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Abstract: This study focuses on the deposition of microplastics (MPs) on urban beaches
along the central São Paulo coastline, utilizing advanced methodologies such as remote
sensing, GNSS altimetric surveys, µ-Raman spectroscopy, and machine learning (ML) mod-
els. MP concentrations ranged from 6 to 35 MPs/m2, with the highest densities observed
near the Port of Santos, attributed to industrial and port activities. The predominant MP
types identified were foams (48.7%), fragments (27.7%), and pellets (23.2%), while fibers
were rare (0.4%). Beach slope and orientation were found to facilitate the concentration
of MP deposition, particularly for foams and pellets. The study’s ML models showed
high predictive accuracy, with Random Forest and Gradient Boosting performing excep-
tionally well for specific MP categories (pellet, fragment, fiber, foam, and film). Polymer
characterization revealed the prevalence of polyethylene, polypropylene, and polystyrene,
reflecting sources such as disposable packaging and industrial raw materials. The findings
emphasize the need for improved waste management and targeted urban beach cleanups,
which currently fail to address smaller MPs effectively. This research highlights the critical
role of combining in situ data with predictive models to understand MP dynamics in coastal
environments. It provides actionable insights for mitigation strategies and contributes to
global efforts aligned with the Sustainable Development Goals, particularly SDG 14, aimed
at conserving marine ecosystems and reducing pollution.

Keywords: large microplastic; big data; altimetric position; laser application; multivariate
statistical techniques

1. Introduction
Considered an emerging and persistent anthropogenic contaminant, microplastics

(MPs) are also present as large particles, ranging from 1 to 5 mm [1], in various forms, such
as pellets, foam, fragments, fibers, and films [2]. In urban environments, these particles enter
ecosystems through rivers and drainage systems and flow towards the coast, where they
are transported by coastal currents and storm events that enhance their accumulation [3–5].
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Improper waste disposal, urban runoff, waste from leisure activities within these regions,
and industrial activities are among the primary sources of MPs in coastal areas [4,6–8].
MPs are widely distributed on urban beaches, where concentrations are exceptionally high
due to intense human activity (i.e., population pressure) and proximity to these pollution
sources [9–11], with accumulation amplified by inadequate infrastructure for managing
this pollutant, even with proper cleaning actions [12].

References [12–14] corroborate the aforementioned observation. Reference [14] high-
lights that the high occurrence of MPs on these beaches is primarily driven by urban
stormwater, rivers, estuaries, and oceanic inputs. Similarly, ref. [15] noted that beaches
with higher recreational value also exhibit elevated levels of MP contamination. Even those
considered “contaminant-free”, such as Blue Flag-certified beaches [16,17], appear not to be
exempt from this pollutant [18]. Beyond coastal ecosystem health, the esthetics and leisure
quality of beaches are also negatively impacted [19–21], harming tourism and economically
devaluing these areas [22].

Mechanical abrasion and ultraviolet (UV) radiation accelerate the degradation and
fragmentation of MPs [23,24], which may contribute to the release of greenhouse gases
(GHG), primarily methane and ethylene [22,25]. Globally, research on MPs in urban beach
environments primarily focuses on diagnosing abundance, contaminant load, and the
surface characteristics of the material [25–30]. On Brazilian sandy beaches, these studies
have primarily been quantitative [31]. Specifically, on the São Paulo coastline, recent studies
have shown that the upper portions of the beach profile are more susceptible to deposition
and accumulation of this pollutant, influenced mainly by geodesic, morphometric, and
meteoceanographic factors [3,4,32].

Studies that use data from different sources help to identify possible hotspots and de-
velop strategies to address plastic pollution in coastal regions [33]. Evaluations combining
machine learning (ML) with hydrodynamic models have proven effective for predicting
the distribution and deposition of MPs on sandy beaches, integrating large amounts of
data and complex environmental variables such as ocean currents, winds, and human
activities [34–38]. Furthermore, µ-Raman spectroscopy serves as a powerful tool for the
rapid and precise identification of the polymeric characterization of deposited MP, such
as polyethylene (PE), polypropylene (PP), polystyrene (PS) [39], and polyethylene tereph-
thalate (PET), further enhancing knowledge about the behavior of this pollutant in these
environments [3], such as in evaluating pollution sources, dispersion pathways, and the
potential accumulation of MPs in the beach environment [40–42].

In this context, this study aims to understand the dynamics (i.e., concentration and
distribution) of this material on urban beaches along the central São Paulo coastline, em-
ploying in situ surveys such as sediment collection, morphometric aspects (altitude, slope,
and orientation of beach faces), orbital remote sensing images, and µ-Raman spectroscopy.
We applied ML models to predict the deposition of MPs, advancing scientific knowledge
about their presence and impact in urban coastal environments and providing precise
information for managers and decision-makers. Regarding this purpose, this research also
contributes to the United Nations’ 2030 Agenda for Sustainable Development Goals (SDGs),
particularly SDG 14, which aims to conserve and promote the sustainable use of oceans,
seas, and marine resources [43].

2. Methodological Approach
The identification and characterization of sites susceptible to MP deposition involve

four key steps: (1) determining beach face orientation and slope parameters derived from
remote sensing imagery; (2) conducting fieldwork, including sediment collection and the
measurement of beach morphometric parameters (orientation, slope, and altitude) using
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Global Navigation Satellite System (GNSS) altimetry; (3) performing laboratory analysis
(sieving and µ-Raman spectroscopy); and (4) applying machine learning (ML) models
(Figure 1).
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Figure 1. Flowchart of the steps in the methodology used in this research. RS: orbital remote
sensing images; MNDWI: modified normalized difference water index; HDsat: horizontal distance
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derived by GNSS; µ-Raman: micro-Raman analysis; ML: machine learning models; and MP deposits:
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2.1. Study Area

The central portion of the São Paulo coastline features sandy beaches, mangroves,
resting vegetation (coastal vegetation found in sandy areas in Brazil), and estuarine systems,
where natural processes and human activities shape its dynamics (Figure 2). Sedimenta-
tion and erosion, driven by longshore currents and longitudinal transport, redistribute
sediments and debris along the coast [3,4,32,44]. East–northeast (E-NE) winds generate
waves and, consequently, alongshore currents parallel to the shoreline, while atmospheric
systems like the South Atlantic Tropical Anticyclone modify this dynamic, intensifying
sediment transport and driving changes in beach morphology that affect the deposition
and remobilization of MPs [3,4,32,44–47].
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The proximity of urbanized areas, such as the Port of Santos and the industrial region
of Cubatão, increases pressure on ecosystems, resulting in mangrove degradation, resting
suppression, and the construction of artificial structures. These urban areas serve as
significant sources of waste, including MPs from tourism and industrial and port activities,
exacerbating environmental impacts in the region [3,4,48,49].

2.2. Remote Sensing Images

The beach face orientation (Aspectsat) was determined based on the alignment of the
transect relative to the geographic north [3,32,50]. The slope model (tanβsat in Equation (1))
was computed using the horizontal (HDsat) and vertical (VDsat) distances between the high
and low tide shorelines, as identified from satellite imagery, along with the spring tide
range [32]. For example, in the vicinity of the Port of Santos, the average spring tide range
is 1.58 m, calculated using the mean sea level (MSL) reference from Imbituba/SC within
the Brazilian Geodetic System (BGS) [4,32,51].

tanβ = atan (VD/HD) (1)

The HDsat values were obtained from multispectral remote sensing (RS) data, integrat-
ing harmonized Landsat 8 and Sentinel-2 imagery (HLS) at a spatial resolution adjusted to
30 m for 2019 and 2021. This methodology allows for up to seven satellite observations per
month for the same area [32,52]. Median HLS images were collected during synchronous
satellite passes (~10:30 A.M.) aligned with high and low spring tide phases, using tidal
predictions from the WXTIDE32 software v. 4.7 [53]. Consequently, two datasets—High
Tide (HT) and Low Tide (LT)—were developed, each based on the median of 26 HT and
27 LT images. The beach slope data derived from satellite imagery facilitated a rapid
empirical assessment of the beach slope, and were classified into three categories: steep
(tanβ > 0.12), intermediate (0.05 < tanβ < 0.12), and gentle (tanβ < 0.05) [3,32,54,55].

2.3. Fieldwork Samples and Laboratory Analysis

Fieldwork took place from April to September 2023, examining ten beach profiles
with varying slopes and orientations aligned with the spring tide period. During this time,
cold fronts generated waves up to 4 m high, arriving predominantly from the south and
southeast quadrants [47]. These conditions significantly influenced sediment dynamics,
reshaping beach morphology and affecting the deposition and remobilization of microplas-
tics [3,4,32]. The selected beach profiles represented both urbanized and non-urbanized
stretches of São Paulo’s coastline. Sediment samples and morphometric data were system-
atically collected along these profiles, as outlined in Table 1 and Figure 2.

Table 1. Standardized qualitative data based on the total microplastics (MP/m2).

Ranking Qualitative Data

0.80–1.00 Very High (VH)
0.60–0.79 High (H)
0.40–0.59 Moderate (M)
0.20–0.39 Low (L)
0.00–0.19 Very Low (VL)

Sampling locations within each profile were chosen based on environmental factors
affecting debris distribution on sandy beaches, such as strandline elevations linked to water
levels [4]. At each sampling point, approximately 1500 g of sediment was collected from the
highest storm surge strandline (P1) [3]. These samples were then homogenized and divided
into 500 g portions for consistency and potential replicate analyses. The surface sediment
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layer (~2 cm deep) was sampled over a 1 m2 area (Figure 3) at each of the 40 points, leading
to the identification of 272 microplastic particles between 1 and 5 mm in size [1,3].
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Figure 3. Beach sampling point (P1), modified from [1]. Examples of GNSS base, rover surveys, and
area (1 m2) of superficial sediment collection.

The in situ morphometric parameters (AspectGNSS, beach slope—tanβGNSS, and
AltitudeGNSS) were obtained via a process similar to that described in Section 2.2. The
orientation of the beach face (Aspectsat) was established based on the direction of the
transect relative to geographic north, and tanβGNSS, derived by VD and HD, are the vertical
and horizontal distances (VDGNSS and HDGNSS) between sampling points P1 and water
level/low tide, respectively (Equation (1); Figure 3). The slope can be used as a proxy of
the beach’s morphodynamic stage [54]. Orthometric altitudes (Hi) were determined using
the GNSS positioning obtained using the fast static relative GNSS surveying method, refer-
encing the mean sea level at Imbituba-SC, calculated based on the SIRGAS2000 ellipsoid
(hi) and the MAPGEO2015 geoid height model (Ni) [3,4,56,57] (Equation (2)).

Hi = hi − Ni (2)

Approximately 60% of the samples are characterized using µ-Raman spectroscopy [58]
with the labRAM HR Evolution spectrometer, which operates with a long-range objective
lens featuring a numerical aperture (NA = 0.55) and lasers of various wavelengths (473 nm,
532 nm, 633 nm, 785 nm, and 1064 nm), covering a spectral range of 200 cm−1 to 3200 cm−1

for hydrocarbon detection [3,59–61]. To maximize spectrum quality, measurement pa-
rameters such as integration time, the number of accumulations, and slit diameter are
continuously adjusted. Noise filtering is applied to the baseline using MATLAB® v. 23.2.
The filtered spectra are then compared against a database in the KnowItAll® v. 2024 artificial
intelligence software to identify polymer types [3,60].

2.4. Machine Learning Models

The calibration between satellite-estimated variables (tanβsat and Aspectsat) and in situ,
GNSS measurements (tanβGNSS and AspectGNSS) applies the Random Forest model [62]
and performance indicators such as the coefficient of determination (R2), Mean Absolute
Error (MAE), and Root Mean Squared Error (RMSE) to ensure accuracy [32]. To predict
MP deposition (MP/m2) on sandy beaches, machine learning (ML) algorithms are applied,
using tanβGNSS and AspectGNSS as predictor variables. Due to the limited number of
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samples, the dataset (14 profiles) is randomly expanded by up to 120%. From this expanded
dataset, 70% is allocated for training and 30% for validation, minimizing overfitting and
underfitting [63,64].

The models applied in this stage include Random Forest (RF) [62], Gradient Boosting
(GB) [65], Lasso and Ridge Regression [66,67], Support Vector Regression (SVR) [68,69],
and Partial Least Squares Regression (PLS) [70]. Hyperparameters are optimized using
Grid Search [71] and evaluated using metrics such as R2, MAE, RMSE, Akaike Information
Criterion (AIC), and Bayesian Information Criterion (BIC), along with overfitting and
underfitting indicators [72–74]. SHapley Additive exPlanations (SHAP) analysis assesses
the influence of independent variables on predictions, aiding in the selection of the most
effective models [75].

Given the quantitative nature of the data resulting from the predictive models for
beach face slope (tanβ) and orientation (Aspect), as well as MP deposition (MP/m2), these
are transformed into qualitative variables for the application of the exploratory multivariate
Correspondence Analysis (CA) technique. This technique examines associations between
the variables of interest using the chi-square test (X2; p-value < 0.05). Adjusted standardized
residuals (ASR) verify significant dependency relationships between each variable based
on the critical reference value (+1.96 ≤ good ASR) of the standard normal curve at the 5%
significance level [63,76,77]. Thus, tanβ values are classified as steeper, and intermediate,
sloping, and Aspect values are categorized as N, NE, E, SE, S, SW, W, and NW, as described
in Section 2.2. [32,50,54,55]. The results of the MP deposition model (pellets, foam, frag-
ments, fiber, and film) (MP/m2) are standardized (Equation (3)) and transformed into a
Likert scale (Table 1). All statistical analyses use the Python programming language via
the Anaconda/Spyder software v. 5.4.3, while geographic distribution is processed with
ArcGIS Pro software v. 3.4.

Standardization =
(observed value − minimum value)
(maximum value − minimum value)

(3)

3. Results
3.1. Morphometric Parameters and In Situ Microplastic Distribution

Table 2 summarizes the morphometric characteristics of altitude (Alt), slope (tanβ),
Aspect, and the distribution of different microplastic categories per square meter (MP/m2)
collected in situ: pellets, fragments, fibers, foam, and films. Environmental characteristics,
such as slope (tanβ) and Aspect, exhibit considerable variation among beaches. Slopes like
GUA-A (tanβ = 0.157) tend to show higher concentrations of foam particles, suggesting
that topography influences MP retention. Conversely, beaches with lower slopes, such
as GNZ (tanβ = 0.004), exhibit less MPs. Among MP types, foam represents the highest
proportion (48.7%), followed by fragments (27.7%) and pellets (23.2%). Fibers account for
a minimal fraction (0.4%), and no films were recorded. The site with the highest MP/m2

density is MCS-A beach, with 35 MP/m2, followed by PG and BET, each with 28 MP/m2

(Figure 2, Table 2).

Table 2. Altitude (Alt), slope (tanβ), Aspect, and distribution of different and total microplastic
categories (MP/m2).

COD Alt tanβ Aspect Pellet Fragment Fiber Foam Film MP/m2

BET 2.31 0.017 136 1 3 1 23 0 28
PEB-A 2.41 0.047 151 2 5 0 6 0 13
MCS-A 2.13 0.029 128 9 14 0 12 0 35
ENS-B 3.22 0.086 183 2 2 0 3 0 7
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Table 2. Cont.

COD Alt tanβ Aspect Pellet Fragment Fiber Foam Film MP/m2

ENS-A 2.45 0.036 168 1 0 0 1 0 2
PIT-B 2.34 0.027 201 7 10 0 6 0 23
PIT-A 2.32 0.054 151 4 1 0 2 0 7
AST-A 2.57 0.075 112 1 0 0 5 0 6
GUA-B 2.45 0.05 224 5 0 0 11 0 16
GUA-A 2.41 0.157 217 1 2 0 15 0 18

GNZ 2.39 0.004 191 10 5 0 0 0 15
ITR 4.14 0.023 128 0 5 0 12 0 17

GZN 1.16 0.008 165 0 8 0 1 0 9
PG 1.47 0.014 213 9 7 0 12 0 28

Total 52 62 1 109 0 224

% 23.2 27.7 0.4 48.7 0 100

3.2. Model Calibration and Validation Metrics

The calibration of morphometric data between tanβGNSS (in situ) and tanβsat demon-
strated strong performance using the Random Forest (RF) model, achieving a coefficient of
determination (R2) of 0.784, indicating that the model explained 78% of the variability in
satellite-estimated slope. Error metrics confirmed the predictions’ closeness to the actual
values, with an MAE of 0.006 and an RMSE of 0.008. For the variable Aspectsat, the model
showed even better performance, with an R2 of 0.848, explaining 85% of the variability, and
MAE and RMSE values of 8.978 and 11.882, respectively, reaffirming RF’s ability to capture
relationships between morphometric variables in the training set.

In analyzing metrics related to MP categories (pellets, fragments, fibers, foams, and
total MP/m2), results varied depending on the microplastic type. For pellets, the SVR
model achieved an R2 of 0.596, MAE of 1.150, and RMSE of 1.695, classified as “Good
Fit” for balancing simplicity and accuracy, with an AIC of 39.940 and BIC of 49.109. For
fragments, the Gradient Boosting (GB) model stood out, with an R2 of 0.904, MAE of 0.366,
and RMSE of 1.051, demonstrating its robustness in predicting the variability of this MP
type. For fibers, the RF model performed best, with an R2 of 0.975, MAE of 0.023, and
RMSE of 0.049, as well as negative AIC (−78.950) and BIC (−61.950) values, indicating
high efficiency and model fit (Table 3).

Table 3. Performance metrics of machine learning models for predicting MP deposition.

MP Model R2 MAE RMSE AIC BIC Overfit/Underfit

Pellet SVR 0.596 1.150 1.695 39.940 49.106 Good Fit
Fragment GB 0.904 0.366 1.052 43.719 61.217 Good Fit

Fiber RF 0.975 0.023 0.049 −78.950 −61.950 Good Fit
Foam RF 0.994 0.384 0.574 17.110 32.108 Good Fit
Film Null Null Null Null Null Null Null

Total MP/m2 GB 0.942 0.703 2.037 66.193 83.690 Good Fit

For foams, the RF model achieved an R2 of 0.994, MAE of 0.384, and RMSE of 0.574,
confirming its exceptional performance for this category. Films were excluded due to their
absence. For total MP/m2, the GB model showed significant performance, with an R2

of 0.942, MAE of 0.703, and RMSE of 2.037, along with acceptable AIC and BIC values,
demonstrating its robustness for integrated MP predictions (Table 3).
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Figure 4a from the SVR model applied to pellets shows that tanβ has a more significant
negative impact, with more dispersed values than Aspect, which contributes values close
to zero. This analysis highlights tanβ as a key variable in the model, while Aspect plays
a secondary but still relevant role. Figure 4b from the GB model for fragments shows
that tanβ has a predominantly negative impact, while Aspect contributes more variably,
with values near zero. The dispersion of points suggests differences in variable behavior
under specific scenarios, with high values (in red) contributing more neutrally or positively.
The horizontal axis reflects relative importance, while the colors indicate the attribute’s
intensity within the model’s prediction context. The plot in Figure 4c examines the impact
of variables in the RF model for fibers. Tanβ exerts minimal influence, with SHAP values
near zero, indicating low predictive importance. Aspect shows slightly higher impacts
in some cases, but remains modest. The absence of extreme SHAP values suggests that
both variables play complementary but limited roles in the model. The color distribution
reinforces the low variability of attributes within this dataset.
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In Figure 4d, the RF model applied to foams reveals that Aspect has greater relevance,
with broadly negative SHAP values, indicating its significant impact on predictions for this
MP type. Tanβ also shows negative values, but with less dispersion. The graph further
observes a strong correlation between Aspect and model outcomes. The color separation
illustrates how high or low values influence predictions, with red generally associated
with significant negative contributions. Figure 4e from the GB model applied to total MP
demonstrates that tanβ has the most critical impact, with broadly negative SHAP values
indicating an inverse correlation. Aspect also shows relevance, albeit to a lesser extent,
with contributions ranging from negative to neutral. The varying colors of the points reflect
the intensity of variables relative to predictions, highlighting how attributes independently
influence the model’s decision-making process.

3.3. Morphometric Parameters and Microplastic Distribution Models

Table 4 presents data on the predicted slope (tanβ) and Aspect of the beaches in Praia
Grande (PG), São Vicente (SVS), Guarujá (GUA), and Bertioga (BER). The tanβ variable
indicates that the beaches tend toward an intermediate morphodynamic state, with average
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slopes ranging from 0.059 in GUA to 0.064 in PG. The maximum slope observed was
0.071 across multiple beaches, supporting an intermediate morphodynamic pattern. The
lowest slope variability was recorded in GUA (standard deviation, SD = 0.006), while the
highest was observed in PG and BER (SD = 0.008).

Table 4. Statistical summary of the models: slope (tanβ) and direction of the beach face (Aspect).

Var. Beach N Min Max Sum Mean SD

tanβ

PG 9 0.047 0.071 - 0.064 0.008
SVS 14 0.055 0.071 - 0.063 0.007

GUA 17 0.047 0.068 - 0.059 0.006
BER 6 0.048 0.071 - 0.060 0.008

Aspect

PG 9 151 184 - 165 12
SVS 14 151 184 - 171 13

GUA 17 150 184 - 169 13
BER 6 108 150 - 120 16

In the same table, average beach face orientations ranged from 120◦ in BER to 171◦ in
SVS, reaching up to 184◦ in the southern central beaches of the study area (GUA, SVS, and
PG), indicating that these beach faces are predominantly oriented toward the SSE quadrant.
BER exhibited the highest variation (SD = 16), while PG had the lowest dispersion (SD = 12).
The maps in Figure 5 corroborate Table 4, indicating the intermediate tendency of these
beaches, with no steeper beaches observed and some sloping beaches identified in southern
PG, northern GUA, and the central portion of BER. Similarly, beach face orientations vary
along this stretch of the São Paulo coastline, with predominant SSE directions in PG, SVS,
and GUA and a variation toward ESE in BER.
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The Shapiro–Wilk test indicated that the all the different types of polymers do not
fit the assumptions of parametric tests (p-value < 0.05), while the number of polymers
found on the beaches (PG, SVS, GUA, and BER) is a dataset suitable for parametric testing
(p-value > 0.05). In this context, the Kruskal–Wallis test for equal medians of polymer
concentrations shows X2 = 76 and p-value = 1.279 × 10−18, indicating a significant difference
between sample medians. The same Shapiro–Wilk test was applied. Furthermore, the t-test
demonstrated a significant difference in the quantities of these polymers across the different
beaches (p-value = 0.02549) [78].

Table 5 indicates that pellets were the models’ most frequent type of MP, followed by
foams and fragments, while fibers were the least frequent. Predictive models for pellets
showed uniformity across the beaches PG, SVS, and GUA, with an average of 3 MP/m2

(SD = 0), while BER had a lower average (2 MP/m2) and greater variability (SD = 1). For
foams, PG and BER exhibited the highest average values (3 and 5 MP/m2, respectively),
with greater variation in BER (SD = 2). SVS and GUA predicted lower average values
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(2 MP/m2), with low variability. For fragments, all beaches predicted an average of
1 MP/m2, except BER, which showed greater variation (SD = 2), reflecting maximum
values of 4 MP/m2. Fibers were not predicted in PG, SVS, and GUA, while BER predicted
an isolated case. The same table also shows homogeneity in the total MP predictions for PG,
SVS, and GUA, with averages ranging from 7 to 8 MP/m2 (SD ≤ 2), while BER displayed
greater variability (SD = 3) and a wider range between the minimum and maximum values
(6 and 12 MP/m2). Table 5 highlights the predominance of pellets and foams across all
beaches, with pellets being the most common category (135), followed by foams (127).
Fragments accounted for 48, while fibers were nearly absent (1 MP). The total cumulative
count for all categories was 349 MP.

Table 5. Statistical summary of the models of different concentrations of microplastic categories by
beach (MP/m2).

Var. Beach N Min Max Sum Mean SD Total

Pellet

PG 9 3 4 28 3 0

135
SVS 14 3 4 42 3 0

GUA 17 3 4 50 3 0
BER 6 2 4 15 2 1

Foam

PG 9 2 6 24 3 1

127
SVS 14 2 3 32 2 0

GUA 17 2 6 40 2 1
BER 6 3 8 31 5 2

Fragment

PG 9 1 5 12 1 1

48
SVS 14 1 1 12 1 0

GUA 17 1 5 18 1 1
BER 6 0 4 6 1 2

Fiber

PG 9 0 0 0 0 0

1
SVS 14 0 0 0 0 0

GUA 17 0 0 0 0 0
BER 6 0 1 0 0 0

Total MP

PG 9 7 13 69 8 2

349
SVS 14 7 12 102 7 1

GUA 17 7 13 129 8 2
BER 6 6 12 49 8 3

Spatial distribution prediction maps for MPs (Figure 6) support the abovementioned
findings. Pellets (Figure 6a) showed the highest concentrations in PG and SVS (3–4 MP/m2),
intermediate values in GUA, and the lowest in BER. Foams (Figure 6b) had the highest
concentrations in BER (6–8 MP/m2), intermediate values in PG (4–6 MP/m2), and the
lowest in SVS and GUA (2–3 MP/m2). Fragments (Figure 6c) revealed greater spatial
heterogeneity, with the highest concentrations (5–6 MP/m2) in specific areas of GUA and
BER, while PG and SVS exhibited more moderate values (2–4 MP/m2). Fibers (Figure 6d)
were the least predicted MP, absent in PG, SVS, and GUA, and occurring only in BER
(1 MP/m2). Figure 6e, showing the total predicted MP accumulation, highlights PG and
BER as the beaches with the highest concentrations (12–13 MP/m2), followed by SVS and
GUA, which showed moderate values (8–11 MP/m2).

The X2 test analyses indicate statistically significant associations between the cate-
gorical variables analyzed. The tanβ variable shows significant associations with pellets
(p-value = 8.7135 × 10−5), foams (p-value = 3.1183× 10−8), fragments (p-value = 2.5028 × 10−8),
and total MP (p-value = 2.2597 × 10−5), highlighting relevant relationships between these vari-
ables. However, there is insufficient statistical evidence for a significant association between
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tanβ and fibers (p-value = 0.0750), though this value is close to the significance threshold of 0.05,
suggesting a potential marginal relationship. The Aspect variable demonstrates a statistically
significant association only with pellets (p-value = 1.0860 × 10−11), indicating a strong relation-
ship between these variables. For other variables, such as foams (p-value = 0.5645), fragments
(p-value = 0.3904), fibers (p-value = 0.7411), and total MP (p-value = 0.3041), the p-values do not
indicate significant associations, showing that Aspect has limited impact except for pellets.
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The same X2 test showed significant associations between different beaches (variable
beach) and the categorical variables, mainly pellets, foams, fragments, and total MP. The
strongest association was observed with pellets, with a p-value of 1.7431 × 10−12, indicating
a highly significant relationship. Additionally, significant associations were found between
beaches and foams (p-value = 9.1400 × 10−5) and fragments (p-value = 0.0042), suggesting
relevant patterns of association for these categories. However, no significant associations
were found for fibers, indicating insufficient evidence to establish a consistent relationship
between these variables (p-value = 0.2404). Conversely, the analysis between the beach
and total MP revealed a p-value of 6.9000e−06, indicating a highly significant association
and reinforcing the relevance of this variable in explaining observed differences across
beach categories.

Figure 7 illustrates the perceptual map of adjusted standardized residuals (ASR) for
dependency relationships in the modeled points for PG, GUA, SVS, and BER, showing the
different concentrations of pellets, foams, fragments, and total MP. Figure 7a demonstrates
that VH (very high), H (high), M (medium), and VL (very low) concentrations of pellets
are strongly associated with the modeled points in PG, GUA, SVS, and BER. VH, H, and
M concentrations of foams are also related to PG (Figure 7b), as are VH concentrations of
fragments (Figure 7c) and total MP (Figure 7d), which are strongly associated with the
modeled points in PG. Fibers did not exhibit significant dependency relationships for any
of the beaches.
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between variables (+1.96 ≤ good SAR). VL (very low), L (low), M (medium), H (high), and VH (very
high) represent the different levels of MP/m2 deposition by CA.

3.4. Polymeric Characterization

The µ-Raman spectra of MP particles classified as pellets, foams, fragments, and
fibers identify their chemical and physical characteristics. Pellets, frequently observed,
appear in various shapes, such as spherical, disk-like, or cylindrical, with diverse colors
and compositions. µ-Raman analysis reveals that high-density polyethylene (HDPE), with
a density of 0.93–0.97 g/cm3 and bands at 1.113 cm−1 and 1.412 cm−1, is the most common
(Figure 8a). Low-density polyethylene (LDPE), with a density of 0.91–0.93 g/cm3 and bands
at 1.061 cm−1, 1.130 cm−1, and 1.447 cm−1 (Figure 8b), is another frequently identified
material. Polypropylene (PP), with a density of 0.89–0.92 g/cm3 and bands at 809 cm−1,
841 cm−1, and 973 cm−1, is the third most prevalent compound (Figure 8c). Polystyrene
(PS), with a density of 1.05–1.15 g/cm3 and bands at 620 cm−1 and 1.003 cm−1 (Figure 8d),
ranks fourth.

Foams primarily comprise expanded polystyrene (EPS) or extruded polystyrene (XPS),
with densities of 0.015–0.03 g/cm3 and 0.03–0.06 g/cm3, respectively. µ-Raman spectra re-
veal characteristic bands at 620 cm−1, 1.003 cm−1, and 1.609 cm−1 (Figure 8d), typical of the
aromatic composition (C8H8)n. Fragments display Raman bands typical of polyethylene
(PE—Figure 8a,b), polypropylene (PP—Figure 8c), and polystyrene (PS—Figure 8d), con-
firming compositions of (C2H4)n, (C3H6)n, and (C8H8)n. The density of these fragments
varies according to the polymer; PE and PP (<1 g/cm3) float in water, while PS (>1 g/cm3)
tends to deposit in sediments [23]. The varying colors observed indicate synthetic pigments
(dyes) or environmental alterations [79]. Fibers, the least frequent, include polyamide (PA,
nylon) and polyethylene terephthalate (PET), with bands at 1.132 cm−1 and 1.638 cm−1

(PA), and 1.000 cm−1 and 1.730 cm−1 (PET), and densities ranging from 1.14 to 1.38 g/cm3

(Figure 8b).
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4. Discussions
By analyzing the predictions obtained from the tested models, we observed variations

for each type of MP evaluated. The SVR model proved effective for pellets, although its
performance was inferior to that of more robust models, such as RF and GB, used for
other MP categories. References [64,75] emphasize that SVR is an efficient alternative for
capturing patterns in less complex contexts, balancing simplicity and accuracy, especially
in scenarios with low data non-linearity. In contrast, the RF model performed exceptionally
well for foams because it handles complex interactions between variables and highly
heterogeneous data. Reference [58] highlights that RF is ideal for contexts with many
independent variables and/or high variability, making it particularly useful for predicting
the deposition of lightweight and floating MPs, such as foams, which are influenced by
wave energy and beach orientation [3,80].

The GB model was the most efficient for fragments, demonstrating its robustness
in capturing non-linear relationships and its ability to handle complex and noisy data.
References [61,71] note that GB is particularly effective in environmental scenarios with
multiple interdependent factors. In this context, SHAP analysis revealed that morphometric
variables, such as beach face slope and orientation, were key determinants for fragment
deposition, reinforcing studies that emphasize the importance of morphometric variables
in the dynamics of MPs in coastal zones [3,4,24].

In this context, the significant presence of pellets on beaches near the Port of Santos
highlights the impact of industrial and port activities. These materials are frequently used
as raw materials for producing plastic-derived items such as rigid packaging, pipes, and
flexible containers. However, in these areas, these particles are prone to losses during
transshipment and transportation, supporting studies that identify such locations as pre-
dominant sources of this type of microplastic [4,7,81,82]. The proximity to the port and
industrial facilities is thus considered a significant factor contributing to the increased quan-
tity of pellets on adjacent beaches such as PG, SVS, and GUA. Furthermore, Refs. [3,4,83]
have shown that this specific type of MP tends to accumulate in the upper portions of the
beach profile (storm surge strandlines), due to metoceanographic factors such as storm
waves [84].

The VH, H, M, and VL concentrations of pellets associated with the modeled points
on the beaches of PG, GUA, SVS, and BER indicate the influence of predominant longshore
currents (NE-SW), which act as the primary force redistributing pellets southward along
the São Paulo coastline [3,4,38,44,46,85,86]. Beaches downstream from the Port of Santos,
such as PG, GUA, and SVS, are more heavily impacted, due to their proximity to pellet
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emission sources and the influence of the predominant currents, which redistribute these
pollutants and cause their accumulation in these areas. Storm events intensify this process
by moving pellets from the intertidal zones to the upper portions of the beach, particularly
on those with faces oriented toward the southern quadrant [3,4,8,86,87].

In contrast, the modeled points located upstream and farther from these emission
sources, such as BER, show a lower pellet accumulation [82]. However, pellets on these
beaches may be related to their proximity to the Bertioga Channel, which connects directly
to these sources (the Port of Santos and the Cubatão industrial complex). These areas
are major distributors of such waste, especially during ebb tides, combined with the
direct connection between the channel and the ocean, which facilitates the dispersion and
deposition of these MPs on northern beaches, albeit on a smaller scale [3,8,46]. Additionally,
SHAP analysis applied to predictive models reinforces that morphometric variables, such
as beach slope and orientation, are key determinants for pellet deposition. South-facing
intermediate beaches favor the accumulation of materials transported by longshore currents
and extreme hydrodynamic events [3,4,38,75].

A previous analysis [3] observed that both beach face slope and Aspect showed
significant associations and dependency relationships with all types of MP along the São
Paulo coastline. The results presented here revealed that urban beaches, except for pellets,
foams, fragments, and fibers, did not show significant associations with Aspect. Therefore,
beach face orientation has a limited impact on the deposition of these other MP types. These
MPs primarily originate from irregular in situ disposal by beachgoers and/or vendors,
particularly in high-traffic beaches with inefficient cleaning during peak seasons (summer
and holidays) [88–91], or through urban stormwater drainage systems that discharge onto
these beaches. On a smaller scale, fishing gear waste transported by marine currents
also contributes to these MPs. In contrast, pellets are deposited on beach profiles almost
exclusively via the sea [3,82,90,92].

Pellets are predominantly composed of EPS and XPS, characterized by an extremely
low density and high buoyancy [3,93–95]. These properties facilitate their transport by
currents and waves, as well as their fragmentation due to UV radiation and mechan-
ical abrasion, contributing to their dispersion and deposition in other coastal environ-
ments [23,88,96]. Foam deposition transported by the sea tends to accumulate in the lower
and intermediate, more humid sections of the beach profile [3]. However, improperly
discarded insulating packaging tends to break down into smaller particles through use,
which accumulate in the upper sections of heavily frequented beaches, where wave energy
is insufficient to remove these materials [97–99].

Poorly implemented beach cleaning exacerbates the issue. Urban beach cleaning often
focuses on removing visible MPs while neglecting micro waste (<5 mm), which tends
to remain in the upper sections of the beach. MPs also end up buried in the sand over
time, similar to cigarette butts, requiring appropriate equipment to be removed [8,17]. In
fact, even on Blue Flag-sealed beaches, although this certification represents an indication
of beaches with higher environmental quality, this is not necessarily the reality. Refer-
ence [17] found that beaches that received this indication on the island of Cyprus (a tourist
destination) and were cleaned once a day still presented this type of contaminant.

This oversight can worsen the presence of smaller pollutants, which not only persist
in the environment for long periods, but also pose greater ecological and toxicological
risks due to their interactions with marine organisms and their ability to adsorb chemical
contaminants from the environment [24,28,29,82,100,101]. Due to their faceted or irregu-
lar shapes, fragments and fibers, commonly derived from packaging, household items,
and industrial products, exhibit different transport and deposition dynamics on beaches
compared to pellets and foams [9,24,101].
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These geometric characteristics significantly increase resistance to movement, limiting
their mobility and making it more difficult for them to be transported to the upper regions
of beaches, particularly under less intense wind and wave conditions [102–104]. Unlike
other types of MPs, such as pellets, fragments, and fibers are less likely to float or be
displaced by lower-magnitude forces, which explains their higher concentration in the
intermediate zones of the beach profile [3,5,24].

Another important factor is the density of fragments and fibers, which tends to be
higher than that of lighter and more buoyant MPs, such as foams. This characteristic
favors their deposition in areas where wave and current energy decreases but remains
sufficient to mobilize them. In these zones, typically between the high tide line and areas
with significant aeolian transport, fragments and fibers reach a dynamic equilibrium that
hinders their movement to the upper sections of the beach [3].

Recent studies indicate that cleaning activities carried out by visitors at events created
specifically for these purposes contribute not only to the removal of larger waste (litter), but
also to valuing environmental education and a sense of belonging among participants when
related to voluntary actions [105,106]. But, regarding MP residues, it is therefore evident
that models combining remote sensing data with environmental variables (measured in situ)
can assist in identifying and predicting zones of high MP accumulation [107], accounting
for their type and addressing the high spatial complexity of these variables in coastal
environments. Such models provide critical support for mitigation strategies [108–110]
targeting this pollutant.

There is no doubt that, in general, beach pollution in Brazil is intensified by inade-
quate city waste management, which demonstrates that this problem requires a holistic
approach [33] involving different stakeholders [111] and more effective public policies.
Also, considering that the MPs found on beaches were not necessarily generated there, and
that they may result from the fragmentation of larger pieces of plastic [23], the fight against
beach pollution needs to be thought of in an interdisciplinary way, and by different levels
of government, exposing its spatiotemporal complexity and borderless characteristics.

This study highlights the importance of using a large set of data to identify the
hotspots where greater attention and monitoring [33] can maximize cleanup efforts and
local solutions. As well as guiding mitigation measures and diplomatic efforts on the
international level [112,113], reinforcing the urgency of a global legally binding treaty that
is fair [113] and science-based [114,115] is critical to achieve target 14.1 proposed by the
UN and other associated SDGs [111].

5. Conclusions
The study implemented rigorous protocols to ensure the reliability and reproducibil-

ity of the results. The calibration of ML models, evaluated through metrics such as R2,
MAE, RMSE, AIC, and BIC, mitigated overfitting and underfitting risks through careful
data expansion and partitioning. SHAP analysis provided transparency by identifying
the influence of individual variables. The polymer identifications, carried out using µ-
Raman spectroscopy, incorporated noise filtering and iterative parameter adjustments for
optimization. Together, these practices ensured data quality and model validity.

The results of this study highlighted the significant impact of MPs on urban beaches
along the central São Paulo coastline, shedding light on their deposition dynamics and
identifying the types of polymers present while exploring the relationship between these
accumulations and environmental and morphometric factors. Applying techniques such as
µ-Raman spectroscopy and ML models proved effective in characterizing MPs, indicating
the primary sources of this pollutant (e.g., chemical industry, fishing activities, urban runoff,
and local waste, etc.) and predicting their distributions. The predictive models emphasized
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the importance of variables such as beach slope (tanβ) and orientation (Aspect). Slope
emerged as a critical variable influencing the deposition of all MP categories, while Aspect
had a limited impact, being more relevant only for pellets. This finding suggests that on
urban beaches, foams and other MP types (unlike pellets) are predominantly influenced by
improper local solid waste disposal by beachgoers. This demonstrates that in these areas,
the primary source of these other MP categories is not marine. In contrast, the deposition
of pellets reflects a combination of marine transport and beach morphometric factors.

The research also highlights the variable performance of ML models in predicting dif-
ferent MP types, showcasing the unique characteristics of each material and its interactions
with environmental factors. The study identified higher total MP concentrations in beaches
south of the Port of Santos, such as PG, SVS, and GUA, attributed to their proximity to
emission sources (beachgoers and urban stormwater drainage systems) and the influence of
predominant NE-SW coastal drift currents. In contrast, northern beaches like BER exhibited
lower total MP accumulation, though the hydrodynamic connection with the Bertioga
Channel suggests a potential transport and deposition route for these areas.

Polymer characterization confirmed the predominance of polyethylene, polypropylene,
and polystyrene, reflecting their industrial and disposable packaging origins. The study
further underscores the need to improve waste management practices and the efficiency of
urban beach cleanups, which often neglect smaller MPs. Incorporating these practices is
essential to mitigate environmental and social impacts.

It is of great importance to contribute to tackling the challenges associated with MP
pollution more efficiently and sustainably, in alignment with the SDGs, particularly SDG
14, which focuses on ocean conservation. By identifying land-based sources of pollution
and predicting vulnerable marine areas, we provide essential data for preventive and
remedial actions, supporting target 14.1 to reduce marine pollution by 2025. Furthermore,
by supplying detailed information on the health of aquatic ecosystems, our findings assist
in formulating sustainable management policies and implementing effective conserva-
tion strategies, helping to achieve target 14.2 of managing and protecting marine and
coastal ecosystems. Finally, our research aims to advance scientific and technological
knowledge in marine monitoring and conservation, promoting technology transfer and ca-
pacity building, which aligns with target 14.a to increase scientific knowledge and transfer
marine technology.
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