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Abstract—This paper considers the communication system
assisted by a fixed-trajectory unmanned aerial vehicle (UAV),
which is equipped with a reconfigurable intelligent surface (RIS).
For this UAV-RIS assisted system, we jointly optimize the power
allocation and active beamforming at the base station (BS) and
the passive beamforming at the RIS, by a novel phase block
coordinate descent algorithm framework aimed at maximizing
the system sum-rate. Specifically, the joint optimization problem
is decomposed into two phases, and we propose two optimiza-
tion algorithms: one for BS power allocation using fractional
programming (FP) and the other for jointly optimizing active
and passive beamforming using FP-manifold, which alternately
optimize two phases. Simulation results not only highlight the
rapid convergence and evident superiority of our proposed
framework but also reveal that the optimal UAV-RIS placement
is related to the flight height.

Index Terms—Beamforming, power allocation, reconfigurable
intelligent surface, unmanned aerial vehicle.

I. INTRODUCTION

Reconfigurable intelligent surface (RIS) with programmable
electromagnetic properties is capable of appropriately adjust-
ing the amplitude, phase, polarization and other characteristics
of incident electromagnetic waves to improve wireless channel
conditions and signal transmission efficiency [1]. Integrating
RIS with unmanned aerial vehicle (UAV) as relays leverages
UAVs’ high mobility for flexible RIS deployment and utilizes
RIS’s passive elements for signal reflection and regulation
without additional power supply [2], [3]. Compared to tradi-
tional UAV relays and stationary RIS-assisted communication
systems, UAV integrated RIS (UAV-RIS) systems offer lower
power consumption and higher spectral efficiency [4].

Addressing optimization challenges in RIS-assisted wire-
less systems requires careful consideration of a wide array
of variables, which can either enhance or impede the sys-
tem’s spectral and energy efficiency. The work [5] intro-
duced an alternating optimization (AO) framework with semi-
definite relaxation (SDR) to jointly optimize active and passive
beamforming, focusing on minimizing the base station (BS)
transmission power. In [6], RIS passive beamforming was
optimized using a manifold optimization algorithm, which
demonstrates superior performance compared to that of the
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SDR method. The study [7] proposed a method combining
the block coordinate descent (BCD) algorithm with successive
convex approximation (SCA) for jointly optimizing active and
passive beamforming, where SCA is less complex than man-
ifold optimization algorithms. The work [8] maximized the
sum rate of an aerial RIS-aided multiple-input multiple-output
ground communication system, by using the BCD framework
to jointly optimize active and passive beamforming and aerial
RIS deployment. In [9], the system weighted sum-rate was
maximized using a manifold optimization algorithm under the
AO framework for the joint optimization of active and passive
beamforming. Additionally, geometric programming (GP) was
utilized in [9] for BS power allocation. These optimization
algorithms studied in the literature however were mostly based
on the AO and BCD frameworks, which may lead to high
computational complexity.

This paper presents a novel phase BCD (PBCD) frame-
work tailored to address the multi-variable joint optimization
problem. Unlike traditional AO and BCD frameworks, which
typically update each variable only once per iteration before
alternating to the next variable, the PBCD framework segments
the optimization problem into multiple phases based on the
characteristics of the variables. In each phase, it updates a set
of variables iteratively until convergence is achieved before
proceeding to the next phase. In this paper, the PBCD frame-
work is specifically employed to maximize the system sum-
rate by strategically breaking down the optimization problem
into two distinct phases. Building upon the PBCD frame-
work, we propose a power allocation algorithm leveraging
fractional programming (FP) and an AO algorithm for the
joint optimization of active and passive beamforming utiliz-
ing the FP-manifold approach. Simulation results showcase
our algorithms’ robust convergence and lower computational
complexity, compared with existing schemes. Moreover, the
results reveal that the optimal location for the UAV-RIS is
influenced by the UAV-RIS’s height.

Fig. 1. Illustration of UAV-RIS assisted communication system.
II. OPTIMIZATION PROBLEM FORMULATION
A. System Model

Fig. 1 illustrates the UAV-RIS assisted communication sys-
tem considered, where the BS employs M uniform-linear-



array antennas and the UAV integrates a RIS containing
R = R, x R, uniform planar array elements to serve K
single-antenna user equipment (UEs). We assume that the
UAV-RIS flies from the start point to the end point along a
straight line L at height H and speed V,,,. The flight period
T is divided into N time slots, each of duration Vi¢. The
horizontal coordinate of the UAV-RIS in the n-th time slot

is QRIS[ni = [.ﬁms[n],yms[n}], neN = {0, 1,... ,N}. The
trajectory of the UAV-RIS satisﬁes
laris[n + 1] — qrus[n][|* = *HQRIS[Ni —aqris[0]]%, (1)

where qgris[0] and qris[/V] are the horizontal coordinates of
the UAV-RIS’s starting and ending points, respectively. In the
n-th time slot, the channel between the BS and the UAV-RIS,
G[n] € CR*M and the channel between the UAV-RIS and the
k-th UE, hy[n] € CF*! ke K={1,..., K}, can be modeled
as line- of-sight channels [2], [10], given respectively by

Bdgg [n)ags (¥[n])ags (w[n]), (2)
Bdgy i [n)ars (ve[n]), 3)

where [ is the channel power gain at unit distance,  and
7 are the corresponding path loss exponents, while dgr[n]=
VH2+||aris[n] —1Ips||? is the distance from the BS to the
UAV-RIS and dRU,k[n] = \/H2+||QRIS[n]_1UE,kH2 is the
distance from the UAV-RIS to the k-th UE, with lgs and
lyg, i being the horizontal coordinates of the BS and the k-th
UE, respectively. Additionally, the RIS receive array response
vector and the BS transmit array response vector are given
respectively by

hk TL]

aRIS(djini) = [1’ e_Jy(dJa: [TL]-‘rwy[’ﬂ])’ ey
e—j%((Rx—1)%[n]+(Ry—1)wy[n])]T’ (4)
aps(wln]) = [1, e~ Ftwlnl, wgﬂ'%(ﬂ/f*l)w[n]f’ (5)
where t,[n] = sin (¢, [n])sin (¢r,[n]) and y[n] =

cos (¢, [n]) sin (¢r,[n]), ¢r,[n] and ¢g,[n] represent the
azimuth and elevation angles of arrival from the BS to the
UAV-RIS in the time slot n, respectively [2], while w[n] is the
cosine of the BS’s angle of departure (AoD), A is the carrier
wavelength, and d is the antenna spacing. Similarly, the RIS
transmit array response vector is expressed as

ags(vi[n]) = [1,e79 5 Cralrltvnsta)

€ ]de(( m—l)Vk-,zi"i+(Ry_1)ukiz[n]):|T7 (6)

where vy, ,[n] = sin (¢u, k[n]) sin (v, k[n]) and vy, [n] =
cos (¢u, [n]) sin (b, k[n]), v, k[n] and v, 1 [n] represent
the azimuth and elevation AoDs from the UAV-RIS to the k-th
UE in the time slot n, respectively. For the RIS-assisted sys-
tem, the fine-grained channel information can be estimated by
evaluating the path parameters using parameter-based channel
reconstruction methods [11]. In the n-th time slot, the BS’s
complex baseband transmission signal is given by

ZWk

in which s [n] is the transmitted data for the k-th UE in the n-
th time slot, W[n]=[w1[n], ..., wk[n]]! € CE*M stands for
the BS’s active beamforming matrix, with wy[n] € CM*1 and

n]sk[n], (7

|> = 1,Vn, k, while the BS power allocation vector is

[p1[n], ..., pi[n]]T e CKXL,

[wi[n]
defined as p[n]=

B. Problem Formulation

Let ®[n] = diag{p1[n],...,pr[n]} € CE*E be the RIS’s
phase-shift matrix, where ¢, [n] =", §,.[n] € [0, 27) and
reR={1,..., R}. The signal-to-interference-plus-noise ratio
(SINR) of the k-th UE in the n-th time slot is calculated as

H n n N{Wg|n 2 n
%[n] _ - ihki i‘I’i iGi i ki i| fki i 7 (8)
_:12# b} [n]@[n]Gn]wi[n]| piln] + of

where o% is the noise power. Since the optimization problem
has the same mathematical expression in every time slot, the
index n is dropped and the sum-rate maximization problem
for all UEs per time slot is formulated as

K
P(A): p{%gf;fi(p, W, ®) = ; @y logy (1+71), (9a)
S0 Pk < Paax Pk > 0,k (9b)
k=1
[wi||* = 1,Vk, (9¢)
lor|? = 1,7, (9d)

where wy, is the weight for the k-th UE, constraint (9b)
imposes the total transmission power limit P, on the BS,
constraint (9¢) ensures the unit modulus for the BS’s active
beamforming vectors, and constraint (9d) maintains the unit
modulus for the RIS’s passive beamforming elements.

III. JOINT OPTIMIZATION
A. Egquivalent Transformation of Optimization Problem

The problem P(A) is first equivalently transformed using
the FP algorithm [7], which includes two key steps: the La-
grangian dual transformation and the quadratic transformation
method. By applying the Lagrangian dual transformation, we
introduce an auxiliary variable x =[x1, ..., xx]". According to
the quadratic transformation method, we introduce an auxiliary
variable p = [p1, ..., px|T. The problem P(A) can then be
equivalently transformed into

P(B): max fo(p, W,®,x,p), s.t. (9b),(9¢),(9d), (10)

P,W,®,x,p
where f2(p, W, ®,x,p)=>"1_, (wk logy (14 xk) —wr Xk +
2/wr (L + xe)R{pE VB wi s — |okl? (X0, pilhiwi|? +
ag)), and hy, = h®G.
Given the optimization variables p, W and ®, the optimal
X% and pi can be expressed as

\/ k(1 + Xk thka

E pzihszi + 05

Xk = Vks Pk = (11)

B. Optimization of BS Power Allocation
Given the optimization variables W and @, the problem
P(B) becomes

P(C): max fo(p, X, p), s.t. (9b). (12)
P.X.P



We solve P(C) by applying the AO algorithm to alternately
optimize the variables p, x and p until the value of f>(p, X, p)
converges. Specifically, given p, x and p are updated by
(11). Given x and p, the problem P(C) becomes a convex
optimization problem with respect to p. The convexity of
P(C) allows us to apply the Karush-Kuhn-Tucker conditions
to directly solve for the optimal solution py, yielding

. 2

~ V@1 + xk)R{prhrwy

pk—< K( ZA){I; } , (13)
> im1 (pil?[hywy|?) + Lr

where Lr is the Lagrange multiplier for the power constraint

(9b), which can be obtained by the bisection method [10].

C. Optimization of Active and Passive Beamforming

Given the optimization variable p, P(B) becomes
P(D): max fo(W,®,x,p), s.t. (9c),(9d).
W, &.x,p

1= X

(14)

We apply the AO algorithm to solve P(D) by alternately
optimizing W, ®, x and p until the value fo(W,®, X, p)
converges. First recall that given W and ®, the variables x
and p are updated by (11).

Given ®, x and p, we proceed to optimize the vari-
able W. To facilitate this optimization, the constraint (9c)
is transformed into a standard Riemannian manifold, i.e
Ixsro (WWH) =Ig« K, where Iy i denotes the K x K
identity matrix and o represents element-wise multiplication
[9]. Then the problem P(D) is reformulated as

max fo(W), st Tioxx o (WWH) =TIgir.  (15)
The constraint set for W defines an Oblique manifold, denoted
as A, which is characterized as

A={W e CF"*M : I, x o (WWH) =Ixx}. (16)

We apply the Oblique conjugate gradient algorithm [9] to
obtain the steady-state solution of fo(W), which utilizes the
Polak-Ribiére conjugate gradient direction for search direction.
The j-th Oblique manifold iteration is detailed as follows.

1) Calculation of Oblique gradient:
gradf4 (W(j)) =V, (W(j))
— (Ixxx o R{WU(V fo (W

where V fo(W(
given by

V(W) =
Vo (1 + x1)pipihy —

j)))H})W(j)’ (17)
7)) is the Euclidean gradient of fo(W()),

Z |0k [2prwithilhy,

. (18)
. K
wr (14 xm)prpich — > |pk|*prew'Lhilhy,
k=1
2) Determine the search direction dfﬁ):
dY = —gradfa (WD) + 8P 74(d57Y), (19

where 5(] ) is the Polak-Ribiére conjugate gradient update

parameter and 74(d th 1)) stands for the projection function
on the Oblique manifold, given respectively by

89 = VA WD) (V fo( WD) =T (V fo(WU=DY))
4 [V f2(WG=1))|[2

, (20)

T =™ = (L o WO L) WO

(21)

3) Employ the Armijo backtracking line search algorithm to

select the step size w1, update WU “), and retract back onto
Oblique manifold:

WU+ —
1{)"‘“1‘1(]?11
\/Z 1|“’<])+u1d52{,)1,1|2

<Jz\)4+"1d.(j>1M
\/Z 1|w55\)4+u1d(9?ikfl2
, (22)
W§?§u+u1d(/f)m4
\/Z 1|w§ﬁ+"1d(j,)iM|2

are the k-th row and m-th column

w(j>+u1d(j>
\/Z 1|w(J>+u1d(J)11|2

(4)
d.i km

elements of W and d&‘), respectively.

Given W, x and p, we proceed to optlmlze the variable
®. Let hkwk = pMdiag{hil} Gw, = "z, where ¢ =
[(pl, R @R] and zj; = d1ag{hl,3}Gwz. Then the problem
P(D) can be reformulated as

ngn f3(p) = pMAp — 2§R{<pr}, s.t. (9d),

where A =370 (10> X005 2zl ;i) € CP¥F and b =
Zé{:l @i (1 + Xk)PeP} 2k, € 1. The constraint set for
¢ defines a Riemannian manifold C' which is given by
C={peC®' | ?=1r=1,...,R}). (24
We employ the Riemannian conjugate gradient algorithm
to obtain the steady-state solution of f3(¢), which utilizes the
Polak-Ribiére conjugate gradient direction for search direction.
The j-th Riemannian manifold iteration can be written as

where wy,, and

(23)

1) Calculation of Riemannian gradient:
grad o (91) =V f3(09) ~R{V f3(") o () o,
(25
where V f3(¢'?)) is the Euclidean gradient of f3(¢7)), given
by

V/s(eW) = Ap —b. (26)
2) Determine the search direction d(cj):
df) = —gradfo(eV) + BT (dg ™), @D

where ,BC) has the same form as 3} ) in (20), and T (d(J 1))
is the projection function on the Riemannian manifold

To(d9™) = a9 —R{dY Vo (1)} 0 ). (28)
3) Employ the Armijo backtracking line search algorithm to
select the step size ug, update U+, and retract back onto
Oblique manifold:

Gy _ | P1 T “2d(cj,)1 YR+ Ung,)R

o (29)

or + uzd) | lom + uadlly)

D. Algorithm Analysis

The joint optimization of p, W and ® is listed in Algo-
rithm 1. The BS power allocation algorithm has the com-
plexity of O(Ip,I1K?), where Iy, and I; are the numbers
of iterations for bisection search of Lr and for within the
phase search, respectively. The complexity of the active and
passive beamforming joint optimization algorithm using FP-
manifold mainly depends on the computation of the conjugate



Algorithm 1 Proposed PBCD algorithm framework.
1: Initialize p(®, W) and &), Set t; = t, = t5 = 0;

2: repeat

3: t1 =1t +1;

4 repeat

5 to =12+ 1;

6: Update variables x(*>) and p(*2) by (11);

7 Update power allocation vector p(*2) by (13);
8:  until P(C) converges.

9 repeat

10: t3 =t3+1;

11: Update variables x(*) and p(*3) by (11);
12: Update active beamforming W (%3) by (22);
13: Update passive beamforming ¢(*3) by (29);

14:  until P(D) converges.
15: p(tl) — p(t2)’ Pt) — diag{so(ts)},, W) = W(ta);
16: until P(A) converges.

gradients. According to (18) and (26), the complexity of
computing the gradients are O(K?M) and O(K?R), respec-
tively. Thus, the total complexity of the proposed algorithm
is O(Io(IL, W K3+ 1(Iw K*M+15 K?R))), where Iy and
Ig are the numbers of iterations for the Oblique manifold
and Riemannian manifold conjugate gradient algorithms, while
I> and Ip are the numbers of iterations within and between
phases, respectively. The complexity comparison with the
baseline schemes is shown in Table I. Our PBCD algorithm
framework decomposes the optimization problem into phases
based on the underlying characteristics of the variables, en-
abling more efficient optimization. This results in a lower
number of required iterations (/o) compared to the baselines
(Io1 and Ip2). As a result, the proposed algorithm achieves
lower computational complexity, especially when R > K.

IV. SIMULATIONS

We carry out extensive simulations to demonstrate the supe-
riority of our proposed PBCD algorithm framework, including
our BS power allocation optimization algorithm based on FP
and our joint optimization algorithm for active and passive
beamforming based on FP manifold optimization.

According to the UAV-RIS flight trajectory L and flight
speed Ve = 8.5m/s, the flight cycle is partitioned into 21
equal time slots. Each time slot corresponds to an equivalent
position (EP) point, with each time slot having a duration
of Vt = 1s. The EP points corresponding to the 21 time
slots, starting at qgis[0] and ending at qgis[/V] on the flight
trajectory L, are shown in Fig. 2. qgris[0] = [-10,110] m,
qris[N] = [110,—10]m and the BS coordinates are set as
lgs = [0, 100] m. The system supports K =4 UEs, which are

o EP point
— Trajectory

Start point

End point

0r UE

-20 0 20 40 60 80 100 120
X (m)

Fig. 2. The diagram of BS, UE coordinates and UAV-RIS trajectory.

uniformly and randomly distributed within a circle centered
at (100m,0m) with a radius of 10m. The distance between
the BS and the UE regional center is dgy = 141 m. The path
loss exponents x and 7 are both set to 2, the unit distance
channel gain is set as =30 dB, while the noise power spectral
density is —170dBm/Hz. Other default simulation system’s
parameters are as follows: the UAV-RIS height H = 40 m, the
maximum BS transmitting power Pp,x = 40 dBm, the number
of RIS units R = 100, and the number of the BS antennas
M = 50. Assuming that the UAV-RIS is located at the 11-th
EP point qgis[10], counting from the starting point qgys[0].

The schemes compared in the simulation are listed in
Table II, and they are further explained as follows.

o PBCD+FP_manifold', BCD+FP_manifold and AO+FP_
manifold: For these three schemes, the algorithmic frame-
works employed are the proposed PBCD, the existing
BCD and AO, respectively. The power allocation is
designed based on the FP algorithm, while the active
and passive beamforming with unit mode constraints are
designed using the proposed FP-Manifold algorithm.

e PBCD+SCA and BCD+SCA [7]: These two schemes
utilize the proposed PBCD and the existing BCD as the
algorithmic frameworks, respectively. The active beam-
forming without unit mode constraints is designed using
standard convex optimization, and the passive beamform-
ing is designed using the existing SCA algorithm.

« PBCD+Manifold and AO+Manifold [9]: For these two
schemes, the algorithmic frameworks employed are the
proposed PBCD and the existing AO, respectively. The
power allocation is designed using the existing GP, while
the active and passive beamforming with unit mode
constraints are designed using the existing manifold al-
gorithms.

We also test a scheme called Random ®, which chooses
the elements of ® randomly in the range [0, 27), and designs
other variables using the algorithm proposed in this paper.

'We adopt the A+B naming rule, where component A indicates the principal
algorithmic framework and component B specifies the critical variable opti-
mization technique that predominantly determines the overall computational
complexity.

TABLE 11
EXPLANATION OF DIFFERENT SCHEMES IN SIMULATION
F—— Scheme | pRCDLFP_manifold BCD+ AO+ PBCDsSCA | BCD+ | PBCD+ | AO+Manifold
and Algorithm (in this paper) FP_manifold | FP_manifold SCA [7] | Manifold 9]
Framework PBCD BCD AO PBCD BCD PBCD AO
Algorithm for Optimization p FP FP FP Convex Convex GP GP
Algorithm for Optimization W FP-manifold FP-manifold FP-manifold (Jointly) (Jointly) Manifold Manifold
Algorithm for Optimization ¢ (Jointly) FP-manifold | FP-manifold SCA SCA (Jointly) Manifold
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Fig. 3. (a) Convergence time versus number of RIS units, (b) Convergence performance versus number of iterations between phases, and (c) Sum-rate versus

number of RIS units, for different algorithms.

TABLE I
COMPLEXITY COMPARISON
Scheme Complexity
This paper | O(Io (I 11 K3+ 12(Iw K2M +14 K2 R)))
[7] O(Io1(2KRM + KM? + K?R?))
[9] O(Io2(K3 + K2M? + KZRM))

The convergence times of the schemes are compared using
MATLAB 2020b on an Intel i5-12400F CPU with a 2.5GHz
clock speed, as illustrated in Fig. 3(a). It shows that the
schemes adopting the optimization algorithms of this paper
(FP_manifold) achieve shorter computation times to conver-
gence than the other schemes. Also with the same optimization
algorithms, the schemes employing our PBCD framework have
lower computation times than the corresponding schemes uti-
lizing the existing BCD and AO frameworks, and the scheme
proposed in this paper (PBCD+FP_manifold) achieves the
lowest computation time. This demonstrates the computational
efficiency of our PBCD framework and the proposed optimiza-
tion algorithms for the optimization of power allocation, active
and passive beamforming. Similarly, it can be observed from
Fig. 3 (b) that the PBCD framework outperforms the BCD and
AO frameworks in both rate and convergence performance.
Fig. 3(c) also shows that the schemes adopting the PBCD
framework have higher sum performance than the correspond-
ing schemes adopting the BCD and AO frameworks. It can also
be seen from Fig. 3 (c) that without optimizing the passive
beamforming of RIS, the sum rate performance degrades
dramatically.

Fig. 4 depicts the system sum-rate versus the UAV-RIS EP
point and height. It can be seen that the sum rate varies with
the UAV-RIS’s location, exhibiting extreme values. For UAV-
RIS flying above 70.5m (i.e., H > dpy/2), the optimal EP
point is near to the midpoint between the BS and the UE. For

16

Sum-rate (bps/Hz)

a0 20
60 40
H /(m)

5
10 15

5 o190 10080
EP point 20 120

Fig. 4. Sum-rate versus UAV-RIS EP position and height achieved by the
proposed PBCD+FP_manifold.

UAV-RIS flying below 70.5m (i.e., H < dgy/2), the optimal
EP point is closer to either the BS or UE side [12].

V. CONCLUSIONS

This paper has proposed a PBCD algorithm framework to
maximize the system sum-rate by dividing the joint optimiza-
tion into two phases: BS power allocation, and active and
passive beamforming. We have presented a power allocation
algorithm using the FP approach and an AO algorithm for joint
active and passive beamforming based on the FP-manifold.
Our PBCD algorithm framework demonstrates superiority over
other algorithm frameworks in terms of convergence speed and
sum-rate performance. In the joint optimization phase of active
and passive beamforming, our FP-manifold-based algorithm
also outperforms traditional manifold optimization algorithms
in both convergence time and system sum-rate.

REFERENCES

[11 Y. Liu, et al., “Reconfigurable intelligent surfaces: Principles and oppor-
tunities,” IEEE Commun. Surveys Tuts., vol. 23, no. 3, pp. 1546-1577,
3th Quart. 2021.

[2] X. Liu, et al., “Throughput maximization for RIS-UAV relaying commu-
nications,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 10, pp. 19569—
19574, Oct. 2022.

[3] B. Yang, et al., “Performance, fairness, and tradeoff in UAV swarm
underlaid mmWave cellular networks with directional antennas,” IEEE
Trans. Wireless Commun., vol. 20, no. 4, pp. 2383-2397, Apr. 2021.

[4] M. Li, et al., “Energy-efficient covert communication with the aid of
aerial reconfigurable intelligent surface,” IEEE Commun. Lett., vol. 26,
no. 9, pp. 2101-2105, Sep. 2022.

[5] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless
network via joint active and passive beamforming,” IEEE Trans. Wireless
Commun., vol. 18, no. 11, pp. 5394-5409, Nov. 2019.

[6] M. A. ElMossallamy, et al., “RIS optimization on the complex circle
manifold for interference mitigation in interference channels,” IEEE
Trans. Veh. Technol., vol. 70, no. 6, pp. 6184-6189, Jun. 2021.

[71 H. Guo, et al., “Weighted sum-rate maximization for reconfigurable
intelligent surface aided wireless networks,” IEEE Trans. Wireless Com-
mun., vol. 19, no. 5, pp. 3064-3076, May 2020.

[8] X. Gu, et al., “ARIS-empowered wireless communications: Joint beam-
forming design and deployment optimization,” IEEE Wireless Commun.
Lett., vol. 12, no. 12, pp. 2003-2007, Dec. 2023.

[9] Y. Xiu, et al., “IRS-assisted millimeter wave communications: Joint

power allocation and beamforming design,” in Proc. WCNCW (Nanjing,

China), Mar. 29, 2021, pp. 1-6.

Y. Cao, et al., “Intelligent reflecting surface aided multi-user mmWave

communications for coverage enhancement,” in Proc. PIMRC (London,

UK), Aug. 31, 2020, pp. 1-6.

Y. Byun, et al., “Channel estimation and phase shift control for UAV-

carried RIS communication systems” IEEE Trans. Veh. Technol., vol. 72,

no. 10, pp. 13695-13700, Oct. 2023.

A. L. Moustakas, et al., “Reconfigurable intelligent surfaces and capacity

optimization: A large system analysis,” IEEE Trans. Wireless Commun.,

vol. 22, no. 12, pp. 8736-8750, Dec. 2023.

[10]

[11]

[12]



