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Abstract: Climate change will create significant challenges to agriculture. The effects on
livestock productivity and crop production are highly dependent on weather conditions
with consequences for food security. If agriculture is to remain a viable industry and to
maintain future food security, the adaptations and the ideal timeframes for their imple-
mentation to mitigate against climate change impacts will be essential knowledge. This
study aims to show how farms will be affected and will need to adapt to climate change,
based on a holistic examination of the entire farming process. A modified Bayesian belief
network (BBN) was used to investigate climate change impacts on livestock, crops, soil,
water use, disease, and pesticide use through the use of 48 indicators (comprising climate,
agricultural, and environmental). The seasonal impact of climate change on all aspects of
farming was investigated for three different climate forcing scenarios (RCPs 2.6, 4.5, and
8.5) for four timeframes (2030, 2050, 2080, and 2099). The results suggest that heat stress
and disease in both livestock and crops will require adaptations (e.g., shelter infrastructure
being built, new crops, or cultivators grown). Pest intensity is expected to rise, leading to
increased pesticide use and greater damage to crops and livestock. Higher temperatures
will likely cause increased drought and irrigation needs, while increasing rain intensity
might lead to winter flooding. Soil quality maintenance will rely increasingly on fertilisers,
with significant decreases in quality if unsustainable. Crop yield will be dependent on new
crops or cultivators that can cope with a changing climate being successful and market
access; failure to do so could lead to substantial decrease, in food security. Impacts are
more significant from 2080 onwards, with the severity of impacts dependent on season.

Keywords: climate change; agriculture; food security; Bayesian belief network; adaptation

1. Introduction
The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report

(AR6) introduces five new scenarios that facilitate the investigation of alternative future
outcomes of climate change and the prediction of its effects at a local level [1]. While
climate change will create many challenges to agricultural production, requiring significant
adaptations due to changing weather and seasons, the severity of these changes may
depend on which scenario we most closely follow.

Challenges may include transitioning to climate resilient crops, addressing soil quality
and compactness, flooding episodes, water shortages, and livestock health. These factors
will drive changes in farming practices, with consequences for productivity, agricultural
economic viability, and food security [1–7]. Agriculture provides food security and fibre
generation but is also responsible for the maintenance of ecosystem services such as
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biodiversity, water quality, soil health, and carbon cycling, especially key for irrigation and
crop growth [8–10]. Furthermore, ecosystem services enhance agriculture with pollination
and natural pest control [11,12].

Although livestock and certain crops may benefit from a changing climate (e.g., time
livestock spend outdoors) in the short term, they will also likely face negative impacts from
increasing temperature and increasing rainfall patterns. Crops are sensitive to changing
weather events (e.g., high temperatures decreasing crop growth) [13–15] and livestock can
also be affected by heat stress [16–19].

Advancing the knowledge on how agriculture will be affected by climate change
will be critical to understanding the adaptations required for its mitigation. One way to
investigate agriculture and climate change impacts is to use indicators. Previous research
has used indicators to assess agriculture and climate change, with indicators such as ‘dry
days’ and ‘growing season length’ [20], ‘grass frost’ and ‘very dry soil’ [21], and ‘start of
field operations’ and ‘crop growth duration’ [22]. Other research focuses on using indicators
to assess specific crops such as wheat [23].

Indicators, in this context, are measurable representations of the farming process,
which are either inputs to a system, independent variables (e.g., environmental indicators
such as dry days), measurable outputs, or dependent variables (e.g., crop yields or soil
quality). As such, the use of measurable indicators lends itself to quantitative studies. For
example, models and statistical analysis are often used to assess different climate forcings
against agricultural settings.

With multiple indicators, a complex systems approach can be taken, which can be semi-
quantitatively modelled using a Bayesian belief network (BBN) due to its ability to integrate
ecological, environmental, social, and economic concepts as well as different inputs and
outputs to the system and to work with uncertain or incomplete data or knowledge of
a system [24]. BBNs have been applied as evaluation tools to investigate climate change
impacts or other environmental changes [25–29] and also for agricultural research [30–34].

This study investigates all the interactions within a farm, such as livestock, crops,
water, soils, diversification, and field availability, and how they function as a system. This
approach will highlight how different areas of a whole farm interact, work in synergy,
or possibly impede the impacts of climate change or the adaptations to it. Jackson [35]
developed complex system models of how sixty indicators may interact with each other in
relation to climate change. This study aims to use a system modelling approach to predict
how climate change will affect crops, livestock, and other farming processes. This will
establish how the climate change events reported in the IPCC report will result in changes
to agriculture in the southwest United Kingdom (UK). Furthermore, this study aims to
address which specific practices will need to change and the adaptations to be made.

2. Methods
To assess how climate change impacts will affect agriculture, a mixed farm type was

modelled (considers both crops and livestock) using a Bayesian belief network (using the
R package BBNet, 36) running in R version 4.3.2 (R Core Team, 2023). The detail of the
package, a theoretical framework of how the models work, and practical examples of how
the models can be made, as well as specific equations used within the predictions, are
described in full in a recent methods paper [36]. A Bayesian belief network (BBN) is a
model of a complex system where nodes (these could be physical objects such as crop
biomass, environmental parameters such as frost occurrence, or human factors such as
health and safety legislation) are connected by directional edges to other nodes. While
only direct interactions are modelled, changes can propagate through the system, and
system-wide effects of changes or suites of changes can be modelled. The modified BBN



Sustainability 2025, 17, 3798 3 of 15

used here [36] allows for simplified interactions between multiple nodes to be modelled, as
well as feedback loops and reciprocal interactions between nodes.

Only direct interactions between nodes are modelled (for example, an increase in
drought leads to a decrease in crop growth rate), but the model behaves as a complex
system, so changes to nodes can propagate through the system and provide emergent
properties of the network. For example, farm productivity can be calculated, but the final
value is likely to depend on many factors, from environmental conditions through to
fertiliser use.

We used 48 of the 60 indicators from Jackson [35] as nodes in the BBN (Table 1). The
exclusion of 12 nodes was based on replication of outcome (e.g., the ‘leaf wetness’ indicator
is covered by ‘crop disease’), a lack of relevance to this study (e.g., day and night scenarios
were not investigated, so ‘night time air temperature’ was redundant), or specific climate
variables that did not fit the model use (e.g., ‘sunshine’ was covered by ‘temperature’-type
indicators). A more detailed explanation of why indicators were excluded is provided in
the Supplementary Information.

Table 1. Indicator nodes used inclusive of the climate nodes modified in the BBN and a brief
description.

Indicator Brief Description Indicator Brief Description

Budbreak Date The time when plant or crop buds
unfold and leaves emerge Livestock Numbers The stock number of varied species

Conservation Area
Either a specific area set aside for

biodiversity or forming part of
farming fields

Mean Air Temperature Average mean air temperature over
a calendar month

Crop Disease Crop pathogens that either kill or
harm the crop Organic Livestock Practices Likelihood of organic practices in a

changing climate

Crop Growth Rate The ability of crops to grow Pest Intensity
Pests impact crops and livestock

and temperature plays a vital role in
their survival

Crop Yield The harvested production from a
farm Pesticide Use Protects crops from pests and

weeds, whilst also polluting

Drought A lack of natural water Pest Migration New pests migrate due to changing
climate

Farm Diversification Deliberate economic productivity
other than farming Plant Heat Stress Caused by elevated temperatures

limiting crop growth

Farm Insurance Insurance changing due to farm
practices and climate change Pollinator Abundance Determines the level of natural

pollination ecosystem service

Farm Management A management decision to be made
due to changes from climate change Precipitation Rate Main provider of water to

agriculture

Fertiliser Use
Adding materials to improve soil
quality but also causing potential

pollution
Soil Quality Fundamental component of crop

production

Field Availability Availability of fields due to climate
changes, e.g., after flooding Humidity

A key component of dew and
thermal increase in crops

influencing growth

Field Cover—New Crops New crops or cultivators to be
grown due to changing climate Start of Growing Season

Earlier growing season means new
crops can be grown but also more

water demand and soil quality
decline

Field Elevation/Slope The efficiency of a sloped field after
changing weather patterns Streamflow Linked to water quality

Fire
The impact of fire on farms, e.g.,

burnt crops, but also the risk due to
climate change

Surface Run-Off
Precipitation that falls to land and

flows downhill to soil or
watercourses

Flooding Water submerging land that is
usually dry Total Dairy Production Total produce from dairy practices
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Table 1. Cont.

Indicator Brief Description Indicator Brief Description

Forest/Tree Cover The ecosystem service benefits, e.g.,
biodiversity and water absorption Total Meat Production Total produce from meat production

practices

Frost Ground, air, and hoar frost affecting
crop growth and pest survival Total Productivity Overall productivity of a farm

Health and Safety Workforce Health and safety issues associated
with a changing climate Total Utilised Land

Total amount of land creating
productivity either farming or

alternative

Heatwave An extended period of hot weather
relative to normal Water Demand Water requirement to supplement

rainfall

Insect Generation per Season Pest generation as an impact of
climate change Water Quantity Total water requirement both

natural and utility

Irrigation Non-rainfall watering of crops Weed Infestation The likelihood of abundance of
weeds changing due to climate

Length of Growing Season
The thermal growing season and

likelihood of change due to climate
change

Winter Chill Units Crop exposure to cool temperatures,
key to bud development

Livestock Diseases Zoonotic diseases causing harm or
mortality to livestock Carbon Footprint Emissions generated during farm

operations

Livestock Heat Stress A decline in performance or
mortality due to changing climate Water Quality Changes expected due to a

changing climate

Following the protocol established in Dominguez Almela et al. [36], edges and edge
strengths were established next. The only difference to the procedure referenced above
is that edges were directly scored as probabilities rather than on an integer scale, with
conversion to probabilities taking place within the BBNet package (strong positive inter-
actions were scored at 0.85, moderate positive at 0.75, and weak positive at 0.65; strong
negative interactions were scored at 0.15, moderate at 0.25, and weak at 0.35). These edges
have largely been created and parameterised in Jackson [35], but the new connections were
rechecked after the removal of some of the original nodes. The full model is available in
the Supplementary Information.

The model is used to make predictions of what will happen to a typical farm in the
southwest of England (spatial scale of a typical farm). The results indicate the severity of
change from the present day (mid 2020s) to the time of the particular scenario. In this case,
scenarios considered effects by 2030, 2050, 2080, and 2099, as per IPCC scenarios.

Determining Prior Values for Climatic Change

To obtain predictions from the BBN, ‘prior’ values need to be provided, which then
propagate through the network to provide results. The ‘priors’ in this case are climate
variables of mean temperature, precipitation, frost days, humidity, and heatwaves and are
calculated from different Representative Concentration Pathways (RCPs) [37–39] for each
season for the years 2030, 2050, 2080, and 2099 respectively. Details of how these were
extracted are given in supplementary material, and their values as priors in the BBN model
are provided in Table 2.

In addition, fertiliser use was set to 0.15 in all scenarios (as increasing fertiliser use is
not a desirable farming practice due to its water contamination and long-term effects on
soil health and yield [40]) to assess separately the effect on soil quality.

In running these scenarios, crop yield did not change greatly (see the results), as the
model was set to allow new crops to take the place of old crops as conditions changed.
In practice, it is likely there may be considerable resistance to changing crops grown. In
addition to the scenarios above, the summer RCP 4.5 scenario for 2050 was examined
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(a mid-duration, mid-severity scenario), with the new crop prior set to 0, to investigate
differences in crop yield if no new crops were incorporated.

Table 2. BBN scoring for RCPs 2.6, 4.5, and 8.5 for 2030, 2050, 2080, and 2099 for mean air temperature,
precipitation, humidity, frost, and heatwave.

Year/
Season

Mean Air Temperature
(RCPs 2.6/4.5/8.5)

Precipitation
(RCPs 2.6/4.5/8.5)

Humidity
(RCPs 2.6/4.5/8.5)

Frost
(RCPs 2.6/4.5/8.5)

Heatwave
(RCPs 2.6/4.5/8.5)

2030

Winter 0.555 0.555 0.560 0.635 0.625 0.645 0.580 0.565 0.580 0.310 0.310 0.300
Spring 0.550 0.545 0.555 0.485 0.495 0.490 0.565 0.560 0.570

Summer 0.600 0.575 0.590 0.360 0.395 0.380 0.575 0.565 0.575 0.925 0.935 0.935
Autumn 0.585 0.570 0.580 0.540 0.555 0.560 0.600 0.575 0.590

2050

Winter 0.570 0.585 0.610 0.640 0.645 0.690 0.605 0.605 0.645 0.300 0.290 0.280
Spring 0.565 0.570 0.595 0.495 0.485 0.480 0.585 0.585 0.615

Summer 0.625 0.620 0.665 0.305 0.325 0.280 0.590 0.590 0.625 0.935 0.940 0.950
Autumn 0.595 0.600 0.635 0.545 0.565 0.575 0.625 0.615 0.660

2080

Winter 0.575 0.625 0.700 0.660 0.750 0.885 0.620 0.680 0.790 0.290 0.265 0.165
Spring 0.575 0.620 0.690 0.455 0.445 0.435 0.600 0.645 0.725

Summer 0.635 0.715 0.840 0.295 0.230 0.120 0.590 0.645 0.740 0.940 0.955 0.980
Autumn 0.605 0.670 0.765 0.550 0.575 0.605 0.660 0.710 0.840

2099

Winter 0.580 0.660 0.775 0.665 0.810 1.00 0.625 0.760 0.925 0.290 0.215 0.000
Spring 0.575 0.655 0.760 0.485 0.460 0.450 0.610 0.690 0.815

Summer 0.660 0.810 1.000 0.250 0.150 0.000 0.610 0.705 0.850 0.940 0.965 1.000
Autumn 0.605 0.720 0.870 0.585 0.600 0.640 0.640 0.805 1.000

3. Results
Figures 1–4 show the results for the 10 key findings for 2030, 2050, 2080, and 2099 for

winter, spring, summer, and autumn, for RCPs 2.6, 4.5, and 8.5, and for soil quality, plant
heat stress, pesticide use, pest intensity, livestock heat stress, livestock diseases, irrigation,
flooding, drought, and crop yield.

The largest effects of climate change on farms mainly occurred in the summer months
and increased with the climate scenario and with the year of prediction (Figures 1–4).
However, more unexpected results were also found, with climate impacts becoming evident
not just in the summer months. Livestock heat stress increased in autumn, winter, and
spring in 2080 (Figure 3) and 2099 (Figure 4), whilst in summer it increased in all three
scenarios from 2030 onwards (Figures 1–4). Livestock disease increases in autumn in 2050
(Figure 2), in winter during both 2080 and 2099 (Figures 3 and 4) and 2099 (Figure 4), whilst
again in summer increases for all three scenarios occurred from 2030 to 2099 (Figures 1–4).

Pest intensity increases in 2080 and 2099 for both autumn and spring (Figures 3 and 4),
and in winter it increases in 2050 and 2080 (Figures 2 and 3) and in 2099 (Figure 4) and in
summer from 2030 to 2099 for all three scenarios (Figures 1–4).

Soil quality decreases in summer in all years (Figures 1–4). Soil quality remaining
stable in other seasons is reliant on fertiliser use increasing and, where not possible (fertiliser
use node set to 0.15), soil quality was likely to decrease (probability of average increase for
winter, spring, and autumn = 0.41), with further fertiliser use reductions or more extreme
scenarios likely to reduce it further.

Drought decreases in the autumn in 2080 (Figure 3) and 2099 (Figure 4), and in summer
it increases from 2030 to 2099 for all three scenarios (Figures 1–4).

Flooding increases in the autumn in 2099 (Figure 4) and in the winter for all years and
scenarios. Crop yield remains stable, although this is reliant on new crops or cultivators
replacing existing crops that can no longer grow under new climate forcing conditions. If
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new crops or cultivators cannot be grown (field cover—new crops node set to 0 for RCP 4.5
for summer 2050) crop yield was likely to decrease (probability of increase = 0.23), with
longer durations or more extreme scenarios likely to reduce this further.
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Figure 2. 2050 results for winter, spring, summer, and autumn for RCP 2.6, RCP 4.5, and RCP 8.5.

Figure 1. 2030 results for winter, spring, summer, and autumn for RCP 2.6, RCP 4.5, and RCP 8.5.
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Figure 4. 2099 results for winter, spring, summer, and autumn for RCP 2.6, RCP 4.5, and RCP 8.5.

Figure 3. 2080 results for winter, spring, summer, and autumn for RCP 2.6, RCP 4.5, and RCP 8.5.
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4. Discussion
Climate change is likely to cause significant impacts. Typical concerns with increased

temperatures (and heatwaves) will occur, as will increases in both drought and flooding
(seasonally dependent). While these changes are relatively well established [41–45], our
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model also predicts decreases in soil quality, increases in livestock disease, and in pests
and pesticide use, which will increase as climate changes becomes more severe (i.e., greater
severity, or longer duration). While livestock heat stress will increase with temperature,
plant heat stress and crop yield are relatively unaffected by climate change. However, this
assumes that crops grown will reflect new conditions and irrigation and water demand can
be met. If this does not happen, large decreases in crop yield are predicted to occur.

4.1. Climate Change Effects on Livestock

Livestock disease has the most impact in the summer. Vector-borne diseases such as
Bluetongue and Schmallenberg and parasites such as Helminth and Fasciola hepatica (liver
fluke) reduce the productivity of an animal [46,47], and temperature and rainfall increases
lower the number of leukocytes (white blood cells) in the immune system that defend
against bacteria, viruses, fungi, and parasites [48]. This is then exploited by pathogens
such as protozoa, helminths, and vector-borne, foodborne, soilborne, and other zoonotic
diseases [49]. Yet increasing temperature could also decrease the prevalence of some
diseases, especially in Southern England, such as Lucilia sericata ectoparasite (in ewes),
although with the possibility they are replaced with other Mediterranean pathogenic agents
such as Wohlfahrtia spp. [50].

Poultry will also be affected with a likely increase in avian flu [51]. Policy-led disease
surveillance technology, such as genome sequencing, DNA fingerprinting, resistance testing,
antiviral medications, and cross-breeding will be required to limit productivity loss [52,53].

Heat stress in livestock causes suffering and lowers welfare, reducing yield and fertility
and possibly causing death [54]. Arnell and Freeman’s [22] results for heat stress align with
this study, although a concentration on milk yield effects only likely explains their lower
severity. Thornton et al. [53] investigated heat stress differences between the year 2000 and
2090 (exposure days under SSP5-8.5) with cattle increasing from 8 to 69 (days), goats from
6 to 57, sheep from 11 to 77, pigs from 6 to 77, and poultry from 11 to 87. The hot and dry
summer of 2018 contributed to 30,000 extra cows slaughtered in the UK [55], and evidence
suggests that UK losses in milk yield will be valued at GBP 13.4 million (average) and GBP
33.8 million towards the end of the century [56,57].

Heat stress is caused by a combination of temperature, humidity, solar radiation, and
wind speed, with the stress caused to the animal a combination of both indirect effects, e.g.,
lower feed intake, and direct effects on reproductive physiology, health, energy metabolism
and on protein and fat deposition [58]. Animals differ in terms of how heat stress affects
them and when production losses start to occur [58–63].

The resilience of each species also depends on the breed, age, genetics, physiological
status, nutritional status, size, and level of insulation, e.g., hide thickness, heat evaporation
rate, respiration rate, body temperature, previous exposure, standing time, time spent in
the shade, and water ingestion [64–68]. Poultry are more suited to intensive production,
and this increases heat stress impacts [69] and increases the challenge of maintaining
productivity [70].

The results suggest an increase in livestock heat stress by 2030 for the summer months,
and therefore it is likely that animals will need cooling by natural shading or by the
construction of infrastructure. Higher productivity in hot climates is observed from housed
dairy cows compared to non-housed during periods of heat stress [58,71–73].

The least costly option is to use natural vegetation such as trees and hedgerows, while
new infrastructure is a further expensive option but a likely requirement in the summer
season [74].

The results suggest further cooling will likely be required from 2080 to 2099, especially
for RCPs 4.5 and 8.5. Air conditioning is currently energy-intensive and expensive [75],
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but evaporative cooling systems such as water nozzles, cooling pads, or fogging and
misting systems can lower the ambient air in the building [58]. Cooling buildings has
been successful in swine production [76,77], closed poultry [58] and pig houses [78], and
improving cattle milk production in dairy cattle [79].

Increasing diet energy (for all animals) counters reduced eating by livestock during
heat stress [80–82] and will need to be coordinated with antioxidant supplements [83], feed
additives [84], pharmaceutical additives [85], and even herbal additives [86]. Changing
feeding times and habitats to compensate for eating less during heat stress is affective for
poultry and cattle [58].

Further changes to farm practices will help, such as changing livestock mating and
sheep shearing season and selecting breeds that have more resilience to heat [54]. Breeds
that have higher tolerance to heat tend to correlate with lower productivity [87], but
identifying heat tolerant animals with high productivity is viable [64].

Access to drinking water is more critical than cooling systems, e.g., lactating sows
given chilled water (10–15 ◦C) exhibited decreased temperature, improved performance
during high temperatures, increased water consumption, increased milk production, de-
creased respiration rate, increased weaning weight, and increased average daily gain [88].

4.2. Climate Change Effects on Crops

Crop yield results in this study do not change significantly (either a decrease lower
than 0.35 or increase higher than 0.65—see the results) for all seasons and scenarios. This is
explained by some indicators decreasing crop yield, e.g., crop growth rate, but with others
increasing, e.g., field cover—new crops, ‘counterbalancing’ each other and levelling the
result. However, climate change is normally associated with a negative effect on yield [89].
Yet if the new crops indicator is nullified in the model (in the BBN), the results show a
significant decrease in crop yield.

Drought lowers the crop growth rate, with temperature increases slowing growth
rate [90], although this depends on its growth stage [91]. Water stress causes a decrease in
leaf water potential, stomatal opening, and photosynthesis [92].

The increase in the start (and length) of the growing season is not always advantageous,
with negligible effects on wheat yield compared with growth rate [93], and furthermore
depends on the location and type of crop [94]. Arnell and Freeman [22] estimated, in higher
climate forcing scenarios, that the growing season would begin between 30 and 50 days
earlier by 2080 in Southern England. Harding et al. [20] predict 10- to 11-month growing
seasons towards the end of the century, which matches the results here with length of the
growing season increasing in probability for RCP 8.5 in 2080 and RCP 4.5 in 2099.

Increasing winter temperature supports the likelihood of pest survival, although
activities on the farm itself also determine intensity [95]. Pesticide use will likely increase,
with benefits for crop survival and negative impacts for biodiversity and pollution.

Crop disease will also affect crop yield, with fungal pathogen prevalence and effec-
tiveness related to temperature variance, radiation, carbon dioxide levels, and stage of
harvest [96–101]. Disease resistance crops are not quick-win solutions [102] and give time
for plant pathogens to evolve and limit effectiveness [103].

Double cropping is an adaptation if water and light factors are not limiting, with
multiple harvesting possible from the same field [104]. Furthermore, earlier sowing may
allow crop maturity to be reached earlier, ensuring harvesting happens before peak summer
temperatures [40,105]. Suitable growth conditions will allow new crops to be grown, and
current crops such as potatoes will become problematic due to the rise in temperature and
drought [106]. New crops are being introduced into crop rotation in Europe, although in
cooler areas current crop portfolios are maintained with new cultivators [89].
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Rainfall and run-off affect soil quality [107], especially soil organic carbon, aggregation,
porosity, infiltration, leaching, and yield [108]. This contributes to decreasing soil quality
alongside suboptimal field operations, livestock grazing, late harvesting crops, machinery
weight, and agricultural intensification [109]. The results of Arnell and Freeman [22] and
Rivington et al. [21] agree with this study in that soil quality (they used soil moisture)
decreases in the summer season and continues into autumn even though rainfall increases,
likely due to soil moisture deficits from the summer. Soil fertility for agriculture supplies
essential nutrients for crop growth, supports a diverse biotic community, and supports soil
structure, allowing for undisturbed decomposition [110].

To maintain soil quality and improve crop growth, fertiliser use is increased, improving
the physical properties of the soil via reducing solidity, bulk density, water infiltration
rate, acidity, and increasing porosity and aeration [111]. Yet it is impractical to keep
increasing fertiliser and once a continuous increase is restricted; the results show soil
quality significantly decreasing from 2030. Crop rotation, with crops that are biological
fixers, can help lower the need for fertilisation, e.g., forage crops such as clover (Trifolium
spp.), lucerne (Medicago spp.), and arable crops such as peas (Pisum sativium) and beans
(Vicia faba) [112].

5. Conclusions
Pressures on food production from climate change will cause significant challenges

to agriculture. The results from this study show that temperature, drought, and flooding
increases will affect crops and livestock but also result in a decrease in soil quality and an
increase in livestock diseases, pests, and pesticide use. Also, crop productivity is reliant on
new crops or cultivators being grown, irrigation water demands being met, and market
access.

This study demonstrates that there are adaptations that farms can make to mitigate
against unwanted climate change outcomes. Key to these changes are measures to protect
animals from direct heat stress, the ability to change crop cultivars as environmental
conditions change, and awareness and better management measures to mitigate decreases
to soil quality and increases in crop and livestock pests and diseases.

Adaptations to ensure food security will also need top-down support. Government
mechanisms such as benefits for farmers (e.g., subsidies), connected and innovative policies
(e.g., agricultural with drought, flooding, and climate policies), investment and reward
provision for early adapters, focus on technology, efficiency of existing resources, and
further research and development funding are required [113,114]. The results from this
study can be used to inform the practices, measures, and adaptations required to direct
policy to the key areas of support required for agriculture against climate change.
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justification. References [115–117] are cited in the supplementary materials or in main text.
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