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As digital twin (DT) applications continue to proliferate across diverse industries, a noticeable gap 
exists in the availability of evaluation methods or frameworks to aid in the selection and development 
of DT platforms, particularly for Domain-Specific applications. To address this gap, this paper proposes 
a comprehensive evaluation framework for DT platforms, with a focus on Domain-Specific applications. 
The framework uses the Best-Worst Method and Fuzzy Comprehensive Evaluation method (BWM-
FCE) to assess the performance, user experience, and economic effects of DT platforms. The proposed 
framework is applied to a case study of a high-speed train DT platform and compared with other 
evaluation methods AHP(Analytic Hierarchy Process) and BWM-SPA (Best-Worst Method-Set Pair 
Analysis). The results demonstrate the feasibility and effectiveness of the proposed framework and 
highlight its potential for guiding the development and selection of DT platforms for Domain-Specific 
applications.
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A DT is a virtual model of physical object or system that can replicate its behaviour, anticipate its performance, 
and detect potential problems. It is a key tool in the digital transformation of industries, helping organizations 
meet new competitive demands1. Over the last few years, there has been a significant focus on developing 
DT solutions to improve performance, reliability, and safety in various sectors such as transportation2,3, 
manufacturing4,5, healthcare6,7, and energy8. As the interest in DT-based applications grows, the significance 
of DT platforms as the fundamental basis for creating, implementing, and managing DT solutions becomes 
increasingly apparent. Therefore, with the continued adoption of DT technology in the engineering domain, the 
need for robust DT platforms is set to increase.

However, at present, the focus of research efforts in the field of DTs is primarily on the creation and refinement 
of the DT model9,10, rather than the underlying DT platform, especially the evaluation methods for selecting 
components to construct them. The DT platforms, as an important tool used in Industry 4.0, stemming from the 
previous modelling and simulation platforms, enhanced with new sensors and control technologies, and DT-
based applications typically require Domain-Specific software platforms to effectively build and deploy them11,12.

The rest of this article is organized as follows. Section “Related works” reports on the literature review of 
existing DT platforms and now available evaluation methods of DT. Section “Concept of domain-specific DT 
platform” focuses on the concept of Domain-Specific DT platform and distinguishes them from other similar 
concepts. Section “Evaluation framework” describes the comprehensive evaluation model based on the Best-
Worst Method and Fuzzy Comprehensive Evaluation (BWM-FCE), followed by the Sect. “Case study”, which 
verifies the rationality and practicality of the BWM-FCE evaluation model and the established framework in 
the former section by evaluating real cases of high-speed train DT platforms. In Sect.  “Results analysis and 
discussion”, not only the weight distribution results of the indicator system for the real case are compared between 
the BWM and AHP methods, but also the comprehensive evaluation results of FCE and SPA are compared. At 
last, Sect. “Conclusions and future works” draws conclusions and provides direction for future research.

Related works
In this section, we explore thoroughly on the existing DT platforms and evaluation methods of DT platform, 
which help to select relevant functional components and assess the functionality suitability of a DT platform for 
a Domain-Specific application.
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DT platforms
A DT platform serves as the foundational infrastructure for creating and managing DTs and DT-based 
applications. We gather literature related to existing DT platforms13–15, and examine their distinct features, 
capabilities, and specific offerings in detail.

Ansys Twin Builder is a dedicated product for DT creation and control. It supports the full cycle of DT 
work, including planning, creation, verification, validation, and implementation. Mathworks’ Matlab (Simulink) 
provides a comprehensive environment for creating, validating, and optimizing DT models. Microsoft’s Azure 
Digital Twins is an IoT (Internet of Things) platform that enables the creation of complex digital environment 
models. Oracle Corporation’s Oracle Cloud provides a robust cloud computing service that offers scalable and 
secure infrastructure for hosting and processing DT data. Its global data center network delivers servers, storage, 
networks, applications, and services.

Bosch IoT Suite, offered by Bosch, provides a collection of cloud services and software packages tailored to 
IoT projects16. It offers the necessary infrastructure and tools for developing and managing DT applications. 
Bosch IoT Suite focuses on delivering end-to-end solutions for IoT deployments, including the creation and 
management of DTs. Siemens AG, through Siemens PLM Software, provides a robust platform for product lifecycle 
management and process control. Solutions like HEEDS AI Simulation Predictor provides organizations with 
the capability to optimize products through state-of-the-art AI with built-in accuracy awareness, maximizing 
the benefits of the DT17.General Electric’s DT product, Predix, offers a specialized solution that integrates DT 
technology with industrial assets, making it particularly suitable for sectors such as manufacturing18, energy, 
and transportation19.

In addition to the aforementioned commercial DT Platforms, there are currently three well-known 
open-source DT Platforms, each with its unique features and advantages. ThingJS offers a low-code IoT 
3D visualization development platform, enabling users to build DT visualization applications. It provides 
development tools such as 3D scene editors, 2D logic diagram editors, and map model systems. Eclipse Ditto 
is designed to assist users in creating DTs of devices connected to the internet, supporting the management of 
device states and implementing fine-grained access control. OpenTwins is an open-source framework for the 
design, development, and integration of DTs. It supports enhanced data analysis and visualization through 3D 
technologies and streaming machine learning. Naturally, there is also the IoT platform - FIWARE, which has 
been tested through real-world cases and is transitioning from a research to a commercial level20.

Overall, the DT platforms provided by different suppliers for constructing a DT, coupled with the usage 
needs of different users, present a variety of possibilities. Nonetheless, this wide selection presents a significant 
challenge for organizations when it comes to selecting the most suitable platform that aligns with their Domain-
Specific requirements.

Evaluation methods
Another related work is research on the evaluation methods for DT platform, especially for DT platform 
components picking, which is essential to determine DT platform’s effectiveness and applicability to specific 
applications. However, despite the increasing interest in DT technology, research on the evaluation of DT 
platform is limited. Furthermore, most existing evaluations focus on the DT models or DT-based applications21,22, 
whereas only a few studies have explored on the comprehensive evaluation method of components for DT 
Platforms construction.

Two types of evaluation methods for DT platforms are found in the literature, including the assessment of 
DT platforms against requirements and the development of an evaluation framework that considers multiple 
factors23. For example, through empirical analysis of workflow process step functions, Prasad Talasila et al 
conducted a comparative evaluation between two DT platforms, HUBCAP and DIGITBrain24.

From the literature review, we can find that the previous studies have mainly focused on developing and 
implementing DT platforms for various industries and applications, using different modelling and simulation 
tools, IoT platforms, and cloud computing technologies. However, they have paid little attention to the evaluation 
methods or frameworks for DT platforms, especially for Domain-Specific applications. Another way, the few 
existing evaluation methods are mostly based on subjective opinions, simple decision-making methods, and 
general-purpose criteria and indicators, which may not be suitable or applicable for complex and uncertain 
evaluation problems for Domain-Specific DT applications.

Therefore, there exists a research gap in the evaluation framework for DT platforms that specifically considers 
the quality of service, data quality, and system architecture in the context of Domain-Specific applications. To 
address these gap, two key challenges must be tackled. Firstly, there is a need to develop a comprehensive and 
standardized evaluation framework that can encompass all aspects of a DT platform. Secondly, clear and well-
defined evaluation criteria and indicator system that are specifically tailored to Domain-Specific applications 
must be established.

Concept of domain-specific DT platform
The term “Domain-Specific” here refers to a focus within a specific field or industry. In the context of DT 
applications, Domain-Specific DT is proposed in contrast to General-purpose DT and Multi-domain ubiquitous 
DT. General-purpose DT is defined as a real-time decision support sandbox25,26, which assembles components 
such as data acquisition, system modelling, and intelligence applications into a DT based on modular and 
distributed thinking in the software domain. Multi-domain ubiquitous DT (UDT)27 is a complex infrastructure 
system information management model based on Domain-Driven Design (DDD), while Domain-Specific DT 
is a digital solution designed for a specific industry or domain requirements. A fundamental technology for DT 
is the Digital Twin Graph (DTG)28, an origin concept, that represents a versatile data structure that is integral to 
a processing framework designed to automate the creation of DTs across various domains without bias toward 

Scientific Reports |        (2025) 15:10544 2| https://doi.org/10.1038/s41598-024-82154-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


any specific field. For example, The primary high-speed railway of DTG lies in its facilitation of the automated 
and streamlined integration of domain knowledge, enabling the construction of virtual DTs for physical entities. 
In contrast, the capability of Domain-Specific digital twins is particularly evident in their ability to address 
novel issues within professional industries that cannot be resolved using existing procedural or process-driven 
knowledge, such as detecting the location and intensity of impacts in structural safety analysis29. Each industry or 
domain has its specific challenges, processes, and variables that need to be accurately represented and simulated 
within a DT. Therefore, a Domain-Specific DT is designed to closely mimic and replicate the characteristics of a 
specific industry or domain application, allowing for more accurate and relevant analysis, decision-making, and 
optimization within that particular context.

Accordingly, platforms that facilitate the development of both Domain-Specific Digital DTs and Domain-
General DTs can be classified into two categories: Domain-Specific DT platforms and Domain-General 
platforms. To gain a deeper understanding of the concept of a Domain-Specific DT platform, it is essential 
to distinguish between Domain-Specific DT platforms and Domain-General platforms. Domain-Specific DT 
platforms are designed to support the construction of DTs within specific fields, incorporating established 
theoretical methods as well as emerging theories from interdisciplinary domains. In contrast, Domain-General 
platforms primarily serve to simulate and analyze various engineering challenges, thereby assisting engineers 
and scientists in addressing particular engineering issues across areas such as structural analysis, fluid dynamics, 
heat conduction, among others. These types of platforms are typically offered by traditional software providers, 
notable examples include Ansys Twin Builder by Ansys and Azure Digital Twins by Microsoft Inc. Furthermore, 
unlike their Domain-General counterparts, Domain-Specific DT platforms demonstrate a greater degree of 
scalability and flexibility while being more easily integrated with enterprise systems such as Enterprise Resource 
Planning (ERP) and Manufacturing Execution Systems (MES). This degree of customization facilitates a smooth 
adaptation to the changing demands of the industry.

Researchers emphasize the significance of DT platforms tailored to specific domains, along with their 
supporting technologies, models, and functions, as this approach allows for the construction of DTs that meet the 
unique demands of particular industries. In contrast, Domain-General platforms only facilitate the simulation of 
laws related to real-world objects, highlighting the critical role of effective evaluation tools and methodologies 
in adapting DT platforms to industry needs, and leading us to propose a comprehensive assessment framework 
that serves as a reference guide for researchers, practitioners, and developers to create effective digital twin 
platforms for specific applications.

Evaluation framework
The process of using the constructed framework involves three steps: 1) classifying the requirements and 
functional components, 2) determining the evaluation indicators, and 3) applying the BWM-FCE evaluation 
model to assess the platform.

Implementation of the evaluation framework for different applications of DT platforms have various 
specific requirements and fundmental component that must be considered. For instance, in the case of the 
high-speed railway, DT Platform is designed to perform a range of functions, including data integration, model 
synchronization, visualization, simulation, and performance evaluation. The platform offers numerous benefits, 
including increased efficiency, enhanced safety, reduced costs, improved decision-making, and optimized asset 
management. Subsequently, classify the requirements and components of the DT platform. The requirements 
analysis, evaluation procedure, and evaluation results analysis involved in the framework are shown in Fig. 2a.

Requirements and components of a DT platform
Based on the methodologies outlined in relevant literature30, this paper examines the requirements for 
constructing a DT platform. Table 1 presents an overview of the requirements for a DT platform. These 
requirements are categorized into four groups based on the Analytic Hierarchy Process (AHP)31,32 and Best-
Worst Method (BWM)33,34 and other research in the intersection of Management Science and DT technology35: 
basic function requirements, functional performance requirements, user experience, and profitability and 
efficiency. To distinguish whether it pertains to Domain-General or Domain-Specific functionalities, we label 
it as either ’general’ or ’specific’, highlighting the diverse set of features necessary for an effective DT platform 
based on the literature review and experts’ advice36. Domain-Specific requirements refer to the unique needs 
and characteristics of a particular industry or application domain that the DT platform should address. Domain-
Specific functional components refer to the components of the DT platform that provide specialized capabilities 
and functionalities to meet the Domain-Specific requirements.

Existing research has analyzed factors affecting usage intention of DT Technology in the manufacturing 
industry, the study examines the relationship between the factors and elements required to build a DT platform. 
To meet the requirements mentioned in the Table 1, based on the core functional components described by Tao 
et al, in their DT software platform reference architecture called makeTwin37, we summarize all the functional 
components of a DT platform, as shown in Fig. 1, each of them plays a crucial role in enabling the platform. These 
functional components are divided into five high-level categories: data collection, communication, processing, 
visualization and interaction management component.

The typical functional components of a DT platform support the bi-directional working cycle (Bi-directional 
Input-Process-Output Cycle) , generally including the input unit, the central processing unit, and the output 
unit.

The workflow and concept of the DT are depicted on the respective sides of Fig. 1, illustrating their interrelation 
and functionality. The DT initiates with input from the physical model, which involves data collection from 
various sources such as physical sensors ,IoT devices and virtual sensors. The subsequent step involves processing 
data through simulation models and algorithms to create or update the DT model. Additionally, the visualization 
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component enhances the accessibility and user-friendliness of the DT platform. The interaction management 
component is crucial for a DT platform, as it facilitates user engagement and ensures bidirectional influence 
between the digital and physical models. Given the numerous components and diverse functionalities of the DT 
platform, it is essential to establish an indicator system that considers these aforementioned sub-factors.

Evaluation indicator system
A suitable and comprehensive indicators system is vital to ensure a thorough assessment of DT platforms’ 
build tools. The evaluation indicator system is derived from the requirements analysis of a DT platform in 
Sect. "Requirements and Components of a DT Platform", which identifies the basic function requirements, 
functional performance requirements, user experience, and profitability and efficiency as the main categories 
of requirements. These categories are further divided into sub-categories based on the literature38 and expert 
opinions. The draft provided by the expert opinion employs the K-means method and the Random Forest 
method to categorize the evaluation indicators under each first-level indicator. The selection of experts is based 
on three criteria: years of professional experience, academic qualifications, field of expertise and job title. Take 
case studies as an example, the information of the participating experts was organized along three dimensions 
as presented in Table 2.

The evaluation indicators are also classified into Domain-General and Domain-Specific indicators, depending 
on whether they are applicable to all domains or only to a specific domain. Four main categories of evaluation 
indicators have been extracted from these requirements and functional components, including Domain-Specific 
functional component performance, Domain-General functional component performance, economic effects, 
and user experience as the first-level indicators. And incorporate a user-centric evaluation that involves feedback 
from potential users of DT platforms to gauge user-friendliness, practicality, and real-world applicability. The 
first two categories consist of four second-level indicators each, while the latter two comprise three second-level 
indicators each, as shown in Fig. 2b.

The performance of Domain-General functional components is assessed in four areas: scalability, security, 
synchronisation, and visualisation, while Domain-Specific functional component performance is assessed in 
four metrics: modelling, simulation, algorithm and interaction. Beneath these metrics, third-level indicators 
are further delineated to maintainability, generality, stability, immersion, accuracy, templating, simulation 
consistency, real-time response time, algorithmic configurability and interaction robustness. In the assessment 

Category Requirements Description Domain

Basic function 
requirements

Data capture The ability to collect multi-source heterogeneous data, historical data. General

Data storage Robust data storage capabilities to support large amounts of data. General

Data retrieval Efficient data retrieval mechanisms to allow to access and analyze data quickly. General/specific

Data analysis Include: real-time analytics, advanced analytics and predictive analytics General/specific

Visualization The platform provide tools to visualize DT models, data, and algorithms. General

Interaction Not only digital models can represent physical models, but also in the fact that digital models can predict the 
performance of physical models in reverse. General

Integration The ability to integrate with other systems and platforms, such as IoT devices, cloud systems, and enterprise 
applications. General/specific

Interoperability Support for industry standards for data exchange and interoperability, to allow for seamless integration with other 
systems. General

Generalization It can make platform components more usable and reusable in different scenarios to better meet diverse needs. General/specific

Functional 
performance 
requirements

High fidelity Provide an accurate and scalable representation of the physical object. General/specific

Real-time simulation The platform should support real-time simulations to enable users to analyse and understand the behaviour of 
systems and processes in real-time. Specific

Real-time processing The ability to process and analyse large amounts of real-time data. Specific

Scalability Handle increasing amounts of data and DT models. General/specific

Security Robust security features to protect sensitive data and ensure that the DT models are protected from unauthorized 
access. Specific

Synchronization The ability to ensure that the DT accurately represents the real-world system in real-time by continuously updating its 
data and state. Specific

Specialization The ability to offer professional models, data and algorithms in specific domain. Specific

User 
experience

User interface A user-friendly interface that makes it easy for users to access, analyse, and interact with DT models. Specific

Interaction Designed to be intuitive to minimize the learning curve for users. General

Ease of use Designed to be user-friendly, to minimize the learning curve for users. General/specific

Customization Ability to be customized and configured to meet the specific needs. General

Profitability 
and Efficiency

Cost-effectiveness The platform provides a positive return on investment for the business. General

Market demand fit Understand of the market demand and the specific requirements. Specific

Domain flexibility Flexibility to accommodate different types of models and simulations, as well as support for multiple domains and use 
cases. General

Market share The percentage of total sales in a particular market that a DT platform has General/specific

Table 1. The requirements of a DT platform.
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process utilizing these metrics, integrating the third-level metrics into the second-level indicators, thereby 
enhancing the clarity and comprehensibility of the evaluation results while minimizing duplication and 
redundancy among the metrics. It is worth emphasizing that the core of the framework is the following BWM-
FCE Evaluation Model.

BWM-FCE evaluation model
Utilizing the BWM-FCE evaluation model to assess a DT platform based on the evaluation indicator system 
outlined in the preceding section. BWM, is employed to determine the weights of a set of criteria or factors, 
providing clarity on their impact in decision-making problems. This method offers the advantage of yielding 
consistent results with minimal comparative information and has found widespread application in project 
selection39, supplier evaluation40,41, project subcontracting42, etc. By integrating the BWM with FCE, the novel 
evaluation model effectively incorporates quantitative and qualitative factors, thereby rendering it suitable for the 
intricate and multidisciplinary nature of DT platforms. This algorithm adeptly considers quantitative elements 
in its assessment, further affirming its appropriateness for the complex landscape of DT platforms. A significant 
advantage of employing the BWM-FCE evaluation model in assessing DT platforms is its capacity to integrate 
subjective insights from experts and stakeholders throughout the evaluation process. Methods for gathering 
both subjective opinions and objective variables include expert surveys, performance metrics, and economic 
statistics. This approach facilitates a more holistic evaluation that acknowledges the diverse perspectives and 
requirements of all involved stakeholders. To implement the BWM-FCE model for evaluating DT platforms, 
several systematic steps must be adhered to.

First, the evaluation indicator and sub-indicator are defined based on the characteristics of the platform 
and the requirements of the DT platforms’ construction. And the best/worst criteria should be determined, the 

No. Years of service Academic qualifications Field of expertise

1 8 Bachelor’s Degree Computer Science

2 3 Master’s Degree Mechanical Engineering

3 5 Doctorate Physics

4 4 Bachelor’s Degree Management Science

5 2 Master’s Degree Statics

6 6 Bachelor’s Degree Economics

7 8 Master’s Degree Mechanical Engineering

Table 2. Experts’ information.

 

Figure 1. High-level functional components of a DT platform illustrating the Bi-directional Input-Process-
Output Cycle, distinguishing between Domain-General and Domain-Specific functional components.
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best criterion serves as the determinant that exerts the most postive effect on decision-making , while the worst 
criterion demonstrates the opposite effect. The decision makers (DMs) then give preferences of the best criterion 
over all the other criteria and also preferences of all the criteria over the worst criterion using a number from a 
predefined scale (e.g. 1 to 9), the indicator with a score of 1 in the optimal scoring table is identified as the best 
(most important, most ideal) indicator, and the indicator with a score of 1 in the worst scoring table is identified 
as the worst (least important, least ideal) indicator.

Second, the BWM is applied to formulate the weights of each criterion and sub-criterion, these weights reflect 
the priority of each criterion and sub-criterion in the evaluation process is as follow:

 




min
ϵ

ϵ

s.t.

∣∣∣∣
Vbest

wj
− Cbj

∣∣∣∣ ≤ ϵ

∣∣∣ wj

Vworst
− Cwj

∣∣∣ ≤ ϵ ∀j ∈ {1, 2, . . . , n}
n∑

j=1

wj = 1

wj ≥ 0 ∀j ∈ {1, 2, . . . , n}

 (1)

In the equation, ϵ is the target value of planning problems,  Vbest  / Vworst  is the best/worst criteria, wj , Cbj  
and Cwj  are the weights of the remaining indicators, the weight of the best indicator, and the weight of the 
worst indicator. Third, a membership matrix must be constructed for each indicator and sub-indicator by 
identifying the concepts and causal relationships that affect them. The membership matrix represents the causal 
relationships among the concepts in a qualitative way. Finally, the BWM weights and membership matrix are 
combined to obtain a comprehensive evaluation score for the DT platform using fuzzy arithmetic operations 
(such as addition, multiplication, inverse operation) or other aggregation methods. The score indicates how well 
the platform meets the evaluation criteria and sub-criteria. The procedure of BWM-FCE algorithm used in the 
BWM-FCE evaluation model proposed framework is represented bellow.

Figure 2. (a) A comprehensive evaluation framework for evaluating Domain-Specific DT platforms, (b) 
Established indicator system of framework, (c) Framework’s membership matrix.
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Algorithm 1. BWM-FCE Evaluation Algorithm

In the BWM-FCE evaluation algorithm, Vbest/Vworst is the best/worst criteria, A introduces the weight of 
each indicator being formulated, CI and CR in equation are the parameters of consistency check about weight; 
The preliminary R represents the membership matrix of specific level indicators, the element r of it is very 
important, so it needs expert validation.

 
consitency ratio (CR) = ϵ

CI
 (2)

CI is the consistency index. The calculation of the Consistency Index (CI) can be derived from Table 3 as outlined 
by Rezaei33.

In addition, the CI in AHP is as follows:

 
CI =

(
λmax − n

n − 1

)
 (3)

In the equation, n is the order of the matrix and λmax is the maximum eigenvalue of the matrix.

Case study
Assessing DT platforms can be prohibitively expensive and time-consuming, often exceeding the budgetary and 
temporal constraints of research projects. Additionally, many platforms in other industries are not fully accessible 
for comprehensive evaluation due to confidentiality concerns, which further complicates the assessment process. 
In this section, we apply the proposed framework to assess a DT platform designed for high-speed railway, called 
DT Train. The platform is required to meet the operation and maintenance practice standards and provide 
fundamental components for simulating the train operations.

Background
Creating a DT platform for high-speed railways is vital for the industry’s digital transformation. The platform 
acts as a comprehensive tool to boost operational efficiency through virtual modeling, real-time monitoring, 
optimized scheduling, and predictive maintenance. It enhances safety by preemptively identifying and mitigating 
hazards, thus optimizing the rail network. DT Train Platform developed by SWJTU represent a revolutionary step 
in train design, optimization and operation management43. By developing virtual replicas of physical trains, this 
platform facilitates comprehensive simulation and analysis of train performance. The process commences with 
a physics-based generic model, which is subsequently customized using specific train data. Continuous updates 

aBW 1 2 3 4 5 6 7 8 9

CI 0 0.44 1 1.63 2.3 3 3.73 4.47 5.23

Table 3. Consistency index.
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with real-time data ensure the DT’s accuracy. The platform’s vehicle system dynamics, which are integrated 
with machine learning and sensor data, facilitate precise replication and predictive capabilities. This advanced 
technology paves the way for applications such as predictive maintenance and performance optimization, 
thereby promising enhanced efficiency and safety in train operations. The platform serves as a foundational 
infrastructure that facilitates comprehensive testing in intricate scenarios and fosters industry collaboration, 
thereby ensuring scalability and practical application within the rolling stock sector.

The DT Train Platform is used as a case study for a Domain-Specific DT platform, as it reflects the core 
ability and construction process of DT technology. Compared with DT platform of cities, aviation, and factories, 
although there are differences in application areas and specific technological implementations, they have 
commonalities in terms of requirements and construction processes: 

 1. Faced with the challenge of modeling and simulating complex systems, high-speed railways, like cities, avia-
tion, and factories, are composed of multiple complex systems that involve equipment, facilities, and person-
nel from different fields.

 2. DT constructed by DT platform require real-time collection and monitoring of system operation data, in-
cluding sensor data, real-time monitoring data, etc. For example, high-speed railway DT platforms need 
to integrate data collected by various sensors and monitoring equipment to achieve real-time monitoring. 
Similarly, DT cities, aviation, and factories also need this.

 3. DT platforms can utilize real-time data and simulation results to achieve predictive maintenance and intel-
ligent decision support for the system. Through data analysis and algorithmic models, potential faults are 
predicted and corresponding maintenance recommendations are provided, thereby reducing downtime and 
maintenance costs. The high-speed railway DT platform provides decision support, helping decision-makers 
understand complex situations and make more scientific and reasonable decisions. DT cities, aviation, and 
factories also require.

Although the general requirements of the DT platform are universal to all applications, the DT Train Platform 
also have specific requirements and components that meet these requirements, which are different from those of 
Domain-General platforms. The selection of the DT Train Platform for evaluating the relevant characteristics of 
Domain-Specific DT using the proposed BWM-FCE framework has universal significance.

Specific requirements and components of the DT Train Platform
The objective of the DT Train Platform is to supply a set of cmmponents to construct a digital representation 
of the high-speed railway system that accurately reflects its physical counterpart. And the DT Train Platform is 
designed explicitly to address the high-speed railway domain. The specific requirements for DT Train Platform’s 
model processing component are more specialized. For example, it must be able to simulate the dynamics of 
high-speed trains and provide accurate simulations of the vehicle’s behaviour, therefore, professional simulation 
software packages such as Simpack, Ansys and other self-developed software packages need to be integrated into 
this platform. Besides, the simulation capabilities, the DT TrainPlatform’s data collection component must also 
be able to handle real-time data from onboard physical sensors, as well as provide real-time control and feedback 
to the train.

Another distinction between the general requirements and the specific requirements for the DT Train 
Platform lies in the necessity for advanced algorithms and models tailored for data analysis. The algorithms and 
models implemented within this platform must possess the capability to analyze substantial volumes of data and 
generate predictions regarding the behavior of high-speed trains in real-world scenarios.

To meet the other special requirements of DT Train, a component library offered by the DT Train Platform 
is constructed based on the component categories and requirements in Sect. “Requirements and components of 
a DT platform”, the detailed components are listed in the following Fig. 3.

The primary components of the DT Train Platform are categorized into five distinct categories: data 
collection component, data processing component, model processing component, visualization component, and 
interaction management component. The data collection component includes track-beside equipment, smart 
devices, on-board sensors, bench devices, and virtual sensors.  It is capable of not only acquiring data from 
laboratory benches and comprehensive testing vehicles but also utilizing intelligent equipment and virtual sensors 
to gather information on operating trains and simulation models. The data processing component involves Big 
Data technology and dynamic simulation in the field of rail transit, with TPLDna (a train dynamics simulation 
system) being more representative. The model processing component ranges from general CAE software to 
commonly used Simpack and UM software in the rail industry. The visualization component not only uses 
the Unity3D engine but also utilizes special cloud rendering technology. Finally, the interaction management 
component extends from the interaction management component PyQt/Flutter on the two-dimensional plane 
to the Extended Reality (XR) interaction in the three-dimensional space, and the dedicated component is based 
on VRCTS (a railway virtual rescue training system).

The platform is designed to perform a variety of functions, including data integration, model synchronization, 
visualization, simulation, and performance evaluation. It offers numerous advantages such as increased efficiency, 
enhanced safety, reduced costs, improved decision-making capabilities, and optimized asset management. 
Furthermore, it distinguishes itself from Domain-General platforms through its ability to address the complexities 
associated with high-speed railways. This capability is achieved via the integration of specialized components, a 
hybrid modeling approach, and self-developed enabling tools that effectively capture and process large volumes 
of data while simulating complex operational behaviors in real-time. Due to the complex operating environment 
of high-speed railways and the varying requirements for using DT Train Platforms, as well as the numerous 
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platform components, it is necessary to use the aforementioned framework to evaluate existing DT Trains and 
select conventional methods to validate the effectiveness of the framework.

Evaluation process
Following the reference framework and steps proposed in the previous sections, which primarily involve 
identifying evaluation indicators, constructing the best/worst criteria vector, and utilizing the BWM-FCE 
evaluation model. This section implements the comprehensive evaluation of the DT Train Platform. And 
publicly available information about the experts as shown in Table 4.

Implementing BWM
The weights of the 14 second-level indicators and 4 first-level indicators are determined using the Delphi method 
and BWM. The best/worst criteria of first indicators are given by three experts are shown in Table 4.

Overall, consensus among experts is that the importance of factors decreases in the following order: Domain-
Specific functional component performance, Domain-General functional component performance, economic 
effects, and user experience, Table 5 provides weights for all indicators in the first and second layers.

Implementing FCE
Following the application of the BWM, the weights of the indices are determined. Subsequently, the FCE 
procedure is employed to obtain the membership matrix and the resultant comprehensive evaluation results.

To objectively assess user experience, we gathered quantitative feedback regarding user satisfaction and 
usability through the utilization of standardized questionnaires, encompassing the System Usability Scale (SUS) 
and Net Promoter Score (NPS). Collecting and analyzing objective indicators of developer interaction with the 

Decision makers Best criterion Worst criterion U1 U2 U3 U4

D1
U2 – 3 1 7 5

– U3 5 9 1 3

D2
U2 – 3 1 5 7

– U3 5 7 1 3

D3
U2 – 3 1 9 7

– U3 5 9 1 3

Table 4. Pairwise comparison vectors of first indicators.

 

Figure 3. Main components of the DT Train Platform.
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system, such as the completion time of individual development tasks, bug-related downtime, and the frequency 
of utilization of individual components or modules. And evaluating subsystem performance metrics, including 
response time, fault tolerance, and reliability, which directly influence the user experience. Additionally, 
we employ qualitative metrics such as user satisfaction, engagement, and retention to appraise the overall 
performance of the platform. Collectively, these metrics offer insights into user experience and platform usage, 
enabling us to enhance system design and augment user satisfaction. After analyzing the data collected from the 
questionnaire, The platform’s performance on 14 second-level indicators and their degree of membership to 5 
levels (excellent, good, medium, poor, very poor) are displayed in the Fig. 2c. The membership matrix has been 
expertly validated, using the weights of each indicator (see Table 5) and the membership matrix, the evaluation 
reissults vector are formulated. The first level membership matrix R is as follow:

 

R = Ai ◦ Ri =




0.0349 0.1303 0.1061 0.0466 0.0000
0.0572 0.1951 0.1402 0.0761 0.0000
0.0139 0.0274 0.0349 0.0215 0.0000
0.0033 0.0491 0.0572 0.0063 0.0000


 (i = 1, 2, 3, 4) (4)

Based on the maximum membership principle, a radar chart is drawn as shown in Fig.  4, the final fuzzy 
comprehensive evaluation result is formulated as follow:

 B = [ 0.0396 0.1412 0.1095 0.0533 0.0000 ] (5)

The comprehensive evaluation of the high-speed railway DT platform is moderate. As shown in Fig. 4b, the 
platform’s 14 second level indicators are mainly distributed between good and moderate levels. Among these 
indicators, U22 (simulation) demonstrates exceptional performance, indicating that the platform possesses 
robust simulation capabilities. This feature is particularly critical for this Domain-Specific DT platform, which 
has been meticulously designed to address the requirements associated with the development of high-speed 
trains.

Results analysis and discussion
The effectiveness and advantages of the proposed framework is evaluated and discussed in this section. Main 
components of the proposed framework, including the weight determination method and the result analysis, are 
determined based on detailed comparison.

Results analysis
Results of BWM process
Apart from BWM used in the proposed framework, AHP is another widely-used multi-criteria decision-
making method44,45. Therefore, we use the AHP method to serve as the benchmark. Figure 4a shows the weight 
distribution of the first level and the second level indicators formulated using the two methods (AHP and 
BWM). Difference between the four indicators of the first level in the two methods is extremely small, with a 
range of 0.0553, although the range of the second level weight distribution is slightly larger (0.1015), after the 
joint calculation of the first level weight, the range of the weight distribution is 0.0323, the disparity is marginal. 
The Spidelman coefficients, correlation coefficients and covariance of AHP and BWM weight distribution results 
are generally formulated. Spidelman coefficients for the two-layer weight distribution of the two methods are 1 
and 0.5297, respectively, which means the positive correlation between the two is very strong. But the covariance 
between the first level, second level weight distributions of the AHP and BWM methods are 0.021 and 0.003, 

First level indexes 1st level weight 2nd level indexes 2nd level weight

U1 Domain-General functional component performance 0.3178

U11 scalability 0.1208

U12 security 0.1208

U13 synchronization 0.0502

U14 visualization 0.0261

U2 Domain-Specific functional component performance 0.4686

U21 modelling 0.0239

U22 simulation 0.0731

U23 algorithm 0.2160

U24 interaction 0.1556

U3 user-experience 0.0978

U31 user-interface 0.0335

U32 HCI 0.0309

U33 collaboration 0.0333

U4 economic effects 0.114

U41 life cycle benefit 0.0131

U42 cost and profit 0.0228

U43 market demand 0.0799

Table 5. Final weight distribution of evaluation model. 1 Ui corresponds to the four first level indicators, while 
Uij represents the j-th secondary indicator under the indicator Ui
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indicating a certain linear relationship between the two sets of weights, however, this linear relationship is very 
weak. And the correlation coefficients for each level weight distribution calculated by the two methods are 0.97 
and 0.76, respectively, this further illustrates that the data obtained by the two methods are positively correlated.

Furthermore, to analyze the trends and magnitudes of changes in the indicator layer in response to variations 
in specific criterion layer indicators, and to facilitate higher-level decision-making, 1,000 sampling points 
were selected for each criterion layer indicator within the aforementioned evaluation framework to assess its 
sensitivity. A critical ratio (CR) closer to zero signifies superior performance34. Perform weight sensitivity 
analysis on the indicators, and the results are shown in Fig. 5. As shown in Fig. 5a, as the weights assigned to 
Domain-General and Domain-Specific increase, CR gradually decreases, and the rate of decrease in Domain-
Specific is significantly higher than the former, indicating that changes in Domain-Specific weight have a greater 
impact on the final result.

Results of FCE process
Fuzzy Comprehensive Evaluation (FCE) and Set Pair Analysis (SPA) are both methodologies employed for 
assessment and decision-making within complex systems characterized by uncertainty. To determine the more 
suitable method for evaluating a Domain-Specific DT platform, FCE and SPA are both applied to assess the DT 
train Platform. The weight distribution of the FCE is same as SPA, calculated by BWM, as shown in Table 5. The 
variables involved in the SPA are: the scores of 14 second level indicators, which are the weighted average of user 
evaluation scores, and the indicator level segmentation points selected based on expert advice. And the values of 
i1, i2, i3, and j parameters in the five element connection number involved in SPA are 0.5, 0, -0.5, -1, respectively.

Discussion
From Fig. 5b, it can be seen that when the weight of “Domain-General functional component performance” 
increases, only the weights of scalability, security, synchronization, and visualization will increase, while the 
weights of other indicator layers show a downward trend to varying degrees. Moreover, the slope of the straight 

Figure 4. Comparison of the weights and evaluation results, (a) the first and second level weights of indicators 
(b) the evaluation results of DT Train.
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line in represents the speed at which the weights of each indicator change with the weight of “Domain-General 
functional component performance” or “Domain-Specific functional component performance”.

The intersection of any two straight lines in Fig. 5 represents the inflection point at which the relative 
weight of the indicator changes. For example, the intersection of synchronization and algorithm (0.400, 0.1873) 
indicates that before this point, the importance of algorithm is greater than that of synchronization, and after this 
point, the importance of synchronization surpasses that of algorithm, highlighting the significance of indicator 
selection and weighting.

Although the final results using BWM-FCE and BWM-SPA differ, the overall trend is similar (Fig.  4b). 
Specifically, U1 and U2 score one level higher than U3 and U4, indicating that the high-speed train DT platform 
places more emphasis on the performance of Domain-General and Domain-Specific functional components 
performance compared to the user experience and economic benefits, which is consistent with the expected 
results. The variation in the assessment outcomes of the second level indicators is relatively minor, the four 
second-level indicators U21, U23, U31, and U43, is a one-degree difference, while the evaluation results of 
the remaining ten second-level indicators are consistent. It is worth mentioning that the assessment result of 
comprehensive evaluation framework on the simulation capabilities of DT Train Platform is consistent with the 
benchmark method, both are excellent.

As shown in Table  6, the comprehensive evaluation results of DT Trains obtained using the BWM-SPA 
method are: the comprehensive evaluation results of U1 and U2 are excellent, and the results of U3 and U4 
are good. In summary, the evaluation results of BWM-FCE for the high-speed railway DT platform are more 
in line with the actual situation than those of BWM-SPA. Compared to the AHP method, BWM has a time 
complexity of 2 ∗ n, while the former has a time complexity of n2, making it easier to implement in practical 
decision-making. Besides, SPA has a single data processing method, unlike FCE which can use fuzzy operators 
for calculations. Additionally, FCE has more ways to obtain fuzzy matrices and is more suitable for evaluating 
objects with multiple factors.

Figure 5. Sensitivity analysis of the Domain-Specific and Domain-General components’ weights (a) CR 
accompanies changes in DMs’ weights (b) Changes in weight of other indicators with the current indicator 
weight.
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Conclusions and future works
Conclusions
In order to improve the efficiency of DT model development and optimize the process of Domain-driven DT 
design, this article proposes the term Domain-Specific DT platform. Researchers can improve the DT-driven 
research efficiency and process of DT development by utilizing the evaluation framework proposed in this article 
to identify components that meet specific requirements. They can achieve this by establishing an evaluation 
indicator system and a BWM-FCE evaluation model to evaluate and further develop the Domain-Specific DT 
platform. The construction of BWM-FCE evaluation model mainly includes the determination and verification 
of indicator weights, the determination of the membership matrix, and the acquisition of comprehensive 
evaluation results. In order to provide a detailed description of the research process of Domain-Specific DT 
platforms, taking the construction and evaluation of DT Trains platform as an example, the specific processes 
of requirement determination, component collection, and application evaluation were described. The main 
contributions of this research are as follows: 

 1) The concept of Domain-Specific DT platform and a comprehensive evaluation framework for it have been 
proposed, which can be used as a reference for researchers, practitioners, and developers to build and choose 
DT platforms that meet the needs of a Domain-Specific application.

 2) BWM and FCE methods are integrated to form a BWM-FCE evaluation model in the framework, which can 
effectively determine the weights and scores of the evaluation indicators and sub-indicators, and incorporate 
the subjective opinions of experts and stakeholders in the evaluation process.

 3) The proposed framework is applied to a case study of the DT Train Platform and its rationality and prac-
ticality are verified. We have also compared the proposed framework with other evaluation methods and 
discussed the advantages and limitations of each method.

The current scarcity of DT platform resources across various industries has hindered the validation of the 
framework’s multi-functional extension through case studies. Future research will involve comprehensive 
evaluations of DT platforms within diverse sectors, including manufacturing, healthcare, and automotive. 
These studies aim to showcase the framework’s adaptability and its capacity to meet the evolving technological 
demands of DT, as well as the emerging needs of different industries. Presently, the study remains confined to 
the laboratory setting, thus bypassing ethical and privacy concerns. However, as the deployment and utilization 
of DT platforms expand into broader fields, ethical and privacy considerations will become paramount, 
necessitating dedicated research to address these issues.

Future works
The primary limitations of the proposed framework lie in the evaluation indicators and sub-indicators, which 
can vary significantly across domains due to their unique characteristics. This creates challenges in quickly 
adapting the evaluation indicator system to evolving DT platforms. Future work will focus on extending and 
refining the framework to better accommodate different types of DT platforms and applications. Additionally, 
we will aim to explore new evaluation methods and criteria that can effectively capture the multidimensional 
and dynamic nature of Domain-Specific DT platforms. To verify the generalization of the framework in other 
industries, future work will focus on extending and refining the evaluation framework to accommodate different 
types of DT platforms and applications, as well as exploring more evaluation methods and criteria that can 
capture the multidimensional and dynamic nature of Domain-Specific DT platforms. Additionally, we intend to 
develop a more agile evaluation indicator system that can rapidly adapt to changes in DT Platforms, ensuring 
that the framework remains both relevant and precise.

2nd indicators Score value Segmentation point Five element contact number Connectivity CN

U11 73.334

[90 80 70 60 50]

[0.33 0.67 0.00 0.00 0.00]

[0.4822 0.5178 0 0 0] 0.741085
U12 74.993 [0.50 0.50 0.00 0.00 0.00]

U13 78.334 [0.83 0.17 0.00 0.00 0.00]

U14 74.159 [0.42 0.58 0.00 0.00 0.00]

U21 70.833

[90 80 70 60 50]

[0.08 0.92 0.00 0.00 0.00]

[0.4979 0.5021 0 0 0] 0.748957
U22 75.833 [0.58 0.42 0.00 0.00 0.00]

U23 73.333 [0.33 0.67 0.00 0.00 0.00]

U24 77.5 [0.75 0.25 0.00 0.00 0.00]

U31 7.4992

[10 8 6 4 2]

[0.00 0.75 0.25 0.00 0.00]

[0 0.6727 0.3273 0 0] 0.336361U32 6.8334 [0.00 0.42 0.58 0.00 0.00]

U33 7.6659 [0.00 0.83 0.17 0.00 0.00]

U41 3.74965

[5 4 3 2 1]

[0.00 0.75 0.25 0.00 0.00]

[0 0.7130 0.2870 0 0] 0.356511U42 3.70835 [0.00 0.71 0.29 0.00 0.00]

U43 3.70835 [0.00 0.71 0.29 0.00 0.00]

Table 6. BWM-SPA evaluation results. 1 CN: Connection number
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Furthermore, we will explore the integration of modular design concepts, facilitating the incorporation 
of advanced analytical techniques such as time series analysis, artificial neural networks (ANN), and cluster 
analysis. This integration is expected to enhance the framework’s analytical capabilities while promoting its 
adaptability and robustness, ultimately improving our evaluation processes in diverse contexts.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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