
International Journal of Fatigue 199 (2025) 109028 

A
0

 

Contents lists available at ScienceDirect

International Journal of Fatigue

journal homepage: www.elsevier.com/locate/ijfatigue  

Statistical calibration of ultrasonic fatigue testing machine and probabilistic 
fatigue life estimation
Sina Safari a ,∗, Diogo Montalvão b , Pedro R. da Costa c,d, Luís Reis d , Manuel Freitas c,d
a Department of Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, UK
b ADDISONIC Research Cluster, Department of Design and Engineering, Faculty of Science and Technology, Bournemouth University, Poole House, Talbot 
Campus, Poole, BH12 5BB, UK
c Atlântica, Instituto Universitário, Fábrica de Pólvora de Barcarena, 2730-036, Barcarena, Portugal
d IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1050-099, Lisboa, Portugal

A R T I C L E  I N F O

MSC:
00-01
99-00

Keywords:
Ultrasonic fatigue testing
Calibration
Hierarchical Bayesian method
Cyclic lifetime
Uncertainty quantification (UQ)

 A B S T R A C T

A new statistical technique is proposed to quantify the experimental uncertainty observed during ultrasonic 
fatigue testing of metals and its propagation into the stress-lifetime predictive curve. Hierarchical Bayesian 
method is employed during the calibration and operation steps of ultrasonic fatigue testing for the first time in 
this paper. This is particularly important due to the significant dispersion observed in stress-life data within the 
high and very high cycle fatigue regimes. First, the measurement systems, including displacement laser readings 
and high-speed camera system outputs, are cross-calibrated. Second, a statistical learning approach is applied 
to establish the stress-deformation relationship, leveraging Digital Image Correlation (DIC) measurements of 
strain and laser displacement measurements at the ultrasonic machine specimen’s tip. Third, an additional 
hierarchical layer is introduced to infer the uncertainty in stress-life curves by incorporating learned stress 
distributions and the distribution of fatigue failure cycles. The results identify key sources of uncertainty in 
UFT and demonstrate that a hierarchical Bayesian approach provides a systematic framework for quantifying 
these uncertainties.
1. Introduction

Understanding fatigue is crucial for structural design, monitoring, 
and durability analysis. With modern engineering structures, such as 
aerospace structures and power plant components, required to sustain 
extremely long lifespans, research efforts have increasingly focused 
on high-cycle fatigue and Very High-Cycle Fatigue (VHCF) [1]. VHCF 
typically refers to fatigue scenarios where the component’s lifespan 
exceeds 107 cycles and initially were called GigaCycle Fatigue [2,3]. 
A historical review of VHCF can be found in [4]. Fatigue testing 
up to the VHCF regime is time-consuming using conventional fatigue 
testing machines with an operating frequency of 10–400 Hz. In 1951, 
Mason [5] pioneered the development of the Ultrasonic Fatigue Testing 
(UFT) machine, which operates on resonance theory at a frequency of 
20 kHz. This innovation significantly reduced the duration of fatigue 
testing in the VHCF regime from months to days [3,6].

Over the past 10 to 20 years, there have been a considerable number 
of publications, the construction of new UFT machines, the introduc-
tion of innovative experimental methodologies, and the broadening 
of capabilities to encompass a diverse range of materials and stress 
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profiles [7]. Tridello et al. [8] provided an overview of the VHCF 
testing and challenges, including testing procedures, failure mecha-
nisms, microstructural and specimen size effects, temperature effects 
and statistical modelling. These factors all influence the accuracy of 
fatigue life prediction using VHCF. The nature and mechanism of failure 
under VHCF [4] and its frequency-dependency [9] in metals are being 
investigated by the scientific community. However, the uncertainty 
associated with the testing procedure, applied load, and measurement 
devices during ultrasonic fatigue tests is generally neglected, especially 
when new measurement systems are used.

Testing procedure starts with machine calibration that is finding a 
relationship between strain in the high stress region of the test spec-
imen and tip displacement of the specimen in the uniaxial case [10]. 
The accuracy of stress-life data as the outcome of UFT depends on the 
accuracy of the produced relationship during machine calibration. In 
fact, part of the variability observed in UFT testing is due to variability 
arising from machine operation, measurement systems, and the spec-
imen material itself. This variability could be statistically quantified 
if the calibration relationship is established using multiple recordings 
https://doi.org/10.1016/j.ijfatigue.2025.109028
Received 27 December 2024; Received in revised form 30 March 2025; Accepted 2
vailable online 8 May 2025 
142-1123/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
4 April 2025

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/ijfatigue
https://www.elsevier.com/locate/ijfatigue
https://orcid.org/0000-0003-0087-1802
https://orcid.org/0000-0003-1108-0475
https://orcid.org/0000-0001-9848-9569
mailto:sina.safari@bristol.ac.uk
https://doi.org/10.1016/j.ijfatigue.2025.109028
https://doi.org/10.1016/j.ijfatigue.2025.109028
http://creativecommons.org/licenses/by/4.0/


S. Safari et al. International Journal of Fatigue 199 (2025) 109028 
on a batch of specimens for a specific material. This paper presents 
a statistical technique to systematically quantify the uncertainties that 
arise specifically during calibration and enables their propagation in 
the stress-life curve produced using the UFT.

The calibration process for the UFT machines has been briefly out-
lined in the Japan Welding Engineering Society WES 1112:2017 [10]. 
This process mainly provides recommendations for stress level control 
and temperature control. In principle, two types of loading conditions 
were considered in this standard, namely axial and torsional loading. 
However, other types of loading conditions are allowed, provided there 
is an appropriate finite element analysis [11]. For axial specimens, an 
accurate and inexpensive way to determine stress levels is to find out 
the relationship between stress amplitude and tip displacement of the 
test specimen. This relationship is commonly derived by measuring 
the displacement at the tip and the maximum strain at the higher 
stress region of the test specimen. An alternative method is using 
analytical equations [12]. In this paper, a displacement laser is used to 
measure tip displacements, and a DIC system is used to measure strains. 
This method enables one to study uncertainties involved in measure-
ment systems and processes based on experimental data without any 
pre-assumptions.

To deal with the uncertainties, probabilistic approaches gained 
interest recently, especially to characterise fatigue lifetime (S-N) curves 
for uniaxial [13] and multiaxial [14] fatigue experimental data. The re-
sulting stress-life curves are considered probabilistic S-N (P-S-N) curves. 
The Hierarchical Bayesian (HB) method [15] is used in this work to 
handle the uncertainties and produce models capable of propagating 
those uncertainties into the S-N curves. The advantage of the HB 
method is that it works out uncertainties not only within a single 
data set but also across multiple data sets and enables the informa-
tion learned at higher levels of the calculation workflow to influence 
parameter estimates at lower levels, making the model robust.

Although microstructure variability plays a key role and may drive 
the large amount of uncertainty involved in the UFT, one may see 
uncertainty through the lens of a system with input and output. In 
this case, an ensemble of datasets will represent the variability in 
the system. For example, the ultimate product of a UFT machine is 
the stress (strain)-life curves. The variability in life (here, the number 
of cycles) can be estimated by breaking a representative number of 
specimens for a specific stress level. Besides, the uncertainty in the 
stress (strain) level can be estimated through the measured strain by 
repeating the measurement multiple times. This way, one may not only 
capture the uncertainty due to material variability but also the testing 
equipment.

In this work, a Digital Image Correlation (DIC) system is used 
to measure displacement and strain under cyclic loading and a laser 
system is used to measure the specimen’s tip displacement. The un-
certainty sourced from the measurement system and UFT machine 
operation is reflected on the calibration curve and subsequently on 
the stress-life curves. The rest of this paper is structured as follows: 
Section 2 introduces the UFT machine and its components; Section 3 
presents a probabilistic framework for the calibration of UFT machine 
and the fatigue lifetime curves in the VHCF regime; in Section 4 
experimental calibration is demonstrated; Section 5 shows the stress-
life models for the VHCF regime; and finally, Section 7 offers the 
conclusions drawn from this study.

2. Ultrasonic fatigue testing machine

Ultrasonic fatigue testing differs from conventional fatigue testing 
by using forced vibration at the specimen’s fundamental frequency, 
while conventional tests use a frequency far below the fundamental. 
In general, UFT systems are composed of four main parts: a resonance 
system (piezoelectric transducer, a booster, a horn, and finally the 
specimen), a measurement system (displacement measurement laser, 
pyrometer, DIC system, or strain gauges), a cooling system (i.e., a 
2 
compressor and its spraying nozzle), a power and a data acquisition 
system with a control software. The UFT system requires careful design 
of the testing machine and specimens so that their working frequen-
cies match. The working mechanism of UFT machines has been well 
documented [16]. In this work, the UFT system is designed and built in-
house within the ADDISONIC Research Cluster (ARC) at Bournemouth 
University. Fig.  1a shows different components of the system. Fig.  1b 
shows the control software including real-time block signal of measured 
tip displacement, block average of the input power, the block average 
of the displacement amplitude, and the main frequency of the block 
signal.

The working frequency of the machine is between 19.45 and 20.45 
kHz. A piezoelectric transducer excites the assembled components ax-
ially, and the booster and horn amplify the displacement using the 
resonance theory and an axial mode shape. Since the specimen cycles 
with a very high frequency, the temperature of the specimen should be 
controlled, which is done using a pyrometer (i.e., thermometer) and 
a cooling system spraying cold air in the high-stress volume of the 
specimen (i.e., control volume). That is the middle of the specimen for 
an hourglass shape. The temperature is controlled between the room 
temperature of 21 ◦C and a higher threshold of 30 ◦C as recommended 
by the Japanese standard [17].

This work uses tip displacement measurement for controlling the 
level of stress in the location of the control volume of the specimen 
via building a relationship between tip displacement and strain am-
plitude [17]. The measurement system uses a laser at the tip of the 
specimen to monitor displacement in real-time and provides feedback 
to control the excitation power. In this work, Keyence LK-H027 Ul-
tra High-Speed/High-Accuracy laser displacement sensor head with 
0.02 μm repeatability is used, and the laser measurement sampling 
frequency is 200 kHz. A simple linear controller is used. A simple 
linear controller is used to calculate the maximum absolute value of 
the main harmonics of the current tip displacement and adjust the 
excitation power proportionally to the ratio between the target and 
measured displacement. The tolerance assumed here is 10−4. It should 
be noted that saturation thresholds for maximum operational power are 
implemented to ensure safe operation.

A DIC system with a Q-450 high-speed camera up to a sampling 
frequency of 125 kHz from Dantec Dynamics is used to measure the 
strain in the location of the control volume on the specimen. The 
resolution is typically around 1 μm and 0.01% strain. Istra4D DIC 
application [18] is used for data collection and correlation analysis. 
A cross-validation between laser and DIC measurements is carried out 
in Section 4.1 to prove the accuracy of measurements. This is a non-
contact measurement technique that differs from other methods, such 
as using strain gauges [19]. It is noteworthy that the specimens are 
sprayed with white paint and black speckles on one side for DIC 
measurement and completely black on the other side to improve the 
accuracy in temperature measurement using the pyrometer.

After the initial calibration of the machine and discovering the rela-
tionship between tip displacement and the stress in the control volume 
of the specimen, UFT starts by intermittently vibrating the specimen 
up to a specific tip displacement level until it fails. In each vibrating 
phase, the temperature rises to the threshold, where the vibration stops, 
and after cooling for a couple of seconds, the vibration continues. The 
failure is picked up with a dramatic change in the working frequency 
so that the machine stops operating, or the specimen breaks. The whole 
process is controlled by the control software in Fig.  1b.

3. Hierarchical Bayesian (HB) method

In the Bayesian approach, the uncertainty in model parameters is 
represented by a probability density function (PDF) and is determined 
using Bayes’ theorem as follows: 

𝑝(𝜽|) =
𝑝(|𝜽)𝑝(𝜽) (1)
𝑝()
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Fig. 1. Ultrasonic fatigue testing system at the ADDISONIC Research Cluster (a) experimental setup and (b) control software setup.
where 𝑝(𝜽|) is the posterior probability distribution function of the 
mathematical model 𝑀(𝜽) ∈  parametrised by variable 𝜽 ∈ R𝑁𝜃 . 
In the Bayesian approach, the posterior probability is calculated to 
update our belief about a parameter or hypothesis after incorporating 
new evidence or data. It represents the revised probability of a model 
or parameter given the observed data. Here,  is a set of models or 
a single model with probabilistic parameter values that describe the 
functional relationship between input and output data collected from 
multiple measurements, and 𝑁𝜃 is the number of unknown parameters. 
For example, the unknown parameters are the parameters of a linear 
model between specimen tip displacement and strain in the control 
volume, as well as the parameters of the stress-life model. In Eq. (1), 
𝑝(|𝜽) is the likelihood, which expresses the probability of observing 
3 
experimental data  given the parameter value 𝜽. From a minimisation 
problem perspective, the likelihood function enables minimising the 
error between model estimation 𝑌  and observed data 𝑌 . The existing 
belief or knowledge about the parameters is defined by prior distri-
bution 𝑝(𝜽) and 𝑝() is the probability of observing the data  in 
the experiments. In the Bayes theorem, 𝑝() is also called evidence or 
marginal likelihood, which represents the total probability of observ-
ing the data , considering all possible values of parameters 𝜽. The 
evidence is often neglected as it acts as a normalisation constant [20] 
in Bayesian parameter estimation, where relative probabilities are more 
important than absolute values. The model may be expressed as: 

(2)
𝑌𝑖 = 𝑀(𝜽) + 𝜀𝑖
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where 𝑌𝑖 is the model output, and 𝜀𝑖 ∈ R is the prediction error, which 
is characterised by an additive zero-mean Gaussian White Noise (GWN) 
with variance 𝜎2 ∈ R. By extending the parameter set to include 𝜎, one 
can estimate its value as well during the model parameter updating 
process, or so-called training.

In the context of the classical Bayesian method, the posterior prob-
ability distribution function of the updated parameter 𝜃𝑖 and the pre-
diction error parameter 𝜎𝑖 can be expressed for a single dataset 𝑖
according to the rule of product in probability: 
𝑝(𝜽𝑖, 𝜎𝑖|𝑖) ∝ 𝑝(𝑖|𝜽𝑖, 𝜎𝑖)𝑝(𝜽𝑖)𝑝(𝜎𝑖) (3)

The classical Bayesian method for estimating parameter uncertainty 
fails to fully capture the overall variability. As the number of datasets 
increases, the uncertainty decreases, a phenomenon often referred to 
as ‘‘noise mitigation’’ [21]. To deal with this shortfall, the HB method 
incorporates the dependency and variability of the model parameters 
across different datasets [22]. In this work, the unknown parameters 𝜽
are modelled by normal distribution as: 
𝑝(𝜽) =  (𝝁𝜽,𝜮𝜽𝜽) (4)

where 𝝁𝜃 ∈ R𝑁𝜃  is the mean value of the unknown parameters, and 
𝜮𝜃𝜃 ∈ R𝑁𝜃×𝑁𝜃  is the covariance matrix. The mean and covariance 
parameters are the new set of parameters that are often called hyperpa-
rameters. The unknown parameters corresponding to the dataset 𝑖 are 
free to vary across total datasets, which are considered independent 
samples. Eq. (3) can be modified for the HB method to calculate the 
posterior distribution of the hyperparameters as follows: 
𝑝({𝜽𝒊}𝑛𝑖=1,𝝁𝜽,𝜮𝜽𝜽, 𝜎|) ∝ 𝑝({}𝑛𝑖=1|{𝜽𝒊}

𝑛
𝑖=1,𝝁𝜽,𝜮𝜽𝜽, 𝜎)

× 𝑝({𝜽𝒊}𝑛𝑖=1,𝝁𝜽,𝜮𝜽𝜽, 𝜎)
(5)

where 𝑝(𝝁𝜃 ,𝜮𝜃𝜃) is the prior distribution of hyperparameters and 
𝑝(|𝝁𝜃 ,𝜮𝜃𝜃) is the likelihood function of all datasets . The hierarchy 
of models emerges in Eq. (5) where the parameters of the main model 
𝜽 are conditional on the estimated parameters of another model, 
which is the normal distribution model according to Eq. (4). In the 
case of considering 𝑁𝐷 independent datasets, the likelihood function 
𝑝(|𝝁𝜃 ,𝜮𝜃𝜃) can be expressed as: 

𝑝({}𝑛𝑖=1|{𝜽𝒊}
𝑛
𝑖=1,𝝁𝜽,𝜮𝜽𝜽, 𝜎) =

𝑛
∏

𝑖=1
𝑝(𝑖|𝑀(𝜽𝑖), 𝜎). (6)

Based on the diagram shown in Fig.  2, the joint prior distribution is 
characterised as the multiplication of distributions, given as: 

𝑝({𝜽𝑖}𝑛𝑖=1,𝝁𝜽,𝜮𝜽𝜽, 𝜎) ∝ 𝑝(𝝁𝜽,𝜮𝜽𝜽)𝑝(𝜎)
𝑛
∏

𝑖=1
 (𝜽𝑖|𝝁𝜽,𝜮𝜽𝜽). (7)

It should be noted that the prior distribution for the standard 
deviation 𝜎 is a half-normal distribution. The full posterior distribution 
in Eq. (5) can now be expressed as 

𝑝({𝜽𝒊}𝑛𝑖=1,𝝁𝜽,𝜮𝜽𝜽, 𝜎|) ∝ 𝑝(𝝁𝜽,𝜮𝜽𝜽)𝑝(𝜎)
𝑛
∏

𝑖=1
 (𝑖|𝑀(𝜽𝑖), 𝜎)

×  (𝜽𝑖|𝝁𝜽,𝜮𝜽𝜽)

(8)

The above equation and the principle from Fig.  2b show that 
the hyperparameters 𝝁𝜽,𝜮𝜽𝜽, 𝜎 could be inferred from the posterior 
distribution. To achieve this, the joint probability distribution in Eq. (8) 
must be marginalised over the parameter space. The marginalisation 
or parameter estimation is carried out by Markov Chain Monte Carlo 
(MCMC) sampling methods. Typical MCMC sampling methods include 
random walk Metropolis–Hastings [23] or Gibbs sampling [24]. In this 
work, the Hamiltonian Monte Carlo (HMC) method with the No-U-Turn 
Sampler (NUTS) algorithm [20] is used to estimate the parameters. 
HMC is an MCMC variant that avoids random walks in the parameter 
space by taking a series of steps informed by first-order gradient 
information. This feature allows it to converge to target distributions 
much quicker than other methods. However, its performance is highly 
sensitive to two user-specified parameters: a step size and a desired 
4 
Table 1
Chemical composition of EN8 steel.
 Composition Fe C Mn Mo P Si S  
 Percentage (wt.%) Bal. 0.36–0.44 0.6–1.0 0.15 0.05 0.1–0.4 0.05 

Table 2
Mechanical properties of EN8 steel used in this study.
 Young modulus 
(GPa)

Yield strength 
(MPa)

Ultimate tensile 
strength (MPa)

Elongation 
(%)

 

 200 460 886 16  

number of steps. The NUTS algorithm uses recursive methods that 
eliminate the need to set those parameters, avoiding user intervention 
or costly tuning runs. In this work, the implementation in the PyMC 
package [25] is used to perform sampling for hyperparameter estima-
tion. The above implementation is summarised in the flowchart in Fig. 
2a, and an open-source code of the model implementation used in this 
paper is included in the code availability section for demonstration.

4. Experimental calibration

The axisymmetric hourglass specimens have been used and widely 
validated in many research works concerning ultrasonic fatigue testing 
of different materials [7]. A working specimen is designed in this study. 
The design of the specimen is done analytically in this work using the 
method presented in [12], which is used to achieve the initial geometry 
of the specimen. Also, this can be done via geometry optimisation with 
the application of the finite element method (FEM) [26]. Then, the FE 
model of the specimen attached to the UFT machine is developed to 
validate the design and tune the geometry.

The material used for the test specimen in this paper is made 
from cold-rolled EN8 steel with chemical composition and mechanical 
properties reported in Tables  1 and 2, respectively. It should be noted 
that the material is selected from the same batch used in [27], and 
mechanical properties are based on the average of tensile tests. The 
British standard classification of EN8 medium-strength carbon steel is 
BS970, most commonly known as 080M40. It is also recognised as 
Steel Grade 40, which is a structural material better used in engi-
neering and construction applications. Other common names for this 
steel are C45 (EU), 1040 steel (USA), 45 (China), S40C (Japan), and 
ISO68318. Hourglass-shaped specimens for fatigue testing were ma-
chined from bars of 12.5 mm diameter. The geometry and dimensions 
of the specimen are shown in Fig.  3.

To address the need to calibrate the UFT machine to acquire accu-
rate and reliable data using the equipment introduced in Section 2, the 
following steps are considered:

(i) calibrate and validate the laser reading and DIC system
(ii) make sure the intended mode shape is excited
(iii) extract the statistical distribution of working frequency and 

damping of the UFT machine
(iv) build a statistical relationship between strain measured by the 

DIC technique and tip displacement from laser reading data

The first two steps focus on validating the intended operational 
condition of the UFT machine, and the following two steps are used 
to generate data to calibrate the numerical models and reflect the 
experimental uncertainty on the stress life (S-N) predictive curve.

4.1. Measurement system and UFTM machine uncertainties

Firstly, the measurement systems, including lasers and DIC systems, 
are set up and their sensitivity is adjusted using standard approaches 
recommended by the system producers mentioned in Section 2. After-
wards, step (i) is carried out by measuring the tip displacement of the 
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Fig. 2. Hierarchical Bayesian method (a) flowchart describing the procedure of model implementation (b) diagram of the model variable and data flow.
Source: Modified and reproduced from [14].
Fig. 3. Geometry and dimensions of the hourglass-shaped specimen for ultrasonic fatigue testing.
specimen using both laser and DIC systems for cross-validation between 
the measurements of both systems. For this purpose, the laser is set up 
at the bottom of the specimen (Fig.  1) and DIC is positioned in two 
different regions on the specimen to measure the displacement at the 
free end of the specimen and the end of the specimen connected to the 
UFT machine. The target displacement is set at 10 μm for demonstration 
purposes, as it is the lowest tip displacement that the measurement 
system may observe during the operation in this work. Therefore, a 
low signal-to-noise ratio (SNR) is expected for this measurement level. 
The calculated SNR value is 22 for the signal in Fig.  4. Fig.  4a,b shows 
the deformation contour at the joint and free end locations (videos in 
the appendix). The comparison between the measured displacements 
by the DIC system and laser, which is shown in Fig.  4c, indicates a 
5 
good agreement. It should be noted that the displacement at the joint 
location is mirrored for the purpose of comparison. Some important 
observations can be made. Laser measurement, especially for low am-
plitudes, produces noisy data that is due to experimental conditions 
(e.g., measurement surface, light, etc.) and sensor sensitivity. The 
sampling frequency of the laser has been set to 200 kHz. This produces 
uncertainty for the feedback controller when adjusting the applied 
force.

As another source of uncertainty, the DIC system reports the stan-
dard deviation of the measured displacement. This standard deviation 
varies between 0.25−0.5 μm. The DIC system process involves im-
age acquisition, noise reduction, and defining a Region of Interest 
(ROI), which is divided into subsets for tracking. Correlation tech-
niques are used to search for the best-matching subset compared to a 
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Fig. 4. Validation of laser and DIC system measurements (a) displacement contour from the DIC system at the joint location; (b) displacement contour from the DIC system at 
the tip location; (c) comparison of tip displacements.
reference image. This refines with sub-pixel interpolation and optimisa-
tion algorithms. Measurement accuracy is assessed through correlation 
residuals, which leads to the standard deviation [28]. The standard 
deviation calculated from correlation residuals is propagated the uncer-
tainty arising from the high testing frequency, as it directly affects the 
quality of the captured images. Also, it should be noted that the circular 
specimen might introduce additional measurement uncertainty due to 
the out-of-plane motion. However, the ROI is focused on a narrow 
area of the specimen, and the measurement is carried out in the axial 
direction, averaged over the small region at the end of the specimen 
(see Fig.  4a). This reduces the potential error caused by the circular 
specimen.

Another observation is the slightly lower displacement at the joint 
location compared to the free end by 5%–10%, which can introduce 
asymmetric end deformation and eventually affect the value and lo-
cation of maximum stress in the control zone in the middle of the 
specimen. This asymmetry is not affected by the amplitude of vibration. 
These kinds of slight inaccuracies are either due to the measure-
ment system or manufacturing/assembly errors, which are inevitable 
as another source of uncertainty involved in UFT. Overall, the results 
demonstrate that the intended mode shape is excited.

With the aim of understanding the statistics of system dynamics, 
operational modal analysis was performed by measuring the decaying 
response of the tip displacement. System dynamics are characterised 
by the change of natural frequency and damping ratio with respect 
to displacement amplitude. These characteristics are reported for the 
entire assembly after the specimen is mounted. Therefore, variability 
in measured frequency for multiple runs of the experiment is expected. 
Also, it should be noted that damping is sourced from both material 
deformation and friction, mainly due to bolted joints. This can also be 
used later for calibrating the FE model, which is outside of the scope 
of this study. Fig.  5a shows the measured and filtered displacement 
response. The amplitude ramps up quickly when excitation starts; it 
continues in a steady state and decays in free vibration to zero in 
almost 0.2 s after excitation stops. A filter is applied to smooth the 
cyclic data for later analysis, preventing double zero-crossings when 
using the zero-crossing method. The filtered data is obtained using a 
third-order band-pass Butterworth filter between frequencies [20 172, 
20305] Hz. The filter characteristics are tuned to preserve only the 
main excited harmonic and amplitude of the signal. Fig.  5b,c shows 
the instantaneous frequency and damping. This means the change 
of frequency and damping with respect to displacement amplitude. 
6 
Higher displacement amplitude means higher stress in the middle of 
the specimen. The displacement amplitude used to generate the results 
here covers a good range of stress values experienced in the UFT of 
specimens in this study.

The zero-crossing method proposed in [29] is used here to extract 
them from the measured decay displacement response. The method 
measures the time period between consecutive zero-crossings and from 
that estimates the instantaneous frequency. Damping is estimated by 
analysing the amplitude decay between zero-crossings and applying the 
logarithmic decrement method instantaneously. It can be seen that the 
frequency shows slightly softening behaviour in high amplitudes, which 
is a typical behaviour for bolted assemblies [30]. However, the average 
frequency identified for the UFT machine assembly is 20246 Hz. It 
can be seen from Fig.  5c that damping does not vary with amplitude, 
and the identified damping ratio is 0.015%. This is consistent with the 
results in [16] for a different UFT machine.

Since the UFT machine works at a very high frequency and the 
assembly consists of component joints with bolts, it is likely that the 
dynamic characteristics of the machine change after some test itera-
tions. Therefore, a statistical analysis by repeating the free decay test is 
conducted. Fig.  6a,c presents the change of measured natural frequency 
and damping, respectively, over 50 test iterations. It should be noted 
that test parameters such as tip displacement amplitude, which results 
in stress in the middle section of the specimen and temperature are 
kept constant. It can be observed that there is over 50 Hz drop in 
the frequency after a couple of repetitions; however, the damping 
ratio varies in a specific range. This indicates the machine’s working 
frequency is dependent on the fittings of the assembly, and that it could 
introduce another source of uncertainty in the measurement and fatigue 
life estimation. The repetition continued further, and the statistical 
distribution of measured frequency and damping was built as shown 
in Fig.  6c. The distribution shows the variation in the dynamics of 
the UFT machine that leads to variation of the tip-displacement and 
strain relationship discussed in Section 4.2. The results show sufficient 
consistency with the Japanese standard [10], which recommends that 
the cyclic frequency change should be within ±0.5% for test repetitions.

Overall, the results in this section indicate many sources of un-
certainties throughout the test that should be systematically taken 
into account and carried forward in building predictive life estimation 
curves and eventually in life assessment analyses.
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Fig. 5. Response analysis of the UFT machine for calibration (a) measured tip displacement; (b) instantaneous frequency and damping characteristics.
Fig. 6. Test repetition effect on dynamics of UFT machine (a) frequency trend; (b) damping trend; (c) statistical distribution of dynamic characteristics.
4.2. Probabilistic relationship of tip displacement and strain (stress)

The procedure proposed in the Japanese standard [17] to estimate 
the strain (or stress) level is based on a linear relationship between 
strain and tip displacement of the specimen. This is a particularly valid 
approach since the macroscale behaviour of metal specimens is well 
within the linear regime for the stress levels expected in the VHCF 
region of the stress-life curve. To achieve this, the calibration should be 
performed based on the results of the tip displacement amplitude and 
the strain at the control volume (middle of the specimen in the uniaxial 
hourglass types), measured either with a strain gauge or DIC system. 
This calibration procedure may be carried out to determine the VHCF 
life of any new material. It is recommended that at least five points 
of tip displacement amplitude should be measured within the capacity 
range of the testing machine [10]. However, the recommended ap-
proach does not include the uncertainties involved in the measurement 
system, specimen-to-specimen variation, and dynamics of the UFTM 
machine as discussed in Section 4.1. There are analytical techniques 
based on elastic calculations recommended in the standard [10] and 
well-developed by the authors for more complicated multiaxial load-
ing [12]. Although these techniques are very powerful for engineering 
calculations, they lack probabilistic presentation.

In this section, an ensemble-based technique is proposed that uses 
multiple data sets to produce a statistical relationship between strain 
in the control volume (middle of the specimen) and tip displacement. 
It is shown that the statistical relationship enables one to reflect the 
uncertainty in the life estimation step as well. The flowchart of the 
proposed technique is presented in Fig.  7.

First, five different specimens are selected, and the measurement 
of strain (DIC) and tip displacement (laser) is repeated over 50 times. 
This is to include material, measurement system, and UFT machine 
7 
Fig. 7. Flowchart of the proposed method for a probabilistic UFT.

dynamics variability in the generated dataset. It is worth noting that 
determining the number of specimens and test repetitions required 
to generate a robust data set remains a topic for future research, as 
the variability in material properties and specimen geometry poses 
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significant challenges. Also, the variation in the elastic modulus 𝐸 has 
not been considered in this study. Instead, it is assumed that variations 
in 𝐸 are directly reflected in the variation of measured strain. How-
ever, future studies should refine the analysis by considering different 
sources of uncertainty.

Despite setting a deterministic target tip displacement in the con-
troller, deviations in maximum absolute tip displacement are observed 
due to noise and experimental conditions, leading to a probabilistic 
distribution of tip displacement. Similarly, measured strain values for 
each test repetition showed slight variations in their means and stan-
dard deviations due to experimental conditions and DIC correlation 
residuals as discussed in Section 4.1. Consequently, each displacement 
setting resulted in slightly different strain values, emphasising the need 
for a probabilistic distribution for measured strain. The measured data, 
represented by black dots in Fig.  8b, is used to fit Gaussian distributions 
to both strain and tip displacement data, representing the 50 data 
sets at each stress level. The measured data is used to fit Gaussian 
distributions to both strain and tip displacement data representative of 
the 50 data sets at each stress level. This allows one to generate further 
data for statistical analysis. These may be called hidden hierarchies of 
uncertainties. The fitted distributions are used to carry out a Monte 
Carlo simulation to generate further data points for tip displacement 
and strain. Afterwards, the generated data is used within a Bayesian 
framework explained in Section 3 to fit a probabilistic model to the 
data. For this purpose, the model in Eq. (9) is used due to the linear 
nature of the relationship. 
𝜺𝑖 = 𝜽𝑼 𝑖 + 𝝐𝑖 (𝝐𝑖 ∼  (0, 𝜎2)) (9)

where 𝜺 and 𝑼 are measured strain and tip displacement. Here, 𝜽 is the 
model parameters and 𝝐 is the prediction error, which is characterised 
by a zero mean Gaussian distribution with standard deviation 𝜎. In 
the hierarchical model configuration, 𝜽 is modelled as statistically 
independent, assumed to follow a normal distribution with mean 𝝁𝜽
and covariance 𝜮𝜽.

Fig.  8a shows the resulting posterior distribution of parameters, 
as computed based on Eq. (8), and their correlation analysis. The 
diagonal subplots show the histograms of the posterior samples, and 
the off-diagonal subplots indicate the contour plots of the joint pos-
terior distributions of the parameters. The contour plots for the pairs, 
including the noise standard deviation, indicate that there is no strong 
correlation between 𝜎, and the model parameters. This means that the 
noise cannot be modelled with the simple linear model, and its source 
is the variability discussed in Fig.  7. Besides, the mean value 𝜎 = 50
means that there is 3×50 μ strain variability that could be expected for 
measured strains under experimental conditions. By employing the esti-
mated parameters, the probabilistic prediction of strain based on target 
tip displacement can be obtained. Fig.  8b depicts the mean prediction 
obtained along with uncertainty bounds (i.e., confidence intervals 90 
and 99%). It can be observed that all experimental points used in the 
Bayesian inference are well contained within the uncertainty bounds. 
This prediction was compared to the analytical equation proposed to 
predict the strain from tip displacement in [16], which shows a good 
agreement.

5. Stress-life curves

When the machine is calibrated, one can record stress-life data and 
build a statistical model to predict the number of cycles to failure based 
on the applied stress level (see Fig.  7). It has been demonstrated in [13] 
that the HB method is outperforming the conventional probabilistic 
methods [31,32] in quantifying the uncertainties observed in stress-
life predictive curves, especially when a sparse dataset is available. 
One of the key conclusions from [13] is that using only a few test 
specimens, such as three per stress level, the HB method achieves the 
same accuracy as conventional methods. Therefore, the HB method is 
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Table 3
Stress levels for testing with UFT.
 Target tip displacement (μm) Strain (μ) Stress (MPa) 
 12 1475 295  
 13 1596.65 319  
 14 1719.45 344  
 15 1840 368  

used in this work to quantify the uncertainty in stress-life prediction 
curves.

Here, four stress levels are considered, and the elastic modulus is 
assumed to be 𝐸 = 200 GPa. The strain, stress, and corresponding tip 
displacement for the 4 stress levels are reported in Table  3. The test 
was conducted with three different test specimens for each stress level, 
with one specimen in each stress level kept for validating the accuracy 
of probabilistic life prediction. The analysis is repeated by randomly 
varying the validation data among the experimentally available spec-
imens. The best model describing the data is shown in Fig.  9a along 
with experimental stress-life data. It can be observed that the variation 
of the number of cycles to failure is higher for low stresses.

In this step, the stress data is initially augmented based on the 
probabilistic inference from the model in Eq. (9). The blue squares in 
Fig.  9b show the augmented data points. The obtained number of cycles 
to failure is affected by the uncertainty in the applied load under exper-
imental conditions and the material’s microstructural variability, which 
is accounted for by testing multiple specimens under different loading 
conditions. Consequently, the experimental variability in fatigue life 
is a function of both load uncertainty and material variability, which 
cannot necessarily be distinguished. The data for the number of cycles 
to failure and the probabilistic distribution of stress calculated from the 
model in Eq. (9) is used to generate an augmented stress-life dataset. 
This is done via fitting a Bayesian linear model between stress and life 
and using them to generate further data points [13], which are shown 
with yellow dots in Fig.  9b. This dataset is used within the HB method 
explained in Section 3 to generate a probabilistic model to quantify 
uncertainties in the form of posterior probability distributions, which 
enables the user to make predictions with a sense of confidence. The 
probabilistic model used to fit the VHCF data points is presented in 
Eq. (10). 
𝑙𝑛(𝑵 𝑖) = 𝛼𝑺 𝑖 + 𝛽 + 𝝐𝑖 (𝝐𝑖 ∼  (0, 𝜎2)) (10)

where 𝑵 and 𝑺 are the experimental number of cycles to failure and 
stress level, respectively. Here, 𝛼 and 𝛽 are the model parameters, 
and 𝝐 is the prediction error, which is characterised by a zero mean 
Gaussian distribution with standard deviation 𝜎. The statistical infor-
mation about the model parameters is reported in Table  4 in terms of 
mean and standard deviation. By employing the results in Table  4 and 
Eq. (10), the stress-life curves are generated using the HB method. From 
Fig.  10a, it can be seen that this method provides a mean prediction 
as well as confidence intervals of prediction for life in terms of the 
number of cycles to failure. Both 90% and 99% confidence intervals are 
plotted. The plot also includes the validation data points within the 90% 
confidence interval that demonstrate the accuracy of the probabilistic 
linear model in predicting life in the VHCF region. The trend indicates 
that assuming infinite life for EN8 metal might be conservative.

Furthermore, Akram et al. [27] reported data from a high-cycle 
fatigue test conducted using a rotating bending machine with a working 
frequency of 63 Hz for EN8 steel. The data points from the high-cycle 
to the VHCF region are combined here. Eq. (11) is used to produce a 
probabilistic model for both regions using the HB method described in 
Section 3. 
ln(𝑵 𝒊) = ((𝑺 𝑖 − 𝑐)∕𝛼)1∕𝛽 + 𝝐𝑖 (𝝐𝑖 ∼  (0, 𝜎2)) (11)

where 𝛼, 𝛽 and 𝑐 are the model parameters. The mean and standard 
deviation for the model parameters are reported in Table  4 along with 
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Fig. 8. Uncertainty quantification and propagation (a) posterior distribution and correlation analysis of the parameters; (b) probabilistic prediction of strain–displacement relationship 
(black dots present the measured data).
Fig. 9. Stress-life data (a) raw experimental data; (b) augmented stress and stress-life data.
Table 4
Second-moment statistical information for S-N curve models.
 𝜃𝑖 VHCF data Full S-N data
 E[𝜃𝑖] SD[𝜃𝑖] 𝐸[𝜃𝑖] SD[𝜃𝑖] 
 𝛼 −0.086 0.0014 53777634.8 10.06  
 𝛽 46.08 0.46 −5.27 0.02  
 𝑐 – − 304.02 4.9  
 𝜎 1.38 0.03 19.3 2.18  
𝜃𝑖 - Estimate value of the 𝑖th parameter.
E[𝜃(,)] - Expected value of parameter estimated by sampling.
SD[𝜃(,)] - Standard deviation of parameter estimated by sampling.

the standard deviation of the prediction residual. The first observation 
is that when fitting a single model to data from all regions of the stress-
life curve, the prediction residual increases compared to the model 
fitted only to the VHCF region. This suggests that using different forms 
for different regions of the stress-life curve may lead to better accuracy 
in the prediction. This is a topic of current research.

To display the predicting properties of the HB method, the samples 
drawn from the posterior distribution of hyperparameters are used to 
construct the probabilistic stress-life curves, as depicted in Fig.  10b. It 
can be seen that the data points all exist within the uncertainty bounds 
shown by the confidence interval, and the mean accurately predicts the 
life cycles. Again, it can be seen that fitting all data at once may result 
in over-conservative trends and uncertainty bounds as compared to 
using different equations to describe the behaviour of different regions 
of the stress-life curve. Nonetheless, combining the data from low- and 
high-frequency tests depends not only on frequency but also on the 
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specimen size and different testing environments. Furthermore, there 
is no run-out sample within the specimens used in this study, and no 
assumption can be made about the fatigue limit within the stress-life 
range used in this study. We avoid drawing a general conclusion here, 
as investigating these effects is the subject of future research.

6. Discussion on variability

This section discusses the possible sources of variability observed 
in the calibration curve (Fig.  8) and the stress-life curves (Fig.  10) 
in this study. In general, the source of variability could be the test-
ing procedure and material variability. Testing procedure variability 
includes loading, testing equipment, measurement system, frequency 
effects, and environmental effects such as temperature and humidity. 
Material variability sources include specimen size effect, microstruc-
tural features, surface treatment, etc. This paper aimed at quantifying 
variabilities sourced from the UFT testing equipment operation and 
the measurement systems via generating Fig.  8. In addition, those 
variabilities are transferred to the stress-life prediction by testing mul-
tiple specimens, which results in considering microstructural feature 
variability in particular.

Regarding material variability, a general discussion based on the 
probabilistic stress-life curves for EN8 steel highlights the high un-
certainty in life estimation for a specific stress level in the VHCF 
region. For example, it varies between 2 × 105 and 108 with a 90% 
confidence interval for 350 MPa in Fig.  10a. This raises the question 
of whether the information about lifetime from UFT is useful and 
trustworthy. The trend analysis in Fig.  10a shows that even though the 
uncertainty is high, there is a finite life for low stresses. To understand 
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Fig. 10. Stress-life curve and prediction confidence interval for the EN8 steel (a) VHCF data; (b) all range stress-life dataset.
Source: Experimental 63 Hz data has been reproduced from [27].
this high uncertainty, an important explanation in the Japanese WES 
1112 standard [17] is that UFT is suitable for high-strength steels 
with a tensile strength of over 1200 MPa. Whereas EN8 carbon steel 
is a ferritic, medium-strength steel with a body-centered cubic (BCC) 
slip system, and it has been reported that for ferritic materials with 
BCC slip systems, the cyclic frequency effect may dominate [17,33,34]. 
The testing frequency or strain rate effect on a similar steel, such as 
C45E, indicates that a higher testing frequency results in a higher 
lifetime [35,36]. This could be treated using methods for strain rate 
dependent correction [37], however, it is outside of the scope of this 
study. Also, the dispersion could be higher for ferritic steel due to 
increased heating at very high frequencies, which necessitates more 
frequent pulse/pause cycles during testing. Additionally, at very high 
cycle numbers (beyond 108), the uncertainty in the location of in-
clusions for crack initiation along slip bands at the surface leads to 
significantly greater variability [35], as shown in Fig.  10b.

Lage et al. [16] observed that environmental factors (e.g., tem-
perature) have a significantly greater influence than frequency when 
comparing results with conventional fatigue tests for EN8 steel. In 
high-strength steels with higher carbon content, fatigue cracks in the 
high-cycle fatigue (HCF) region typically initiate at the surface. Con-
versely, during ultrasonic fatigue testing in the very high cycle fatigue 
(VHCF) regime, crack initiation often occurs internally around inclu-
sions, leading to the elimination of a distinct fatigue limit. Although 
EN8 steel is not classified as high-strength steel, fatigue crack initiation 
in the VHCF regime has been observed to occur internally [16], forming 
a characteristic ‘fish-eye’ fracture pattern. Treating the source of high 
dispersion in the VHCF region for medium-strength EN8 steel still 
remains an open research topic that falls outside the scope of this paper. 
For this purpose, a detailed fractography of the fracture surface should 
be considered in future works to identify the source of fatigue cracks, 
etc.

7. Summary

Even though ultrasonic fatigue tests operating at 20 kHz can
straightforwardly reach a very high number of cyclic loads (beyond 
107) in an accelerated fashion, the high dispersion of stress-life data 
could indicate uncertainties involved in the calibration and operation 
of the machine. The main sources of uncertainties are microstructural 
variabilities during the material processes and operational variabilities 
during the UFT. This work considers both material uncertainties by 
running the test for a couple of specimens with the same stress level 
and operational uncertainties via a statistical calibration process.

The ultimate controlling parameter of stress in a UFT specimen is 
the tip displacement. Therefore, the variability of displacement mea-
surement and the induced highest linear stress are accounted for during 
the calibration phase of the UFT machine using multiple datasets. This 
led to a probabilistic calibration curve, i.e., tip displacement vs. stress. 
The probabilistic calibration curve and the number of cycles to failure 
data from multiple specimens are used to build another probabilistic 
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relationship that describes the S-N curve. This is all taken forward using 
the HB method that eventually provides the confidence interval for 
the material lifetime estimation. These calculated confidence intervals 
include the calibration and testing uncertainties. The results for a 
medium-strength metal with ferritic content indicate that there is a 
high uncertainty in the estimated lifetime. However, the trend of the 
stress-life curve shows a finite life in the VHCF regime.

This research does not aim to generalise the conclusions due to the 
limited number of datasets and materials used; however, it proposes a 
technique to understand and reflect on the experimental uncertainties 
involved in the UFT. There are other factors affecting the experiment 
that should be included in future studies. These include the temperature 
control strategy, sample size effect, the rising time of excitation to the 
target steady-state level, and cycles due to decaying from stops for the 
cooling interventions. Future works could investigate a detailed mi-
crostructural analysis of EN8 steel and its relationship with the current 
lifetime observations, while also quantifying the possible contribution 
to scatter caused by different factors.
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