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Abstract— Integrated sensing and communication (ISAC) has
recently attracted significant research attention. This paper devel-
ops the deep learning-based predictive beamforming method for
the ISAC-enabled vehicular networks. Traditional deep learning
(DL) is a data-driven approach, which means that numerous
training samples are required to improve system performance.
In addition, embedded devices are not able to provide sufficient
computing power, which hinders the application of DL solutions.
Motivated by this, the dynamic self-attention mechanism is
proposed to reduce the dependence of DL on training samples.
Aiming for the optimal trade-off between sensing performance
and computational complexity, the efficient model design, Self-
Attention Channel Shuffle Mobile Network (SACSMN), is formu-
lated. Experimental results demonstrate that SACSMN achieves
similar sensing performance to that based on the full training
set under the condition of few samples, the dependence of SAC-
SMN on training samples is significantly reduced. Furthermore,
SACSMN significantly reduces the computational complexity
while achieving the same level of sensing performance as the
benchmarks, realizing the optimal trade-off between system
sensing performance and computational complexity. Benefiting
from the robust sensing performance of SACSMN, the system
achieves the same level of communication performance as that
based on full training samples in the case of few samples.

I. INTRODUCTION

Radar sensing and wireless communication, as two main
applications of electromagnetic radiation, are implemented in
numerous scenarios. Over the past few decades, due to the
separate operating frequency bands and different performance
specifications, these two types of applications have been
studied and developed as separate research entities [1]. Nev-
ertheless, increasing sensing resolution and communication
rate requirements have exacerbated the problem of spectrum
resource shortage. In particular, part of the frequency band
suitable for sensing has been used for communication to
satisfy the ever-increasing quality of services (QoS) for mobile
communication services. Moreover, with the development of
sensing and wireless communication, the two types of systems
share many commonalities [1]. Based on this, researchers have
intended to combine sensing and communication in one unified
framework, which has inspired the emerging research theme,
namely integrated sensing and communication (ISAC) [1].
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ISAC technology has the potential for numerous improve-
ments. On the hardware side, hardware costs and complexities
will be reduced as a result of sharing a single device for
sensing and communication [2]. In terms of resource consump-
tion, two functionalities are performed by ISAC systems with
single transmissions and spectrum resources, which reduces
energy expenditure and improve the spectral efficiency [3].
Moreover, the mutual benefits of collaborative communication
and sensing cooperation are able to enhance the performances
of both functionalities [4]. Given the above advantages, ISAC
will play an important role in the future development of wire-
less networks, especially vehicle-to-infrustructure (V2I) [2].
In traditional V2I scenarios, vehicles and infrastructures are
equipped with numerous jointly deployed communication and
sensing devices to track/interact with system key information.
With the inherent benefits of ISAC-V2I systems, there will be
significant efficiency gains in terms of hardware, energy and
spectrum. In addition, the terrain and meteorological informa-
tion obtained through communication enables high-resolution
sensing, and the communication parameters obtained through
sensing allow for high-data rate transmission [5].

Contributions to the ISAC system initially focused on
waveform design [6]. In [6], the authors utilized chirp signals
to perform sensing and information embedding. Specifically,
the down-chirp and up-chirp waveforms were employed to
distinguish between binary information “0” and “1”. However,
the communication rate of this scheme was suboptimal. The
introduction of orthogonal frequency division multiplexing
(OFDM) provided a new approach for implementing ISAC
[7]. In terms of communications, OFDM offers significant ad-
vantages in multipath interference, channel adaptation, and fre-
quency selective fading. Additionally, with OFDM waveforms,
distance and Doppler estimators are decoupled, resulting in
higher resolution positioning services [8]. Considering the
vulnerability of OFDM to time-varying channels, the ISAC-
assisted orthogonal time frequency space transmission scheme
for V2I was developed, where the data symbols are modulated
into the delay-Doppler domain instead of the conventional
time-frequency domain. Moreover, to meet the system re-
quirements for sum-rate performance, multiple-input multiple-
output (MIMO) technology has been introduced to facilitate
ISAC execution [9]. In [9], the mainlobes of the spatial beams
formulated by MIMO radar were dedicated to object detection,
while the sidelobes were used for communication.

Gbps-level communication rates and centimetre-level sens-
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ing capabilities are essential to enable V2I systems. In order to
meet these requirements, the millimeter wave (mmWave) band
and the massive multi-input-multi-output (mMIMO) antenna
array offer a promising solution. The large bandwidth available
in the mmWave band satisfies the need for high data rates, and
the shorter wavelength provides higher sensing resolution. On
the other hand, the directional “pencil-like” beams generated
by the mMIMO compensate for the high path loss of mmWave
signals, with the added benefit that the spatial domain may
be exploited to increase the degree of freedom in system
design. The authors in [10] considered a mmWave-based ISAC
scenario and derived system performance bounds. However,
this work is unsuitable for V2I communication and does not
consider beam tracking in high-speed motion scenarios, which
is critical to the implementation of V2I systems.

In V2I systems, vehicles travelling at high speeds result
in a highly time-varying nature of the system, so efficient
beam alignment between the vehicles and the road-side unit
(RSU) is essential to ensure QoS [11]. Traditional mmWave
beam alignment mainly relies on communication protocols.
Specifically, the RSU sends communication signals containing
pilots to the vehicles, which perform decoding to estimate
the channel information and feeds it back to the RSU [12].
Fast beam tracking has been proposed in several works to
achieve low-latency beam alignment, where the RSU is ca-
pable of performing beam prediction. In [13], one predictive
beamforming method based on the extended Kalman filter-
ing scheme was proposed. In the considered scenario, ISAC
signals were employed in the downlink transmission, and the
RSU performed beam tracking and prediction based on the
echo signals reflected by the vehicles. This implies that all
downlink signals are employed for communication, without
any dedicated pilot signals. The author [14] developed a factor
graph and message passing-based algorithm for the RSU to
estimate and predict the vehicles’ motion parameters.

In recent years, deep learning (DL) has gained significant
attention for their remarkable achievements. These break-
throughs have provided a novel approach for beam alignment,
and [15] utilized a fully-connected (FC) neural network to
estimate the angular parameters of the vehicles for predictive
beamforming in ISAC-V2I systems. The deep neural network
(DNN) training is described as data-driven, which means
that numerous training samples are essential to attain optimal
sensing performance [16]. However, datasets generated from a
single device or system contain fewer samples. To this end, the
concept of few-shot learning [17] was proposed, which aims to
reduce the dependence of DNN training on training samples.
Furthermore, the self-attention (SA) mechanism [18], which
calculates the correlations between all features to compensate
for the lack of long-range dependence in DNNs, was proposed
offering a promising approach to obtain valid information
based on few samples. It should be highlighted that the
remarkable achievements of DNNs have come at the cost
of enormous computational complexity that is beyond the
capacity of many mobile and embedded systems. Accordingly,
the depthwise convolution (DWConv) was developed to reduce
computational overhead [19].

In this paper, we present a novel design for predictive

beamforming in the ISAC-V2I system to achieve high com-
munication and sensing performance, while minimizing sig-
naling overhead. Specifically, during transmission periods,
RSU transmits ISAC signals containing information which are
decoded and reflected by vehicles. Based on these echoes,
the RSU performs tracking and localization to predict beam
directions. The entire downlink block is exclusively utilized
for communication without allocating dedicated downlink pi-
lots and uplink feedback for sensing, thereby reducing beam
tracking overhead and enhancing system resource utilization.
To address the strong nonlinearity of the sensing and en-
hance beamforming performance, we propose the predictive
beamforming scheme based on DNN. Under the condition of
few echo samples, low-complexity-DNN solutions are inves-
tigated. Additionally, we propose the self-attention channel-
shuffle mobile network (SACSMN) to further improve beam
alignment accuracy, enabling attention-driven modeling for
sensing tasks. The primary contributions of this paper are
summarized as follows:

• To minimize the overhead and latency of beam tracking,
we propose a novel predictive beamforming methodology
in ISAC-V2I system. In the proposed system, there is no
need for dedicated downlink pilots or uplink feedback.
Moreover, the angular parameters are predicted at the
RSU for beam prediction to reduce latency.

• To reduce the dependence of DNNs on training samples,
the dynamic SA is proposed to improve the feature
extraction capability of the DNN model. Furthermore,
one trade-off problem between sensing performance and
model computational complexity in the ISAC-V2I system
is formulated, which aims to achieve stable sensing
performance while significantly reducing model compu-
tational overhead. In addition, the influence of the size
of training samples on the sensing and communication
performance of the system is investigated.

• We propose the novel DNN framework, SACSMN, for
the considered ISAC-V2I system to perform sensing.
SACSMN comprises SA encoder / decoder layer and
feature extraction layer. The proposed SA encoder / de-
coder layer aims to capture the correlation and importance
between the elements in the feature map, which improves
the feature extraction capability of the model. The feature
extraction layer adopts DWConv as the backbone to
significantly reduce the computational overhead.

• Extensive simulations are conducted to verify the ef-
fectiveness of the proposed scheme with respect to
sensing and communication performance. Specifically,
satisfactory sensing performance is achieved by SAC-
SMN under few-shot conditions. What’s more, SACSMN
enables similar sensing performance to the benchmarks
while significantly reducing computational complexity. In
addition to the sensing ability, SACSMN shows great
advantages in communication performance under few-
shot conditions. The results demonstrate the tremendous
potential of the proposed SACSMN.

The structure of this paper is organized as follows. Some
concepts related to DNNs are introduced in Section II. Section



3

TABLE I: Summary of the abbreviations.

Abbreviation Meaning
DL Deep learning

DNN Deep neural network
FC Fully-connected

GConv Group convolution
SA Self-attention

DWConv Depthwise convolutions
MACC Multiply-accumulate operation

III describes the considered ISAC-V2I system, and a trade-
off problem for predictive beamforming design in considered
system is formulated in Section IV. Then Section V illustrates
the proposed predictive beamforming approach, and the sim-
ulation results are provided in Section VI. Finally, Section
VII concludes this paper. For convenience, abbreviations that
appear frequently in the paper are summarised in Table. I.

II. RELATED WORK

A. SA Mechanism

The conventional convolutional layers in DNNs rely on local
convolution operations for feature extraction within a local
neighborhood, making it challenging for the layers to learn
global information. In order to address this limitation, the SA
mechanism was introduced. As illustrated in Fig. 1, the SA
mechanism calculates the correlation between all features on
the input feature map, and then multiplies the attention map
with the input feature map to obtain the global information of
the features, thus overcoming the limitations of local receptive
fields in convolutional layers.

Specifically, as illustrated in Fig. 1, the input feature maps
XSA from the preceding hidden layer are initially converted
to QSA,KSA,VSA through a 1 × 1 convolution kernel. These
entities are respectively referred to as queries, keys, and values.
Furthermore, it is obtained that

QSA = WqXSA,
KSA = WkXSA,
VSA = WvXSA,

YSA = softmax(
QSA⊙KT

SA√
dk′

),

ZSA =attention(QSA,KSA,VSA) = YSA ⊙ VSA,

(1)

where Wq , Wk, and Wv are the weight matrices learned
through training. The ⊙ symbol denotes the matrix dot product
operation. YSA represents the attention map, which reflects
the degree of attention. The dimension of KSA is dk′ , and the
scaling factor of 1√

dk′
prevents the gradient from vanishing in

the softmax(·) function. ZSA is the output of the SA module.
Compared to pure convolutional layers, the SA mechanism is
effective in capturing both local and long-range dependencies
while requiring less computation due to the utilization of dot
product operations.

B. Group Convolution Operation

The standard convolution incurs a high computational cost,
which may limit the number of channels and deteriorate the
learning abilities of DNNs. To this end, group convolution
(GConv) was developed. GConv operation partitions the input
feature map Xgc into g groups of equal size before performing

Input feature 
map X

: 1暳1Conv : Matrix dot product : Softmax : Transpose

Module Annotation:

Attention
map Y

Output feature 
map Z

Fig. 1: The processing procedure of the SA mechanism
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Fig. 2: Traditional group convolution and channel shuffle operations.

separate convolution operations on each group. A particular
instance of GConv is DWConv, where the number of groups
equals the number of channels in the input feature map.

Generally, the computational complexity is measured by
multiply-accumulate operation (MACC) in DNNs. For a stan-
dard convolutional operation, the input feature map Xsc ∈
Rhin×win×cin is filtered with cout convolutional kernels, each
of size ksc × ksc, to produce the output feature map Ysc ∈
Rhout×wout×cout . The computational cost of the standard
convolution operation, denoted as MACCsc, is expressed as

MACCsc = hin × win × cin × ksc × ksc × cout. (2)

If the number of groups is denoted by g and the convolu-
tional kernels remain constant, the cost of the GConv operation
is expressed as MACCgc = hin×win×cin×ksc×ksc×cout/g.
Therefore, the reduction in computional cost is represented by

hin × win × cin × ksc × ksc × cout/g

hin × win × cin × ksc × ksc × cout
= 1/g. (3)

The aforementioned analysis reveals that the computational
burden of DNNs is considerably reduced by the GConv opera-
tions. This reduction in complexity facilitates the deployment
of lightweight DNNs.

C. Channel Shuffle Operation

Fig. 2(a) illustrates an instance of two regular GConv
operations, denoted by GConv1 and GConv2. In this case, the
input feature map channels are partitioned into three distinct
groups, namely Group1, Group2, and Group3. Obviously,
there is a drawback when stacking multiple GConv layers: the
output of each GConv operation depends only on a specific
input channels, which prevents the interaction of information
between different groups of channels, leading to a weakened
DNN representation.

The channel shuffle operation [20] enables the GConv
operation to obtain input features from multiple groups, as
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Fig. 3: System model for the considered ISAC-V2I scenario.

illustrated in Fig. 2(b). Specifically, if the output feature map
of GConv1 is partitioned into three sub-groups, denoted as
(i, j) where j denotes the j-th sub-group in group i, then the
sub-group (i, j) from GConv1’s output is rearranged as the
sub-group (j, i) in GConv2’s input feature map, resulting in a
novel grouping scheme. When this is completed, the standard
GConv operation could be applied to the new feature map.

The channel shuffle operation offers the benefit of fully
connecting the channels of input and output feature maps,
resulting in a more potent structure for DNNs.

III. SYSTEM MODEL

The proposed ISAC-V2I network is developed as depicted
in Fig. 3. Specifically, there is a RSU serves E vehicles
working in the mmWave frequency band. Based on mmWave
and mMIMO technology, the RSU is equipped with a Uniform
Line Array (ULA) consisting of M transmit antennas and N
receive antennas, which is able to transmit downlink signals
and receive vehicle echoes simultaneously. In general, it is
assumed that the vehicles travel along the single lane road,
and the ULA is deployed parallel to the road [14]. Without
loss of generality, there are no obstacles between the vehicles
and the RSU. Therefore, the signals transmit through the line-
of-sight (LoS) channels [13]. The researches on planar array
and non-line-of-sight channels will be designated as future
work, and the relevant derivation will be extended.

In this section, the general framework of the ISAC-V2I
system is described in detail. We first elaborate the sensing sig-
nal model, the state evolution model and the angle prediction
model. Subsequently, the communication model is analyzed.

A. General Framework

The system operations are executed according to the fol-
lowing steps:

Step 1 State sensing: At time slot k, k ∈ {1, 2, · · · ,K},
the RSU transmits ISAC signals to the vehicles, which are
then reflected by the vehicles as echoes. Based on the echoes,
the motion parameters of the vehicles, including distances,
azimuth angles, and velocities, are sensed.

Step 2 State evolution model construction and state predic-
tion: The state evolution model will be established based on
the geometric relationships between adjacent time slots. The
RSU will utilize the motion parameters at time slot k to predict
the locations and angles of the vehicles at the next time slot.

Step 3 Downlink communication: The transmit beamformer
at the RSU will be designed to direct beams containing com-
munication information toward corresponding vehicles based
on the predicted angles in step 2. The embedded information
on the vehicles’ side will be decoded.

B. Sensing Model

1) Sensing Signal Model: In ISAC-V2I systems, the trans-
mitted ISAC signals are simultaneously used for sensing and
communication. At the k-th slot, in order to provide service
for all vehicles, a E-dimensional multi-beam ISAC signal
sk(t) = [s1,k(t), s2,k(t), . . . , sE,k(t)]

T ∈CE×1 is formulated
at the RSU, where se,k(t), E

{
|se,k(t)|2

}
= 1, represents the

downlink signal for the e-th, e ∈ {1, 2, · · · , E}, vehicle at
time instant t of the k-th slot. Over the transmit ULA, the
transmitted signal is denoted by

ŝk(t) = Fksk(t) ∈ CM×1, (4)

where Fk = [f1,k,f2,k, . . . ,fE,k] ∈ CM×E is the downlink
beamforming matrix. Transmit beamforming vector fe,k ∈
CM×1 is adopted to steer the corresponding beam towards
the e-th vehicle at the k-th slot, which is given by

fe,k = F
(
θ̃e,k

)
=

√
1

M

[
e−jπ(1−1)cosθ̃e,k , · · · , e−jπ(M−1)cosθ̃e,k

]T
=

√
1

M

[
1, · · · , e−jπ(M−1)cosθ̃e,k

]T (5)

where F(·) denotes the beamforming function. This paper fo-
cuses on exploring the trade-off between sensing performance
and the computational complexity of the network model. With
the constant transmit power, the influence of other factors will
be reduced. Therefore, it is assumed that the transmitted power
for each beam at each time instant is unit power [13]. θ̃e,k is
the angle prediction of vehicle e relative to the RSU at the
k-th time slot.

The transmitted signal ŝk(t) will be reflected by all vehicles,
and the received echoes at the receive ULA is formulated as

rk(t) =α

E∑
e=1

βe,ke
j2πtδe,kb(θe,k)a

H(θe,k)ŝk(t− τe,k)

+ zs(t),

(6)

where α =
√
MN is the sensing array gain coefficient, βe,k =

γ
2de,k

denotes the reflection factor with γ being the complex
radar cross-section and de,k being the distance between vehicle
e and the RSU at k-th slot. δe,k and τe,k represent the Doppler
and the delay of the e-th vehicle for sensing, respectively.
zs(t) ∈ CN×1 is a complex additive white Gaussian noise
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with zero mean. Transmit steering vector a(θe,k) and receive
steering vector b(θe,k) at the RSU are expressed as

a(θe,k) =

√
1

M

[
1, · · · , e−jπ(M−1)cosθe,k

]T
∈ CM×1 (7)

and

b(θe,k) =

√
1

N

[
1, · · · , e−jπ(N−1)cosθe,k

]T
∈ CN×1, (8)

respectively. And θe,k is the actual angle of vehicle e relative
to the RSU at the k-th time slot.

For the ULA in mMIMO antenna arrays, the steering vectors
are asymptotically orthogonal to each other [21], i.e.,∣∣∣aH(θ)a(θ

′
)
∣∣∣ ⇒ 0,∀θ ̸= θ

′
,M ≫ 1, (9)

which means that there is negligible inter-beam interference
between the echoes from different vehicles. Based on this, the
reflected echo of the corresponding vehicle will be identified
by the RSU at each time slot. Therefore, the received echo
from e-th vehicle could be modeled as

re,k(t) =αβe,ke
j2πtδe,kb(θe,k)a

H(θe,k)fe,kse,k(t− τe,k)

+ zs(t),
(10)

where re,k(t) =
[
r1e,k(t), r

2
e,k(t), . . . , r

N
e,k(t)

]T
∈ CN×1 with

rne,k(t) representing the echo received by the n-th antenna of
receive ULA from vehicle e at time slot k. Adopting a series
of se,k(t) with different time delays and frequency shifts, the
radar’s matched filtering will be performed on re,k(t) and the
estimates of the delay and the Doppler shift are formulated as{

τ̄e,k, δ̄e,k
}
= argmax

τ,δ

∣∣∣∣∫ △T

0

re,k(t)s
∗
e,k(t− τ)e−j2πtδdt

∣∣∣∣ . (11)

Compensating re,k(t) with τ̄e,k, δ̄e,k, the received signal
model is defined as

⌢
r e,k= αβe,k

√
Gb(θe,k)a

H(θe,k)fe,k+
⌢
z e,k, (12)

where G is the compensation gain,
⌢
r e,k∈ CN×1.

2) Sensing Measurement Model: After the radar’s matched
filtering, the delay and Doppler are measured as [13]{

τe,k =
2de,k

c + zτ ,

δe,k =
2ve,k cos θe,kfc

c + zδ,
(13)

where c and fc denote signal propagation speed and the
carrier frequency, respectively. Terms zτ and zδ represent
the measurement noises obeying Gaussian distribution, i.e.,
zτ ∼ N (0, σ2

τ ) and zδ ∼ N (0, σ2
δ ). Based on the sensing

model, the distance de,k and the volecity ve,k of the e-th
vehicle relative to the RSU at the k-th time slot are obtained.

3) State Evolution Model: Establishing a state evolution
model for parameter prediction is crucial. The kinematic
equations between two adjacent time slots for each vehicle
is modeled based on the geometric relationships and motion
parameters. Fig. 3 illustrates the analysis of the e-th vehicle in
the considered system, with the vehicle traveling away from
the RSU. The state evolution model is expressed as △de,k−1 = △Tve,k−1,

△θe,k−1 = θe,k−1 − θe,k,
de,k sin△θe,k−1 = △de,k−1 sin θe,k−1,

(14)

where △T denotes the time duration of each time slot, and
it is assumed that the vehicle is traveling at a constant speed
with a short slot △T [13].

4) Angle Prediction Model: It is not sufficient to simply
observe and track vehicles. The system should possess pre-
dictive capabilities to reduce delays [13]. Generally, the angle
variation △θ is small during △T . Adopting the approximation
△θ ≈ sin△θ [13], (14) is rewritten as

△θe,k−1 ≈ sin△θe,k−1 =
△de,k−1 sin θe,k−1

de,k
. (15)

In addition, the approximation de,k−1 ≈ de,k generally holds
in two consecutive time slots [13]. Substituting this to (15),
the prediction model for θe,k is expressed as

θ̃e,k = θe,k−1 −
△Tve,k−1 sin θe,k−1

de,k−1
+ zθ, (16)

where zθ ∼ N (0, σ2
θ) represents the noise generated by the

distance approximation.

C. Communication Model

At time slot k, the received downlonk signal at the e-th
vehicle is formulated as

ce,k(t) =ᾱϵe,ke
j2πtϑe,kaH(θe,k)fe,kse,k(t− ιe,k)

+ zc(t),
(17)

where ϑe,k is the Doppler frequency and ιe,k represent the
delay for communication. zc(t) ∼ CN (0, σ2

c ) is the Gaussian
noise, ᾱ =

√
M denotes the communication array gain factor

between the RSU and each vehicle, ϵe,k = ϵ0de,k
−1, where

ϵ0 is the path-loss at reference distance d0 = 1 m. The the
receive signal-to-noise ratio (SNR) for the e-th vehicle at the
k-th slot is expressed as

SNRe,k =

∣∣ᾱϵe,kaH(θe,k)fe,k

∣∣2
σ2
c

=
ᾱ2ϵ2e,kεe,k

σ2
c

, (18)

where
εe,k =

∣∣∣aH(θe,k)a(θ̃e,k)
∣∣∣2 ≤ 1. (19)

From (19), it is observed that there will be a peak for SNRe,k

when θ̃e,k = θe,k. In particular, the achievable sum-rate Rk

for all vehicles in the system at the k-th time slot is given by

Rk =

E∑
e=1

log2 (1 + SNRe,k). (20)

The sensing and communication models indicate that the
design of the transmit beamformer, which relies on sensing
results, serves as the foundation for beam alignment. This is
a critical factor in enhancing the communication rates of the
system.

IV. PROBLEM FORMULATION

The focus of this section is to analyze the optimal balance
between the sensing capabilities and computational complexity
in ISAC-V2I systems. Specifically, the evaluation metrics of
DNN are introduced, followed by the formulation of the trade-
off problem.
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Fig. 4: The predictive bamforming framework for V2I system.

A. Evaluation Metrics of DNN

Generally, there are three primary evaluation metrics for
DNN, namely performance metrics, total parameter, and com-
putational complexity. The details are as follows.

1) Performance Metrics: Evaluation criteria based on per-
formance metrics are widely applied and are typically derived
from the output results of DNN. Performance metrics are
classified into several types, such as classification accuracy,
estimation error, and detection accuracy.

2) Total parameters: The total number of parameters is
determined by the intrinsic property of DNN model. To a
certain degree, the potent learning ability of one DNN model
is granted by its learnable parameters. The learning ability of
the DNN is enhanced when the number of parameters in the
DNN is increased , which improves the target performance of
the model. However, the increase in the number of parameters
results in a larger memory footprint and longer training cycles,
consequently increasing the expense of the DNN.

3) Computational Complexity: The computational complex-
ity of DNN is closely related to its characteristics. Specifically,
it quantifies the amount of computation required for a DNN
to process the given input. The computational complexity
increases when the DNN performs tasks such as feature
extraction, error backpropagation, and nonlinear mapping. The
most commonly applied measure of computational complexity
is the MACC. larger MACC means higher power consumption
during the execution of the corresponding DNN model.

B. Problem Formulation

ϱ is adopted to indicate the sensing performance of the
system, which is the root mean squared error (RMSE) on
angles and is calculated by averaging the entire observation
time and the all test samples. The mathematical expressions for
ϱ will be shown in Section V-D. Computational complexity,
on the other hand, is evaluated by the MACC of the entire
DNN. Therefore, the trade-off performance is formulated as

η = MACC× ϱ, (21)

where η is utilized to quantify the efficiency of the DNN.
Specifically, the trade-off performance of the DNN is consid-
ered superior while η is smaller.

Input X Output Y

Branch1,    channels'c

Branch2,           channels)'( cc 

   channelsc    channelsc

(a) Building block1 when DWConv stride = 1

Input X

: Channel split : 1×1 Conv : Batch Normalization : ReLu
Module Annotation:

: 3×3 DWConv (stride = 1)

: 3×3 DWConv (stride = 2) : Channel concat : Channel shuffle

Output Y

   channelsc   channelsc

Branch1,    channels'c

Branch2,           channels)'( cc 

(b) Building block1 when DWConv stride = 2

Fig. 5: Building blocks of SACSMN.

V. THE PROPOSED SACSMN-BASED PREDICTIVE
BEAMFORMING APPROACH

In this section, we initially present the DNN-based pre-
dictive beamforming framework in the ISAC-V2I system,
followed by the introduction of building block (BB) in the
proposed SACSMN. Thereafter, the SACSMN model is de-
signed and finally the SACSMN-based predictive beamform-
ing algorithm is proposed.

A. DNN Based Predictive Beamforming Framework in V2I
system

As depicted in Fig. 4, the predictive beamforming frame-
work consists of two phases, i.e., (a) DNN-based sensing and
(b) transmit beamformer design. In phase (a), the DNN is
adopted to perform sensing, i.e.,

θ∗
k = gw∗(

⌢

Rk), (22)

where θ∗
k = [θ∗1,k, θ

∗
2,k, · · · , θ∗E,k] ∈ R1×E denotes the sensing

result during the network model training,
⌢

Rk= [
⌢
r 1,k,

⌢
r 2,k

, · · · ,⌢rE,k] ∈ CN×E . gw∗(·) represents the mapping function
from the echo signals at the receive ULA to the sensing result
θ∗
k, and w∗ denotes the model weight of the DNN model in

training. In additon, the loss function of DNN is defined by

Loss(w∗) =

E∑
e=1

(θe,k − gw∗(
⌢
r e,k))/E. (23)

To minimise (23), the model weight w∗ is updated after
each training epoch. Following the whole training, the optimal
sensing result output by the well-trained model is expressed
as

θ̄k = gw̄(
⌢

Rk), (24)

where θ̄k represents the sensing result of well-trained DNN,
and w̄ = argmin

w
Loss(w) denotes the trained optimal model

weight. In phase (b), after obtaining the sensing result, the
angle prediction, denoted by gpre(·), is performed based on
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Fig. 6: The overall structure of SACSMN.

(16), and the transmit beamformer Fk is designed based on
(5) at RSU.

B. Building blocks of SACSMN

The backbone of SACSMN is constructed from a series of
stacked BBs, and the BB is illustrated in Fig. 5.

Based on the strides of the DWConv operation, two types of
BBs, namely BB1 and BB2, are identified. At the beginning of
each BB, the c channels of the input feature map X are divided
into two branches, i.e., c′ and c − c′, via channel splitting
operation. BB1 executes a sequence of operations in branch
1, namely 1 × 1 convolution operation, 3 × 3 DWConv with
stride = 1, and 1 × 1 convolution operation, which perform
feature aggregation. Batch normalization (BN) operation is
incorporated to prevent gradient vanishing. The rectified linear
unit (ReLu) function performs a sequence of linear mappings,
resulting in a transformation of low-level features into high-
level ones. As for branch2 in BB1, it does not modify the
input. The two branches are then concatenated in the channel
dimension, and a channel shuffle operation follows. In BB2,
only branch2 is modified compared to BB1, and it consists of
a 3 × 3 DWConv with stride = 1, a BN operation, a 1 × 1
convolution operation, a BN operation, and a ReLu function,
as shown in Fig. 5 (b).

C. The Proposed SACSMN Model

The SACSMN is proposed in ISAC-V2I system, and the
comprehensive model architecture is depicted in Fig. 6, while
the full specifications are summarized in Table II. It is ob-
served from Fig. 6 that SACSMN is composed of six primary
components, including the input layer, SA encoder layer,
maxpool layer, feature extraction layer, SA decoder layer, and
output layer. The entire SACSMN is detailed as follows.

1) Input Layer: Based on (12), the received echo signal
after filtering is a complex vector. However, the DNN cannot
directly process the complex vector. As a result, the following
transformation is performed first:

⌢
r e,k ⇒ (

⌢
r e,k)

R + j(
⌢
r e,k)

I, (25)

where (
⌢
r e,k)

R ∈ RN×1 and (
⌢
r e,k)

I ∈ RN×1 represent the
real part and imaginary part of

⌢
r e,k, respectively. By omitting

the imaginary units, a new form of expression is obtained, i.e.,
[(
⌢
r e,k)

R, (
⌢
r e,k)

I], and the input feature map is change from
a complex vector to a real matrix of size (N × 2). The input

TABLE II: The Full Specification of SACSMN

Layer Output
size

Kernel
size Stride Repeat Output

channels
Input layer N × 2 - - - 1

SA
encoder layer N × 2 1× 1 1 1 24

Maxpool (N/2)× 2 3× 3 2 1 24
Feature

extraction 1
(N/4)× 2
(N/4)× 2

-
-

2
1

1
3

48
48

Feature
extraction 2

(N/8)× 2
(N/8)× 2

-
-

2
1

1
7

96
96

Feature
extraction 3

(N/16)× 2
(N/16)× 2

-
-

2
1

1
3

192
192

SA
encoder layer (N/16)× 2 1× 1 1 1 192

Flatten layer N/8 - - - 192
Output layer 1 - - - -

layer is only responsible for feeding the echo signal values
into the DNN and does not do any other processing.

2) SA Encoder Layer: This layer includes two distinct sub-
layers, namely the standard convolutional layer and the SA
layer. Initially, the standard convolution operation is executed
on the input feature map in the first sub-layer, with subsequent
application of BN and ReLU nonlinearity. In the second sub-
layer, the SA mechanism is implemented to apply distinct
weighting to the output of the first sub-layer. Additionally,
the secondary weighting and shortcut operations are utilized
in this layer, which is expressed as

Zen = ζenYen +Xen, (26)

where Xen, Yen, and Zen correspond to the output of the
first sub-layer, the SA layer output, and the output of the
SA encoder layer, respectively. ζen represents a learnable
scalar that performs element-wise multiplication with Yen.
Furthermore, during the SACSMN training process, ζen will
be updated. (26) is the mathematical representation of the
proposed dynamic SA, which assigns more reasonable weights
to the features by the learnable ζen and mitigates the gradient
vanishing problem of the model by the residual structure.

3) Maxpool Layer: In this layer, spatial down-sampling is
accomplished through the selection of the maximum value
within the area encompassed by the convolution kernel. This
approach has the benefit of reducing computational costs.

4) Feature Extraction Layer: The feature extraction layer
is constructed based on BBs depicted in Fig. 5. This layer
is comprised of three stages, with each stage consisting of
a stack of BBs. With stacked BBs, the ability of the model
to extract different features will be enhanced to improve the
sensing performance. As for the internal relationship between
neighboring stacked BBs, at the data processing level, each
BB performs data processing independently to maintain the
flexibility and trainability of the model. Each BB obtains
input data from the previous BB when processing data and
transmits the processed output data to the subsequent BB.
During each stage, BB2 serves as the initial component, while
BB1 is repeated a designated number of times for subsequent
operations. Additionally, within each BB, the channel split
operation maintains an equal number of channels in both
branch1 and branch2 of the input feature matrix.

5) SA Decoder Layer: This layer is similar to the SA
encoder layer, where the SA layer is performed initially,
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Algorithm 1: SACSMN-based Predictive Beamform-
ing Algorithm
Offline Training:

1 Initialization:
2 epoch = 0
3 Epoch = Epochmax

4 φ∗ with random weights
5 one training set Ωtr

6 Input: Training set Ωtr

7 for epoch = 1 : Epoch do
8 Calculate L(φ∗) as defined in (28)
9 Update φ∗ by BP to minimize L(φ∗)

10 epoch ++
11 end
12 Output: Well-trained gφ̄(·) and sensing result θ∗

k as
defined in (29)

Online Testing:
13 Input: Randomly selected testing sample Xnte

k in Ωte

14 Output: Sensing result based on well-trained
SACSMN

15 do:
16 Angle prediction based on state evolution model
17 Transmit beamformer design

followed by the standard convolutional layer. The output of
SA layer in this part is expressed as

Zde = ζ ′deYde +Xde, (27)

where Xde, Yde and Zde represent the outputs of the feature
extraction layer, the direct output of the SA layer, and the final
output of the SA module, respectively. The scalars ζen and ζ

′

de

are similar, but they are independent of each other.
6) Output Layer: This layer is composed of the flatten

sublayer and FC sublayer. The former serves to expand the last
two dimensions of the input, such that when a feature map with
dimensions (batchsize, channels, height, weight) is used as
input, the dimension of the output of the flatten sublayer is
(batchsize, channels, height×weight). Meanwhile, the FC
sublayer executes a linear weighted summation of the output
from the flattened sublayer to produce the sensing result.

D. SACSMN-Based Predictive Beamforming Algorithm

The SACSMN-based predictive beamforming algorithm is
proposed in this section, which adopts the proposed SACSMN
as the core and consists of offline training and online beam-
forming design. The details of the algorithm will be illustrated
in the following.

1) Offline Training: The training set with Ntr system sam-
ples, i.e., Ωtr = [χ1,χ2, · · · ,χNtr ], is considered in this part.
χntr = [(Rntr

1 ,θntr
1 ), (Rntr

2 ,θntr
2 ), · · · , (Rntr

K ,θntr
K )], ntr ∈

{1, 2, · · · , Ntr}, denotes the signal samples for the entire
observation period in the ntr-th system sample. (Rntr

k ,θntr
k )

represents the signal sample at the k-th slot in the ntr-
th system sample, where Rntr

k = [
⌢
r
ntr

1,k ,
⌢
r
ntr

2,k , · · · ,
⌢
r
ntr

E,k]
denotes the echoes for the vehicles at the k-th time slot, θntr

k =

[θntr1,k , θ
ntr
2,k , · · · , θntrE,k] denotes the actual angle parameters for

the vehicles. Based on the proposed network model and
the predictive beamforming framework, the loss function for
SACSMN is expressed as

L(φ∗) =
1

Ntr

1

K

1

E

Ntr∑
ntr=1

K∑
k=1

E∑
e=1

∣∣∣θntre,k − gφ∗(
⌢
r
ntr

e,k )
∣∣∣ , (28)

where φ∗ represents the model weight of SACSMN. In
the training process of SACSMN, back-propagation (BP)
algorithm is adopted to optimize φ∗ according to (28) in each
training epoch, which in turn minimizes L(φ∗) to achieve
convergence. After the DNN training, SACSMN that learns
the mapping relationship between echo signals and sensing
result is expressed mathematically as

gφ̄(
⌢

Rk) = θ∗
k, (29)

where gφ̄(·) represents the well-trained SACSMN with optimal
model weight φ̄, and θ∗

k denotes the final sensing result based
on the well-trained SACSMN.

2) Online beamforming design: The testing set Ωte with Nte

samples, i.e., Ωte = [Φ1,Φ2, · · · ,ΦNte ], is of the same form
as the training set, and both sets are independent of each other.
Φnte = [(Xnte

1 ,ynte
1 ), (Xnte

2 ,ynte
2 ), · · · , (Xnte

K ,ynte
K )],

nte ∈ {1, 2, · · · , Nte}. During the online testing process, the
testing angle parameter, i.e., ynte

k , ∀nte, ∀k will not be fed
into the SACSMN. Therefore, one testing sample is randomly
selected from Ωte, i.e., Xnte

k , and fed into the well-trained
SACSMN. After that, a series of steps will be performed
according to the framework in Fig. 4 to design the transmit
beamformer

F ∗
k = F(gpre(gφ̄(X

nte
k ))), (30)

and the sensing performance ϱ is formulated as [13]

ϱ =
1

Nte

1

K

1

E

Nte∑
nte=1

K∑
k=1

∥∥ynte
k − gφ̄(X

nte
k )

∥∥
1
. (31)

3) Algorithm Summary: The proposed predictive beamform-
ing algorithm is summarized in Algorithm 1, where epoch
denotes the training epoch index and Epochmax represents
the total amount of training epoch.

VI. SIMULATION RESULTS

The simulation results are presented to validate the effec-
tiveness of the proposed SACSMN for predictive beamforming
in this section. We consider the ISAC-V2I system with one
RSU and three vehicles, and the system operates in the 30
GHz band. Without loss of generality, the Cartesian coordinate
system is applied in the simulation environment. All vehicles
depart from the RSU in a direction parallel to the road, with
the direction considered as the positive half-axis of the x-
axis. The RSU is located at [0m, 0m], and the number of
antennas for both transmit ULA and receive ULA is adjustable.
The vehicles are initialized at [25m, 20m], [30m, 20m] and
[35m, 20m], respectively. The duration for each time slot is
△T = 0.02s, and the velocity of each vehicle follow a uniform
distribution of [10, 15]m/s during the considered time slots.
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A. Dataset Description

Since the studied probelm and the proposed method are
novel, there are no available open datasets. Therefore, we
generated the corresponding dataset based on our proposed
signal model. The duration of each time slot in the data
set is △T = 0.02s. The system operates in the 30GHz
frequency band, with the vehicles traveling away from the
RSU. The sensing compensation gain G and complex radar
cross-section γ are set to 10 and 10 + 10j, respectively. The
dataset is comprised of training as well as the test sets.
The training set consists of one RSU located at [0m, 0m]
and three vehicles positioned at [20m, 20m], [25m, 20m],
and [30m, 20m], respectively. Furthermore, the training set
is divided into three parts based on the RSU configuration,
namely M = N = 16, M = N = 32, and M = N = 64.
Additionally, in our assumpations, Ntr = 2000 is performed
for each type of antenna configuration, and time slots K = 512
is considered for each simulation. This leads to 1024 × 106

echo samples for each RSU configuration in the training set.
To ensure the consistency of the data distribution, the system
parameters of the test set are the same as the training set,
except while Nte = 3000. Then, all simulation results are
averaged from the test set, i.e., 3000 independent simulations.

B. The Influence of Channel Shuffle Parameter g

The influence of channel shuffle parameter g of SACSMN
on the sensing performance is the focus of this part.

Since the channel shuffling operation has no influence on
the number of parameters and the MACC, the results are
evaluated based on the sensing error ϱ. In addition, there
is no inter-channel information exchange during convolution
operations when g = 1. Table III presents the experimental
datas, which clearly indicate the efficiency of the channel
shuffle operation in improving the sensing performance of
SACSMN. The results show that the sensing errors generally
decrease and then increase as the g grows. Specifically, the
proposed model usually achieves the best sensing performance
when g = 2. This is because moderate value of g facilitates the
interaction of information between channels and contributes
to improved feature extraction ability of the model. However,
the data stream containing valuable information is segmented
when the g is large, which leads to loss of information and
disruption of the original information flow, thus degrading the
sensing performance. Therefore, SACSMN with g = 2 will be
employed for further performance comparison in subsequent
experiments.

C. The Necessity of SA Encoder & Decoder Layers

In this subsection, we investigate the necessity of the SA
encoder and decoder layers, which are fundamental modules
in SACSMN. The experimental results are presented in Ta-
bles IV. In the benchmark SACSMN (no SA), the dynamic
SA module is replaced by a standard convolutional layer
comprising convolutional operation, BN, and ReLU. It is
obvious that the proposed SACSMN achieves superior sensing
performance than the comparator under the same experimental

TABLE III: The influence of g on sensing error for different training sample sizes.

(a) 1% of the training set
g = 1 g = 2 g = 4 g = 8

M = N = 16 2.57E-02 1.08E-02 2.57E-02 1.77E-02
M = N = 32 2.12E-02 1.03E-02 2.12E-02 1.47E-02
M = N = 64 2.73E-02 1.81E-02 2.73E-02 1.92E-02

(b) 9% of the training set
g = 1 g = 2 g = 4 g = 8

M = N = 16 3.17E-03 1.74E-03 2.00E-03 2.94E-03
M = N = 32 1.68E-03 1.63E-03 1.83E-03 1.96E-03
M = N = 64 1.82E-03 8.00E-04 1.19E-03 1.14E-03

(c) 100% of the training set
g = 1 g = 2 g = 4 g = 8

M = N = 16 2.02E-03 9.92E-04 1.61E-03 1.56E-03
M = N = 32 1.00E-03 4.67E-04 5.08E-04 5.15E-04
M = N = 64 3.63E-04 2.28E-04 2.72E-04 2.63E-04

TABLE IV: The influence of SA on sensing error for different training sample sizes.

(a) 1% of the training set.
M = N = 16 M = N = 32 M = N = 64

SACSMN 1.08E-02 1.03E-02 1.81E-02
SACSMN(no SA) 3.30E-02 2.64E-02 1.86E-02

(b) 9% of the training set.
M = N = 16 M = N = 32 M = N = 64

SACSMN 1.74E-03 1.63E-03 8.00E-04
SACSMN(no SA) 2.71E-03 1.88E-03 1.74E-03

(c) 100% of the training set.
M = N = 16 M = N = 32 M = N = 64

SACSMN 1.56E-03 4.67E-04 3.28E-04
SACSMN(no SA) 2.09E-03 1.28E-03 4.81E-04

settings, which implies that proposed dynamic SA significantly
improves the model sensing capability. This is because the
proposed dynamic SA module is able to pay more attention
on the important feature information in the feature map and
ignore the trivial features, which reduces the interference in the
feature extraction process and improves the feature extraction
capability of the model, allowing the model to extract more
general and effective features.

D. Sensing performance

The sensing performances under various few-shot training
scenarios are examined in this part. Specifically, the SACSMN
is trained based on 1%, 5%, 9%, and 100% of the training set
samples to investigate the efficiency. We compare the proposed
model with several widely used DNN models, including
AlexNet [22], CLDNN [23], MobileNet-V3 [19], ResNet18
[24], and ShuffleNet-V2 [20].

The angle sensing performance are presented in Tables V,
and the system sensing error is denoted by ϱ1, ϱ5, ϱ9, and
ϱ100, which correspond to the DNNs’ training with 1%, 5%,
9%, and 100% of the samples in the training set, respec-
tively. Additionally, η defined in (21) is utilized to quantify
the performance of the models in terms of the trade-off
between computational complexity and sensing performance.
The analysis are summarized as follows: First, the effect of
the configuration at RSU (i.e., N ) on the parameters and
MACC is examined. Second, we investigate the impact of the
training sample size on sensing performance. Furthermore, the
metric η is employed to evaluate the trade-off performance
of each network model. Finally, the influences of the initial
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TABLE V: The sensing trade-off performance under different conditions

(a) M = N = 16

Params(M) MACC(M) ϱ1 ϱ5 ϱ9 ϱ100 η1(M) η5(M) η9(M) η100(M)
AlexNet 8.96 34.74 89.87 89.78 54.03 3.24E-01 3122.22 3118.90 1876.95 11.24
CLDNN 8.64 8.77 3.33E-03 6.33E-04 9.21E-03 1.33E-04 2.92E-02 5.55E-03 8.08E-02 1.17E-03

MobileNet V3 4.2 14.62 134.60 2.74E-03 5.67E-03 3.50E-04 1.97E+03 4.01E-02 8.30E-02 5.12E-03
ResNet18 11.17 357.77 4.66E-04 7.56E-04 2.61E-04 1.32E-03 1.67E-01 2.71E-01 9.34E-02 4.72E-01

ShuffleNet V2 1.25 1.7 9.48E-03 2.89E-03 3.48E-03 8.36E-03 1.61E-02 4.91E-03 5.91E-03 1.42E-02
SACSMN 0.45 0.6 1.08E-02 5.74E-03 1.74E-03 9.92E-04 6.50E-03 3.45E-03 1.04E-03 5.95E-04

(b) M = N = 32

Params(M) MACC(M) ϱ1 ϱ5 ϱ9 ϱ100 η1(M) η5(M) η9(M) η100(M)
AlexNet 13.16 65.54 90.53 89.60 89.10 46.03 5933.66 5872.53 5905.36 3016.99
CLDNN 33.81 34.1 3.29E-03 7.10E-03 2.10E-03 3.77E-04 1.12E-01 2.42E-01 7.14E-02 1.29E-02

MobileNet V3 4.2 26.49 62.09 2.10E-03 1.31E-03 1.21E-04 1.64E+03 5.57E-02 3.46E-02 3.21E-03
ResNet18 11.17 715.54 3.48E-04 6.89E-05 2.08E-04 6.06E-05 2.49E-01 4.93E-02 1.49E-01 4.34E-02

ShuffleNet V2 1.25 3.41 3.99E-03 8.99E-04 1.29E-03 3.54E-04 1.36E-02 3.07E-03 4.41E-03 1.21E-03
SACSMN 0.45 1.22 1.03E-02 2.46E-03 1.63E-03 4.67E-04 1.26E-02 3.01E-03 1.98E-03 5.70E-04

(c) M = N = 64

Params(M) MACC(M) ϱ1 ϱ5 ϱ9 ϱ100 η1(M) η5(M) η9(M) η100(M)
AlexNet 21.55 127.14 90.96 90.41 59.21 9.80 11564.45 11622.12 7527.82 1245.64
CLDNN 134.49 135.09 7.39E-03 5.60E-03 4.76E-03 2.09E-03 9.98E-01 7.57E-01 6.44E-01 2.82E-01

MobileNet V3 4.2 50.25 12.37 1.12E-03 6.75E-04 1.40E-04 6.21E+02 5.62E-02 3.39E-02 7.03E-03
ResNet18 11.17 1431.09 8.68E-04 3.66E-04 1.82E-04 1.36E-05 1.24E+00 5.23E-01 2.61E-01 1.94E-02

ShuffleNet V2 1.25 6.81 3.97E-03 1.38E-03 8.13E-04 1.22E-04 2.71E-02 9.42E-03 5.54E-03 8.34E-04
SACSMN 0.45 2.43 1.81E-02 2.37E-03 8.00E-04 3.28E-04 4.40E-02 5.77E-03 1.94E-03 7.98E-04
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Fig. 7: Sensing performance comparison between SACSMN and MUSIC

vehicle position and direction of vehicle travel on the sensing
performance is explored.

1) The Influence of the Configuration N at RSU on the Pa-
rameters, MACC and Sensing Performance: It is evident that
the parameters of the initial two DNNs increase proportionally
with N , since the number of neurons in their FC layers is
linked to N . When other conditions remain constant, the total
number of parameters in the DNN will be increased when the
sum of neurons in the FC layer grows. The structures of the
remaining DNN models remains largely unaffected by N , thus
keeping the number of parameters constant. In addition, the
MACCs of all DNN models exhibit a positive correlation with
N , and both parameters and MACCs of the proposed model
are minimal for the exact RSU configuration. Furthermore,
it is worth noting that when the DNN model and the training
sample size remain constant, the sensing errors of most DNNs
decrease as N increases. This is because more features of echo
sample are provided when N is larger, which improves the
discrimination of the corresponding angle.

2) The Influence of Training Sample Size on Sensing Perfor-
mance: The sensing errors of most DNN models decrease with
more training samples when the ULA size is constant. This

is because, when all other conditions remain constant, more
training samples enable the models to better learn the nonlinear
relationships between echo signals and angles. However, the
sensing performances of some DNNs are improved and then
degraded with the increase of training samples, possibly due
to overfitting. Notably, the sensing performance of ResNet18
is nearly optimal under the same conditions. It is evident that
the sensing performances of SACSMN are deteriorated as the
ULA size increases when training with only 1% of the training
set samples. This may be due to the fact that when the training
samples are fewer and the model obtains more features of each
echo signal, SACSMN suffers from interference leading to a
decrease in its feature extraction capability. Moreover, when
the training sample size is increased by the same magnitude,
i.e., from 1% to 9%, SACSMN with N = 64 achieves a
greater sensing performance improvement. It is observed that
the sensing performance achieved by the 9% training sample
is very similar to the 100% performance when N = 64,
indicating that further increasing the training sample size does
not yield significant sensing performance gains.

Fig. 7 provides a further elaboration of the sensing per-
formance of SACSMN with respect to θ2,k, where multiple
signal classification (MUSIC) [25] based scheme is viewed
as upper bounds. It is found that the sensing performance
of SACSMN based on 1% of the training set is the worst.
This is because the sample size is insufficient in this case,
and SACSMN cannot effectively learn the general features
and patterns between the echoes and the angles, weakening
the feature extraction ability in the test set. On the other
hand, when the training samples are insufficient, SACSMN
overlearns specific features and noises in the training data,
resulting in poor sensing performance when dealing with new
and unseen data in the test set. The sensing performance of
SACSMN is gradually improved with more training samples.
This is because more training samples contain a wide variety
of scenarios and noises, which helps to train a more robust
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TABLE VI: Default settings in the simulation

ULA size Initial angle parameter Initial vehicle location
M=N=16 θ0 = 11◦ [104.17m, 20m]
M=N=32 θ0 = 14◦ [81.85m, 20m]
M=N=64 θ0 = 16◦ [71.62m, 20m]
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Fig. 8: Sensing results based on the SACSMN trained from 9% of the training set.

SACSMN that achieves stable sensing performance in the
test set. On the other hand, more training data means that
the model is exposed to more types of echoes, which helps
to improve the feature extraction ability of SACSMN in the
test set. Since the exhaustive research method is adopted in
the MUSIC, the sensing performance of MUSIC is optimal.
In addition, it is observed that the sensing performance of
SACSMN based on 9% of the training set is very close to the
actual angle parameters and the system sensing performance
is not significantly improved when more training samples
are provided. The above results demonstrate that SACSMN
extracts more general and effective features from the limited
echoes. The feature extraction ability of SACSMN is improved
and satisfactory sensing performance is achieved in the case of
few samples.The dependence of SACSMN on training samples
is significantly reduced.

3) The Sensing Trade-off Performance of SACSMN under
Different Conditions: As previously mentioned, the efficiency
of the DNNs is measured by η. It is observed that ResNet18
achieves optimal sensing performance in most cases. However,
this comes at a high computational cost. For example, when
M = N = 32, the MACC of ResNet18 is the highest
compared to other models. In contrast to SACSMN, the high
computational cost of ResNet18 is insignificant for sensing
performance improvement, and this is even more evident when
M = N = 64. Compared with benchmarks, SACSMN
achieves similar sensing performance while significantly re-
ducing the number of model parameters and computational
complexity. The experimental results in Tables V fully demon-
strate that under the same experimental conditions, the sensing
trade-off performance parameter η corresponding to SACSMN
is the smallest, and SACSMN realizes the optimal trade-
off between the system sensing performance and the model
computational complexity.

4) The Influence of Initial Vehicle Position and Direction
of Vehicle Travel on the Sensing Performance: In this part,
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Fig. 9: Achievable sum-rate for the considered V2I system with the SACSMN trained
from 100% of the training set.

the influence of the initial vehicle positions and directions of
vehicle travel on the sensing performance is explored. In the
simulation, three ULA sizes are considered, and the initial
angle parameter and location of each vehicle are shown in
Table VI. In each scenario, the vehicle drives towards the RSU.

The sensing results are depicted in Fig. 8, which are
calculated based on the SACSMN trained from 9 % of the
training set. It is observed that the angular parameters of
the vehicles gradually increase as the vehicles approach the
RSU. Even though all the vehicles drive away from the RSU
in the training set, high precision sensing is still achieved
when all the vehicles drive towards the RSU in the test
phase. This is because SACSMN implements sensing based
on echo signals, which do not contain information about the
vehicle’s travel direction. The above experiment demonstrates
that the directions of travel of the vehicles and the initial
vehicle locations have a very limited impact on the sensing
performance of the SACSMN.

E. Communication Performance

In this subsection, the communication performance are
investigated. Initially, the influence of the RSU configuration
N on the communication rate is analysed. After that, the
comparisons between SACSMN and the benchmarks in the
case of few samples are presented. What’s more, the effect
of training sample size on the communication rates for SAC-
SMN is discussed. Lastly, the influences of the initial vehicle
position and direction of vehicle travel on the communication
performance is explored.

1) The Influence of RSU Configuration Parameter on
Achievable Sum-Rate for SACSMN: The RSU configuration
parameters M and N are the fundamental parameters in the
considered system, and the simulations are carried out based
on SACSMN trained from the complete training set in this
experiment. The experimental results are illustrated in Fig. 9.
It is apparent that the sum-rates decline over time, owing to
the persistent increase of the distance between the vehicles
and the RSU, which causes a more significant communication
path loss. Furthermore, it is notable that the communication
rates are progressively improved as the RSU antenna array size
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Fig. 10: Achievable rate performances for a single vehicle with initial state [30m, 20m].

increases, since a larger ULA leads to greater communication
array gain. All of these phenomena are explained by (18).

TABLE VII: Average rates of each model based on 100% of the training set

M = N = 16 M = N = 64
AlexNet 3.42E-02 bps 2.03E-02 bps
CLDNN 9.40E-02 bps 3.33E-01 bps

MobileNet V3 9.40E-02 bps 3.34E-01 bps
ResNet18 9.40E-02 bps 3.35E-01 bps

ShuffleNet V2 9.40E-02 bps 3.34E-01 bps
SACSMN 9.40E-02 bps 3.32E-01 bps

2) Comparison With Other DNNs in Communication Per-
formancess under Few-shot Scenarios: SACSMN is com-
pared with the benchmarks, such as AlexNet, CLDNN and
MobileNet V3, under the few-shot condition in this part.
Specifically, 1% of the training set is used to train the models.
The initial state of the single vehicle is set to [30m, 20m],
and two antenna array sizes are considered. The average
communication rates for each model are summarized in Table
VII. SACSMN stands out as it achieves comparable communi-
cation performance to other models with the least total number
of parameters and lowest computational cost for the same
RSU configuration. Compared to the benchmark, SACSMN
achieves higher communication efficiency.

The Fig. 10(a) shows the achievable rates of all considered
DNN models for a specific test sample, while the correspond-
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Fig. 11: Achievable rate for a single vehicle with initial state [30m, 20m].

ing sensing performances based on AlexNet and the SACSMN
are illustrated in Fig. 10(b). Throughout the simulation, it
is observed that the communication rate curves are closely
aligned with each other when the ULA size is the same.
Therefore, it is approximated that all DNNs, except AlexNet,
achieve similar communication performance. Furthermore, the
majority of DNNs experience a gradual decline in their com-
munication rates as the distances increase.

In the case of SACSMN, the communication performance
curves display more fluctuations during the initial period when
M = N = 64 compared to M = N = 16. As shown in Fig.
10(b), this is due to the larger sensing error of SACSMN at this
stage, which leads to the degradation of the beam alignment
performance. Furthermore, the larger communication array
gain exacerbates the reduction in the rate. When M = N =
64, during t ∈ [500ms, 620ms] and t ∈ [1600ms, 6000ms],
the sensing performance of SACSMN remains stable, leading
to a steady reduction in the communication rate. However,
when M = N = 16 and t = 420ms, the communication
rate decreases dramatically due to the failure to achieve high-
precision beam alignment.

It is observed that the beam alignment performance based
on AlexNet exhibits a gradual improvement over time. Specif-
ically, when M = N = 16 and t ∈ [0ms, 2600ms], the
sensing error experiences a sharp decline, and the consequent
communication gain offsets the channel fading caused by
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TABLE VIII: average achievable rates of SACSMN at different training sample sizes

(bps) 1% 5% 9% 100%
M = N = 16 9.397E-02 9.397E-02 9.398E-02 9.398E-02
M = N = 64 3.340E-01 3.343E-01 3.343E-01 3.344E-01

longer distances, resulting in an increase in communication
rate. When M = N = 16 and t ∈ [3000ms, 6000ms],
the improvement in beam alignment performance gradually
levels off and the effect of distance dominates the achievable
downlink rate, resulting in rate degradation. When M = N =
16, despite an overall decrease in sensing error, it descends
slowly during certain periods, coupled with the impact of
distance, resulting in more fluctuations in the achievable rate.

The point of intersection between the 16- and 64-antenna
curves at t ∈ [4200ms, 4600ms] is noteworthy for AlexNet.
This is because, during this time interval, both scenarios
achieve approximate sensing performance gains, resulting in
similar improvements in beam alignment performance, while
the larger array gain significantly amplifies the contribution
of the beam alignment gain to the achievable rate. Notably,
the sensing error with M = N = 64 for AlexNet is
significantly smaller during t ∈ [5850ms, 6000ms], leading
to an even greater improvement in the rate. The intersection
of the AlexNet with M = N = 64 and SACSMN with
M = N = 16 curves is primarily caused by the differences
between communication array gains.

3) The Influence of Training Sample Size on Single Vehicle
Achievable Rate for SACSMN: The influence of training
sample size on achievable communication rate of a single
vehicle based on SACSMN is investigated in this part. The
vehicle is placed at [30m, 20m] with θ0 = 33.69◦, and two
scenarios, i. e., M = N = 16 and M = N = 64 are
considered. The instantaneous rates are depicted in Fig. 11,
and the corresponding average achievable rates at various sizes
of training sets are summarized in Table VIII.

As shown in Fig. 11, the communication rate increases
with the size of the training set when the time and RSU
configuration parameters N are kept constant. This is due
to the fact that larger training sets enable the system to
achieve smaller sensing errors, which, according to (19), will
further enhance the communication rate. Additionally, there
are many fluctuations in the rate curve when M = N = 16
and only 1% of the data set is utilized for training. This
is attributed to the poor learning performance of SACSMN
on the non-linear relationship between the echo signals and
sensing results, which reduces the beam alignment precision.
Furthermore, it is observed from Table VIII that the com-
munication performances achieved based on 1% and 100%
of the training set are remarkably similar. This phenomenon
indicates that the improvement in communication rate becomes
negligible by further increasing the size of the training sample
size. Therefore, the above experiment further validates the
high efficiency of the proposed SACSMN on communication
performance under few-shot learning conditions.

4) The Influence of Initial Vehicle Position and Direction of
vehicle travel on the communication performance: In this part,
the influences of the initial vehicle position and direction of
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Fig. 12: Achievable communication rate based on the SACSMN trained from 9 % of
the training set.

vehicle travel on the communication performance is explored.
The simulation settings in this part is the same as in Table VI.
In each scenario, the vehicle drives towards the RSU.

In Fig. 12, we show the achievable rates based on the
SACSMN trained from 9% of the training set, where three
sizes of ULA are considered. It is observed that as the vehicle
approaches the RSU, the communication rate is gradually
improved due to the weakened effect of channel fading.
Benefiting from the larger communication array gain due to
the large-scale ULA, the system achieves the highest commu-
nication rate when M = N = 64. In the considered scenario,
the communication performance is mainly affected by the
SACSMN sensing performance and the distance between the
vehicle and the RSU. With the benefit of the stable sensing per-
formance achieved by the SACSMN, the rates change gently
without drastic fluctuations. According to the above results,
it is observed that the initial position and driving direction
of the vehicle do not directly affect the communication rate,
which influence the communication performance by changing
the distance between the vehicle and the RSU.

VII. CONCLUSION

In this paper, we considered the ISAC-assisted V2I system
and investigated the tradeoff problem between system sensing
capability and computational complexity as well as the perfor-
mance of the system in terms of sensing and communication
under the condition of few samples. Aiming to reduce the
dependence of DNN models on training samples, dynamic
SA was proposed to enable the model to extract more general
and effective features from few echo signals, improving the
feature extraction capability of the model. To achieve the
optimal trade-off between system sensing performance and
computational complexity, we proposed the groundbreaking
network model, SACSMN. In particular, to improve the fea-
ture extraction capability, dynamic SA and channel shuffle
operation were adopted, and DWConv operation was applied
to reduce the computational cost in SACSMN. The simula-
tion results demonstrated that, SACSMN achieves satisfactory
sensing performance when based on 9% of the training set
samples, and the dependence of the proposed model on
training samples is significantly reduced. Compared with the
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benchmarks, SACSMN achieves the same level of sensing
performance with lower computational complexity, realizing
the optimal trade-off between system sensing performance and
computational cost. With the robust sensing performance of
SACSMN in the case of few samples, the system achieves
communication performance similar to that of the full training
set when based on 1% of the training set samples.
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