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A B S T R A C T

This study investigated the shared neural dynamics underlying encoding and recognition processes across diverse 
visual object stimulus types in short term experimental familiarization, using EEG-based representational simi-
larity analysis and multivariate cross-classification. Building upon previous research, we extended our explo-
ration to the encoding phase. We show early visual stimulus category effects around 150 ms post-stimulus onset 
and old/new effects around 400 to 600 ms. Notably, a divergence in neural responses for encoding, old, and new 
stimuli emerged around 300 ms, with items encountered during the study phase showing the highest differen-
tiation from old items during the test phase. Cross-category classification demonstrated discernible memory- 
related effects as early as 150 ms. Anterior regions of interest, particularly in the right hemisphere, did not 
exhibit differentiation between experimental phases or between study and new items, hinting at similar pro-
cessing for items first encountered, irrespective of experiment phase. While short-term experimental familiarity 
did not consistently adhere to the old >new pattern observed in long-term personal familiarity, statistically 
significant effects are observed specifically for experimentally familiarized faces, suggesting a potential unique 
phenomenon specific to facial stimuli. Further investigation is warranted to elucidate underlying mechanisms 
and determine the extent of face-specific effects. Lastly, our findings underscore the utility of multivariate cross- 
classification and cross-dataset classification as promising tools for probing abstraction and shared neural sig-
natures of cognitive processing.

1. Introduction

Research has shown that memory-related processing unfolds over 
time (Staresina & Wimber, 2019), with distinct stages characterized by 
unique patterns of neural activity (Ambrus, 2024; Dalski et al., 2022a). 
Early in the processing stream, sensory stimuli elicit rapid neural dif-
ferentiation, leading to the encoding of stimulus characteristics. 
Research using electroencephalography (EEG) and magnetoencepha-
lography (MEG) has revealed rapid discrimination and classification of 
visual stimuli, such as human faces, buildings, animals, and objects, 
occurring as early as the P1-N1-N170 range (Carlson et al., 2013; Klink 
et al., 2023; Xie et al., 2022). Subsequently, memory-related processes 
become prominent, as information is recalled and/or stored for later 
retrieval. The transition of neural signals from stimulus-driven repre-
sentations to memory-related processing is a critical period that marks 
the shift from perceptual analysis to higher-order cognitive functions 
associated with memory formation and recollection.

The objective of this study is to provide a data-driven investigation of 
the temporal neural dynamics involved in the cognitive processing 
associated with the encoding of novel stimuli, later recognizing studied 
items as old, and distinguishing novel items as new, shared across par-
ticipants and visual stimulus types.

Subsequent Memory Effects. Event-related potential studies that 
investigate both study and recall primarily focus on subsequent memory 
effects (SME), that is, the neural patterns or activity differences between 
items that are later remembered versus those that are later forgotten 
(Mecklinger & Kamp, 2023). These effects are typically identified by 
comparing the brain activity associated with stimuli that participants 
later recall or recognize correctly in memory tests with brain activity 
linked to stimuli that participants later fail to recall or recognize. Sub-
sequent memory effects are characterized by distinct components, 
including early frontal SMEs (ca. 300 and 600 ms) theorized to indicate 
of semantic processing (Otten & Rugg, 2001), early parietal SMEs (350 
and 500 ms) thought to be associated with feature binding (Meßmer 

* Corresponding author.
E-mail address: g.ambrus@gmail.com (G.G. Ambrus). 

1 0000-0002-8400-8178.

Contents lists available at ScienceDirect

Brain Research

journal homepage: www.elsevier.com/locate/brainres

https://doi.org/10.1016/j.brainres.2025.149616
Received 12 January 2025; Received in revised form 24 March 2025; Accepted 3 April 2025  

Brain Research 1857 (2025) 149616 

Available online 3 April 2025 
0006-8993/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license ( http://creativecommons.org/licenses/by- 
nc/4.0/ ). 

mailto:g.ambrus@gmail.com
www.sciencedirect.com/science/journal/00068993
https://www.elsevier.com/locate/brainres
https://doi.org/10.1016/j.brainres.2025.149616
https://doi.org/10.1016/j.brainres.2025.149616
http://crossmark.crossref.org/dialog/?doi=10.1016/j.brainres.2025.149616&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


et al., 2021), and sustained late frontal SMEs (ca. 550 ms post-stimulus) 
reflecting elaborative encoding (Kamp & Zimmer, 2015). These com-
ponents interact with preparatory mechanisms, influencing memory 
performance even before stimulus presentation (pre-stimulus SME, 
(Yick et al., 2016)). Moreover, SMEs can be modulated by various fac-
tors such as encoding tasks, the content of information, distinctiveness, 
as well as external factors. In sum, these effects are thought to capture 
the neural signatures associated with successful memory formation and 
recognition, highlighting the brain regions or activity patterns that 
contribute to memory performance.

Old/new effects. In recognition memory tasks, ERPs reveal a greater 
positivity for correctly identified studied (“old”) items compared to 
correctly rejected unstudied (“new”) items. This mid-frontal old/new 
effect, often referred to as the FN400, emerges around 300 ms post- 
stimulus, peaking at approximately 500 ms before declining, typically 
over frontal scalp locations. This effect is associated with familiarity, 
which refers to the undifferentiated experience of “just knowing” that 
something was previously encountered, without retrieval of contextual 
information (Yonelinas, 2002). In contrast, the parietal ERP old/new 
effect, known as the late positive component (LPC), emerges later, be-
tween 500–800 ms post-stimulus onset, peaking over the left or central 
parietal scalp channels. This parietal effect is linked with recollection, 
which involves a detailed and often vivid experience of “reliving the 
past”, entailing the recovery of episodic information such as where and 
when the original encounter occurred. These old/new effects have been 
found to exhibit distinct process-selectivity and temporal structure 
(Kwon et al., 2023).

Functional neuroanatomy. The insights gained from EEG studies 
into the temporal dynamics of neural activity are complemented by the 
functional neuroanatomy of memory processes. The Hippocampal 
Indexing Theory (Teyler & Rudy, 2007) and the Complementary 
Learning Systems (O’Reilly & Norman, 2002) frameworks assign distinct 
roles to the hippocampus and neocortex in memory processing. During 
encoding, sensory information from various modalities is processed by 
different areas of the neocortex. These patterns of neocortical activa-
tions are condensed and transmitted to the hippocampus via the ento-
rhinal cortex. Within the hippocampal formation, particularly in the 
dentate gyrus, these patterns undergo pattern separation, a process that 
ensures distinct representations are formed for similar inputs (Yassa & 
Stark, 2011). These representations are then bound together and 
indexed in the hippocampal CA3, strengthening connections between 
neurons representing the elements of the memory. During retrieval, cues 
or features of a memory trigger activation in the hippocampus. Specif-
ically, when a feature of the original stimulus is present, in a process 
referred to as pattern completion (Horner et al., 2015), CA1, in tandem 
with CA3, mediates the reactivation of the appropriate cortical areas 
associated with the memory. Activation of these cortical areas allows for 
the re-experiencing of the event as a memory, as the cortical represen-
tation of the original experience is reinstated. This hippocampus-to- 
neocortex cascade of memory reinstatement occurs ca. 500 to 1500 
ms following the cue (Staresina & Wimber, 2019).

Encoding/retrieval state studies. Earlier models, such as the 
Hemispheric Encoding and Retrieval Asymmetry (HERA) model 
(Tulving et al., 1994) proposed differential involvement of the left and 
right prefrontal cortices during episodic memory processes. According 
to HERA, the left prefrontal cortex (PFC) primarily participates in 
encoding, while the right PFC is predominantly engaged in retrieval. 
Although evidence supporting this model spans various stimulus types, 
it remains subject to interpretation and debate (Andreau & Torres Batán, 
2019; Kelley et al., 1998; Rossi et al., 2011; Wagner et al., 1998). More 
recent studies aimed to unravel the neural mechanisms underlying 
memory encoding and retrieval processes amidst overlapping or inter-
fering events from the past and present. Richter et al. (2016) utilized 
fMRI decoding analyses to explore how the hippocampal memory sys-
tem manages encoding and retrieval states, finding distinct contribu-
tions of the medial prefrontal cortex and hippocampus to these 

processes, with the hippocampus signaling the tradeoff between 
encoding and retrieval and the medial prefrontal cortex representing 
past experiences in relation to new learning. Smith et al. (2022) inves-
tigated the impact of temporal overlap between present and past events 
on memory processing using EEG, revealing a bias towards retrieval 
with increased temporal overlap, impairing memory for the past event 
when encoding the present event was the goal. Long & Kuhl (2019)
demonstrated that biases towards encoding or retrieval states can be 
decoded from spectral EEG patterns, predicting later memory perfor-
mance for overlapping events. Hong et al. (2023) investigated EEG 
microstates during mnemonic tasks biased towards encoding or 
retrieval, revealing sustained differences in engagement of Microstate E 
between encoding and retrieval, highlighting the relationship between 
cortical networks, the hippocampus, and temporal factors in memory 
processing. Finally, in their study on episodic memory using intracranial 
recordings, Mohan et al. (2024) observed traveling waves propagating 
in posterior-to-anterior and anterior-to-posterior directions during 
encoding and retrieval phases, respectively.

While ERP analyses are invaluable for characterizing stimulus- 
specific (Bentin et al., 1996; Bötzel & Grüsser, 1989; Tanaka et al., 
2009; Watanabe et al., 2003; Yildirim-Keles et al., 2025) and memory- 
related (Curran, 1999; Danker et al., 2008; Kwon et al., 2023; Meck-
linger & Kamp, 2023; Wolk et al., 2006, Wolk et al., 2009) neural re-
sponses, multivariate approaches capture distributed patterns that are 
not reducible to time-locked averages. This is particularly advantageous 
for cross-classification, as it allows for the identification of shared neural 
representations across stimulus types and participants. As seen, research 
has extensively explored the multifaceted nature of the neural correlates 
of various memory functions. The distinct temporal dynamics of 
encoding and recall processes, however, have yet to be fully 
characterized.

The present study. In a study by Ambrus (Ambrus, 2024), multi-
variate cross-dataset classification analysis was employed to explore the 
common neural signatures underlying recognition memory across 
various stimulus types and experimental conditions. Cross-dataset 
classification from familiar and remembered objects revealed an early- 
late dissociation: shared recognition signals were observed only in the 
later, post-400 ms window for correctly remembered objects, whereas 
successful cross-decoding for familiar objects was evident in the early, 
ca. 200 ms period as well. The study also showcased the potential of 
cross-classification to investigate general, participant- and stimulus- 
independent neural signatures of memory processes. Subsequently, in 
Klink and colleagues (2023) we confirmed the generalizability of neural 
signals for familiar and unfamiliar faces and scenes using cross- 
participant and cross-category classification within one experiment.

Aims. Building on the results and methods of these studies, the aims 
of this present investigation were the following. Firstly, we sought to 
replicate general neural signatures of recognition by investigating short- 
term memory processes across diverse sets of stimuli within one 
experiment. By contrasting neural responses to old and new items during 
a memory task, we aimed to identify consistent patterns indicative of 
recognition across various stimulus types. More importantly, we aimed 
to extend our investigation to the encoding phase, probing neural sig-
natures associated with the initial encoding of stimuli into memory. 
Here, we aimed to uncover common patterns that differentiate memory 
formation and recall across different types of stimuli. In sum, we sought 
to characterize the neural dynamics underlying both recognition and 
encoding processes, elucidating the temporal evolution and spatial dis-
tribution of neural activity associated with memory-related processing.

2. Methods

2.1. Participants

Data from 22 volunteers were included in the study. The sample 
consisted of 5 male and 17 female participants with a mean age of 21.36 
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years (SD = 2.61). This sample size is comparable to that of similar 
studies employing multivariate cross-classification and cross-dataset 
classification techniques (Dalski et al., 2022b; Dalski et al., 2022a; Li 
et al., 2022). Participants were students and employees of Bournemouth 
University and were recruited through the SONA research participation 
system and received partial course credits or volunteered their time 
without compensation. All participants reported being right-handed and 
having normal or corrected-to-normal vision. Participants reported no 
history of neurological conditions or CNS-active medication use at the 
time of the study. All participants provided written informed consent, 
and the study was approved by the Bournemouth University Research 
Ethics committee [no. 49206]. The study was conducted in accordance 
with the Declaration of Helsinki.

2.2. Experimental design

Stimuli. Stimuli consisted of color images drawn from eight stimulus 
types: faces, bodies, toys, houses; animals, plants, vehicles, furniture. 
Faces included unfamiliar younger and older male and female faces, 
generated using the https://generated.photos/anonymizer website. The 
rest of the stimuli were collected from various internet sources (mainly 
Wikimedia Commons). Body stimuli were images of male and female 
athletes from various countries with the head area erased. Toy stimuli 
included various objects designed for play or enjoyment. House stimuli 
were images of one to three-story residential structures. Animal stimuli 
included photographs of land and sea animals. Plant stimuli consisted of 
images of fruits and vegetables. Vehicle stimuli comprised of photo-
graphs depicting machinery used for transportation on land and water. 
Furniture stimuli included household articles and domestic furnishings 
commonly found in residential settings. The background of each image 
was removed, and stimuli were resized to 350 × 350 pixels. For stimuli 
examples, see Fig. 1D.

Study blocks. In each study block (see Fig. 1B), participants viewed 
16 images randomly selected from four stimulus categories (4 items 
from each). The stimuli were displayed centrally on a grey background 
for 1000 ms each. Participants were tasked with memorizing the pre-
sented items. After every eight trials, participants took a self-paced 
break.

Test blocks. During each test block (see Fig. 1C), participants were 
presented with a total of 32 stimuli, comprising 16 previously presented 
items and 16 novel stimuli (balanced across stimulus types). These were 
presented in a random order and displayed for 1000 ms each. Partici-
pants were instructed to determine whether each stimulus was old or 
new, indicating whether it had been seen in the preceding study phase or 
not. Additionally, participants provided a confidence rating for each 
decision, ranging from “guess” to “moderately confident” to “highly 
confident”; this factor is not analyzed in this report. Participants did not 
receive feedback on their performance during the experiment.

The study and test blocks were repeated four times, with an average 
time difference of approximately two minutes between the presentation 
of an item for study and recall (mean and SD: 113.26 ± 4.82 s, calcu-
lated post-data collection). Note that the study and test items were 
randomly assigned for each participant. Throughout the experiment, 
participants studied a total of 128 items, 16 within a single stimulus 
category, resulting in a total of 2816 study trials across all participants. 
Each study item was subsequently presented during the test phase 
alongside an equal number of novel stimuli from the same stimulus set, 
resulting in 384 trials per participant. The overall correct response rate 
was 88.31 %, with all participants providing correct responses on 4974 
test trials (hits: 2500, correct rejections: 2474, misses: 316, false alarms: 
342).

The experiment included two additional test tasks involving items 
that were either pre-experimentally familiar or unfamiliar. One task 
featured famous and unknown faces and buildings, while the other 
included interior and exterior scenes depicting the university campus 
and images of unfamiliar scenes from elsewhere. These tasks exclusively 

consisted of test blocks without any study phases. The findings from 
these tasks are not reported in this paper. The sequence of tasks was the 
same for all participants and followed a predetermined order: 0) a brief 
practice session, 1) pre-experimentally familiar or unfamiliar faces and 
buildings, 2) experimentally familiarized faces, bodies, toys, and houses, 
3) pre-experimentally familiar or unfamiliar campus scenes, 4) and 
experimentally familiarized animals, plants, vehicles, and furniture (see 
Fig. 1A).

2.3. Electroencephalography

EEG recordings were obtained using a 64-channel BioSemi Active-
Two device, with a sampling rate of 1024 Hz. During the recordings, the 
distance between the participants’ eyes and the computer screen was set 
to 110 cm. Common-average referenced EEG signals were notch-filtered 
at 50 Hz and bandpass-filtered between 0.1 and 40 Hz. The data were 
then segmented from − 200 to 1200 ms relative to stimulus onset and 
baseline-corrected using the first 200 ms as the reference period. Sub-
sequently, the data were downsampled to a sampling rate of 200 Hz. No 
additional processing steps were applied to the data (Ambrus et al., 
2021; Dalski et al., 2022b; Delorme, 2023; Grootswagers et al., 2017). 
The preprocessing pipeline was implemented using MNE-Python 
(Gramfort et al., 2013, Gramfort et al., 2014).

2.4. Data analysis

For the purposes of this report, leave-one-subject-out (LOSO) and 
leave-one-category-out classification schemes were employed. Linear 
Discrimination Analysis (LDA) classifiers, available in the scikit-learn 
Python package, were utilized for classification. Time-resolved repre-
sentational similarity analyses, time-resolved classification, and 
searchlight analyses were conducted.

We focused exclusively on trials with correct answers, regardless of 
the participants’ response confidence levels. To ensure balanced class 
representation and to prevent biases that arise from imbalanced data, we 
under-sampled the trials. Specifically, we under-sampled the number of 
trials for each participant to match the minimum trial count across the 
classes of interest. This under-sampling procedure was applied during 
both classifier training and testing (for a similar approach see (Ambrus, 
2024; Klink et al., 2023)).

2.4.1. Leave-one-subject-out and cross-condition classification
Understanding the abstraction and generalizability of neural signals 

is crucial for investigating the underlying mechanisms of cognition. 
These manifestations of complex cognitive processes may extend beyond 
specific conditions or stimuli, suggesting shared representations across 
diverse contexts. These shared representations offer insights into the 
fundamental principles underlying cognitive operations, providing a 
glimpse into the generalizable aspects of neural processing. In this study, 
we utilized cross-participant and cross-condition classification tech-
niques to explore stimulus- and participant-independent patterns of 
memory encoding and recognition.

Cross-participant representational similarity analysis (Fig. 2) 
allowed us to examine the time-resolved representational structure 
shared across participants across all stimulus types. While this method 
facilitates the testing of complex models using model correlations, it is 
not well-suited for cross-stimulus classification. To address this, we 
employed cross-participant and cross-category classification analyses 
(Fig. 3), enabling us to investigate both participant-independent effects 
and the shared neural signals of mnemonic processes across stimulus 
categories. For a similar approach, see Ely and Ambrus (Ely & Ambrus, 
2025).

In leave-one-subject-out (LOSO) classification, data from one 
participant is withheld as a test set, while the data from the remaining 
participants are used to train the classifier. This process is repeated for 
each participant in the dataset, ensuring that every participant 
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contributes to both the training and testing phases. Excluding each 
participant in turn from the training set, LOSO classification facilitates 
the exploration of general, participant-independent effects.

Cross-category classification involves training the classifier on data 
from one task or experimental condition and evaluating its performance 
on data from a different task or condition. This method, similar to 
multivariate cross-classification (Kaplan et al., 2015), enables the ex-
amination of the classifier’s generalization capabilities across distinct 
tasks or conditions. Assessing whether the learned patterns or features 
are specific to particular contexts or can be generalized across different 
contexts, cross-category classification evaluates the transferability of the 
classification model.

2.4.2. Representational dissimilarity analysis
The representational similarity analysis (Haxby et al., 2014; Krie-

geskorte, 2008; Popal et al., 2019) was based on a 24 × 24 represen-
tational dissimilarity matrix structure, with rows and columns 
representing the combinations of the 8 stimulus types and the 3 memory 
conditions (RSA, Fig. 2). To establish predictor matrices, each repre-
senting different cognitive models, seven matrices were constructed. 
The first, “stimulus type” matrix was designed to contrast each stimulus 
category against all others, disregarding memory conditions. The “seen/ 
unseen” model was constructed to discern old items (those seen during 
the study phase) from study phase items and new items encountered 
during the test phase (i.e., encountered for the first time). The “memory 
condition” model presumed dissimilarity across all three memory con-
ditions: study, old, and new. In addition to these models, three more 
matrices were created to contrast the three memory conditions indi-
vidually: old/new, study/old, and study/new.

The creation of neural representational dissimilarity matrices fol-
lowed a cross-participant pairwise classification scheme. Here, for each 
participant, the training process utilized aggregated data from all other 
participants. For every stimulus pair (for example, study-faces and new- 
houses), classifiers were trained on data from n-1 participants and 
subsequently tested on the left-out participant. This iterative train-test 
procedure was carried out for all time points and stimulus pairs.

Model correlations were then computed using rank correlations on 
unfolded neural representational dissimilarity matrices at each time 
point, along with the model (predictor) dissimilarity matrices. This 
process generated a time-series of Spearman rho-values for each model 
in every participant. Subsequently, these values were Fisher- 
transformed and aggregated across participants for statistical analysis.

Hemispheric differences were further explored by averaging model 
correlations within participants between 100 and 1000 ms, and 

comparing the values so obtained using two-sided, paired-sample t-tests.

2.4.3. Memory condition classification
Two sets of analyses were performed, utilizing a cross-participant 

(leave-one-subject-out) and cross-stimulus-type (leave-one-category- 
out) approach. The first involved a three-class analysis (Fig. 3A) to 
examine classification performance for study, old, and new items. 
Training included aggregated data from n-1 participants for all stimulus 
types except one, allowing the classifiers to categorize memory condi-
tions (study, old, new; chance: 1/3), with subsequent testing on the 
omitted stimulus type in the left-out participant. This iterative process 
was repeated for all stimulus types, time-points, and participants. 
Average classifier performance was also computed across stimulus types 
at each time point for each participant.

The second set of analyses consisted of binary (two-class) classifi-
cation analyses (Fig. 3B) that focused on specific pairs of conditions. 
These pairwise analyses included old/new, study/old, and study/new 
conditions (chance: 1/2). Training included aggregated data from n-1 
participants for all stimulus types except one, followed by testing on the 
omitted stimulus type in the participant left out. This iterative process 
was repeated for stimulus types, time-points, and participants, and all 
three contrasts. Additionally, average classifier performance was 
computed across stimulus types at each time point for each participant, 
for all three contrasts.

Time-resolved Classification. We performed time-resolved classi-
fication analyses (Grootswagers et al., 2017) utilizing data from all 
sensors alongside predefined regions of interest (ROIs). To define these 
ROIs, we followed the methods previously described by Ambrus et al. 
(Ambrus et al., 2019, 2021; Ely & Ambrus, 2025) and Dalski et al. (2023; 
2022; 2022), with six scalp locations along the median (left and right) 
and coronal (anterior, central, and posterior) planes.

Spatio-temporal Searchlight. To gain a finer-grained understand-
ing of the spatio-temporal dynamics of information processing, time- 
resolved analyses were supplemented by sensor-space searchlight ana-
lyses. In the searchlight analyses, we systematically examined each 
channel individually by training and testing the classifier using data 
from the specific sensor and its adjacent electrodes, effectively per-
forming a time-resolved analysis for each channel.

2.4.4. Within and cross-task classification
In addition to the main analyses, two additional within- and cross- 

task classification analyses were carried out, using the same leave-one- 
subject-out approach described above. Here, data from the two experi-
mental familiarization tasks (faces-bodies-houses-toys and animals- 

Fig. 1. Experimental design. The experiment included study and test phases (A). During the study phase (B), participants were instructed to memorize images from 
four stimulus types (faces, houses, toys, bodies, or animals, plants, vehicles, furniture), each presented for 1000 ms. In the subsequent test phase (C), study items were 
reintroduced alongside novel images, also presented for 1000 ms. Participants were prompted to make old/new decisions followed by confidence judgments (guess/ 
moderate/high confidence). Note that two test-blocks with pre-experimentally familiar stimuli were also included (famous/unknown faces and buildings, familiar 
and unfamiliar scenes); analysis of the data from these blocks will be reported elsewhere. (D) Example stimuli in the eight stimulus categories.† †Source of the 
example images: File:20141206 1449 PORISR 6188.jpg. Wikimedia Commons. https://w.wiki/9MSD. File:European Championships 2022–08-18 Senior Men All- 
around competition Subdivision 2 (Norman Seibert) − DSC 3561.jpg. Wikimedia Commons. https://w.wiki/9MSF. File:2018 EC Anita Östlund 2018–01-20 21–39-46. 
jpg. Wikimedia Commons. https://w.wiki/9MSG. File:2018 EC Julia Sauter 2018–01-18 14–06-13 (4).jpg. Wikimedia Commons. https://w.wiki/9MSJ. File: Wal-
lEinZaks.jpg (Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/File:WallEinZaks.jpg. File:Toys 2013–056-048 (12910779433).jpg. Wikimedia Com-
mons. https://w.wiki/9MSL. File:Plastic baby rattle toy.jpg. Wikimedia Commons. https://w.wiki/9MSN. File:Sonajeros.jpg. Wikimedia Commons. https://w.wiki/ 
9MSP. File:2009 Trip − Cape Breton Island (3940249474).jpg. Wikimedia Commons. https://w.wiki/9MSQ. File:Circular house − geograph.org.uk − 483214.jpg. 
Wikimedia Commons. https://w.wiki/9MSS. File:Újezd u Cerhovic, small house.jpg. Wikimedia Commons. https://w.wiki/9MST. File:Small house at Dullaghan −
geograph.org.uk − 120249.jpg. Wikimedia Commons. https://w.wiki/9MSV. File:Squirrel posing.jpg. Wikimedia Commons. https://w.wiki/9MSW. File:Snail.jpg. 
Wikimedia Commons. https://w.wiki/9MSY. File:Cuttlefish zebra pattern.jpg. Wikimedia Commons. https://w.wiki/9MSa. File:Blue dragon-glaucus atlanticus 
(8599051974).jpg. Wikimedia Commons. https://w.wiki/9MSb. File:Pinot Grigio-20201027-RM-114053.jpg. Wikimedia Commons. https://w.wiki/9MSe. File:Banana- 
Single.jpg. Wikimedia Commons. https://w.wiki/9MSf. File:Onion on White.JPG. Wikimedia Commons. https://w.wiki/9MSg. File:Chou-fleur 02.jpg. Wikimedia 
Commons. https://w.wiki/9MTD. File:1990 s mini van in the street.jpg. Wikimedia Commons. https://w.wiki/9MSx. File:Road Roller 9925 (14660722798).jpg. 
Wikimedia Commons. https://w.wiki/9MSz. File:Oliver Dinghy Boat Yacht Tender- Oliverboat.jpg. Wikimedia Commons. https://w.wiki/9MT2. File:Mississippi 
Voyager 4.jpg. Wikimedia Commons. https://w.wiki/9MT3. File:American cupboard, c. 1790–1820, cherry and butternut, Dayton Art Institute.JPG. Wikimedia 
Commons. https://w.wiki/9MT4. File:Sofa Ligne Roset (fcm).jpg. Wikimedia Commons. https://w.wiki/9MT5. File: https://cdn2.picryl.com/photo/2018/11/11/ 
dressing-chest-thomas-seymour-boston-c-1810-mahogany-birds-eye-maple-satinwood-385c58-1024.jpg Pycril.com public domain images. https://tinyurl.com/ 
y4ru4ze2. File:Mahoniehouten rechte neo-Empire stoel, objectnr 8083–15.JPG. Wikimedia Commons. https://w.wiki/9MT6.
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plants-vehicles-furniture) were treated separately. Classifiers were 
trained to categorize memory conditions (study, old, or new) and pairs 
of memory conditions (old/new, study/old, study/new) using data from 
n-1 participants and then tested on the participant left out. Within-task 
analyses involved training and testing data drawn from the same task, 
while cross-task analyses entailed training on data from one task and 
testing on the other. This enabled assessment of classifier performance 
across tasks and participants, further elucidating the generalizability of 
memory condition classification. The results of these analyses are re-
ported in Supplementary Information 1.

2.4.5. Statistical testing
To enhance the signal-to-noise ratio, a moving average with a win-

dow size of 25 ms (equivalent to 5 consecutive time-points) was applied 

to all participant-level classification accuracy data. For the ROI-based 
analyses, the decoding accuracies were subjected to two-tailed, one- 
sample cluster permutation tests with 10,000 iterations, comparing 
them against chance levels of 50 % or 33 %. In the searchlight analyses, 
two-tailed spatio-temporal cluster permutation tests with 10,000 itera-
tions were utilized to compare the results against chance levels.

The statistical analyses were conducted using python, MNE-Python 
(Gramfort et al., 2013, Gramfort et al., 2014), scikit–learn (Pedregosa 
et al., 2011) and SciPy (Virtanen et al., 2020).

Fig. 2. Cross-participant representational similarity analysis. (A) Representational Dissimilarity Matrix structure. The matrix consists of a 24 (8 stimulus types × 3 
memory conditions) × 24 grid, with an empty off-diagonal and diagonal. Predictor representational dissimilarity matrices were modelled by filling the grids-points of 
this with 0 s for similar stimulus-pairs, and with 1 s for dissimilar stimulus-pairs. Seven prediction matrices were created. The stimulus type matrix (B) contrasts each 
stimulus category with the rest of the stimuli, irrespective of memory condition. The seen/unseen model (C) contrasts data from old items in the test phase (i.e., seen 
in the study phase) with data from items in the study phase and new items in the test phase (i.e., items seen for the first time by the participant). The memory 
condition model (D) assumes dissimilarity between all three memory conditions (i.e., study data is different from old and is different from new). The experiment 
phase model (E) contrasts data from the study phase and the test phase of the experiment (i.e., study is different from old and new, old and new are similar). Three 
additional predictor matrices were constructed to contrast the three memory conditions separately: old/new (F), study/old (G), study/new (H). The creation of the 
neural representational dissimilarity matrices followed a cross-participant pairwise classification scheme (I). For each participant, training was performed on 
aggregated data from all other participants. For each stimulus pair (e.g., study-faces and new-houses) classifiers were trained on data from n-1 participants and tested 
on the participant left out. This procedure was repeated for all time points and stimulus pairs. Model correlations (J) were performed using rank correlations on 
unfolded neural representational dissimilarity matrices at each time point, and the model (predictor) dissimilarity matrices, resulting in a time-series of Spearman 
rho-values for each model in each participant. These were then Fisher-transformed and aggregated for statistical analysis.

B. Ozdemir and G.G. Ambrus                                                                                                                                                                                                                Brain Research 1857 (2025) 149616 

6 



3. Results

3.1. Representational dissimilarity analysis

Stimulus type. The cluster permutation tests conducted on the 
representational similarity analysis for stimulus type revealed signifi-
cant results across all regions of interest. Over all electrodes, significant 
clusters were identified from 80 to 680 ms (cluster p < 0.0001), 700 to 
980 ms (cluster p = 0.0058), and 1055 to 1185 ms (cluster p = 0.0232) 
with peak latencies at 145, 835 and 1125 ms.

Seen/unseen. For the seen/unseen model, significant clusters were 
identified across all regions of interest. Over all electrodes, a significant 
cluster was identified from 290 to 700 ms (cluster p = 0.0003), peaking 
at 570 ms.

Memory condition. All regions of interest yielded significant clus-
ters for the memory condition model. For all electrode, a significant 
cluster was observed from 290 to 1030 ms (cluster p < 0.0001), with a 
peak latency at 550 ms.

Experiment phase. Neither left, nor right anterior regions of interest 
yielded significant clusters for the experiment phase model. Other re-
gions of interest yielded significant clusters which included time points 
starting from ca. 300 ms. Over all electrodes, two significant clusters 
were observed from 270 to 485 ms (cluster p = 0.0101) and 525 to 875 
ms (cluster p = 0.0025), with peak latencies at 365 ms and 735 ms, 
respectively.

Comparing these models, no significant differences were seen over 
all electrodes. In the regions of interest, the right anterior area yielded 
the most consistent differences between ca. 300 and 600 ms.

Old/new. For the old/new model, significant clusters were identi-
fied across all regions of interest, generally starting around 200–––500 
ms. In all electrodes, a significant cluster was identified from 370 to 615 

ms (cluster p = 0.0011), with a peak latency at 550 ms.
Study/old. All regions of interest yielded significant clusters for the 

study/old model, with cluster onsets at around 250 – 400 ms. Consid-
ering all electrodes, two significant clusters were identified from 255 to 
870 ms (cluster p < 0.0001) and 895 to 1010 ms (cluster p = 0.0495), 
with peak latencies at 555 ms and 995 ms, respectively.

Study/new. As in the experiment phase model, neither left, nor right 
anterior regions of interest yielded significant clusters for the study/new 
model, and no significant clusters were seen in the right central area. 
Considering all electrodes, two significant clusters were identified from 
355 to 425 ms (cluster p = 0.0462) and 905 to 1030 ms (cluster p =
0.0365), with peak latencies at 375 ms and 945 ms, respectively.

In comparing these models, study/old vs. old/new yielded signifi-
cant effects in all regions of interest, apart from the anterior ROIs. Over 
all electrodes, a significant cluster included time points between 225 and 
845 ms (peak latency at 450 ms, cluster p < 0.0001). For study/old vs. 
study/new, the time window in which a significant cluster was observed 
spanned 215 to 670 ms, with a peak latency at 565 ms (cluster p <
0.0001). No significant differences were observed for old/new vs. study/ 
new for all electrodes, the right anterior ROI, however, yielded a sig-
nificant cluster between 360 and 605 ms (peaking at 485 ms, cluster p =
0.0045), as well as the left central ROI, between 600 to 705 ms (with a 
peak at 615 ms, cluster p = 0.042).

Onsets, peak latencies and effect sizes, with further, detailed statis-
tics can be found in Supplementary Table 1.

To explore hemispheric differences in the results of the representa-
tional similarity analyses, we averaged model correlation values in the 
regions of interest between 100 and 1000 ms and compared these across 
the two hemispheres.

Most models yielded positive correlations in general over all regions 
of interest (Fig. 5A). Notable departure from this trend included the 

Fig. 3. Cross-participant (leave-one-subject-out), cross-stimulus-type (leave-one-category-out) classification. Classifiers were trained on combined data from all 
participants, excluding one, and tested iteratively on the excluded participant. In the three-class cross-classification analysis (A), training included data for all 
stimulus types except one, categorizing memory conditions (study/old/new) and testing on the omitted stimulus type. For two-class cross-classification (B), training 
encompassed data for all stimulus types except one, categorizing memory conditions (i.e., old/new, study/old, study/new) and testing on the omitted stimulus type. 
This process was repeated for all stimulus types and time-points. Time-resolved classifier accuracy scores were recorded for each stimulus type, with an average 
calculated across types at each time point. These time-series data were aggregated across participants for statistical analysis.
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right anterior area where close-to-zero overall model correlations have 
been observed for the experimental phase and study/new models. 
Comparing average model correlations between right and left ROIs 
(Fig. 5B), the anterior area demonstrated a right hemispheric dominance 
for the seen/unseen model (p = 0.0355, Cohen’s d = –0.4791), and left 
hemispheric bias in the experimental phase (p = 0.0075, Cohen’s d =
0.6305) and study/new (p = 0.0074, Cohen’s d = 0.6323) models. An 
additional difference in hemispheric bias was observed for the old/new 
model over the posterior areas, with higher model correlations on the 

left side (p = 0.0237, Cohen’s d = 0.5198).

3.2. Classification: study, old, new

In the 3-class (study/old/new) leave-one-category-out cross-classi-
fication analysis, significant clusters were observed in all regions of in-
terest when averaging classification accuracy scores across all stimulus 
types (Fig. 6, black markers). In the left anterior region, significant 
clusters were detected from 305 to 780 ms (cluster p = 0.0015) and 865 

Fig. 4. Leave-one-participant-out representational similarity analysis. (A) Results of the three-class models: seen/unseen (old vs. study and new, in red), memory 
condition (study vs. old vs. new, in blue), and experiment phase (study vs. old and new, in turquoise). (B) Results of the two-class models: old/new (in light red), 
study/old (in purple) and study/new (in green). Results for the stimulus type model shown for comparison (black markers). Shaded ranges denote standard errors of 
the mean. Significance markers denote the results of two-sided cluster permutation tests, p < 0.05. Top panels show results for analyses on all electrodes. Bottom 
panels: ROI analyses. The same analysis as in the top panel, repeated for the pre-defined regions of interest separately. For detailed statistics, see Supplemen-
tary Table 3.
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to 1190 ms (cluster p = 0.0101), with peak latencies at 495 ms and 980 
ms, respectively. In the right anterior region, a significant cluster was 
identified from 350 ms to the end of the epoch (cluster p < 0.0001), with 
a peak latency at 495 ms. In the left central region, a significant cluster 
was observed from 345 to 815 ms (cluster p < 0.0001), with a peak 
latency at 505 ms. In the right central region, two significant clusters 
were found from 290 to 1025 ms (cluster p < 0.0001) and 1080 ms to the 
end of the epoch (cluster p = 0.048), with peak latencies at 495 ms and 
1135 ms, respectively. In the left posterior region, significant clusters 
occurred from 120 to 250 ms (cluster p = 0.0435) and 280 to 860 ms 
(cluster p < 0.0001), with peak latencies at 155 ms and 455 ms, 
respectively. In the right posterior region, a significant cluster was 
detected from 265 to 1060 ms (cluster p < 0.0001), with a peak latency 
at 560 ms. Over all electrodes, a single significant cluster was identified 
from 270 ms to the end of the epoch (cluster p < 0.0001), with a peak 
latency at 455 ms. In the searchlight analysis, a single significant 
spatiotemporal cluster was identified, starting at 80 ms, with a peak at 
445 ms over electrode POz (cluster p < 0.0001, peak Cohen’s d = 1.52).

For the various stimulus types, with the exception of the plants 
category, all analyses yielded significant clusters over all electrodes 
(Fig. 6, colored markers), with the earliest onset at 340 ms for faces, and 
cluster p-values ranging from < 0.0001 for toys and 0.0325 for furniture, 
in the earliest significant clusters. In the spatiotemporal searchlight 
analyses, all stimulus types yielded significant clusters; with cluster p- 
values ranging from < 0.0001 to 0.0263, with the earliest onset seen for 
toys at 100 ms, and a latest for plants at 335 ms.

In the pre-defined regions of interest, all stimulus types yielded sig-
nificant clusters in the left and right posterior areas, with an overlap 
across the stimulus types between ca. 400 and 500 ms. No significant 
clusters were seen for plants and furniture in the right central, and for 
toys in the left central region of interest. The right anterior region of 
interest yielded significant clusters only for bodies, toys and furniture, 
while in the left anterior region only faces, bodies, toys, and furniture 
yielded significant clusters.

Onsets, peak values, and further, detailed statistics can be found in 
Supplementary Table 2. Cross-task classification results exhibited very 
similar patterns. These results are reported in Supplementary Infor-
mation 1, and detailed statistics can be found in Supplementary Table 4.

3.3. Classification: old/new, study/old, study/new

Old/new. In the old/new, leave-one-category-out cross-classifica-
tion analysis, significant clusters were observed in all regions of interest 
when averaging classification accuracy scores across all stimulus types 
(Fig. 7, black markers). These were observed 300 ms following stimulus 
onset. Over all electrodes, two significant clusters were found from 365 
to 640 ms (cluster p = 0.0024) and 930 to 1050 ms (cluster p = 0.0399), 
with peak latencies at 545 ms and 945 ms, respectively. The spatio-
temporal searchlight analysis identified a significant cluster spanning 
from 300 ms to the end of the epoch (cluster p = 0.0002), with the peak 
occurring at 545 ms over channel P3 (peak Cohen’s d = 1.357803).

Study/new. In the study/new contrast, averaged across all stimulus 
types, significant clusters were observed for all regions of interest 
(Fig. 7, blue markers). The onset of these clusters was around 300 ms in 
the central and posterior regions of interest, while onsets around 
600–800 ms were seen over anterior regions. Over all electrodes, a 
significant cluster was observed from 270 ms to the end of the epoch 
(cluster p < 0.0001) with a peak latency at 450 ms. The spatiotemporal 
searchlight analysis detected a significant cluster spanning the epoch 
from 265 ms (cluster p < 0.0001), with the peak at 450 ms over channel 
Pz (peak Cohen’s d = 1.153958).

Study/old. In the study/old contrast, averaged across all stimulus 
types, significant clusters were observed for all regions of interest 
(Fig. 7, red markers). The onset of these clusters was around 250–300 
ms, apart from the left posterior ROI, where the significant cluster 
included time points starting from 140 ms. Considering all electrodes, a 
significant cluster was detected from 155 to 1185 ms (cluster p <
0.0001) with a peak latency at 460 ms. The spatiotemporal searchlight 

Fig. 5. Leave-one-participant-out representational similarity analysis average model correlations between 100 and 1000 ms. (A) Model correlations (see Fig. 5) 
averaged in the left and right regions of interest, compared to zero using two-sided one-sample t–tests. Close-to-zero model correlations were seen for the right 
anterior ROI for the experiment phase and study/old models. (B) Difference between the right and left regions of interest, with comparisons using two-sided paired t- 
tests. A right-hemisphere dominance (p = 0.036) in the anterior region was seen for the seen/unseen model, and a more left-anterior hemispheric weight was 
observed for the experiment phase (p = 0.0075) and study/new (p = 0.0074) models. Further left-hemisphere bias was present in old/new (p = 0.024) in the 
posterior ROIs. Error bars denote ± standard errors. L/R: left/right. Regions of interests: ANTE: anterior, CENT: central, POST: posterior. Asterisks denote uncor-
rected p–values, *p < 0.05, **p < 0.01, **p < 0.001, ***p < 0.0001, ****p < 0.00001.
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analysis yielded a significant cluster spanning the epoch from 95 ms 
(cluster p < 0.0001), with the peak observed at 450 ms on channel PO3 
(peak Cohen’s d = 1.58832).

Comparisons between contrasts. In the comparison, over all 
electrodes, between study/old and old/new conditions, a significant 
cluster was found in the time window from 270 to 810 ms, with a peak 
latency at 655 ms (cluster p < 0.0001). In the comparison between 
study/old and study/new conditions, a significant cluster was observed 
in the time window from 370 to 595 ms, with a peak latency at 560 ms 
(cluster p = 0.0077). No significant clusters were identified in the 
comparison between old/new and study/new conditions over all elec-
trodes, however, a significant cluster was seen in the right anterior re-
gion of interest between 315 and 525 ms (cluster p = 0.0107). The left 
anterior region of interest did not yield any significant effects in the 
comparisons between contrasts.

Onsets, peak values and effect sizes, and further, detailed statistics 
can be found in Supplementary Table 3.

The within and cross-task classification results mirrored the average 

outcomes observed across individual stimulus types described above. 
Notable departures from this, across all electrodes, included a significant 
difference between old/new and study/new in the faces-bodies-houses- 
toys task within the approximate 300–400 ms window, along with no 
significant difference between old/new and study/old in the ca. 
350 to 600 ms range. Within the animals-plants-vehicles-furniture task, 
the encoding/new effect was observed considerably later (ca. 1000 ms), 
and only a late significant differentiation between old/new and study/ 
old was seen. Results are reported in more detail in Supplementary 
Information 1, with statistics in Supplementary Table 5.

3.4. The representations of stimulus type in the different memory 
conditions

The representations of stimulus type across different memory con-
ditions were examined using pairwise classification accuracies derived 
from the neural representational dissimilarity matrix calculated for the 
representational similarity analysis. When considering all stimulus types 

Fig. 6. Cross-participant, study/old/new leave-one-category-out cross-classification analysis for the different stimulus types (colored lines), and accuracy scores 
averaged across stimulus types (black line). Classifiers were trained to categorize memory condition (study, old or new) on data from n-1 participants and tested on 
the participant left out. For the train-test split, one stimulus category was iteratively held out for testing. Shaded ranges denote standard errors of the mean. Sig-
nificance markers denote the results of two-sided cluster permutation tests, p < 0.05. Top panel shows results for analyses on all electrodes. Middle panels: spatio- 
temporal searchlight results are shown as scalp maps, with classification accuracy scores averaged in 50 ms steps. Sensors and time points forming significant clusters 
are marked (two-sided spatio-temporal cluster permutation tests, p < 0.05). Bottom panels: ROI analyses. The same analysis as in the top panel, repeated for the pre- 
defined areas separately. For detailed statistics, see Supplementary Table 2.
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together, consistent effects were observed across all memory conditions, 
although no statistically significant difference emerged between these 
conditions across all electrodes. However, when analyzing faces-houses- 
bodies-toys separately, stimulus type classification was most pro-
nounced in the old condition, showing a significant difference from the 
new condition starting around 400 ms. Conversely, in animals-plants- 
vehicles-furniture, a late (680 to 795 ms) difference was observed be-
tween the new and old conditions, with stimulus type being better 
decodable in the new memory condition. Interestingly, when testing all 
stimulus types separately, only faces exhibited consistent differences 
between old and new conditions, resulting in significant clusters be-
tween 775 and 960 ms and 980 to 1105 ms. See Supplementary In-
formation 2 for further details.

To better illustrate the trends in the time-course of stimulus type 
representations, we averaged pairwise classifier performance in each 
memory condition for each participant in the 100 ms to 1000 ms post- 
stimulus-onset time range for all stimulus types (Fig. 8A), for the two 
tasks (faces, bodies, houses, toys and animals, plants, vehicles, furniture) 
separately (Fig. 8B), and all stimulus types separately (Fig. 8C). For 
statistics, see in Supplementary Information Table S5.

4. Discussion

The objective of this study was to investigate the shared neural dy-
namics underlying memory encoding and recognition processes across 
different visual stimulus types for short-term experimental familiariza-
tion. For this aim, we employed pairwise leave-one-subject-out classi-
fication for the representational similarity analyses, and a combination 
of leave-one-subject-out and leave-one-category-out procedures for 
multivariate cross-classification. The main findings of our study are as 
follows: 1) In representational similarity analyses, stimulus type effects 
manifested first, around 80 ms post-stimulus onset and reached their 
peak magnitude at approximately 140 ms. This observation is consistent 
with previous research, indicating rapid neural differentiation based on 
stimulus characteristics. 2) Stimulus type effects gradually transitioned 
to memory-related effects around 300 ms post-stimulus onset. 3) 
Alongside old/new effects, we observed effects related to the experiment 
phase (study vs. test) and the differentiation between seen and unseen 
stimuli. 4) In cross-classification, study/old effects were evident as early 
as 155 ms post-stimulus onset, suggesting an early differentiation be-
tween items at study and previously studied stimuli. In contrast, old/ 
new effects predominantly emerged in the 400 to 600 ms time range, 
with study/new effects falling between these two effects.

Fig. 7. Cross-participant, old/new, study/old, study/new leave-one-category-out cross-classification analyses for accuracy scores averaged across the eight stimulus 
types. Classifiers were trained to categorize pairs of memory conditions (old/new: black markers, study/old: red markers, study/new: blue markers) on data from n-1 
participants and tested on the participant left out. For the train-test split, a stimulus category was iteratively held out for testing. Shaded ranges denote standard 
errors of the mean. Significance markers denote the results of two-sided cluster permutation tests, p < 0.05. The top panel shows results for analyses on all electrodes. 
Middle panels: spatio-temporal searchlight results are shown as scalp maps, with classification accuracy scores averaged in 50 ms steps. Sensors and time points 
forming significant clusters are marked (two-sided spatio-temporal cluster permutation tests, p < 0.05). Bottom panels: ROI analyses. The same analysis as in the top 
panel, repeated for the pre-defined areas separately. For detailed statistics, see Supplementary Table 3.
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4.1. The time-course of shared stimulus and memory-related effects

Shared effects of stimulus type. The cross-participant representa-
tional similarity analysis revealed model correlations with the stimulus 
type model, with a significant cluster onset observed at approximately 
80 ms, reaching its peak around 140 ms. Early visual stimulus category 
effects are consistently reported in the literature. For instance, Wang 
et al. (2012) noted above-chance category discrimination beginning 
around the P1 range and peaking in the N1/N170 window in an EEG 
experiment featuring human faces, buildings, cats, and cars. Carlson 
et al. (2013) detected decoding onsets and peaks at approximately 80 
and 100 ms using MEG decoding in a study presenting animal bodies, 
animal faces, human bodies, human faces, man-made objects, and nat-
ural objects. In an MEG decoding investigation, van de Nieuwenhuijzen 
et al. (2013) reported category classification peaked in the first 100 to 
200 ms after stimulus onset for faces, scenes, bodies, and tools. Simi-
larly, Cichy et al. (2014) utilized MEG RSA with human and nonhuman 
faces and bodies, as well as natural and artificial objects, finding peaks in 
category membership between approximately 120 and 170 ms. Using 
EEG RSA, Kaneshiro et al. (2015) examined faces, bodies, fruits, vege-
tables, animal faces and bodies, and objects, identifying peak accuracy 
in category-level classifications from 144 to 224 ms. Employing RSA on 
EEG data for faces, houses, toys and bodies, Xie et al. (2022) found a 
significant cluster onset at 72 ms and a peak at 154 ms. In a recent study, 
Klink et al. (2023) reported face-scene discrimination beginning around 
100 ms and peaking at 160 ms in an EEG decoding study. Our findings 
are consistent with these results, adding to the body of evidence 
regarding early neural processing of stimulus categories. Moreover, our 
present observations further highlight that these effects are shared 
across participants.

Shared memory-related effects. In our previous study (Ambrus, 
2024) we employed multivariate cross-dataset classification analysis to 
explore shared signals of recognition memory, probing the patterns of 
neural activity shared across different memory tasks, stimulus types and 

datasets. We found that shared signature of memory recall overlapped 
between ca. 400–600 ms irrespective of stimulus type and the age of the 
memory trace. Here, we aimed at a more systematic investigation of 
shared neural signatures of memory processes, including the encoding 
phase, for short-term familiarity.

In this present study, memory-related effects in the representational 
similarity analyses first manifested around 250 – 300 ms, plateaued and 
peaked in the ca. 400 to 600 ms range (Fig. 4). In previous studies, the 
initial rapid feedforward signal, indicated by a sharp peak in classifi-
cation performance, has been shown to be mainly driven by low-level 
stimulus properties (Ambrus et al., 2019; Dalski et al., 2022b). Subse-
quently, there is a decline in classifier performance, transitioning to a 
more gradual and sustained effect at around 200 to 600 ms (Klink et al., 
2023). This later phase is hypothesized to be influenced by the inte-
gration of more detailed feedback from higher cortical areas (Contini 
et al., 2017). It should be noted, however, that evidence exists for a 
modulation of the early phase of this signal (<200 ms) by familiarity 
with the stimulus, particularly for pre-experimentally familiar (famous) 
faces (Dobs et al., 2019). In the study by Speer and Curran (2007), the P1 
ERP component, occurring around 100–175 ms after stimulus onset and 
observed at bilateral inferior/parietal regions (LPI and RPI) on the scalp 
was found to be indicative of item familiarity during initial perceptual 
processing, distinguishing between new and known items at an early 
stage of visual processing.

The memory-related effects observed in our current investigation are 
in line with those reported in the literature. In both our representational 
similarity analyses and cross-classification analyses we found stable old/ 
new effects between 400–600 ms that are consistent with previous 
studies (Ambrus, 2024; Dobs et al., 2019) and align with the parietal 
old/new effect often associated with recollection (Kwon et al., 2023; 
Rugg & Curran, 2007; Rugg & Yonelinas, 2003).

However, in contrast to our within-category RSA findings, in our 
cross-stimulus-category classification analyses, study/old effects 
emerged much earlier, around 150 ms in the time-resolved analysis and 

Fig. 8. Stimulus type classification in the three memory conditions. Pairwise classification accuracies are averaged between 100 and 1000 ms over all electrodes (A) 
for all stimulus types, (B) for the two tasks (faces, bodies, houses, toys and animals, plants, vehicles, furniture) separately, and (C) all stimulus types separately. 
Generally, stimulus type was well-classified in all memory conditions (one-sample two-tailed t-test against chance). No statistically significant difference was 
observed for all stimulus types. In faces-bodies-houses-toys, stimulus type classification accuracy was significantly higher for old compared to new stimuli (t = 3.98, p 
= 0.0007). In animals-plants-vehicles-furniture, new stimuli were better classified, although the contrast was not statistically significant (t = 1.84, p = 0.08). For all 
stimulus types separately, only face stimuli yielded a significant difference in memory effects, where classification accuracy for old stimuli were significantly higher 
than new stimuli (t = 2.98, p = 0.008). Paired t-tests. *puncorrected < 0.05, **puncorrected < 0.01, ***puncorrected < 0.001, ****puncorrected < 0.0001. Error bars denote ±
SEM. For data, see Supplementary Information Table S5A, B and C.
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approximately 100 ms in the searchlight analysis. These effects were 
most prominent in the posterior areas of the left hemisphere. This earlier 
manifestation of memory effects is likely attributable to the larger 
training set in cross-classification compared to the RSA and is thus 
further indicative of shared memory-related processing across stimulus 
types.

Hemispheric asymmetries
In our current study, the most significant hemispheric asymmetries 

were observed in the anterior regions of interest (see Fig. 6 and Sup-
plementary Fig. S5). Differential processing in frontal brain areas has 
been consistently documented in relation to memory functions. Early 
models, such as the hemispheric encoding and retrieval asymmetry 
(Tulving et al., 1994), posited a relative difference in engagement of the 
left and right prefrontal cortices during episodic memory processes. 
Specifically, according to this model, the left prefrontal cortex (PFC) is 
predominantly implicated in the encoding phase, whereas the right PFC 
is primarily involved in retrieval (Habib et al., 2003). While this pattern 
has been observed across various types of stimuli, the evidence is far 
from equivocal (see e.g., Andreau & Torres Batán, 2019; Kelley et al., 
1998; Wagner et al., 1998). Using representational similarity analysis in 
the present study allowed for a more in-depth exploration not only of the 
encoding and recall stages but also of the distinct contributions of both 
novel and old items.

The effects of experimental phase and memory conditions over both 
the left and right frontal regions of interest revealed a complex pattern. 
The left hemisphere showed a greater ability to differentiate between 
items being studied and novel items during the test phase, while the 
right hemisphere was more sensitive to distinguishing between seen and 
unseen items, with no clear advantage in the old vs. new contrast. 
Additionally, the contrast between study and test phases was left- 
lateralized.

In the time-resolved RSA analysis, overall, all regions of interest 
exhibited effects distinguishing between seen and unseen items, mem-
ory conditions, as well as between old and new items. Moreover, 
prominent effects have been observed for items under study and those 
encountered during the test phase. However, both the left and right 
frontal regions of interest demonstrated a low sensitivity to the experi-
mental phase and the differentiation between items under study and 
new items during the test phase (Fig. 4). Further examining hemispheric 
differences in the averaged time-course of the model correlations (Fig. 5) 
indications of differential processing in the anterior ROIs were observed. 
Here, the analysis revealed higher average model correlations in the 
right hemisphere for seen (old) versus unseen (i.e., study and novel) 
items, and higher model correlations in the left hemisphere for both the 
experimental phase (study versus old and novel) and for the study versus 
new models. Comparable patterns emerged in cross-classification: the 
right anterior region of interest exhibited little discernible study/new 
effects, while both old/new and study/old effects were notably more 
pronounced than study/new effects in the ca. 300 to 600 ms window 
(Fig. 7).

The observed effects suggest a more nuanced picture than the 
straightforward left/right encoding/recognition dichotomy would pre-
dict. One possible explanation is that encoding processes can still occur 
during recall tasks, even when study instructions are not explicitly given 
(Vogelsang et al., 2016). To further investigate this, future studies could 
implement a surprise recall task for novel items in the test phase to 
determine the nature of the encoding processes that are active. Addi-
tionally, all test-phase items might inherently engage recall processes 
regardless of the specific task.

4.2. Stimulus type representations in the different memory conditions

In Klink et al. (2023) we observed stronger stimulus category rep-
resentations for familiar faces and scenes compared to unfamiliar ones. 
In that report, we highlighted the need for further investigation to 
ascertain whether this effect extends to other types of stimuli beyond 

these categories, especially when human faces are absent from the 
stimulus categories. We set out to test this in our current experiment.

In our results, this appears to be specific to the faces-houses-bodies- 
toys task, and strongest for face stimuli. Interestingly, in the animals- 
plants-vehicles-furniture task, the trend is reversed, indicating a 
marked divergence from this expected pattern. Our present findings 
indicate that the notion that enhanced stimulus type classification 
familiar items is not straightforward. While this pattern appears to hold 
true for face stimuli, it might not necessarily extend to other stimulus 
types, at least not for short-term, experimental familiarization. Factors 
such as practice effects or tiredness, stemming from the consistent task 
order across participants, may also contribute to these results. Further-
more, salience (Cooper et al., 2019), distinctiveness (Waddill & McDa-
niel, 1998), differential encoding/recall strategies, differences in 
nameability (Hitch et al., 1995; Madrid et al., 2019), which were not 
directly examined in our study, could potentially contribute to these 
differential findings. Further experiments are warranted to elucidate the 
precise contributions of these factors to the observed patterns.

4.3. Limitations and future directions

Given the high accuracy of responses and confidence levels observed 
in our study, the exploration of subsequent memory effects and sub-
jective memory strength during encoding and recognition was rendered 
impractical. Cross-dataset classification evidence (Ambrus, 2024) sug-
gests that the shared neural signals of memory are modulated at 
recognition time; these should be investigated in relation to subsequent 
memory effects (Mecklinger & Kamp, 2023). To address this, future 
studies could adopt designs featuring a larger pool of study items and/or 
extended intervals between study and test phases. This adjustment 
would allow for more substantial forgetting to occur, thereby increasing 
the number of trials available, enhancing statistical power for cross- 
classification analyses. Here, we conducted a within-experiment, 
cross-participant analysis, however, similar methodologies can be 
extended across experiments using different stimuli and paradigms 
(Ambrus, 2024; Dalski et al., 2023; Dalski et al., 2022b; Dalski et al., 
2022a; Li et al., 2022), as well as datasets acquired using the same 
stimuli and paradigm but with different participant populations, such as 
adults and children (Xie et al., 2022). This approach not only opens up 
the possibility to further investigate memory processes, for example 
extending it to domains other than visual perception, but it also offers 
opportunities to explore the developmental trajectories of these pro-
cesses across the lifespan and investigate their alterations in conditions 
affecting memory.

4.4. Summary

In this study, we explored the shared neural dynamics of encoding 
and recognition processes across participants and visual object stimulus 
types for short term familiarization. Our findings replicated previous 
research, extending it to the encoding of stimuli, revealing early visual 
stimulus category effects around 150 ms and old/new effects around 400 
to 600 ms following stimulus onset. Additionally, we observed a diver-
gence in neural responses for encoding, old, and new stimuli around 300 
ms. Specifically, items encountered during the study phase were most 
distinguishable from old items during the test phase, with discernible 
effects emerging as early as 150 ms in cross-category classification. 
Anterior regions of interest, particularly in the right hemisphere, 
exhibited little differentiation between experimental phases or between 
study and new items. This suggests that similar processing occurs for 
items not encountered previously in the experiment. Visual stimulus 
category representations, investigated here for short-term experimental 
familiarity, do not consistently adhere to the old >new pattern observed 
previously in long-term personal familiarity with faces and scenes. 
Interestingly, this pattern was only statistically significant for experi-
mentally familiarized faces in our study, suggesting a potentially unique 
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phenomenon specific to facial stimuli. Further investigation is needed to 
elucidate the underlying mechanisms and determine if the effect is face- 
specific or influenced by other factors. Finally, this study underscores 
the potential of multivariate cross-classification and cross-dataset clas-
sification as promising tools for investigating abstraction and shared 
neural signatures of cognitive processing.
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