0 92.3 ( ±8.1) 66.0 91.7 96.1 84.6 ( ±13.3) 

LMH2 81.0 96.8 99.0 92.3 ( ±8.0) 66.4 92.0 96.0 84.8 ( ±13.1) 

LSEH 82.2 96.9 98.6 92.6 ( ±7.4) 66.5 91.9 96.2 84.9 ( ±13.1) 

6
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Fig. 4. Comparison of training efficiency when using LMH1, LMH2, and LSEH to train various VSE networks on Flickr30K, MS-COCO, and IAPR TC-12. Recall (in Y-axis) is M- 

Recall (%). The largest M-Recall values of LMH1 and LMH2 are denoted by the vertical dashed lines of orange and green respectively. The vertical dashed blue lines indicate 

that LSEH’s M-Recall has exceeded the best performance of LMH1 or LHM2. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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.3. Comparison of LMH and LSEH on cross-modal information 

etrieval 

This section compares the cross-modal information retrieval 

erformance between the optimal models of VSE++, VSRN, SGRAF- 
7

AF, SGRAF-SGR, and VSE ∞ with using LMH1, LMH2, and LSEH on 

he Flickr30K, MS-COCO1K, MS-COCO5K, and IAPR TC-12 test sets. 

ables 4, 5, 6 , and 7 show the results of the comparisons of LMH1,

MH2, and LSEH when integrated into various networks and ap- 

lied to the datasets of Flickr30K (see Table 4 ), MS-COCO1K (see 
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Table 6 

Results of cross-modal information retrieval by LMH1, LMH2, and LSEH on the MS-COCO5K dataset in terms of average Recall@k (%). 

Image-to-Text Retrieval Text-to-Image Retrieval 

Network Loss R@1 R@5 R@10 Mean R@1 R@5 R@10 Mean 

VSE + LMH1 27.6 56.6 69.5 51.2 ( ±17.5) 20.0 45.7 59.0 41.6 ( ±16.2) 

LMH2 3.0 12.8 20.9 12.2 ( ±7.3) 0.4 2.2 3.7 2.1 ( ±1.3) 

LSEH 28.5 57.6 70.3 52.1 ( ±17.5) 19.3 46.2 60.0 41.8 ( ±16.9) 

VSRN LMH1 49.4 79.3 88.5 72.4 ( ±16.7) 38.4 69.3 79.8 62.5 ( ±17.6) 

LMH2 49.3 79.4 88.4 72.4 ( ±16.7) 37.5 68.3 79.7 61.8 ( ±17.8) 

LSEH 50.3 80.3 88.6 73.1 ( ±16.5) 38.6 69.6 80.6 62.9 ( ±17.8) 

SGRAF-SAF LMH1 54.4 82.9 91.0 76.1 ( ±15.7) 40.1 69.7 80.3 63.4 ( ±17.0) 

LMH2 54.8 82.8 90.2 75.9 ( ±15.2) 39.9 69.3 80.0 63.1 ( ±17.0) 

LSEH 56.4 83.5 90.7 76.9 ( ±14.8) 40.6 69.7 80.7 63.7 ( ±16.9) 

SGRAF-SGR LMH1 56.8 83.1 91.1 77.0 ( ±14.7) 40.8 69.7 80.6 63.7 ( ±16.8) 

LMH2 55.9 83.4 90.8 76.7 ( ±15.0) 39.6 68.9 79.7 62.7 ( ±16.9) 

LSEH 57.8 83.7 91.0 77.5 ( ±14.2) 40.6 69.8 80.6 63.7 ( ±16.9) 

VSE ∞ LMH1 58.3 84.7 91.8 78.3 ( ±14.4) 42.5 72.7 83.0 66.1 ( ±17.2) 

LMH2 58.9 84.9 92.2 78.7 ( ±14.3) 42.2 72.4 82.8 65.8 ( ±17.2) 

LSEH 58.8 85.4 92.6 78.9 ( ±14.5) 43.1 73.2 83.2 66.5 ( ±17.0) 

Table 7 

Results of cross-modal information retrieval by LMH1, LMH2, and LSEH on the IAPR TC-12 dataset in terms of average Recall@k (%). 

Image-to-Text Retrieval Text-to-Image Retrieval 

Network Loss R@1 R@5 R@10 Mean R@1 R@5 R@10 Mean 

VSE + LMH1 25.0 56.5 70.7 50.7 ( ±19.1) 27.4 60.9 73.5 53.9 ( ±19.5) 

LMH2 5.0 14.2 23.1 14.1 ( ±7.4) 0.7 3.5 6.1 3.4 ( ±2.2) 

LSEH 35.7 69.6 82.5 62.6 ( ±19.7 ) 36.2 71.3 83.2 63.6 ( ±20.0) 

VSRN LMH1 71.5 92.9 96.4 86.9 ( ±11.0) 71.8 92.8 96.0 86.9 ( ±10.7) 

LMH2 71.4 93.4 96.5 87.1 ( ±11.2) 70.8 93.3 96.5 86.9 ( ±11.4) 

LSEH 73.9 93.8 96.2 88.0 ( ±10.0) 73.3 93.2 96.0 87.5 ( ±10.1) 

SGRAF-SAF LMH1 70.7 94.4 97.4 87.5 ( ±11.9) 73.1 93.4 97.2 87.9 ( ±10.6) 

LMH2 9.8 25.5 37.1 24.1 ( ±11.2) 1.9 8.7 14.0 8.2 ( ±5.0) 

LSEH 74.5 95.1 97.8 89.1 ( ±10.4) 73.7 94.5 97.7 88.6 ( ±10.6) 

SGRAF-SGR LMH1 70.9 93.3 97.8 87.3 ( ±11.8) 72.1 92.8 96.7 87.2 ( ±10.8) 

LMH2 4.3 12.7 19.0 12.0 ( ±6.0) 2.3 9.7 15.2 9.1 ( ±5.3) 

LSEH 75.1 95.6 98.1 89.6 ( ±10.3) 75.1 94.9 98.0 89.3 ( ±10.1) 

VSE ∞ LMH1 81.5 97.3 99.0 92.6 ( ±7.9) 79.1 96.4 98.8 91.4 ( ±8.8) 

LMH2 81.0 96.7 98.8 92.2 ( ±7.9) 80.7 95.8 97.9 91.5 ( ±7.7) 

LSEH 83.7 97.7 98.8 93.4 ( ±6.9) 81.4 96.9 98.5 92.3 ( ±7.7) 

Table 8 

Mean average Recall of each network for each dataset. A summary derived from 

Tables 4 , 5 , 6 , and 7 . 

Flickr30k MS-COCO1K 

Method Image-Text Text-Image Image-Text Text-Image 

LMH1 82.9 ( ±15.6) 71.0 ( ±17.3) 88.8 ( ±10.9) 80.3 ( ±16.3) 

LMH2 65.6 ( ±35.1) 56.3 ( ±31.3) 79.7 ( ±25.2) 68.3 ( ±32.6) 

LSEH 85.2 ( ±13.8) 73.0 ( ±16.6) 89.0 ( ±11.8) 80.5 ( ±16.4) 

MS-COCO5K IAPR TC-12 

Method Image-Text Text-Image Image-Text Text-Image 

LMH1 71.0 ( ±18.8) 59.4 ( ±19.2) 81.0 ( ±20.0) 81.5 ( ±18.8) 

LMH2 63.2 ( ±29.2) 51.1 ( ±29.0) 45.9 ( ±37.1) 39.8 ( ±41.0) 

LSEH 71.7 ( ±18.5) 59.7 ( ±19.3) 84.5 ( ±16.5) 84.3 ( ±16.3) 
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able 5 ), MS-COCO5K (see Table 6 ), and IAPR TC-12 (see Table 7 )

espectively. Recall values @1, @5, and @10 show the average Recall 

alues across all queries found in each of the test sets (see Table 1 ).

he last column of Tables 4, 5, 6 , and 7 shows the mean of the

verage Recall values (i.e. the average of columns 3–5). Table 8 

ummarises the mean average Recall across five networks for each 

ataset from Tables 4, 5, 6 , and 7 , and below is a summary of the

ain findings for each dataset. 

(1) Flickr30K . The proposed LSEH reached a Recall of 85.2% 

or image-to-text, and a Recall of 73.0% for text-to-image retrieval. 

SEH outperformed LMH1 by 2.3% and 2.0% for image-to-text and 

ext-to-image retrieval, respectively. LSEH outperformed LMH2 by 
8

9.6% for image-to-text retrieval and by 16.7% for text-to-image re- 

rieval. 

(2) MS-COCO1K . For LSEH, Recall reached 89.0% for image-to- 

ext retrieval and 80.5% for text-to-image retrieval, and outper- 

ormed LMH1 by 0.2% and 0.2% for those tasks, respectively. LSEH 

lso outperformed LMH2 for image-to-text and text-to-image re- 

rieval by 9.3% and 12.2%, respectively. 

(3) MS-COCO5K . For image-to-text retrieval, LSEH’s Recall 

eached 71.7% which outperformed LMH1 by 0.7% and LMH2 by 

.5%. For text-to-image retrieval, the Recall of the proposed LSEH 

eached 59.7% which outperformed LMH1 by 0.3% and LMH2 by 

.6%. 

(4) IAPR TC-12 . LSEH’s Recall values for image-to-text and text- 

o-image retrieval were 84.5% and 84.3% respectively, and these 

utperformed the results of LMH1 by 3.5% and 2.8% respectively. 

he proposed LSEH outperformed LMH2 for image-to-text and 

ext-to-image retrieval by 38.6% and 44.5% respectively. 

.4. Comparison of LSEH with polynomial loss 

This section compares the training efficiency and cross-modal 

nformation retrieval performance of the proposed LSEH with the 

UWM polynomial loss function [10] . In Wei et al. [10] LUWM was 

ested using GSMN, and hence the experiments included herein 

dopt the GSMN. This will facilitate the comparison of the perfor- 

ance of GSMN when using the LUWM and the proposed LSEH. 

Training Efficiency. Fig. 5 compares the training efficiency of 

SMN using LUWM and LSEH on the Flickr30K and MS-COCO 



Y. Gong and G. Cosma Pattern Recognition 137 (2023) 109272 

Table 9 

Average Recall@k (%) of GSMN when using the LUWM and LSEH loss functions for cross-modal information retrieval across datasets. 

Image-to-Text Retrieval Text-to-Image Retrieval 

Network Loss R@1 R@5 R@10 Mean R@1 R@5 R@10 Mean 

Flickr30K 

GSMN [15] LMH1 71.4 92.0 96.1 86.5 ( ±10.8) 53.9 79.7 87.1 73.6 ( ±14.2) 

GSMN [10] LUWM 73.1 92.7 96.8 87.5 ( ±10.3) 54.2 79.9 87.3 73.8 ( ±14.2) 

GSMN LSEH 74.1 93.3 96.5 88.0 ( ±9.9) 55.4 81.2 87.2 74.6 ( ±13.8) 

MS-COCO1K 

GSMN [15] LMH1 76.1 95.6 98.3 90.0 ( ±9.9) 60.4 88.7 95.0 81.4 ( ±15.0) 

GSMN [10] LUWM 76.8 96.2 98.5 90.5 ( ±9.7) 60.9 89.0 95.5 81.8 ( ±15.0) 

GSMN LSEH 79.7 96.4 98.9 91.7 ( ±8.5) 63.2 90.3 95.4 83.0 ( ±14.1) 

MS-COCO5K 

GSMN [10] LUWM 54.7 82.2 89.7 75.5 ( ±15.0) 38.5 67.6 78.9 61.7 ( ±17.0) 

GSMN LSEH 54.3 82.4 90.2 75.6 ( ±15.4) 39.0 68.4 79.5 62.3 ( ±17.1) 

Fig. 5. Comparison of training efficiency when using LUWM and LSEH to train 

GSMN on Flickr30K and MS-COCO respectively. 
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atasets, where the validation step for GSMN is at every 10 0 0 

ini-batches. Fig. 5 shows that GSMN with LSEH achieved a larger 

-Recall than with LUWM, at fewer epochs on both datasets. 

Cross-modal Information Retrieval Performance. Table 9 

hows the results of the comparisons of LUWM and LSEH when 

ntegrated into GSMN and applied to the datasets. The last column 

f Table 9 shows the mean average Recall values (i.e. the average of 

olumns 3–5), and the main findings from each dataset are sum- 

arised as follows. 

(1) Flickr30K . The proposed LSEH reached a Recall of 88.0% for 

mage-to-text, a Recall of 74.6% for text-to-image retrieval, and out- 

erformed LUWM by 0.5% and 0.8% for those tasks, respectively. 

(2) MS-COCO1K . For image-to-text retrieval, LSEH’s Recall 

eached 91.7% which outperformed LMH1 by 1.2%. For text-to- 

mage retrieval, LSEH’s Recall reached 83.0% which outperformed 

UWM by 1.2%. 

(3) MS-COCO5K . For LSEH, Recall reached 75.6% for image- 

o-text and 62.3% for text-to-image retrieval. LSEH outperformed 

MH1 by 0.1% and 0.6% for image-to-text and text-to-image re- 

rieval, respectively. 

.5. Discussion on quantitative results of graph-based VSE networks 

Graph-based VSE networks such as SGRAF-SGR, VSRN, and 

SMN consider the local information of images and descriptions 

or cross-modal information retrieval. The results described in 

ection 4.2 –4.4 revealed that the above graph-based VSE networks 

erformed better than when using the LMH and LUWM loss func- 

ions. When using LMH1, SGRAF-SGR needed 38.6 training epochs 

o achieve its higher M-Recall value (81.0%) on the Flickr30K 
9

ataset, compared to needing 20.1 epochs when using LSEH. Hence 

hen using LSEH the number of training epochs needed by SGRAF- 

GR were reduced by 47.9%. In terms of retrieval performance us- 

ng the mean average Recall evaluation metric, (1) VSRN using 

SEH reached the Recall of 87.2% and 75.5% for image-to-text and 

ext-to-image retrieval respectively on the Flickr30K dataset, and 

utperformed VSRN when using LMH1 by 2.8% and 3.0% for those 

asks, respectively; and (2) GSMN using LSEH reached a Recall of 

1.7% for image-to-text, and a Recall of 83.0% for text-to-image re- 

rieval on the MS-COCO1K dataset, and outperformed GSMN when 

sing LUWM by 1.2% and 1.2% for those tasks, respectively. 

.6. Comparisons on computation time 

Fig. 6 shows the computation time of one epoch when train- 

ng VSE ∞ [8] using LMH1, LUWM, and LSEH. These experiments 

tilised the training set from Flickr30K [7] . In Fig. 6 , for each loss

unction the network is trained 10 times with various numbers 

f training samples (increased from 2900 to 29,0 0 0 in steps of 

900), and the computation time is recorded. The three lines that 

t the data points of LMH1, LUWM, and LSEH follow the equa- 

ions of T LMH1 (n ) = 147 . 8 n − 6 . 4 , T LUW M 

(n ) = 1104 . 6 n − 14 . 7 , and

 LSEH (n ) = 144 . 4 n − 1 . 7 respectively. Note that the lines of LSEH

nd LMH1 are almost aligned. The computation time of LSEH is 

lmost the same as that of LMH1, and six times faster than LUWM. 

.7. Comparison of LSEH-SVD and LSEH-BERT 

This section compares LSEH when using SVD (LSEH-SVD) and 

hen using BERT (LSEH-BERT) for cross-modal information re- 
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Table 10 

Average Recall@k (%) of VSE ∞ when using the LSEH-SVD and LSEH-BERT for cross-modal information retrieval across the datasets. 

Image-to-Text Retrieval Text-to-Image Retrieval 

Loss Method R@1 R@5 R@10 Mean R@1 R@5 R@10 Mean 

Flickr30K 

LMH1 - 80.8 96.4 98.3 91.8 ( ±7.8) 62.6 86.9 91.7 80.4 ( ±12.7) 

LSEH BERT 81.0 96.1 97.7 91.6 ( ±7.5) 63.1 87.1 92.7 81.0 ( ±12.8) 

LSEH SVD 82.4 96.0 98.6 92.3 ( ±7.1) 63.7 87.1 92.5 81.1 ( ±12.5) 

MS-COCO1K 

LMH1 - 80.8 97.0 99.0 92.3 ( ±8.1) 66.0 91.7 96.1 84.6 ( ±13.3) 

LSEH BERT 82.0 97.1 98.7 92.6 ( ±7.5) 66.2 92.0 96.2 84.8 ( ±13.3) 

LSEH SVD 82.2 96.9 98.6 92.6 ( ±8.5) 66.5 91.9 96.2 84.9 ( ±13.1) 

MS-COCO5K 

LMH1 - 58.3 84.7 91.8 78.3 ( ±14.4) 42.5 72.7 83.0 66.1 ( ±17.2) 

LSEH BERT 59.1 85.3 92.6 79.0 ( ±14.4) 42.0 72.7 83.1 65.9 ( ±17.4) 

LSEH SVD 58.8 85.4 92.6 78.9 ( ±14.5) 43.1 73.2 83.2 66.5 ( ±17.0) 

IAPR TC-12 

LMH1 - 81.5 97.3 99.0 92.6 ( ±7.9) 79.1 96.4 98.8 91.4 ( ±8.8) 

LSEH BERT 82.9 97.4 98.5 92.9 ( ±7.1) 80.6 96.5 97.9 91.7 ( ±7.8) 

LSEH SVD 83.7 97.7 98.8 93.4 ( ±6.9) 81.4 96.9 98.5 92.3 ( ±7.7) 

Fig. 7. Comparison of training efficiency when using LSEH-SVD and LSEH-BERT to 

train VSE ∞ on the Flickr30K, MS-COCO, and IAPR TC-12 datasets. 
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rieval in the Flickr30K, MS-COCO, and IAPR TC-12 benchmark 

atasets. The experiments employ the latest VSE network (i.e. 

SE ∞ ) to test LSEH-SVD and LSEH-BERT. VSE ∞ using LSEH- 

ERT employs the pre-trained BERT-base model [26] and follows 

he hyperparameter settings of VSE ∞ using LSEH-SVD (shown in 

able 2 ). 

Training Efficiency. Fig. 7 compares the training efficiency of 

SE ∞ using LSEH-SVD and LSEH-BERT, where the validation step 

or VSE ∞ is at every 500 mini-batches. Fig. 7 shows that VSE ∞
ith LSEH-SVD reached a larger M-Recall than with LSEH-BERT at 

ewer epochs on the Flickr30K and IAPR TC-12 datasets. Observing 

he curves of VSE ∞ using L SEH-SVD and L SEH-BERT on the MS-

OCO dataset, their lines are close to overlapping and hence they 

re similar with regards to M-Recall and training efficiency. 

Cross-modal Information Retrieval Performance. As shown 

n Table 10 , compared to the baseline (LMH1), both LSEH-SVD 

nd LSEH-BERT have outperformed LMH1 for cross-modal infor- 

ation retrieval on all datasets. The performance of LSEH-BERT is 

ower than that of LSEH-SVD. LSEH-BERT outperformed LSEH-SVD 

nly for the task of image-to-text retrieval on the dataset of MS- 

OCO5K, where LSEH-BERT reached a mean average Recall value 

f 79.0% and outperformed LSEH-SVD by 0.1%. However, LSEH-SVD 

utperformed LSEH-BERT on all the rest of the tasks and datasets 

n Table 10 . 

.8. Reasoning with the results of the proposed LSEH using 

isualisation 

For reasoning with how the proposed LSEH improved the train- 

ng of VSE networks, VSRN [13] was adopted because it is a state- 
10 
f-the-art image graph reasoning network that provides the means 

f visualising its results. 

Reasoning with Training Efficiency. When the queries are 

ooped in a mini-batch during training, LMH1 and LSEH select one 

rrelevant embedding from a set of irrelevant embeddings as the 

ard negative sample for the query embedding, because of the max 

peration in LMH1 and LSEH (as shown in Eq. (2) and Eq. (8) ).

owever, some irrelevant embeddings may be repeatedly selected 

s the hard negative samples and this leads to low efficiency when 

tilising embeddings (see Section 3 ). In this experiment, to il- 

ustrate and compare the training efficiency of VSRN when using 

MH1 and the proposed LSEH loss function, the number of unique 

mage– and description– embeddings (denoted as #ImEmbs and 

DesEmbs respectively), that are used as the hard negative sam- 

les, are counted within each mini-batch and across a range of 

raining epochs. 

The results of each dataset are shown in Fig. 8 and described as 

ollows. 

(1) Flickr30K . LSEH reached its largest number of unique #De- 

Embs and #ImEmbs (i.e. both 85) at 1.1 epochs, whereas LMH1 

eeded 2.9 epochs (i.e. #DesEmbs and #ImEmbs were both 87). 

(2) MS-COCO . LSEH needed 0.2 epochs to reach its largest 

umber of #DesEmbs (91) and #ImEmbs (i.e. 96), whereas LMH1 

eeded 1.7 epochs to obtain its largest number of unique #De- 

Embs and #ImEmbs with values 89 and 93 respectively. 

(3) IAPR TC-12 . LSEH reached its largest number of unique 

DesEmbs (i.e. 88) and #ImEmbs (i.e. 87) in 2.2 epochs, whereas 

MH1 needed 10 epochs to obtain its largest number of unique 

DesEmbs (i.e 87) and #ImEmbs (i.e 85). The proposed LSEH out- 

erformed LMH1 on the efficiency of utilising unique embeddings, 

hich visually reasons the improvement in training efficiency by 

SEH. 

Illustrating one Hard Negative Sample Selected by LMH1 and 

SEH. For visually comparing LMH1 and LSEH when selecting 

ard negative samples, the irrelevant images to each textual query 

ound in a mini-batch are ranked by LMH1 and LSEH respectively 

ccording to the descending order of their gradients. The top eight 

rrelevant images to a sample textual query are presented in Fig. 9 . 

mages selected by LMH1 in Fig. 9 (a) contain no semantic sim- 

larity relevant to the query description. However, in comparison 

o the set of results retrieved by LSEH and shown in set (b) of 

ig. 9 , the selected images are more semantically relevant to the 

uery, e.g. more images were retrieved of ‘a man’ or which relate 

o the clothes described in the query. The ranked top eight irrele- 

ant images selected by LSEH have a higher probability of being in- 

orrectly retrieved than those irrelevant images selected by LMH1, 
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Fig. 8. Results of reasoning with training efficiency of VSRN using LMH1 and LSEH on various datasets. The Y-axis presents the numbers of unique image embeddings 

(#ImEmbs) and description embeddings (#DesEmbs) that are used as hard negative samples in each mini-batch, and the X-axis is the number of training epochs. 

Fig. 9. Examples (a) and (b) are the top eight irrelevant images in a mini-batch to the query description that is selected by LMH1 and LSEH respectively according to the 

descending order of their gradients. The images in (b) are semantically closer to the query’s textual description than the images in (a), which are hard negative samples. 

Fig. 10. Visual comparison of LMH1 (a) and LSEH (b) on the various attention regions of an image processed by VSRN during training. The degree of attention is indicated 

on the attention scale. 
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ence why it is more efficient to use LSEH’s hard negative samples 

uring the training. 

Visualisation of Learning with LMH1 and LSEH. For visually 

omparing the learning progress of VSRN when using LMH1 and 

SEH, the various attention regions of an image processed by VSRN 

uring the training are presented, where the method for generat- 

ng the attention region heating maps follows that of Li et al. [13] .

SRN using LMH1, as shown in Fig. 10 (a) only focused some at- 

ention on the main objects of the image (e.g. ‘people’ and ‘trees’) 

n epochs one and three. On the contrary, as shown in Fig. 10 (b),

he VSRN using the proposed LSEH has paid much attention to the 

ain objects of the image on epoch one. 

. Conclusion 

Existing Visual Semantic Embedding (VSE) networks are trained 

y a hard negatives loss function that learns an objective mar- 

in between the similarity of the relevant and irrelevant image–

escription embedding pairs and ignores the semantic differ- 

nces between the irrelevant pairs. This paper proposes a novel 

emantically-Enhanced Hard negatives Loss function (LSEH) for 
11 
ross-modal Information Retrieval that considers the semantic dif- 

erences between irrelevant training pairs, to dynamically adjust 

he learning objectives of VSE networks to make their learning 

exible and efficient. Extensive experiments were carried out by 

ntegrating the proposed methods into five state-of-the-art VSE 

etworks (VSE++, VSRN, SGRAF-SAF, SGRAF-SGR, and VSE ∞ ) that 

ere applied to the Flickr30K, MS-COCO, and IAPR TC-12 datasets. 

he experiments revealed that the proposed LSEH function, when 

ntegrated into VSE networks, improves their training efficiency 

nd cross-modal information retrieval performance. With regards 

o training time, LSEH reduced the training epochs of LMH on av- 

rage by 53.2% on the Flickr30K dataset, 43.0% on the MS-COCO 

ataset, and 48.5% on the IAPR TC-12 dataset. In terms of re- 

rieval performance using the mean average Recall evaluation met- 

ic, LSEH outperformed LMH1 by (1) 2.3% for image-to-text and 

.0% for text-to-image retrieval on the Flickr30K dataset; (2) 0.2% 

or image-to-text and 0.2% for text-to-image retrieval on the MS- 

OCO1K dataset; (3) 0.7% for image-to-text and 0.3% for text-to- 

mage retrieval on the MS-COCO5K dataset; and (4) 3.5% for image- 

o-text and 2.8% for text-to-image retrieval on the IAPR TC-12 

ataset. Section 4.7 describes our experimental results using SVD 
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nd BERT and the findings revealed that SVD outperformed BERT 

hen these are embedded in the proposed loss function. From this 

erspective, it is more efficient to use an unsupervised approach 

ecause such approaches do not need labels or computationally 

xpensive training processes. The focus of the paper has been on 

he application of VSE networks for cross-modal information re- 

rieval. Future work includes applying the proposed loss function 

o other similar cross-modal tasks such as hashing-based networks 

or cross-modal retrieval and text-to-video retrieval. Future work 

ill also focus on extracting image description semantics using 

ther supervised and unsupervised feature extraction methods and 

omparing those to the methods (i.e. SVD and BERT) that have al- 

eady been utilised for the task. Finally, future work also includes 

mbedding the proposed methods into a next generation cross- 

odal search engine and evaluating its capabilities with real-word 

atasets. 
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