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There is an ongoing and dedicated effort to estimate bounds on the generalization error of deep 
learning models, coupled with an increasing interest with practical metrics that can be used to 
experimentally evaluate a model’s ability to generalize. This interest is not only driven by practical 
considerations but is also vital for theoretical research, as theoretical estimations require practical 
validation. However, there is currently a lack of research on benchmarking the generalization capacity 
of various deep networks and verifying these theoretical estimations. This paper aims to introduce 
a practical generalization metric for benchmarking different deep networks and proposes a novel 
testbed for the verification of theoretical estimations. Our findings indicate that a deep network’s 
generalization capacity in classification tasks is contingent upon both classification accuracy and 
the diversity of unseen data. The proposed metric system is capable of quantifying the accuracy of 
deep learning models and the diversity of data, providing an intuitive and quantitative evaluation 
method - a trade-off point. Furthermore, we compare our practical metric with existing generalization 
theoretical estimations using our benchmarking testbed. It is discouraging to note that most of the 
available generalization estimations do not correlate with the practical measurements obtained using 
our testbed. On the other hand, this finding is significant as it exposes the shortcomings of theoretical 
estimations and inspires new exploration.

Generalization refers to a model’s ability to perform well on unseen or new data, emphasizing its capacity to 
capture underlying patterns in the data rather than merely memorizing specific details from the training set. 
A well-generalized model not only excels on the training data but also demonstrates strong performance on 
previously unseen data. The assessment of generalization in deep networks has predominantly focused on 
supervised learning settings.

Currently, while efforts to establish theoretical bounds for generalization continue, there is growing interest 
in intuitive metrics for experimentally assessing generalization capacity. This trend reflects concerns that many 
theoretical bounds or capacity measures may be vacuous, inefficient, or even counterproductive in practice. Recent 
studies have explored various properties associated with deep network generalization. For instance, research has 
focused on robust overfitting in adversarial training1, distributional robustness as a measure of generalization, 
and combining complexity measures2. Additionally, there is ongoing inquiry into whether causal relationships 
between these complexity measures and generalization can be accurately identified3. Recent advancements in the 
estimation of non-vacuous generalization bounds4 have proposed approaches for constructing tighter bounds, 
aiming to better elucidate the relationship between data fit and model compression. However, these theoretical 
estimations require practical validation, as well as a benchmarking framework for evaluation and comparison. 
The field of deep learning generalization has also been enriched by a growing consensus that traditional machine 
learning theory, grounded in worst-case analyses, is insufficient to fully explain the generalization capabilities 
of deep learning models5. This is particularly true when trying to understand why over-parameterized neural 
networks often generalize well6. For instance, Dupuis et al.7 introduced a data-dependent fractal dimension 
to enhance generalization bound estimations, while Neyshabur et al.6 proposed a complexity measure based 
on unit-wise capacities, yielding more precise bounds for two-layer ReLU networks. Furthermore, Valle-Pérez 
et al.8 reviewed generalization error bound estimation methods, proposing seven desiderata for evaluating 
generalization in deep learning models and systematically categorizing existing approaches based on these 
criteria.

Generalization bounds can be broadly classified into four categories. The first category, data-independent and 
algorithm-independent, includes algorithms with minimal assumptions, such as VC dimension bounds9. The 
second category, data-dependent and algorithm-independent, relies on training data and includes approaches 
like the Rademacher complexity bound10,11. The third category, data-independent and algorithm-dependent, 
incorporates stronger assumptions without depending on training data12–14. Lastly, the data-dependent and 
algorithm-dependent category includes methods that make strong assumptions and depend on training 
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data, such as those presented in15–22. Notably, Dziugaite et al.23 introduced the first non-vacuous PAC-Bayes 
generalization bounds for deep stochastic neural networks on the binary MNIST dataset, and subsequent work4 
proposed novel compression techniques for constructing tighter bounds.

In addition to theoretical advancements, empirical studies suggest that model size plays a more critical role 
in generalization than specific architectural details, such as network width or depth. For instance, Kaplan et 
al.24 demonstrated that neural scaling laws indicate a strong correlation between model or dataset size and 
performance, a finding supported by van Rossem et al.25 and Huang et al.26, who showed that certain behaviors 
remain consistent across architectures once models are sufficiently flexible. This universality suggests that 
architectural specifics have a minimal impact on the learned representations.

Moreover, the Predicting Generalization in Deep Learning competition27 at NeurIPS 2020 highlighted the 
need to understand the relationship between model complexity and generalization. The competition featured 
eight tasks with pre-trained deep networks of similar architectures but differing hyperparameters. Conditional 
Mutual Information was applied to explore these relationships. While our proposed metric does not directly 
compute model complexity, it captures dimensions related to robustness and model size, aiming to provide a 
broader perspective on hyperparameter variations and generalization gaps.

This paper introduces a practical metric, the trade-off point approach, for measuring generalization capacity 
and proposes a novel benchmark testbed for evaluating various deep networks. Our observations suggest that 
a deep network’s generalization capacity in classical classification scenarios depends on both classification 
accuracy and the diversity of unseen data. The proposed testbed quantifies both model accuracy and test data 
diversity, offering an intuitive and quantitative method for assessing generalization.

In addition, compared to existing complexity measures2, our proposed metric focuses on models with varying 
architectures for both comparison and benchmarking, rather than a single model solely for benchmarking. 
Nonetheless, our benchmark testbed allows for the comparison and assessment of existing complexity measures. 
Our findings indicate that most complexity measures do not align with practical measurements, raising questions 
about the validity of current theoretical generalization estimations. The main contributions of this paper include:

•	 Introducing a practical generalization metric for comprehensively benchmarking deep networks.
•	 Verifying theoretical generalization estimations through the proposed benchmark testbed.

Methods
The proposed metric is to measure the generalization capacity of a model through the accuracy (such as 
classification correct or error rates) and the diversity of test data (such as Kappa) in terms of three factors (i.e. 
model size, robustness, zero-shot data). Our framework for benchmarking the generalization of deep networks 
comprises two integral components: the Benchmark Testbed, responsible for producing raw data, and the 
practical Generalization Metric, which evaluates the model’s generalization capacity.

Benchmark testbed
The proposed benchmark testbed utilizes the linear probe CLIP structure28 to evaluate how effectively a deep 
learning model captures essential features within its hidden layers. Specifically, this involves training a simple 
linear model, such as logistic regression, on a designated training dataset to adapt the tested models to the 
specified task. All tested models are pretrained and combined with the linear probe in our implementation.

Notably, since the linear probe cannot capture complex patterns, high performance indicates that the 
complexity resides in the features themselves rather than in the linear probe. Figure 1a illustrates the Benchmark 
Testbed. Here, the pretrained model, adapted with a linear probe, is trained on specific training data and 
subsequently evaluated on holdout data to assess its performance.

Experimentally, the data is divided into two parts: the training data and the holdout data, both sharing the 
same classes. The pre-trained models are fine-tuned on the training dataset and then tested on the holdout 
dataset. We gather measured data, specifically ErrorRate and Kappa (defined by Eqs. 1 and 2), across three 
distinct dimensions: model size (representing the number of weights), robustness (adding noise and using 
Structural Similarity Index as a metric, SSIM), and zero-shot capacity (using the percentage of unseen classes).

Fig. 1.  (a) Illustration of benchmark testbed; (b) a 3D array consists of cells (g, k), and the pink piece refers to 
the slice without noise (SSIM = 1) and blue piece refers to the slice with zero-shot% = 0.
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Notably, the model size dimension is an important factor. “Scaling law”29 has pointed out that the model 
performance depends on the model size, training dataset size and amount of compute used for training. Although 
model size does not precisely reflect the architecture of the tested models, training dataset size and amount of 
compute used for training, it serves as an important indicator for benchmarking purposes.

Regarding the robustness dimension, in deep learning, robustness measures how well a network performs 
under controlled variations such as noise or distortions, providing insights into the network’s ability to generalize 
effectively30. This concept is extended to adversarial robust learning settings under the umbrella of adversarial 
robustness. Recent works focus on the generalization gap in robust learning contexts31,32. Li et al.33 and Kim 
et al.34 further explore robust generalization challenges in adversarial learning models. Moreover, Bubeck et 
al.35 highlights that “over-parameterization” is also necessary for robust learning. Consequently, robustness is 
incorporated into our testbed by introducing adversarial samples into the test data.

We use the percentage of unseen classes in the data as the zero-shot dimension to assess zero-shot capacity. 
It is reasonable that when applying the fine-tuned tested models to the zero-shot data, the percentage of unseen 
classes in the data serves as an indicator of zero-shot capacity.

This approach results in a three-dimensional array, as shown in Fig. 1b. Each cell within this array records the 
distributions of ErrorRate (denoted as “g”) and Kappa metrics (denoted as “k”) across all classes. Different cells 
within the 3D array correspond to individual settings of the three dimensions. This comprehensive evaluation 
procedure offers insights into the efficacy of feature extraction within the pre-trained model, allowing an 
assessment of how well these captured features generalize to new or unseen data.

The generalization gap is defined by Jiang et al.27,

	
g (fw; D) = 1

|D test |
∑

(x,y)∈D test

� (fw(x) ̸= y) − 1
|D train |

∑
(x,y)∈D train

� (fw(x) ̸= y)� (1)

where w denotes a set of model’s weights. Moreover, various hyperparameter types introduce diverse weight 
values, which results in many variations of some model. Ideally these variations inherit properties of the 
original model. A rising issue is to capture changes in every single hyperparameter type and measure changes 
in generalization gap accordingly. In an effort to replicate this random space, Jiang et al.27 selects weight values 
from a spectrum of hyperparameter types. However, we have another opinion, that is, the variations of some 
model may be regarded as different models. This is because they may have individual network connection, 
layers, weights etc. If they are regarded as individuals, our benchmark testbed can test these variations in-depth 
and streamline model design accordingly.

Practical generalization metric
The proposed metric is to seek for a trade-off point to illustrate the generalization of test models as follows.

Step 1: We compute the ErrorRate of individual classes on the test data using Eq. (1). It enables the derivation 
of a distribution of error rates across all classes, while the generalization error typically refers to the overall 
error rate. We then evaluate the diversity of the test data using the Kappa statistic36. In the context of multi-class 
classification problem, we are dealing with agreement and disagreement among classifier outputs. The Kappa 
is indeed more robust than simple percentage agreement because it adjusts for the possibility of agreement 
occurring by chance37. This is particularly useful when there is a class imbalance, as chance agreement would be 
higher for the more frequent classes38. To highlight diversity issue, we design a Kappa on a specific class to result 
in a distribution of Kappa across all classes.

The confusion matrix for multiclass classification38 is defined as,

	

Ground truth Estimated C1 · · · Cm Row margin
C1 n1,1 · · · n1,m n1,. =

∑m

j=1 n1,j

...
...

. . .
...

...
Ci ni,1 · · · ni,i ni,. =

∑m

j=1 ni,j

...
...

. . .
...

...
Cm nm,1 · · · nm,m nm,. =

∑m

j=1 nm,j

Column margin n.,1 =
∑m

i=1 ni,1 · · · n.,m =
∑m

i=1 ni,m N =
∑m

i=1

∑m

j=1 ni,j

where m denotes the class number, N denotes the total sample number. The probabilities can be estimated as,

	
pi,j = ni,j

N

We hope to see the classifier’s performance change across all classes. Thus, the confusion matrix is redefined for 
a specific class as follows. Herein, the sample set is divided into two parts, i.e., i-th class and non-i-th classes, i
-th classes.

	

Ground truth Estimated Ci Ci Row margin
Ci pi,i pi,i pi,. = pi,i + pi,i

Ci pi,i pi,i pi,. = pi,i + pi,i

Column margin p.,i = pi,i + pi,i p.,i = pi,i + pi,i
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where pi,i =
∑

j ̸=i
pi,j , pi,i =

∑
j ̸=i

∑
k ̸=i

pjk.

The Kappa about the i-th class is defined as,

	





ki = P0 − Pe

1 − Pe

P0 = pi,i + pi,i

Pe = pi,.p.,i + pi,.p.,i

� (2)

The average of the Kappas for all the classes may be regarded as the generalization Kappa. A model with strong 
generalization capacity should be adaptable to highly diverse data. When the Kappa statistic is high, it indicates 
that the model exhibits high diversity, and has a high generalization capacity.

Step 2: Within the three dimensions (zero-shot%, weight number, robustness) of the 3D array, we can calculate 
two distributions on a cell-wise basis: one related to ErrorRate and the other to Kappa. These calculations are 
carried out by Eq. (1) for ErrorRate and Eq. (2) for Kappa, and are stored within the 3D array (denoted as a pair 
of “g and k” for each cell, see Fig. 1b).

We depict these two distributions of each cell by three kinds of statistics, i.e., means (denoted as M), standard 
deviations (denoted as SD), and 10th percentiles (denoted as 10P ). The 10th percentile score indicates that 10% 
of the trials scored below it. Since smaller means are better in this context, the 10th percentiles represent the best 
performing 10% of classification outcomes.

We update each cell in the 3D array by these three kinds of statistics with respect to two distributions 
(i.e., ErrorRate and Kappa) within three dimensions, that is, Mg(ZeroShot, Robust, W eightNum)
, SDg(ZeroShot, Robust, W eightNum), 10Pg(ZeroShot, Robust, W eightNum) on 
ErrorRate and Mk(ZeroShot, Robust, W eightNum), SDk(ZeroShot, Robust, W eightNum), 
10Pk(ZeroShot, Robust, W eightNum) on the updated Kappa (i.e. {1-ki}, i=1..m). Due to optimization 
purposes in step 3, the Kappa values are converted to "1-Kappa" in the following sections.

Step 3: We estimate the trade-off point based on the three kinds of statistics within three dimensions in the 
3D array. The desired generalization capacity should be achieving high performance of accuracy and diversity by 
maximizing two dimensions of zero-shot capabilities and robustness, while minimizing the dimension of model 
size as much as possible.

Searching the trade-off point over the 3D array (3DA) is described as,

	

min
(x,y,z)∈3DA

(
Mg(x, y, z) + SDg(x, y, z) + 10Pg(x, y, z) + Mk(x, y, z) + SDk(x, y, z) + 10Pk(x, y, z)

)

subject to

{
c1 : x ⩾ ZeroShotmin

c2 : y ⩾ Robustmin
c3 : z ⩽ W eightNummax

� (3)

where (ZeroShotmin, Robustmin, W eightNummax) are the given maximum(/minimum) bounds of three 
dimensions. Particularly, these bounds can be rewritten in an upper bound way. Equation (3) may be rewritten 
as follows,

	

min
(x,y,z,c1,c2,c3)

(
Mg(x, y, z) + SDg(x, y, z) + 10Pg(x, y, z) + Mk(x, y, z) + SDk(x, y, z) + 10Pk(x, y, z)

)
+ λ ∥C∥2

subject to:

{
c1 ⩾ 1 − x

c2 ⩾ y
c3 ⩾ z

� (4)

where λ is a balancing coefficient and C = (c1, c2, c3) denotes the upper bounds. Ideally, the resulting (x, y, z) 
would be equal to the resulting (c1, c2, c3). We always select the resulting (x,  y,  z) as the trade-off point in 
practice.

To visualize it, we compute the marginal distributions with respect to three dimensions separately. The 
marginal distributions with respect to the dimension of ZeroShot is computed as,

	




Mg(x ∼ 3DA(ZeroShot)) =
∑

(y,z)∼3DA(Robust,W eightNum) Mg(x, y, z)
SDg(x ∼ 3DA(ZeroShot)) =

∑
(y,z)∼3DA(Robust,W eightNum) SDg(x, y, z)

10Pg(x ∼ 3DA(ZeroShot)) =
∑

(y,z)∼3DA(Robust,W eightNum)
10Pg(x, y, z)

Mk(x ∼ 3DA(ZeroShot)) =
∑

(y,z)∼3DA(Robust,W eightNum) Mk(x, y, z)
SDk(x ∼ 3DA(ZeroShot)) =

∑
(y,z)∼3DA(Robust,W eightNum) SDk(x, y, z)

10Pk(x ∼ 3DA(ZeroShot)) =
∑

(y,z)∼3DA(Robust,W eightNum)
10Pk(x, y, z)

� (5)

There are a total of three sets of marginal distributions separately for three dimensions. Each set illustrates the 
generalization bounds (referred to as Mg, SDg, 10Pg) and diversity (referred to as Mk, SDk, 10Pk) concerning 
the scale at each dimension specified by the trade-off point, one after another. Theoretical equivalence is expected 
among these three sets of marginal probabilities at the trade-off point.

In fact, the trade-off point indicates the model’s tolerance on three dimensions at an expected marginal 
probability level. The area delimited by the trade-off point intuitively and quantitatively illustrates the 
generalization capacity of the test model. The trade-off point focuses on models with varying architectures rather 
than a single model.
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Results
We organise our experiments to illustrate how to determine the Trade-off points by the proposed practical 
generalisation metric, and then verify the existing complexity measures through the practical measurements 
based on our testbed. We hope to point out that the proposed benchmark testbed serves solely as an experimental 
platform to validate existing complexity measures.

Data and test models
We use CIFAR-100 and ImageNet datasets39 for fine-tuning and tests. In our experiments, we pick up 50 classes 
for training and the rest 50 classes for the zero-shot scenario tests from CIFAR-100. We randomly select 100 
object classes from ImageNet. Similarly, we divide it into two parts, i.e., 50 classes for training and the other 50 
classes for tests. These two datasets are widely used in deep learning applications. The primary difference is the 
image size; ImageNet images are larger than those in CIFAR-100. Larger images in ImageNet provide more data, 
which generally leads to better learning outcomes. In contrast, the smaller images in CIFAR-100 often result 
in ambiguity, where additional context is necessary to accurately interpret the images. In addition, we apply 
augmentation approaches to these datasets to generate unseen data or classes in case that the pretrained models 
have seen data in their previous training.

We select the CLIP and EfficientNet models for benchmarking tests since they both share similar architecture. 
They have some connections as well as differences. We use 5 pre-trained CLIP models from Radford et al.28 and 
8 EfficientNet models from Tan et al.40. Table 1 shows the pre-trained model sizes of CLIP and EfficientNet 
respectively. Although these pre-trained models have been optimised, they still need to be fine-tuned with the 
linear probe on the training data in advance. We only use the weight number of each model as the dimension of 
model size in the experiments, neglecting the other issues such as layers, depth, the change of structure, so that the 
pre-trained models line up in an “over-parameterization” way. We hope to have an insight to the generalisation 
capacity of these two kinds of pre-trained models, i.e. CLIP group and EfficientNet group. Moreover, the test 
data is added noises for robustness tests. To quantify noise levels, we employ the Autoencoder to the test data to 
generate noisy data and use the Structural SIMilarity (SSIM) Index metric to control noise levels. When SSIM 
is decreasing towards zero, the noise level is increasing. All the experiments work on a Workstation with Nvidia 
12G RTX2080.

Trade-off points of CLIP and EfficientNet
The pre-trained CLIP models (i.e. RNxxx) and EfficientNet models are CNN-based (see Table 1). For comparison, 
the CLIP ViT-xxx models are not taken into account here.

Step 1: Collect ErrorRate and Kappa data of both kinds of test models
We test the pretrained models of CLIP and EfficientNet on test data across three dimensions (i.e., zero-shot%, 

weight number, SSIM) and store the error rates and Kappas for each class in each cell of a 3D array.
Step 2: Update 3D array
We compute three kinds of statistics related to the distributions of ErrorRate and Kappa across all classes, i.e., 

means, standard derivations, 10th percentiles, and update them cell-wise in the 3D array.
Step 3: Trade-off point
We compute the trade-off points by Eq. (4) and visualize the trade-off points by Eq. (5) based on three pairs 

of marginal distributions, as shown in Fig. 2. The trade-off points of CLIP and EfficientNet on CIFAR1-100 and 
ImageNet respectively are shown in Table 2.

It can be noted that, (1) CLIP model does not outperform the EfficientNet model. Comparing the trade-
off points in Table 2, CLIP’s generalization bound exceeds EfficientNet’s by up to 0.057 on CIFAR-100, and its 
diversity bound exceeds by up to 0.06. However, on ImageNet, CLIP’s generalization bound is lower by up to 
0.005, and its diversity bound is lower by up to 0.004. We further compare three dimensions. The EfficientNet’s 
SSIM(lower bound), ZeroShot(upper bound) and Model size (lower bound) performance surpass that of CLIP. 
Particularly, EfficientNet’s model size is much smaller than CLIP’s.

Comparing the marginal distributions in Fig. 2, the trends of CLIP and EfficientNet (including ErrorRate 
and Kappa) across the SSIM, ZeroShot, and WeightNum dimensions are similar. We can further measure the 
diversity by ErrorRate and Kappa, that is, they can be visualized using the well-known “Kappa-Error diagrams” 

EfficientNet # Params CLIP # Params

efficientnet-b0 5.3M RN50 38M

efficientnet-b1 7.8M RN101 56M

efficientnet-b2 9.2M RN50x4 87M

efficientnet-b3 12M RN50x16 167M

efficientnet-b4 19M RN50x64 420M

efficientnet-b5 30M ViT-B/32 87M

efficientnet-b6 43M ViT-B/16 86M

efficientnet-b7 66M ViT-L/14 304M

Table 1.  Pretrained models’ parameters. The models include different variations of EfficientNet (B0-B7) and 
CLIP-based architectures, such as RN50, RN101, and vision transformer (ViT) models. These models are 
evaluated for their generalization performance in our benchmarking testbed.
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 Dataset  ImageNet  CIFAR-100

 MODEL TYPE  CLIP  EFFICIENT NET  CLIP  EFFICIENT NET

 GENERALIZATION BOUND 0.279 0.284 0.657 0.600

 DIVERSITY BOUND 0.276 0.280 0.668 0.608

 SSIM (lower bound) 0.874 0.805 0.949 0.937

 ZEROSHOT (upper bound) 0.285 0.295 0.182 0.258

 MODEL SIZE (lower bound) 116M 20M 163M 22M

Table 2.  TradeOff points on ImageNet and CIFAR100. It can be noted that, the CLIP model does not 
outperform the EfficientNet model and the results on ImageNet are always better than on CIFAR-100.

 

Fig. 2.  TradeOff points of two kinds models, CLIP and EfficientNet (denoted as “⋆”). The solid vertical lines 
indicate the selection of trade-off points on each marginals. (a–c) CLIP on ImageNet, (d–f) EfficientNet 
on ImageNet, (g–i) CLIP on CIFAR-100, (j–l) EfficientNet on CIFAR-100. Neither CLIP nor EfficientNet 
consistently dominates across all conditions. While EfficientNet achieves better robustness and lower error 
rates on ImageNet, CLIP performs slightly better in zero-shot scenarios on CIFAR-100.
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in a scatter plot, as shown in Fig. 3. In these diagrams, the distributions of error rates and Kappas across all 
classes form pairwise measures.

For different dimensions (e.g., ZeroShot, Robust, WeightNum), numerous such pairwise measures exist. To 
further analyze these pairwise measures, we compute their KL divergence, as shown in Fig. 4. The KL divergences 
quantitatively capture the distance of model performance across different dimensions from the origin. As the 
distance increases, the performance of the model decreases. It can be noted that EfficientNet’s KL divergences 
are obviously less than CLIP’s.

Consequently, the CLIP model does not demonstrate a clear advantage against the EfficientNet model. 
A possible explanation is that the CLIP model is trained on a diverse set of (image, text) pairs, whereas our 
benchmarking does not include text as input. As a result, its performance is diminished.

(2) Difference between data sets. It can be noted that the generalisation and diversity bounds on ImageNet are 
much less than on CIFAR-100 in Table 2. Moreover, it can be noted that Error rates and Kappas on CIFAR-100 
are obviously more than those on ImageNet in Figure 2. This indicates that the results on ImageNet are always 
better than on CIFAR-100 since big images can provide more data.

Consistency check with existing generalisation estimations
Dziugaite et al.2 and recent work4 present 23 generalization measures, which we apply to all the pre-trained 
models listed in Table 1. Our goal is to assess the consistency between existing theoretical estimations and 
actual measures, and to evaluate agreement/disagreement rates among the available theoretical approaches. For 
comparison, we focus on two slices of the 3D array rather than the entire array: one for data without robustness 
and another for data without zero-shot capacity (see the pink and blue sections in Fig. 1b). This allows us to 
obtain two distributions of error rates-one for robustness and model size dimensions, and the other for zero-

Fig. 4.  KL divergence measures the difference in performance distributions across different model dimensions 
(SSIM, ZeroShot, and Model Size). (a–c) KL divergence analysis for models on ImageNet. (d–f) KL divergence 
analysis for models on CIFAR-100. Lower divergence values indicate more stable generalization behavior 
across conditions.

 

Fig. 3.  Scatter plot of Kappa vs. error rate under various settings (a) a CLIP model with SSIM = 1, ZEROSHOT 
= 20, Model Size = 38M, (b) a EfficientNet model with SSIM = 1, ZEROSHOT = 20, Model Size = 5.3M, (c) a 
CLIP model with SSIM = 0.8, ZEROSHOT = 30, Model Size = 167M.
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shot and model size dimensions. Note that Kappa is not considered here, as the available complexity estimations 
focus on generalization error rates. We conduct the consistency check between theoretical estimations and 
actual measures using these two distributions.

The dimensions of robustness and zero-shot capacity are regarded as two independent factors. We compute 
two marginal probabilities of these two slices with respect to the dimension of WeightNum (i.e., distributions 
with respect to WeightNum) as below,

	

{
dtrg(z ∼ 2DSLICE(W eightNum)) =

∑
(y)∼2DSLICE(Robust) dtrg(y, z)

dtrg(z ∼ 2DSLICE(W eightNum)) =
∑

(x)∼2DSLICE(ZeroShot) dtrg(x, z) � (6)

Figure 5a–d shows these marginals based on ImageNet and CIFAR-100 respectively. Then, we compute the 
empirical sign-error of generalization in terms of the resulting marginal probabilities Eq. (6) as below,

	 SEg = 1
2E(w,w′)∼{W eightNum} [1 − sgn(dtrg(w) − dtrg(w′))sgn(C(w) − C(w′))] � (7)

where w and w′ denote two different WeightNums from the range of model size; C(.) denotes the complexity 
measures computed using Dziugaite et al.2,4. If the practical measures (dtrg) and complexity measures (C) 
exhibit consistent changes, the sign-error (SEg) approaches zero. Conversely, inconsistent changes lead to an 
SEg  approaching one. Consequently, an SEg  exceeding 0.5 indicates a potential mismatch between theoretical 
estimation and actual measures. Figure 5e–h visualizes the distributions of sign-errors through scatter plots.

It can be noted that most of generalisation bound estimations are not consistent with actual measures. 
Regarding the robustness dimension (SSIM), although Fig. 5e shows that 30% of SEg  error rates exceed 0.5, 
Fig. 5g indicates that all SEg  values are above 0.5. Additionally, in both Fig. 5e, g, the SEg  values for the 10th 
percentile are greater than 0.5, implying that the top-performing 10% of cases have an error rate exceeding 50%
. This highlights a significant concern regarding the reliability of the estimation.

For the ZeroShot dimension, Fig. 5f shows that 43% of SEg  error rates exceed 0.5, whereas Fig. 5h shows that 
only 21% exceed 0.5. This suggests that the estimation performs better in the ZeroShot dimension compared to 
robustness. However, in both Fig. 5f, h, most SEg  values for the 10th percentile still exceed 0.3.

We ranked the complexity measures based on their performance in Fig. 5e–h and selected the top three: 
INVERSE_MARGIN, LOG_SUM_OF_FRO, and PARAM_NORM, as shown in Table 3. The smallest SEg  
values of the generalisation error bound and the 10th percentile are 0.25 and 0.14, respectively, indicating that 
the best-performing cases have error rates between 15% and 25%.

In fact, the Sign-Error may be seen as a measure of bias across all complexity measures. We calculated 
p-values for the ZeroShot and SSIM dimensions based on all generalisation bounds in Fig. 5e-h, finding that all 
p-values are less than 10−10 (significantly below 0.05). This suggests a strong bias in the generalisation bounds, 
raising concerns about the reliability of these estimations.

Conclusion
This paper introduces a practical generalization metric for benchmarking diverse deep networks and presents 
a novel testbed to validate theoretical estimations empirically. By identifying a quantifiable trade-off point, we 
establish a reliable indicator of deep network generalization capacity. Our results show a misalignment between 
existing generalization theories and our practical measurements.

Limitations
This paper focuses on CLIP (CNN-based) and EfficientNet models, which limits the scope of the analysis. 
To enhance benchmarking, it is necessary to include a broader range of architectures. Additionally, our 
benchmarking considers three factors: model size, robustness, and zero-shot capabilities. However, these factors 
alone are insufficient to fully understand the architecture and behavior of the models.

Future work
We plan to incorporate explainable AI tools, such as SHAP (SHapley Additive Explanations) and LIME (Local 
Interpretable Model-agnostic Explanations), into our benchmarking framework. Furthermore, we have 
initiated a public GitHub repository for deep network benchmarking. We encourage contributions to expand 
the dataset and promote further theoretical and practical research in the field. Furthermore, we will organise 
a comprehensive generalization benchmarking competition for deep networks. This future endeavor seeks to 
provide developers with a baseline platform to test new theories, thereby enhancing the understanding of why 
deep neural networks generalize. The benchmarking testbed will facilitate rigorous analyses, enabling developers 
to assess how well these theories align with the complexities observed in real-world models.
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Fig. 5.  The upper four visualizes the marginal probability distributions of error rates in relation to model 
size (WeightNum) for two dataset slices: one with robustness and another without zero-shot capacity. (a) 
CLIP models on ImageNet. (b) EfficientNet models on ImageNet. (c) CLIP models on CIFAR-100. (d) 
EfficientNet models on CIFAR-100. The lower four presents scatter plots of sign-errors (SEg), which measure 
the inconsistency between theoretical complexity estimates and actual generalization behavior. (e) SEg for 
SSIM on ImageNet. (f) SEg for ZeroShot on ImageNet. (g) SEg for SSIM on CIFAR-100. (h) SEg for ZeroShot 
on CIFAR-100. Higher SEg values indicate larger discrepancies between theoretical generalization bounds and 
empirical measurements.
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Data availability
All the data, models, and benchmarking results are available on GitHub (​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​M​E​N​G​​Q​I​N​G​9​​​1​2​​/​
A​-​​p​r​a​c​t​i​​​c​a​l​-​g​​e​n​e​r​a​l​​i​z​a​t​​i​​o​n​-​m​e​​t​​r​i​c​​-​f​​o​r​​-​d​e​e​p​-​n​e​t​​w​o​r​k​s​-​b​e​n​c​h​m​a​r​k​i​n​g).
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