
Parametric curve and Partial Differential

Equation-based parametric surface

reconstruction from point clouds

by

Zaiping Zhu

National Centre for Computer Animation

Faculty of Media & Communication

Bournemouth University

A thesis submitted in partial fulfilment of the
requirements of Bournemouth University for the degree of

Doctor of Philosophy

March. 2025

Copyright Statement

This copy of the thesis has been supplied on condition that anyone

who consults it is understood to recognise that its copyright rests

with its author and due acknowledgement must always be made

of the use of any material contained in, or derived from, this

thesis.

i

Acknowledgements

First of all, I sincerely express my thanks and gratefulness to my

supervisors, Prof. Lihua You and Prof. Jianjun Zhang, for their

valuable and continuous guidance and support during the past

four years of my PhD research. I have learned a lot by commu-

nicating with my supervisors, especially Prof. You, from whom

I have learned a lot concerning how to do academic research. I

would also thank Prof. Iglesias from the University of Cantabria,

who also gave me useful advice on my research.

Besides, I would thank my friends for their help and company dur-

ing my time at Bournemouth University. Even though I worked

from home for almost 2 years because of the impact of the Pan-

demic, I still made a lot of friends in the UK. I would give my

thanks to Junheng Fang, Zhiqi Li, Mengqin Huang, Xiaoxiao Liu,

Xingyu Ye, Tingting Li and Yingjie Xi, Jiajun Huang for their

help. I would also thank Sasha and Kavi for the interesting dis-

cussion.

I would also say thanks to my family. Without their support

and love, it would be hard for me to do my research during the

pandemic. My fiancee Liqi Zhou also supports me concerning my

research and choices. By talking to her every day, my stress was

relieved to some extent.

Finally, I would like to give my thanks to my country and the

China Scholarship Council for their support during the time of

pursuing my PhD degree.

ii

Abstract

There are two primary types of representations used to model

curves and 3D surfaces in the digital world: explicit and implicit.

Explicit representations include parametric representations, poly-

gons, and similar methods, while implicit representations encom-

pass level sets, distance functions, and Constructive Solid Ge-

ometry (CSG), among others. Parametric models are especially

popular in 3D modelling, design, and manufacturing because they

are mathematically defined, making them easy to edit, transmit,

and construct. However, real-world data often exists in a discrete

form, typically as point sets, rather than in a parametric form.

Therefore, it is crucial to reconstruct a parametric representation

that closely approximates real-world data.

In the context of parametric curve reconstruction from point sets,

two key objectives are to approximate the underlying structure of

the point sets as accurately as possible while minimising the num-

ber of curves used. Existing methods often struggle to balance

these two factors effectively.

To address this gap, we have developed a method that mimics

the process of human vectorization of image boundaries. The

boundary points are first segmented into multiple segments us-

ing corner points. Within each segment, the bisection method

is employed to identify the largest subset of points that a single

curve can fit. Additional curves are introduced only when the

fitting error exceeds a predefined threshold. This process contin-

ues until all points in the segment are fitted, thereby minimising

the number of Bézier curves required. Additionally, symmetric

shape boundaries within the point sets are detected, further re-

ducing the number of curves needed. My method also allows for

the selection of the optimal parameterization method on a case-

by-case basis to minimise fitting error, which is a critical step

in parametric curve reconstruction. Comparisons with both con-

temporary and classical methods demonstrate that my approach

outperforms existing techniques.

For parametric 3D surface reconstruction from point sets, Bézier,

B-spline, and NURBS surfaces have been extensively studied.

However, these methods share common drawbacks, such as the

need for large data storage and complex geometry processing.

Moreover, maintaining good continuity between reconstructed

parametric patches is often challenging. In contrast, PDE-based

methods for surface reconstruction are advantageous due to their

low storage requirement, strong fitting capabilities and the rel-

ative ease of achieving good continuity, as most are boundary-

based approaches. The primary challenge with PDE-based sur-

face reconstruction methods lies in solving partial differential

equations, which is why most studies have focused on implicit

PDE-based shape reconstruction, despite its computational ex-

pense.

To address these challenges, we propose a novel method that uses

an accurate closed-form solution to a fourth-order PDE for recon-

structing 3D parametric surfaces from point clouds. This method

offers powerful fitting capabilities and is computationally efficient.

However, postprocessing is necessary to ensure continuity, as this

is not inherently guaranteed in the model. Additionally, the pa-

rameterization of point sets in the initial method is not sufficiently

effective. To overcome these limitations, my subsequent work in-

tegrates linearly blended Coons patches with an analytical solu-

tion of a specific fourth-order PDE. This combined approach not

only ensures good positional continuity between reconstructed

iv

parametric patches but also uses the Coons patch as an effec-

tive tool for accurate parameterization of the point sets. Lastly,

tangential continuity is achieved by combining the bicubic Coons

patch and a special deformation surface.

v

Contents

Copyright i

Acknowledgements ii

Abstract iii

Table of contents vi

List of figures viii

List of tables xiv

1 Introduction 1

1.1 Background . 1

1.2 Main Challenge . 3

1.3 Aims and Objectives . 4

1.4 Contribution . 6

1.5 List of Publications . 7

1.6 Outline of Thesis . 7

2 Literature Review 9

2.1 Points set parameterization for curve fitting 9

2.1.1 Methods in the first category 11

2.1.2 Methods in the second category 16

2.1.2.1 Metaheuristics-based parameterization 16

2.1.2.2 Deep learning-based methods 17

2.2 Points set parameterization for surface fitting 18

vi

2.2.1 Some concepts . 19

2.2.2 Parameterization methods of organised point clouds . . 20

2.2.3 Parameterization methods of unorganised point clouds 22

2.2.3.1 Base surfaces-based methods 22

2.2.3.2 Neural networks-based methods 29

2.3 Curves and surfaces reconstruction from point clouds 30

2.3.1 Curve reconstruction 30

2.3.2 Surface reconstruction 34

3 Vectorizing binary image boundaries with symmetric shape

detection, bisection and optimal parameteterization 39

3.1 Symmetric axis and point detection 41

3.2 Fitting . 45

3.3 Bisection method . 46

3.4 Results and comparison . 48

3.5 Summary . 54

4 Parametric surface reconstruction using closed-form solution

of a fourth-order PDE 55

4.1 Mathematical model and closed-form solution 56

4.1.1 Closed-form solution derivation 57

4.2 Reconstruction from a single patch of points 62

4.3 Reconstruction from multiple patches of points 67

4.3.1 Segmentation of point clouds 68

4.3.2 Point cloud parameterization 71

4.3.3 Fitting . 74

4.3.4 Experiments and results 75

4.3.5 Comparison with implicit PDE method 81

4.4 Extended closed-form solution 84

4.5 Results and comparison . 86

4.6 Summary . 89

vii

5 Parametric surface reconstruction from 3D point data using

partial differential equation with positional and tangential

continuous patches 91

5.1 Background . 91

5.2 Method Pipeline . 92

5.2.1 Segmentation and boundary extraction of 3D point data 93

5.2.2 Bézier curves fitting 94

5.2.3 Point cloud parameterization for 3D surface fitting . . 95

5.3 3D shape reconstruction from point clouds with positional and

tangential continuous patches 96

5.3.1 Based surface . 96

5.3.2 Deformation surface 99

5.4 Results . 103

5.4.1 Surface reconstruction from structured point clouds . . 103

5.4.2 Surface reconstruction from unstructured point clouds . 104

5.4.3 Surface reconstruction from complicated point clouds . 108

5.4.4 The impact of hyper-parameters 111

5.4.5 Surface reconstruction from point clouds with various

levels of noise . 113

5.5 Summary . 117

6 Conclusion and Future Work 118

6.1 Conclusion . 118

6.2 Future Work . 120

Bibliography 122

viii

List of Figures

1.1 General pipeline of parametric curve/surface reconstruction

from point clouds. 2

2.1 Two main types of techniques to fit parametric curves to point

sets. 11

2.2 Foley parameterization. 15

3.1 The pipeline of our method for vectorizing binary images. . . . 41

3.2 Symmetric axes detection . 43

3.3 A cubic Bézier curve and its mirrored counterpart about an axis 43

3.4 Symmetric point detection . 44

3.5 (a) Input images; (b) adding break points at positions with

maximum error (Schneider 1990); (c) positions at middle

point (Gonczarowski 1991); (d) at positions with minimum

error (Pavlidis 1983); (e) our bisection method. 46

3.6 (a) Input images (S.L. 2025); (b) Image tracer; (c) Affine scale

space; (d) Our method . 50

3.7 (a) Input images (S.L. 2025); (b) Image tracer; (c) Affine scale

space; (d) Our method . 51

3.8 (a) Input noise images; (b) Image tracer; (c) Affine scale-space;

(d) Our method. 53

3.9 (a)Input images, (b) traditional parameterization method (chord

length method), (c) our optimal parameterization method. . . 53

4.1 (a) Input 16 points. (b) surface defined by 16 original points.

(c) the reconstructed PDE Surface. 63

ix

4.2 (a) Input 25 points. (b) surface defined by 25 original points.

(c) the reconstructed PDE Surface. 63

4.3 (a) Input 36 points. (b) surface defined by 36 original points.

(c) the reconstructed PDE Surface. 64

4.4 (a) Input 49 points. (b) surface defined by 49 original points.

(c) the reconstructed PDE Surface. 65

4.5 (a) Input 64 points. (b) surface defined by 64 original points.

(c) the reconstructed PDE Surface. 65

4.6 (a) Input 81 points. (b) surface defined by 81 original points.

(c) the reconstructed PDE Surface. 66

4.7 (a) whole 81 points from a nose model. (b) curves defined by

the input points. (c) 16, 25, 36, 49, 64 and 81 are sampled

from the 81 points. 66

4.8 The pipeline of surface reconstruction from point clouds. . . . 68

4.9 Segmentation of a point cloud of the umbrella example: (a)

Original point set; (b) segmented point subsets. 71

4.10 Parameterization of points in a subset: (a) Fitting plane. (b)

Projecting points to a plane. (c) Aligned projected points with

u and v direction. 71

4.11 (a) Point cloud of a sphere. (b) Segment the point clouds

into 2 equal subsets. (c) Reconstructed shape with 2 PDE

patches. (d) Segment the point clouds into 4 equal subsets.

(e) The spherical coordinate system. 72

4.12 PDE-based reconstruction from the point cloud of a sphere:

(a) Segmented point cloud of a sphere. (b) Projecting the

points in a subset to a u-v plane. (c) Reconstructed shape with

small overlaps consisting of four PDE patches without adding

points in the regions around boundaries. (d) The points in a

subset after adding points to the regions around boundaries.

(e) The final result without overlaps is obtained by adding

points to the regions around boundaries. 77

x

4.13 Adding more points around the boundary of the original point

clouds: (a) original point cloud; (b) upsampled point clouds;

(c) extracted boundary points of the upsampled point clouds;

(d) combined point clouds. 77

4.14 PDE-based reconstruction from the point cloud of a cylinder:

(a) Segmented point cloud of a cylinder. (b) Projecting the

points in a subset to a uv plane. (c) Reconstructed shape with

small overlaps consisting of two PDE patches without adding

points in the regions around boundaries. (d) The points in a

subset after adding points to the regions around boundaries.

(e) The final result without overlaps obtained by adding points

to the regions around boundaries. 78

4.15 PDE-based reconstruction from the point cloud of a table

(left–right, top–bottom): (a) Point cloud of a table. (b) Seg-

menting the point cloud of the table into a top part and a

bottom part. (c) Using the K-means clustering algorithm to

segment the bottom part into four subparts. (d) Using the

RANSAC algorithm to segment each of the subparts into six

subsets. (e) Reconstructed shape with small gaps between

two adjacent PDE patches. (f) Points in a subset after adding

points to the regions around boundaries. (g) The final result

without gaps obtained by adding points to the regions around

boundaries. 78

4.16 (a) Reconstructed umbrella; (b) Final result after post-processing. 79

4.17 PDE-based reconstruction from the point cloud of a car (left–right,

top–bottom): (a) original point cloud; (b) segmented point

cloud; (c) rear part as a single subset; (d) segmentation re-

finement of the rear part; (e) final reconstructed rear part

after post-processing; (f) final reconstructed front part after

post-processing. 81

xi

4.18 3D shapes reconstructed using the Poisson surface reconstruc-

tion technique: (a) Reconstructed sphere; (b) Reconstructed

cylinder; (c) Reconstructed umbrella; (d) Reconstructed table;

(e) Close view of a leg of the reconstructed table. 82

4.19 (a) Reconstructed 3D point cloud of a cylinder shape from

multi-view 2D images; (b) reconstructed PDE surface using a

single PDE model with 16 variables; (c) reconstructed PDE

surface using a single PDE model with 64 variables; (d) recon-

structed PDE surface using two PDE models with 16 variables;

(e) segmented point cloud. 87

4.20 (a) Point set of a bowl; (b) surface reconstructed using Pois-

son; (c) PDE-based surface using single 16-variables PDE model;

(d) PDE-based surface using single 64-variables PDE model. . 88

4.21 (a) The ground truth of a bench surface; (b) point set of a

bench surface; (c) surface reconstructed using Poisson; (d)

PDE-based surface using a single 16-variables PDE model;

and (e) PDE-based surface using a single 64-variables PDE

mode. 88

4.22 (a) The ground truth of a slide surface; (b) point set of a slide

surface; (c) surface reconstructured using Poisson after seg-

mentation; (d) PDE-based surface using a single 16-variable

PDE model; (e) PDE-based surface using a single 64-variable

PDE model. 89

4.23 (a) The point cloud of a hat; (b) segmented 2 subsets; (c)

reconstructed PDE-based surface using 2 PDE patches defined

by the 64-variables PDE model; (d) segmented 3 subsets; (e)

reconstructed PDE-based surface using 3 PDE patches defined

by the 64-variable PDE mode. 90

4.24 (a) The point cloud of a truck; (b) segmented subsets; (c)

reconstructed PDE-based surface. 90

5.1 Pipeline of our proposed method. 92

5.2 Curvature calculation of points on the boundary. 94

xii

5.3 (a).One Bézier curve can not fit the boundary points well.

(b).Multiple Bézier curves are used for the points on each

boundary. 95

5.4 Bilinearly blended Coons patch. 97

5.5 Reconstruction of the surface from structured point clouds:

(a).Input point clouds. (b).Generated Coons patch with an

average error of 0.7120. (c).Final parametric surface with an

average error of 0.0035. 104

5.6 Reconstruction of the surface from unconstructed point clouds

of the front part of a skirt model:(a)Input point clouds and ex-

tracted boundaries. (b)Reconstructed Bézier curves. (c)Generated

Coons patch. (d)Final parametric surface. 105

5.7 Reconstruction of the surface from unconstructed point clouds

of the back part of a skirt model:(a)Input point clouds. (b)Generated

Coons patch. (c)Reconstructed parametric surface with M =

5, N = 5. (d)Reconstructed parametric surface with M =

10, N = 10. 106

5.8 Reconstruction of the surface from unconstructed point clouds

of a skirt model:(a)Input point clouds. (b)Reconstructed para-

metric surface after combination. 106

5.9 Reconstruction of the surface from unstructured point data of

a flag model:(a)Input point clouds. (b)Reconstructed para-

metric surface. 107

5.10 Reconstruction of the surface from unstructured point data

of a pot model:(a)Input point clouds. (b)Reconstructed para-

metric surface. 107

5.11 Surface reconstruction from unstructured point clouds of an

umbrella model:(a)Input point clouds. (b)Points on the three

boundaries can be fitted with just one Bézier curve. (c)Reconstructed

parametric surface for a subset with three boundaries. (c) Fi-

nal parametric surface after combination. 108

xiii

5.12 Reconstruction of the surface from constructed point data.

(a). Input point clouds; (b). Generated bicubic Coons patch;

(c). Final results after applying the deformation surface 109

5.13 Reconstruction of the surface from structured point data. (a).

Input point clouds; (b). Generated bicubic Coons patch of left

side point clouds; (c). Final results after applying the deforma-

tion surface; (d). The Zebra analysis of the two reconstructed

parametric surfaces . 110

5.14 Mean errors respect to M ×N for all the datasets 112

5.15 Max errors respect to M ×N for all the datasets 113

5.16 Noise free point cloud . 114

5.17 Reconstruction of the surface from unstructured point data

with l = 0.5(first column), 1.0(second column), 1.5(third col-

umn). Row 1:Noisy point clouds; Row 2: Base surface; Row

3: Reconstructed parametric surface; Row 4: Reconstructed

parametric surface with structured point cloud. 115

5.18 Case l = 1.5: (a).Generated base surface from the boundary

of the structured points; (b).Reconstructed parametric surface 116

5.19 Errors between Coons patch with reconstructed surface and

the structured point clouds (a).Mean errors; (b).Maximum errors117

xiv

List of Tables

2.1 Methods of parameterizing point sets for curve fitting in the

first category . 12

2.2 Methods of parameterizing point sets for curve fitting in the

second category . 13

2.3 methods to parameterize unorganised point clouds 23

3.1 Number of curves required for our method and other methods

for less complex image shapes. 50

3.2 Number of curves required for our method and other methods

for more complex image shapes. 52

3.3 Comparison between chord length parameterization and opti-

mal parameterization methods. 53

4.1 16 points used to define the surface. 62

4.2 Maximum errors and average errors between the two surfaces. 64

4.3 Mean fitting errors of the four solutions on various input data 67

4.4 Number of the design variables needed by our proposed PDE-

based method and the implicit PDE method to reconstruct

3D shapes from different point clouds. 83

4.5 Number of variables required to represent different 3D shapes

for implicit PDE method and proposed PDE-based method

after simplification of the reconstructed polygon mesh. 83

xv

4.6 The mean error and its deviation after simplification between

the surface defined by different point clouds and the recon-

structed PDE surface and the polygon surface respectively

(a/b: a refers to the mean error, b refers to the maximum

error.) . 83

5.1 Reconstruction errors when M = N = 5. 112

5.2 Reconstruction errors when M = N = 10. 113

xvi

Chapter 1

Introduction

1.1 Background

Parametric curves and surface reconstruction from point sets are the pro-

cesses of obtaining the explicit mathematical expression that approximates

the underlying structure of the point sets as closely as possible while keep-

ing low storage and good continuity conditions. This important research

direction has been widely used in many domains such as reverse engineering,

cultural heritage, robotics, biomedical engineering and many others (Varady

et al. 1997, Raja and Fernandes 2007, Gomes et al. 2014). To be more spe-

cific, the parametric form of the data enables the data to be stored, edited,

and used for manufacturing more effectively and efficiently.

The general pipeline of reconstructing parametric curves is shown in

Fig. 1.1: The first step is data acquisition, which can be done in many ways,

such as 3D scanner, point cloud reconstruction from multi-view images or

even a single image. Next, the point sets are preprocessed to remove outliers

or add points to complete the data. Then the data is segmented into multiple

segments based on the corner points, each of which is reconstructed with a

parametric curve or many curves if necessary. Fourthly, the point sets need

to be parameterized in a suitable way to obtain the corresponding parame-

ters for each point, and the parameters normally range from 0 to 1. In terms

of parameterizing the points, some classical methods include uniform param-

eterization, chord length method (Farin 2014), centripetal (Piegl and Tiller

1

2012, Fang and Hung 2013) and hybrid (Shamsuddin and Ahmed 2004), etc.

We have to note that each parameterization method has its pros and cons,

no method can handle all the problems of curve fitting, and it is not easy to

choose a suitable method for the task at hand. Fifthly, fitting of parametric

curves or parametric surfaces. In this step, choosing a norm which will be

used to measure the fitting errors also matters. Some widely used norms

include the L2 norm and L1 norm, other norms have also been investigated,

but optimisation with them is relatively difficult. The procedure of recon-

Figure 1.1: General pipeline of parametric curve/surface reconstruction from
point clouds.

structing parametric surfaces from point sets is similar to parametric curves

reconstruction, but parametric surface reconstruction is a more complex task

since parametric surfaces are 2-dimensional objects while parametric curves

are 1-dimensional objects, so more consideration should be taken into ac-

count. For example, parameterizing the point sets becomes more difficult

as there are two parameters associated with each point in the surface case;

Furthermore, multiple parametric patches are also required when the point

sets are topologically complex, then how to keep good continuity between

adjacent patches is also not easy.

The widely used parametric representations for both curves and surfaces

are Bézier curves/surfaces, B-spline curves/surfaces, and NURBS curves/surfaces,

they are widely used in many areas such as computer-aided design (CAD),

computer-aided manufacturing (CAM) and computer-aided engineering (CAE)

because of their good properties, like intuitive to edit, powerful modelling ca-

pability, etc. Partial differential equation (PDE) based methods have also

2

been proposed for surface reconstruction because of their advantages, which

include fewer design variables, and avoidance of stitching adjacent patches

together to achieve required continuity and physics-based nature. Although

existing methods based on these representations make great contributions

to the area of parametric curves and parametric surface reconstruction, the

challenges highlighted in Section 1.2 have not been addressed.

1.2 Main Challenge

For parametric curve reconstruction from point sets, the challenges are re-

lated to approximating the underlying structure of the points as closely as

possible while using as few design variables as possible; concerning paramet-

ric surface reconstruction, its first challenge is similar to that of parametric

curve reconstruction. Furthermore, maintaining good continuity between re-

constructed adjacent patches of parametric form is not easy; next, effectively

and efficiently parametrizing the point sets also requires sophisticated tech-

niques. These challenges will be presented in more detail below.

1. For parametric curve reconstruction, using as few curves as possible

while tightly approximating the underlying structure of the point sets is

not an easy task, which can both meet the reconstruction accuracy and

keep low storage. Besides, the appropriate way of parameterizing the

given point sets has a great impact on the final results, thus choosing

the suitable way of parameterizing the point sets is also critical, but

there is no best way of doing this, and it is case-dependent. Lastly,

to further reduce the number of curves required, some other properties

may be taken advantage of, but this requires serious consideration.

However, existing methods do not behave well considering both keeping

tight approximations and using a smaller number of design variables

(or curves).

2. For parametric surface reconstruction, it’s also desirable to use as few

patches as possible(or the same number of design variables has the more

3

powerful capability for reconstruction); Besides, keeping positional con-

tinuity or even high-order continuity is important, as no post-processing

is required and such property is essential in some applications. Lastly,

parameterizing point sets becomes harder and should be handled with

more consideration. Nevertheless, existing methods do not give good

results in these respects.

3. Partial differential equation-based shape reconstruction has the follow-

ing advantages. First, a single PDE surface patch can describe a com-

plicated shape leading to smaller data than other representations such

as the NURBS surface. Second, any irregular boundaries can be quickly

specified by drawing a closed curve on 3D models, different sculpting

forces can be applied to achieve the expected shape, and global shape

deformation can also be achieved through shape control parameters.

However, the main difficulty for PDE-based shape reconstruction is

how to solve them. Due to this difficulty, most studies investigated

implicit PDE-based shape reconstruction which involves numerically

solving PDEs. Although some research studies investigated explicit

PDE-based shape reconstruction by interpolating four curves or sat-

isfying the constraints on two opposite boundaries of a PDE patch.

They do not deal with point sets data, which is normally unorganised

and harder to process. Furthermore, few studies presented closed-form

solutions of a PDE for 4-sided PDE patches, which is very common in

3D modelling and reconstruction.

1.3 Aims and Objectives

This thesis proposes methods for parametric curves and surface reconstruc-

tion from point sets, aiming to tackle the aforementioned challenges. Specif-

ically, to reconstruct parametric curves and surfaces from point sets with

fewer design variables while keeping a good approximation to the data. Fur-

thermore, suitable ways of parameterizing the point sets should be explored

to reduce the fitting error and design variables. Next, analytical solutions

4

to PDEs should be investigated for parametric surface reconstruction, which

can reduce design variables and keep good continuity. Based on our aims,

we identify our research questions as follows:

• How to reduce the number of design variables of paramet-

ric curve reconstruction while keeping good approximation?

There are many potential factors which can affect the number of curves

required. Finding out ways that can achieve this target requires a lot

of consideration, especially when the number of curves is already rela-

tively small, finding methods to further reduce it is not an easy task.

• How to apply analytical solutions of a PDE for parametric

surface reconstruction? Analytical solutions of a PDE are accurate

and computationally efficient, they also have the powerful capability

to represent complex shapes. Finding the suitable form of PDE and

solving it analytically for parametric surface reconstruction requires

considerable thinking as few works applied analytical PDE solutions

for this task.

• How to keep good continuity between the reconstructed ad-

jacent patches of parametric form? For parametric surface recon-

struction from point sets, the point sets are segmented into multiple

regions, and each region is reconstructed with a single parametric sur-

face. How to make sure no gap or overlap between adjacent parametric

patches, which is a desirable property, is challenging, and besides, ef-

fectively parameterizing the points in each region is also a difficult task.

Based on the above questions, this thesis aims to achieve three objectives:

• The first objective is to take advantage of all possible methods for

parametric curve reconstruction from point sets, aiming to reduce the

number of design variables while keeping a tight approximation to the

data, which is presented in Chapter 3.

• The second objective is to propose some PDEs and solve them analyt-

ically, and the analytical solutions will be used for parametric surface

5

reconstruction from point sets, which will be demonstrated in Chap-

ter 4.

• The third objective is to come up with new methods for parametric

surface reconstruction from point sets with good continuity between

adjacent patches; besides, parameterizing the point sets effectively and

efficiently should also be investigated. These objectives will be pre-

sented in Chapter 5 and 6.

1.4 Contribution

Aiming to overcome the research challenges and realise the research objec-

tives, this thesis has made the following contributions:

• Bisection and symmetric shape detection techniques are adopted to

reduce the number of parametric curves while approximating the un-

derlying structure of the point sets in a tight way.

• Analytical solution to a chosen PDE is obtained and used for paramet-

ric surface reconstruction, which shows the great capability of fitting to

points data with different levels of complexities; Furthermore, we also

extend the parametric solutions to the form with more design variables,

thus make it more powerful and flexible concerning surface fitting.

• As no work summarised the parametrization methods used for point

sets parametrization, which is a very important step in parametric

curve and surface reconstruction from point clouds. We summarise

and compare the most used methods for this task, which can be used

as a reference for choosing a suitable parametrization method for the

task at hand.

• Method of reconstructing parametric surface from point sets is pro-

posed with the property of positional continuity, which is achieved by

combining the bilinear blended Coons patch with a specific form solu-

tion of a fourth-order PDE. Furthermore, effective and efficient param-

eterization of the points is also the byproduct of the proposed method.

6

• Method of reconstructing parametric surface from point sets is pro-

posed with the property of tangential continuity, which is achieved by

combining the bicubic blended Coons patch with a specific form of

deformation surface.

1.5 List of Publications

• Zhu, Z., Zheng, A., Iglesias, A., Wang, S., Xia, Y., Chaudhry, E., &

Zhang, J. (2022). PDE patch-based surface reconstruction from point

clouds. Journal of Computational Science, 61, 101647.

• Zhu, Z., Iglesias, A., Zhou, L., You, L., & Zhang, J. (2022). PDE-

based 3D surface reconstruction from multi-view 2D images. Mathe-

matics, 10(4), 542.

• Zhu, Z., Iglesias, A., You, L., & Zhang, J. J. (2022, June). A re-

view of 3D point clouds parameterization methods. In International

Conference on Computational Science (pp. 690-703). Cham: Springer

International Publishing.

• Zhu, Z., You, L., & Zhang, J. J. (2023). Vectorizing binary im-

age boundaries with symmetric shape detection, bisection and optimal

parameterization. Computer Animation and Virtual Worlds, 34(3-4),

e2191.

• Zhu, Z., You, L., Wang, S., & Zhang, J.J. (2024). Parametric surface

reconstruction from 3D point data using Partial differential equation

and bilinearly blended Coons. Journal of Computational Physics.

1.6 Outline of Thesis

This thesis is organised as follows:

7

• Chapter 2 reviews related work on parametric curves and surface re-

construction from point clouds. From points data segmentation, pa-

rameterization, and fitting. PDE techniques used in this area are also

discussed and the motivation is given for our work.

• Chapter 3 discusses parametric curve reconstruction from point sets

by using bisection and symmetric shape detection techniques, various

parameterization methods are also used and compared.

• Chapter 4 obtains analytical solutions of a PDE, uses them for para-

metric surface reconstruction from point sets, and the solutions are also

extended to make them more powerful and flexible.

• Chapter 5 presents the proposed method aiming to reconstruct para-

metric surfaces from point sets with positional continuity, and param-

eterization of point sets is also incorporated. Followed by this, method

to reconstruct parametric surfaces from point sets with C1 continuity

is also presented.

• Chapter 6 makes the conclusion and also gives some future directions

that are worth exploring.

8

Chapter 2

Literature Review

Parametric curve and surface reconstruction from point clouds are generally

composed of the following steps: first of all, the points set is preprocessed to

remove the outliers or noise. Then, the filtered points are parameterized using

some parameterization methods to obtain the corresponding parameters for

each point. Next, some parametric form is chosen and fit to the points.

Finally, postprocessing may be necessary to remove gaps or overleap. In

our work, we focus on the last three steps. First of all, we will discuss

the curve reconstruction process, and then methods for parametric surface

reconstruction will be discussed.

2.1 Points set parameterization for curve fit-

ting

Fitting parametric curves to points is a process of reverse engineering, which

is a very important task in many fields, such as computer-aided design, med-

ical images, 3D reconstruction, data visualisation and many others (Farin

2014, G. Farin and Kim 2002). The curves can be Bézier, B-spline and

NURBS curves, etc. The point data can be obtained in many ways, includ-

ing software programs and technologies like 3D laser scanning and multi-view

reconstruction, etc. By fitting curves to point sets optimally, the resulting

digital models can not only save a lot of storage capacity but also be easier

to transmit, process, and modify than point sets. To fit a curve to a point

9

set, we have to choose between two techniques, which are approximation and

interpolation. The former method makes the fitting curve approximately fit

the given points while the latter method requires the fitting curve to pass

through the given points. In both cases, parameterization of the points is

normally a must and key step as the quality of the final results highly depends

on the technique used to parameterize points. The parameter values reflect

the distribution of the data points, and a good parameterization should min-

imise the error between the reconstructed curves and the data sets as much

as possible, which is usually measured by the Hausdorff metric as shown in

Eq. (2.1). what’s more, the number of variables used should also be as small

as possible.

maximize
i

minimize
t∈[0,1]

||Pi − c(t)|| (2.1)

where Pi is the ith point, c(t) is the value of the fitting curve corresponding

to the ith point, whose parameter is t.

In the parameterization process, given a set of points (N points) Pi(i =

0, 1, 2, . . . , N − 1) in Rn (n=2 or 3), a parametric function f is computed,

which is a mapping from the parameter domain (usually [0,1]) to Rn. In the

case of interpolation, f(ti) = Pi and in the case of approximation, f(ti) ≈ Pi,

where ti is the associated parametric value of the ith point in the parameter

domain. There are many methods proposed to tackle this problem. However,

to the best of our knowledge, there are no survey papers about point set

parameterization for curve fitting. This section will give a review of these

techniques. Overall, the methods of fitting parametric curves to a point set

can be classified into two categories. as shown in Fig. 2.1.

The methods in the first category divide the fitting process into two sepa-

rate steps. In the first step, the point sets are parameterized using some meth-

ods belonging to this category, and then the obtained parameters are used

for approximating or interpolating the point sets to get the fitting curves.

The methods in the second category combine the two steps to treat both the

parameters of point sets and other fitting variables as free variables that are

to be obtained through simultaneous optimization by applying more complex

10

Figure 2.1: Two main types of techniques to fit parametric curves to point
sets.

techniques. Table 2.1 and 2.2 list the main methods in the two categories

and present a comparison of the pros and cons of the listed methods.

2.1.1 Methods in the first category

The methods in this category parameterize points first, and then the obtained

parameters are used for curve fitting. They mainly include uniform parame-

terization, chord length method, centripetal method, refined centripetal pa-

rameterization, dynamical centripetal parameterization, Foley parameteriza-

tion, universal method, and some other methods. Uniform parameterization

(equidistant parameterization) (Farin 2014), as formulated in Eq. (2.2), is

characterised by that the travelling time ∆t = ti − ti−1(i = 2, 3, . . . , N) be-

tween points is constant if the physical heuristics of driving a car is used to

explain it. The method is easy to calculate and mostly applicable to point

data that is distributed regularly but usually behaves poorly in cases where

points are distributed irregularly.

ti = (i− 1)
1

N − 1
(2.2)

The chord length method, which is also called the linear method, is shown

in Eq. (2.3) in the case of a = 1. Its idea is similar to the time calculation

of travelling on a curve with a constant speed. With this idea, the param-

eter t can be regarded as the time of travelling on the curve, and then the

travelling time ∆t = ti− ti−1 is proportional to the arc distance between two

adjacent points of the curve. This method is a dominant choice because the

11

Table 2.1: Methods of parameterizing point sets for curve fitting in the first
category

Method Pros Cons

Uniform Simple Mainly applied to

(Farin 2014) uniform sampled

point sets

Chord length Highly related to May generate

(Xu et al. 2022) parametric values wiggles,

Deflections

Centripetal Usually outperforms

(Piegl and Tiller 2012) uniform and chord Not affine

(Fang and Hung 2013) length method invariant

(Balta et al. 2019)

Foley Affine invariant Can generate

(Nielson and Foley 1989) wiggles

Universal Affine invariant Similar to

(Lim 1998) uniform method

in some sense

Hybrid More accurately Unstable and

(Shamsuddin and Ahmed 2004) more

computational

capacity required

chord length approximates the arc distance, which is believed to be highly

related to parametric values of t. Floater et al. have demonstrated this with

many numerical examples in (Floater and Surazhsky 2006) where they show

that full approximation order for cubic interpolation can be obtained us-

ing the chord length parameterization method. However, to obtain a higher

degree of interpolation, more accurate approximations of arc length are re-

quired. The chord length method usually outperforms the uniform method

in most cases, but one cons of this method is that curves with corners at

12

Table 2.2: Methods of parameterizing point sets for curve fitting in the second
category

Method Pros Cons

Bat Nature inspired Tuning

(Iglesias et al. 2015) parameters

GAPSO Generality, Computational time,

(Gálvez and Iglesias 2013) completeness, parameters tuning

good performance,

high accuracy

Multilayer perceptron First work to apply Synthetic training

(Laube et al. 2018) NN for B-spline curve data;

approximation; sub-,super-sampling

Generalize well of points are required

Residual NN Efficient, easy Higher polynomial

(Scholz and Jüttler 2021) to implement degrees are not

explored; synthetic

training data set

the data points cannot be reconstructed. Besides, large deflections may be

generated if there exist long chords in the data polygon. To alleviate such

disadvantages, some other methods have also been proposed to parameterize

point sets for curve fitting. For example, Xu et al. present a modified chord

length parameterization method (Xu et al. 2022) for B-spline curve interpo-

lation. A series of interpolation arcs are constructed by taking advantage of

the relationship between the chord length and chord angle of given points,

which replace chord length in calculating the global knot parameters. Their

method outperforms classical methods regarding deviation error and smooth-

ness. Another method named centripetal parameterization (Piegl and Tiller

2012) is proposed, whose equation can be expressed as Eq. (2.3) in the case

13

of 0 < a < 1.

t0 = 0, tN = 1, ti = ti−1 +
|Pi − Pi−1|a∑N−1

i=1 |Pi − Pi−1|a
(2.3)

Its idea is also similar to driving with speed unchanged. But when it

comes to corner sections where the points are normally dense, we have to slow

down. The travelling time is calculated with the equation ∆ti = ||Pi − Pi−1||a

where 0 < a < 1 and 1
2

is recommended. The equation means ∆ti becomes

bigger if the distance between two adjacent points is less than one and smaller

otherwise, thus achieving slowing speed down around corners. On average,

the centripetal method gives better results than the uniform and chord length

methods. However, the traditional centripetal method is not very robust in

parameterizing point sets with fast changes in chord length as it adopts a

fixed power for chord lengths for parameter distribution. To improve the

performance of the centripetal method, some methods have been proposed.

By creating an osculating circle at each point, Fang and Hung (Fang and

Hung 2013) present the refined centripetal parameterization to improve the

wiggle deviation of interpolation, especially for abrupt data. The method is

more applicable to any data since it considers another important geometric

feature, i.e., the angles formed by data sets. Another method named the

dynamical centripetal parameterization method has been developed in (Balta

et al. 2019). The basic idea of this method is to change the same exponent

value a in the centripetal method for long and short chords to different values

according to the natural logarithm of the chords. It tackles the problem of

the centripetal method in producing an irregular parameter distribution for

a data set.

Nevertheless, neither the chord length method nor the centripetal method

is invariant under affine transformation, which means that if a non-uniform

scaling is applied to the data points, the newly obtained curves using these

parameterization methods will not in general be a scaling of the original.

To address this issue, Foley parameterization (Nielson and Foley 1989) was

proposed by taking into account not only the distance but also the angles be-

tween adjacent points to deal with abrupt data distribution, which is demon-

strated in Eq. (2.4) and Fig. 2.2. The speed of this method also slows down

14

around corners other than keeping the same speed as other sections. Even

though this method claims to handle point sets of abrupt distribution well,

similar wiggles to the chord length method may be generated.

∆t0 = d0[1 +
3θ1d1

2(d0 + d1)
]

∆ti = di[1 +
3

2
(θi

di−1

di−1 + di
+ θi+1

di+1

di + di+1

)]

(i = 1, 2, ..., N − 2)

∆tN−1 = dN−1[1 +
3θN−1dN−2

2(dN−2 + dN−1)
]

(2.4)

where di = M [P](Pi−1, Pi) is the Nielson distance between points Pi−1 and

Pi, θi is the angle formed by di−1 and di shown in Figure 1, and when θi >

π/2, π/2 is used instead. The universal method (Lim 1998), which is used

Figure 2.2: Foley parameterization.

to parameterize points for B-spline curve interpolation, was proposed by

Choong-Gyoo Lim in 1999. Different from other related methods used to fit

B-spline curves to point sets, which usually calculate the knot vector from

the parameters, this method selects the maximums of the basic functions as

the parameters by starting with a uniformly distributed knot vector. This

method is affine invariant and can outcome more natural-looking curves, but

unwanted wiggles may also exist. A hybrid parameterization method, which

combines the advantages of universal and centripetal methods, was presented

in (Shamsuddin and Ahmed 2004). Similarly, the maximum rational B-spline

basis functions are taken as the initial values, then the centripetal method is

used to obtain the parameters. This method can give better accuracy, but it

is not stable and requires more computational effort.

15

In summary, the chord length and centripetal methods are the preferred

ones among the aforementioned techniques, and the uniform method is prefer-

able in computer-aided geometric design applications. Since each method has

its advantages and disadvantages, a suitable method should be selected for

a specific task.

2.1.2 Methods in the second category

All the methods reviewed in the last subsection divide curve-fitting problems

into two steps: point sets parameterization followed by fitting optimisation

which uses the parameters obtained from the previous step. However, di-

viding curve-fitting problems into two steps may not be the most effective

and efficient way to tackle such problems. It is because how to choose a

suitable way of parameterizing point sets is a non-trivial task and problem-

dependent. Besides, it has been demonstrated that better fitting results can

be obtained by treating point sets parameters as free variables that are to be

optimised (Iglesias et al. 2015). Due to these reasons, some researchers fol-

low this idea and try to optimise the parameters of point sets together with

other free variables such as control points of the fitting parametric curves

using more advanced optimisation techniques. In doing so, curve fitting be-

comes a non-linear, multivariate optimisation problem. Metaheuristics and

deep learning have been used to tackle the problem. In what follows, we

review some representative methods.

2.1.2.1 Metaheuristics-based parameterization

Iglesias Andrés and Gálvez Akemi apply the Bat algorithm (Iglesias et al.

2015), which is a powerful optimisation method inspired by the echolocation

behaviour of bats, to obtain an optimal solution for the parameterization

problem of fitting Bézier curves to point sets using the least squares tech-

nique. Their method can treat the data points with challenging features

such as cusps and self-intersections and greatly outperforms the arc-length

parameterization.

16

Another method called IMCH-GAPSO (Gálvez and Iglesias 2013), which

consists of genetic algorithms (GA) and particle swarm optimisation (PSO)

that both are powerful algorithms for optimisation and global search prob-

lems, has been proposed to reconstruct B-spline curves from point sets. The

GA and PSO account for parameterizing point data and knots placement re-

spectively, and they are mutually coupled, the process is repeated iteratively

until a certain criterion is met. Besides, some classical parameterization can

also be incorporated to make convergence faster. Their method is general,

accurate and of good performance. However, there are also some limitations

to these methods, which treat parameters as free variables. It is not easy to

tune the parameters, which are mostly empirical and problem-dependent.

2.1.2.2 Deep learning-based methods

Deep learning has also been adopted in parameterizing point sets for curve

approximation. Here, we review two deep learning methods used in param-

eterizing point sets.

Laube et al. adopted multilayer perceptron (Laube et al. 2018) to pa-

rameterize point sets for B-spline curve fitting. The parameters and knots of

the B-spline curve are predicted by training an interdependent deep neural

network. Their method can reconstruct tight approximation even for not

evenly spaced point sets, which are not included in the training data sets.

However, there are some limitations to this method. Firstly, segmentation,

subsampling and super-sampling are required as a pre-processing step to en-

sure that the number of points matches the neural network input size, which

is fixed. Besides, self-intersecting curves cannot be approximated using their

method. In another method (Scholz and Jüttler 2021), a residual deep neural

network has been adopted to approximate a function which assigns suitable

parameter values to a sequence of points for a certain degree of polynomial

curve fitting. The reason why the residual deep neural network is applied is

that it can avoid the vanishing gradient problem, which is common in the

neural network that consists of many layers. Their method applied 17 layers

in total, each point except the two boundary points owns two weights (add to

1), which define the relationship between each point and its neighbours. As

17

for the loss function, the updated parameters of all points using the weights

are plugged into the ground truth curve equation and then subtracted from

the ground truth points to form the loss function. Their experiments show

better performance than the chord length method and centripetal method

in most cases, but the method doesn’t outperform some other methods in

the first category in some cases. In addition, the method has some other

limitations. First of all, the training data set is synthetic, which may hinder

it from generalising to data in real life. Furthermore, only a fixed degree of

polynomial curves have been reconstructed.

Since there is no publicly available data set that includes a large num-

ber of curves of the required degree to be used to train the networks, both

methods choose to generate the data set by randomly assigning values to

the coefficients of the curves of that degree. Then random parameters are

generated to plug into the obtained expression of these curves to get a set of

ground truth points on these curves. This is not an ideal solution because the

data sets that are closer and related to the data in the real world are better.

In spite of this, both methods can serve as a pre-training technique, which

can be improved by incorporating more advanced algorithms and additional

data.

It should be noted that this thesis does not include all the methods that

belong to this category. However, the core idea of the methods in this cat-

egory lies in optimising appropriate parameter values of data points and

other design variables for curve fitting. Each method has its strengths and

weaknesses, and no method can be regarded as the best in any situation.

2.2 Points set parameterization for surface

fitting

3D point cloud parameterization, also called point cloud mapping, is the pro-

cess of mapping a 3D point cloud onto a suitable (usually simpler) domain. It

has many applications such as object classification, texture mapping and sur-

face reconstruction (Meng et al. 2016, Azariadis 2004, Hormann and Greiner

2000). In many situations, it is computationally expensive or difficult to

18

work with 3D point clouds directly. Therefore, projecting them onto a lower

dimensional space without distorting their shape is necessary. Compared to

mesh parameterization, 3D point cloud parameterization is more challeng-

ing in general because there is no connectivity information between points,

which hinders the direct extension of well-established mesh parameterization

algorithms to point cloud parameterization.

Some methods have been proposed to parameterize point clouds. In this

paper, we roughly divide them into two main groups according to whether

point clouds are organised or not. For each of the two groups, we further

divide it into some subgroups based on the property of the mapping process

and review each of the methods.

2.2.1 Some concepts

In this section, some concepts related to point clouds will be introduced

to help readers understand the problem of point cloud parameterization.

Since mesh parameterization has been well investigated in existing work and

some ideas of mesh parameterization can be adopted by or adapted to point

cloud parameterization, we will also introduce some concepts about mesh

parameterization in this section.

1. Organised and unorganised point clouds: Generally, point clouds

can be divided into organised and unorganised ones. Organised and

unorganised point clouds are also called structured and unstructured

point clouds, respectively. The division is determined by the way of

storing point cloud data. For organised point clouds, the data are

stored in a structured manner, while unorganised point cloud data are

stored arbitrarily. Specifically, an organized point cloud is similar to a

2D matrix and its data are divided into rows and columns according to

the spatial relationships between the points. Accordingly, the spatial

layout represented by the xyz-coordinates of the points in a point cloud

decides the memory layout of the organised point cloud. Contrary to

organized point clouds, unorganised point clouds are just a collection

of 3D coordinates, each of which denotes a single point.

19

2. Global and local parameterization: To parameterize point clouds,

some methods map the whole point set of an underlying structure to

a parameterization domain. In contrast, some other methods split the

problem into several subproblems, each of which is called a local pa-

rameterization. The choice between global and local parameterization

has impacts on mapping processes and results. Globally parameter-

izing the whole point set can guarantee the reconstructed mesh is a

perfect manifold, meaning there are no seams, which may exist if the

point cloud is partitioned and locally parameterized. However, process-

ing the whole point cloud at the same time may be computationally

expensive, especially for large structures.

3. Topological shapes: Topological shapes can be grouped based on

the number of holes they own. Shapes with no holes such as spheres

and bowls are treated as genus-0 shapes. Similarly, genus-1, genus-2

and genus-3 shapes have one, two and three holes in them, respectively,

and so on.

4. Bijective function: also called bijection, invertible function, or one-

to-one correspondence, pairs each element in one set exactly to one

element in the other set, and vice versa.

5. Isometric, conformal, and equiareal mappings: Suppose f is a

bijective function between a mesh S or a point cloud and a mapping

domain S∗, then f is isometric (length preserving) if the length of any

arcs on S is preserved on S∗; f is conformal (angle preserving) if the

angle of intersection of every pair of intersecting arcs on S is preserved

on S∗; f is equiareal (area-preserving) if the area of an area element on

S is preserved on S∗. Isometric mappings are equiareal and conformal.

Any mappings that are equiareal and conformal are isometric mapping.

2.2.2 Parameterization methods of organised point clouds

To parameterize an organised point cloud, many methods iteratively obtain a

topologically identical 2D triangulation from the underlying 3D triangulation

20

of the point cloud, and the 2D triangulation determines the parameter values

of the vertices in the domain plane. Depending on the ways of transforming

from 3D to 2D, there are several methods, including Harmonic parameteri-

zation (Hadenfeld 1995), Floater’s barycentric mappings (Floater 1997) and

the most Isometric parameterization (Hormann and Greiner 2000). For Har-

monic parameterization, the arc length is regarded as the parameter value of

a spline curve, which is used to minimise the integral of the squared curva-

ture with respect to the arc length for fairing the spline curve. With regard

to barycentric mappings, a shape-preserving parameterization method is ap-

plied for smooth surface fitting; the parameterization that is equivalent to a

planar triangulation can be obtained by solving a linear system based on the

convex combination. In (Hormann and Greiner 2000), Hormann and Greiner

propose a method to parameterize triangulated point clouds globally, the way

of parameterizing the inner point set is the same as that of parameterizing

the boundary point set. However, they ignore the problem of parameterizing

triangulated point clouds with holes.

Energy function has also been defined to minimise the metric distortion

in the transformation process from 3D to 2D. The methods described in

(Floater 1997, Unther Greiner and Hormann 1996), follow the shared ap-

proach, which first parameterizes the boundary points, and then minimises

the following edge-based energy function for the parameterization of inner

points:

E =
1

2

∑
cij||Pi − Pj||2 (2.5)

where cij is the edge coefficient that can be chosen in various ways, Pi and

Pj are two points at the same edge.

In order to reconstruct a tensor product B-spline surface from scattered

3D data with specified topology, choosing a suitable way to parameterize

the points is crucial in the reconstruction process. The method adopted by

Greiner and Hormann is called the spring model. With this method, the edge

of the 3D triangulation is replaced by a spring. Then the boundary points

are mapped first onto a plane and stay unchanged. Next, the inner points

21

are mapped onto this plane by minimising the spring energy. The procedure

is repeated to improve the parameters until certain conditions are satisfied.

The above methods are mainly applicable to structured point clouds.

They are not efficient when the number of points increases, and are likely to

fail when holes and concave sections exist in the point clouds.

2.2.3 Parameterization methods of unorganised point
clouds

In comparison with the parameterization of organised point clouds, many

more methods have been proposed to parameterize unorganised point clouds.

Table 2.3 lists these methods and gives information about the category, pa-

rameter domain, local or global parameterization, topology, applications and

publication year.

According to the property of the mapping process, we divide the pa-

rameterization methods of unorganised point clouds into base surfaces-based

methods, meshless parameterization, spherical mapping, methods adapted

from mesh parameterization, neural networks-based methods, and other meth-

ods. Here, We will not present every method in detail, only relevant methods

to this thesis will be reviewed. Please refer to (Zhu et al. 2022a) for a more

comprehensive introduction to these methods.

2.2.3.1 Base surfaces-based methods

For the parameterization of unorganised point clouds, base surfaces, which

approximate the underlying structure of point clouds, have been widely ap-

plied to parameterize point clouds. Base surfaces can be a plane, a Coons

patch, or a cylinder (Azariadis 2004). The parameter values of each point

in a point cloud can be obtained by projecting the point cloud onto a base

surface. The projection direction can either be perpendicular to the surface

or based on a determined projection vector. According to (Ma and Kruth

1995), a base surface should own the following properties:

22

(a) Unique local mapping: The uniqueness implies that any two different

points on the underlying surface should be mapped onto two different

locations on the mapping domain.

(b) Smoothness and closeness of base surface: This indicates that a base

surface should be as smooth and simple as possible, while still ap-

proximating the underlying surface as much as possible. The balance

between these properties should be carefully considered.

(c) Parameterization of base surface: This implies that how we parame-

terize a base surface has a direct effect on the parameterization of the

fitting surface. We can choose a more suitable way to parameterize

a base surface by referring to the underlying structure of the fitting

surface.

Table 2.3: methods to parameterize unorganised point clouds

Methods Category Parameter
domain

Local/
global
param-
eteri-
zation

Topology Applications

“Simplicial”
surface
(Hoppe
et al.
1992)

/ Arbitrary
topology

Surface recon-
struction

Manually
define
(Ma and
Kruth
1995)

Global / Least square
fitting of B-
spline curves
and surfaces

Continued on next page

23

Table 2.3 – Continued from previous page

Minimising
quadratic
function
(Pottmann
et al.
2002)

Base
surfaces-
based
methods

Base
surfaces

/ / B-spline
curves and
surfaces ap-
proximation

Recursive
DBS
(Azari-
adis and
Sapidis
2005)

Global/
local

Disk Efficient
parameteriza-
tion

Recursive
subdi-
vision
technique
(Azari-
adis and
Sapidis
2007)

Global/
local

Disk
(With
hole is
ok)

Parameterizing
point clouds

Floater
meshless
parame-
terization
(Floater
and
Reimers
2001,
Floater
2000)

Global Disk Surface recon-
struction

Continued on next page

24

Table 2.3 – Continued from previous page

Meshless
param-
eteriza-
tion for
spherical
topology
(Hor-
mann and
Reimers
2002)

Local Genus-0 Surface recon-
struction

As-rigid-
as possible
meshless
parame-
terization
(Zhang
et al.
2010)

Meshless
parame-
teriza-
tion

plane Global Disk Denoising
and parame-
terizing point
clouds, mesh
reconstruc-
tion

Meshless
quadran-
gulation
by global
parame-
terization
(Li et al.
2011b)

Global Arbitrary
genus

Meshless
quadrangula-
tion

Spherical
embed-
ding
(Zwicker
and Gots-
man 2004)

Global Genus-0 Mesh recon-
struction

Continued on next page

25

Table 2.3 – Continued from previous page

3D point
clouds
parame-
terization
algorithm
(Wang
et al.
2008)

Spherical
mapping

Sphere Global Relatively
simple
models

Parameterizing
point clouds

Spherical
conformal
parame-
terization
(Choi
et al.
2016)

Global Genus-0 Mesh recon-
struction

Discrete
one -forms
(Tewari
et al.
2006)

Adapt
from
mesh pa-
rameter-
ization

Local Genus-1 Mesh recon-
struction

Periodic
global
parame-
terization
(Li et al.
2011a)

Plane Global Arbitrary
genus

Direct quad
- dominant
meshing of
point cloud

PDE and
SOM
(Barhak
and Fis-
cher 2001)

Adaptive
base sur-
face

Global Complex
sculp-
tured
surfaces

Surface recon-
struction

Continued on next page

26

Table 2.3 – Continued from previous page

Adaptive
sequential
learning
RBFnet-
works
(Meng
et al.
2013)

Neural
networks-
based
methods

/ Global Freeform Point -cloud
surface pa-
rameteriza-
tion

Residual
neural
network
(Scholz
and
Jüttler
2021)

/ Local Fixed
degree
curve

Polynomial
curve fitting

A new
parame-
terization
method
(Jung and
Kim 2000)

/ / / NURBS sur-
face interpola-
tion

Pointshop
3D
(Zwicker
et al.
2002)

Other / / / Point -based
surface edit-
ing

Free -
boundary
conformal
parame-
terization
(Choi
et al.
2022)

/ Global/
local

/ Parameterizing
point clouds
for meshing

To get access to such base surfaces, some approaches have been proposed.

For example, Hoppe et al. (Hoppe et al. 1992) propose a method to produce

27

so-called “simplicial” surfaces. They first define a function to estimate the

signed geometric distance to the underlying surface of the point clouds, then

a contouring algorithm is applied to approximate the underlying surface by

a “simplicial” surface. Their method is capable of reconstructing a surface

with or without boundary from an unorganised point set. However, there is

no formal guarantee that the reconstructed result is correct and the space re-

quired to store the reconstruction is relatively large. In (Ma and Kruth 1995),

users can also manually define some section curves and four boundary curves

to get a base surface of a point cloud, as some characteristic curves approxi-

mating the underlying structure of the point cloud are sufficient in defining a

base surface. But it is also necessary to take advantage of the interior char-

acteristic curves when the geometry is complex, even though just four corner

points can be used to create a base surface in some cases. A base surface

can also be obtained by iteratively minimising a quadratic objective func-

tion (Pottmann et al. 2002). With this method, a linear system of equations

is solved in each step. To parameterize unstructured point clouds, Dynamic

Base Surfaces (DBS) are also proposed by Azariadis (Azariadis 2004). As its

name implies, a BDS is gradually improved regarding its approximation to

the underlying structure of a point cloud, and the parameter value of each

point in the point cloud is obtained by projecting it orthogonally to the DBS.

Different from existing methods, no restrictions are required for the density

and the homogeneity of point clouds. The limitation of this method is that it

is only applicable to point clouds where a closed boundary consisting of four

curves exists. Azariadis and Sapidis (Azariadis and Sapidis 2005) present a

method to parameterize a point cloud globally and/or locally using recur-

sive dynamic base surfaces. Their method can handle arbitrary point clouds

of disk topology. Figure 1 shows the local parameterization of one subset of

several point clouds using this method. The same authors (Azariadis and Sa-

pidis 2007) extend the DBS concept and use a recursive subdivision method

to improve the accuracy of point clouds parameterization, especially for some

small regions of the point clouds, where the approximation error by the DBS

is not acceptable. They divide such regions into smaller parts and the points

on these parts are approximated by c0 composite surface based on recursive

28

DBS subdivision to increase the approximation error, and then to make the

point clouds parameterization more accurate.

2.2.3.2 Neural networks-based methods

With the rapid development of neural network techniques, they have been

applied to three main tasks of point cloud processing, i.e., 3D shape clas-

sification, 3D object detection and tracking, and 3D point cloud segmenta-

tion (Guo et al. 2020). Besides their applications in the three main tasks,

some researchers have investigated neural network-based point cloud param-

eterization. For example, Barhak and Fischer (Barhak and Fischer 2001)

adopt a self-organising map (SOM) for the parameterization of small sets

of clean points with low-frequency spatial variations, which can be used to

reconstruct smooth surfaces. There are mainly two steps in the parameteriza-

tion process: In the first step, Partial Differential Equation (PDE) and SOM

are applied where the former technique can yield a parametric grid without

self-intersection and the latter one makes sure all the sampled points have

an impact on the grid, which guarantees the uniformity and smoothness of

the reconstructed surface. In the second step, an adaptively modified 3D

base surface is created for point cloud parameterization. Meng et al. (Meng

et al. 2013) proposed a method to parameterize larger, noisy and unoriented

point clouds by using adaptive sequential learning RBFnetworks. The net-

work adopts a dynamic structure by adaptive learning and the neurons are

adjustable regarding their locations, widths and weights, thus making it more

powerful compared to other methods that apply RBFs at determined loca-

tions and scales. What is more, multi-level parameterization and multiple

level-of-details (LODs) can be achieved in two ways. When multiple LODs

meshes are required, parameterizing the point clouds with the best resolution

and the points and surfaces can be computed at degrading sampling level to

get the required LODs. In the second case where only one downgraded LOD

is required, downgraded parameterization can be applied to obtain the result.

29

2.3 Curves and surfaces reconstruction from

point clouds

To reconstruct curves and surfaces, there are many proposed methods, this

thesis will first present various methods for curves reconstruction, and then

in the next subsection, techniques for surfaces will be discussed. Their pros

and cons will be demonstrated.

2.3.1 Curve reconstruction

The curves are usually represented in parametric form, which mainly includes

Bézier, B-Spline, NURBS, etc. Bézier curve is relatively easy and the most

widely used cubic Bézier curve is defined by

C(t,p) =
3∑

k=0

pkBk(t) (2.6)

where pk ∈ p (k = 0,1,2,3) are the four control points, Bk(t) are called the

Bernstein polynomials. Specifically, B0(t) = (1 − t)3, B1(t) = 3 ∗ t ∗ (1 − t)2,

B2(t) = 3 ∗ (1 − t) ∗ t2 and B3(t) = t3. And t is the parameter variable

associated with each point of the segments, t ∈ [0, 1].

Bézier curves are widely used in Font design, image vectorization, etc.

However, when the more complex shape is required by one Bézier curve,

higher order degrees of Bézier curves are necessary, but they are computa-

tionally expensive and local support is not available. That is why the B-spline

curve comes into help, the degree of the B-spline curve does not depend on

the number of control points, and it is also locally supported, thus making

it very flexible and controllable. A B-spline curve is defined by the following

expression:

P(t) =
n∑

i=0

PiBi,k t ∈ [0, 1]

where Pi(i = 0, 1, 2, . . . , n) are the control points, k is the order of the B-

spline curve, and Bi,k(t) are basis functions, which are defined recursively as

30

follows:

Bi,1(t) =

{
1 for ti ≤ t < ti+1

0 otherwise

and

Bi,k(t) =
t− ti

ti+k−1 − ti
Bi,k−1(t) +

ti+k − t

ti+k − ti+1

Bi+1,k−1(t) if k > 1

In the above equations, {ti}n+k
i=0 is the knot vector, a non-decreasing array

of numbers from 0 to 1. Note that Bézier curves are special cases of B-spline

curves. Specifically, when the order of a B-spline curve matches the number

of control points, resulting in an even number of knots, and both halves of

the knots are clamped at each end, the B-spline curve reduces to a Bézier

curve.

However, B-spline curves cannot represent some types of shapes, such as

circles and ellipses, exactly. To obtain a more powerful representation, Non-

Uniform Rational B-splines (NURBS) is developed, and this representation

has become a standard in more areas such as car design. The NURBS is

defined as follows:

C(u,p) =
1∑n

i=0 Ni,p(u)wi

n∑
i=0

Ni,p(u)wipi (2.7)

where pi(i = 0, 1, 2, ..., n) are the control points, and the wights wi(i =

0, 1, 2, ..., n) correspondes to the control points. The basis functions Ni,p(u)

is defined recursively in a similar way to the B-Spline curve and a knot vector

{u0, u1, ..., um} also needs to be defined. Notice that if all weights are equal

to 1, a NURBS curve reduces to a B-Spline curve.

Here, we mainly focus on Bézier curves reconstruction, as they are used

in our work. To reconstruct Bézier curves from point clouds, many methods

have been proposed and most of them adopt the pipeline we demonstrated

in the last chapter. From the segmentation on, the corner (salient) points

are detected for the given or extracted point clouds, and the corner points

are used to segment the points into multiple segments, each of which will

be fitted by one or more Bézier curves independently. In the fitting phase,

31

the points in a segment are first parameterized using some point param-

eterization techniques and the obtained parameters are used for curve fit-

ting. Meanwhile, break points may be added to further break the segment

into multiple subsegments if one curve is not enough to fit all the points in

the segment. Specifically, Schneider (Schneider 1990) first locate the corner

points by computing the angle between each point and its neighbours, and

then for each segment between two adjacent corner points, a cubic Bézier

curve is used to fit it. The break points are added if necessary to the place

where there exists the maximum error between the fitting curve and the

original points. The process is repeated until all the subsets in each seg-

ment are fitted successfully. On the contrary, Pavlidis adds the break point

at the place with the minimum error (Pavlidis 1983). The middle point of

the segment is also used as the break point in (Gonczarowski 1991). But

all these methods do not guarantee that the number of curves needed is as

few as possible while keeping small fitting errors. To use as few as possible

curves, people could try all possible arrangements of the corner and break

points and choose the best one. But the time complexity is very high, espe-

cially when the number of input points is large. To decrease time complexity,

the dynamic programming technique (Plass and Stone 1983) is adopted by

Plass and Stone, and it can reduce the time complexity to O(n3) by dividing

the problems into sub-problems recursively, but it’s still relatively expen-

sive. Pal et al. (Pal et al. 2007) propose an adaptive method to detect the

break point, and then the initial approximated Bézier control points are ob-

tained using the interpolation technique, from which the control points of

the best fitting curves are found by applying two-dimensional logarithmic

and an evolutionary search algorithm. Hoshyari et al. (Hoshyari et al. 2018)

adopt machine learning techniques to reconstruct curves from points of semi-

structured boundaries, which are usually distinctly coloured and piecewise

continuous. The supervised learning technique is used to detect the corner

points, which are combined with global cues that both consider simplicity and

continuity to output results that comply with human perception of points of

semi-structured boundaries. Their framework is computationally expensive

when the size of the input is large and other machine-learning techniques

32

may give better results. He et al. (He et al. 2023) present a method to recon-

struct curves from boundary points of binary shapes using affine scale-space,

which consists of three steps: firstly, at the sub-pixel level, the curvature

extrema of the boundary are computed, then the control points are detected

as the curvature extrema in the affine scale space, and finally the points be-

tween adjacent control points are fitted with cubic Bézier curve using the

least square method under the condition that the fitting error is less than a

predefined accuracy.

Concerning the optimisation methods, many techniques have been pro-

posed. For example, the least square is a widely adopted method for minimis-

ing an error function because of its effectiveness, efficiency and simplicity. To

further reduce the fitting error, a method named reparameterization (Plass

and Stone 1983, Schneider 1990) is adopted to find a better distribution

of parameters for each point iteratively. This method works in some cases

but may fail in some other cases because the solution obtained using the

Newton-Raphson method may only find the local optimum other than the

global optimum solution (Chang and Yan 1998), as the newly updated pa-

rameters may not satisfy 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1. These optimisation

methods take the determined parameters of the points as input and optimise

the error function to obtain the optimal positions of the control points of the

fitting curve, which means the output results also depend on the parameter

distributions of the points. There are many techniques to choose to param-

eterize the points, but it’s difficult to decide which one works better for a

certain case. So, some other methods treat the parameters of the points as

free variables to be optimised rather than calculate them in one shot using a

chosen parameterization method. It has also been shown that better results

can be obtained by doing so (Iglesias et al. 2015, Gálvez and Iglesias 2013).

However, these methods that treat point parameters as free variables have

some limitations. Firstly, it’s not easy to tune the design variables such as

the search range and the number of iterations, which are mostly empirical

and problem-dependent. What’s more, there is no guarantee that the process

would converge.

33

Overall, all the aforementioned methods have both pros and cons, and

they do not guarantee the number of Bézier curves is as few as possible while

keeping good fitting quality.

2.3.2 Surface reconstruction

For surface reconstruction from 3D point data, there are numerous surface

representations to choose from. Broadly, these representations can be cat-

egorised into two primary types: explicit and implicit. Each type has its

own advantages and disadvantages. For a more comprehensive and detailed

introduction to various methods of surface reconstruction from point clouds,

please refer to the review papers (Sulzer et al. 2023, Berger et al. 2017, Lim

and Haron 2014, Berger et al. 2014, Shen et al. 2023).

Methods in the first category include parametric surfaces, triangular sur-

faces, etc. Triangular surfaces are typically reconstructed using Delaunay tri-

angulations and Voronoi diagrams (Edelsbrunner 1998, Amenta et al. 1998).

These methods use numerous flat triangles to approximate curved shapes,

which can require very high storage. A parametric surface, on the other

hand, is defined by a mathematical expression, so it is a very compact repre-

sentation. Parametric surfaces also have the advantages of easily generating

points on the surface and intuitively altering the surface shape by adjust-

ing the position of control points or other parameters in the mathematical

expression. However, determining whether a point lies on which side of a

parametric surface is not straightforward. Examples of parametric surfaces

include Coons surfaces, Bézier surfaces (Bo ltuć and Zieniuk 2021, Monterde

and Ugail 2006), B-spline surfaces (Yuwen et al. 2006, Gordon and Riesenfeld

1974), NURBS surfaces (Gálvez and Iglesias 2012, Piegl and Tiller 2012), and

PDE surfaces (Zhu et al. 2022b), etc. Specifically, Bézier surfaces have been

widely adopted as a representation for surface reconstruction, because they

are easy to control and relatively computationally efficient for lower-order

degrees. However, to represent more complicated 3D shapes, we should ei-

ther use multiple patches or increase the degree of the Bézier surfaces. For

the former option, how to achieve good continuity between adjacent patches

34

is challenging for surface reconstruction from point clouds. For the latter

option, increasing the degree is computationally expensive and there is no

local support. To represent more complex 3D shapes while avoiding the need

to increase the degree of the surfaces, the B-spine surface comes to the res-

cue. However, one challenge of B-spline surface reconstruction is that sharp

features tend to be smoothed out. Lee et al. proposed an approach to pre-

serve sharp features for B-spline surface reconstruction from point cloud (Lee

et al. 2020). They took advantage of the curvature information of the B-spline

patch and identified segments of sharp features, which could be preserved by

adding more points to those regions. However, their method was only ap-

plied to a relatively simple shape of point clouds. The B-spline approach also

contains some limitations. For instance, the rigid structure of the B-spline

recurrence formula and its constraints on the order of the parameters and the

basis functions can lead to models that have significantly larger numbers of

degrees of freedom than it should be actually required. On the other hand,

it is well known that B-splines are not well suited to model T-junctions, and

hence, it is difficult to apply them to structural modelling involving such fea-

tures. NURBS surfaces have been proposed to overcome the shortcomings

of B-spline surfaces, as they are a generalisation of the classical polynomial

B-splines. Dimitrov et al. presented a new approach for NURBS surfaces fit-

ting to unorganised point clouds (Dimitrov and Golparvar-Fard 2014). They

used intermediate B-spline surfaces to parameterize the points in a point

cloud and the reconstructed NURBS surface was refined. A main challenge

of fitting NURBS surfaces to point clouds lies in the proper parameteriza-

tion of the input points. Several methods have been proposed to overcome

such a difficulty. Bo et al. (Bo et al. 2012) fitted a parametric surface to a

point cloud by minimising the squared orthogonal distance from the surface

to point cloud, thus it becomes a nonlinear least-squares minimisation prob-

lem. They use an initial surface to approximate the point cloud, and for each

point, they compute the closest point on the surface. They kept updating

the surface by minimising a quadratic function until the fitting error was

smaller than a certain threshold. For parametric surface reconstruction from

35

3D point data, it is often necessary to use multiple patches, each defined by

a mathematical expression, to construct a complex shape.

Implicit representation has become a very popular choice, it is power-

ful because it can theoretically represent arbitrarily complex shapes and is

highly compatible with deep learning techniques for surface reconstruction.

Compared to explicit representation, it is much easier to determine whether

a point lies inside or outside the surface. However, generating a point from

an implicit representation and altering the shape of surfaces is not straight-

forward. Additionally, implicit surfaces need to be converted into explicit

representations like polygon surfaces or voxels for display in the digital world.

Typical examples of implicit representation include level sets (Fuhrmann and

Goesele 2014, Zhao et al. 2001), distance functions (Boissonnat and Cazals

2000, Calakli and Taubin 2011), algebraic surfaces (Yavartanoo et al. 2021,

Beauville 1996), and Constructive Solid Geometry (Xiao and Furukawa 2014,

Laidlaw et al. 1986). Among distance function representations, Poisson sur-

face reconstruction (Kazhdan et al. 2006) is a classic method, which solves for

an approximate indicator function of the inferred solid, whose gradient best

matches the normal of the point set. The reconstructed surface is obtained

by extracting an appropriate isosurface of the indicator function using adap-

tations of the Marching Cubes algorithm. Implicit B-spline surfaces have

also been investigated and used for reconstruction (Rouhani et al. 2014).

In addition to the aforementioned methods for reconstructing 3D surfaces

from 3D data points, PDE surfaces have also been adopted using both explicit

and implicit representations. For example, Ugail and Kirmani employed an

elliptic PDE equation and analytically solved it by utilising a set of curves as

the boundary condition, resulting in a highly efficient approach (Ugail and

Kirmani 2006). Rodrigues et al. explicitly resolved a Laplace equation and

used it for compressing and reconstructing 3D data (Rodrigues et al. 2013).

In the context of 3D surface reconstruction using implicit PDE models, many

approaches have also been proposed (Duan et al. 2004, Linz et al. 2006,

Franchini et al. 2010). To be more specific, Duan et al. presented a PDE-

based deformable surface to evolve its shape to reconstruct 3D surfaces, where

the input data can be either volumetric data or unorganised point clouds and

36

multi-view 2D images. Franchini et al. proposed a method to reconstruct a

3D shape from an unorganised point set by adopting a PDE-based deformable

surface. Their method can also be applied to Boolean operations between

various data. Linz et al. developed a technique to reconstruct 3D shapes

from implicit PDE definition. Please also refer to (Othman et al. 2019) for a

more comprehensive and detailed discussion on surface reconstruction using

PDE.

In recent years, different machine learning methods, mostly based on

neural networks and deep learning (Gu and Yan 1995, Sharma et al. 2021),

metaheuristic techniques such as genetic algorithms and nature-inspired opti-

misation algorithms (Gálvez et al. 2012, Gálvez and Iglesias 2012), or combi-

nations of both (Xiyu et al. 2003) have also been used for 3D reconstruction

from point clouds. In this part, we will briefly review some of the recent

works.

For parametric surfaces, Sharma et al. presented a parametric surface net-

work for 3D point clouds and it was an end-to-end trainable model (Sharma

et al. 2020). They firstly decomposed a 3D point cloud into several basic

geometric primitives and B-spline patches, and the number of patches was

automatically determined. Then they fit each segmented portion of the point

cloud with a parametric patch. Post-processing was also necessary to better

fit the point cloud, but producing seamless boundaries was still a challenge.

At the object level, many deep learning-based methods learnt priors from

the dataset (Kanazawa et al. 2018, Kato et al. 2018, Mescheder et al. 2019).

However, these methods do not generalise well to unseen objects during train-

ing since they learn priors at the object level. To make this technique more

general, Badki et al. proposed to learn the local shape (patch-level) prior of

objects for mesh reconstruction (Badki et al. 2020). The learnt local shape

features serve as a dictionary of local features, and they can be used to re-

construct 3D shapes even from unseen categories. Williams used a similar

method to learn geometric prior for surface reconstruction (Williams et al.

2019). They fit many neural networks in parallel while enforcing global con-

sistency to compute an atlas of multiple mappings, which can reconstruct

complex objects very well. However, gap or jagged areas may exist because

37

of inconsistent mapping between different patches. Based on this observa-

tion, Deng et al. proposed a method to achieve global consistency between

local mapping by incorporating consistency of local surface normal and min-

imising a prescribed stitching error (Deng et al. 2020). They also obtained

adjacent patches that nearly coincide, a clear indication of good stitching.

38

Chapter 3

Vectorizing binary image
boundaries with symmetric
shape detection, bisection and
optimal parameteterization

Binary image boundary vectorization refers to the process of converting raster

images represented by two-dimensional pixels to vector images represented

by a sequence of reconstructed mathematical curves such as widely used

Bézier curves, which approximate the underlying structure of the pixel im-

ages. The latter representation is more compact as less storage is required

and it can also be scaled up or down to any scale level without introduc-

ing aliasing or losing information compared to the former one (Joshi 2014).

Moreover, vectorization representation has many other applications, such as

remoting sensing (Kirsanov et al. 2010), feature recognition (Nadal et al.

1990) and many others (Zou and Yan 2001, Chiang et al. 1998, Lopes et al.

2019, Dominici et al. 2020, Bhunia et al. 2021). The pixel images can also

be reconstructed from the vector images without losing significant informa-

tion if needed. Two main factors in reconstructing mathematical curves for

image boundary vectorization are to approximate the underlying structure

of the image boundaries as much as possible while using as few numbers of

mathematical curves as possible (Plass and Stone 1983).

There are some varieties in the vectorization pipelines. The pipeline used

39

in our method is based on (Sarfraz and Khan 2004) where cubic Bézier curves

are used to fit the boundary of binary images. It consists of the following

steps: preprocessing, boundaries (contours) detection for reconstructing the

Bézier curves, and corner (salient) points detection, which are used to seg-

ment each boundary point into multiple segments, each of which will be

fitted by one or more Bézier curves independently. In the fitting phase, the

boundary points in a segment are first parameterized using some point pa-

rameterization techniques that are discussed in detail in Chapter 2, and the

obtained parameters are used for curve fitting. Meanwhile, break points may

be added to further break the segment into multiple subsegments if one curve

is not enough to fit all the points in the segment.

Concerning the first three steps for boundary and corner point detection,

many methods have been proposed, and we can select a suitable one from

them for our task. For the last three steps, which include parameterization

of segment points, fitting and breaking (if necessary), many techniques have

also been presented. Each parameterization method has its pros and cons.

No method can handle all the problems of curve fitting. Therefore, it is

recommended to adopt these methods based on specific problems and re-

quirements. However, most proposed techniques for vectorizing images just

choose one of the methods (normally chord length). Besides, break points

may be necessary when one curve is not accurate enough to fit a segment.

Thus, it is critical to effectively choose a minimal number of break points

while tightly approximating the underlying structure of the segment points.

For example, Schneider (Schneider 1990) treats the point with maximum er-

ror as the break point. On the contrary, the point with zero error is chosen as

the break point by Pavlidis (Pavlidis 1983) as he finds “splitting the interval

at points where the error is zero is preferable to splitting at points where the

error estimate is maximum”. The middle point of the segment is also used as

the break point in (Gonczarowski 1991). However, all those methods do not

guarantee that each curve fits as many points as possible, thus may result in

more curves needed to fit a segment.

To further reduce the number of curves required, a method to fit a se-

quence of cubic Bézier curves to image boundaries using symmetric detec-

40

Figure 3.1: The pipeline of our method for vectorizing binary images.

tion, bisection and optimal parameterization is proposed. For the symmetric

detection, because Bézier curves are invariant under affine transformation,

which means for axis and point-symmetric picture boundaries, we just need

to vectorize a part of the boundaries and the remaining parts can be vector-

ized by transforming the already reconstructed Bézier curves. Furthermore,

the bisection method we adopt works similarly to the bisection algorithm in

matching an element to the same element in an ordered list or finding the

roots of a polynomial equation (McNamee and Pan 2013). It is simple but

very efficient and can be adopted to determine the best break point quickly.

By doing so, we can further minimise the number of Bézier curves to rep-

resent the input image boundaries. Finally, we investigate the impact of

different parameterization methods on fitting the same segment and propose

to use different parameterization methods for different segments to reduce

the fitting error or even the number of fitting curves, which is named opti-

mal parameterization in this chapter. The general pipeline of our method is

shown in Fig. 3.1.

3.1 Symmetric axis and point detection

In order to determine whether the boundary of a given image is symmetric

about an axis or a point, we propose the following idea. First, we determine

whether the boundary is symmetric about an axis. If not, we further test

41

whether it is symmetric about a point. If the boundary of the image is not

symmetric about both an axis and a point, the image is treated as a regular

one.

To determine whether the image boundary is symmetric about an axis or

not, the boundaries are first detected using the findContours function in the

OpenCV library (Culjak et al. 2012). Next, the principal component analysis

(PCA) technique is adopted to find the two main axes of the boundaries.

Since only the directions of the two axes are determined and they are free in

their perpendicular direction, and we need to find one point they should go

through to fix both their position and direction. We notice that a symmetric

axis should go through the centric point of the boundary points, which can be

calculated by adding all the coordinates of the boundary points and dividing

the sum by the number of boundary points. After obtaining the two principal

axes that go through the centric point of the image shape, as shown in

Fig. 3.2(a), we then test whether the shape is symmetric about any of these

two axes. To do so, for each axis, we flip one side of the shape around the

axis and use it to compute the intersection and union with another side of

the shape. If the ratio between the intersection and union is close to one,

it means that the shape is symmetric about this axis, as demonstrated in

Figs. 3.2(b) and 3.2(c), the intersection and union shapes are almost the

same. For another axis, the ratio between the corresponding intersection

and union is much smaller than one, which means the shape is not symmetric

about this axis, as shown in Figs. 3.2(d) and 3.2(e). By setting a threshold,

we can decide whether a shape is symmetric about an axis or not.

Given the image shape is symmetric about an axis whose equation can be

expressed as ay + bx + c = 0, in which a, b, c are known constants. In such a

case, only half of the image boundaries that lie on one side of the symmetric

axis need to be vectorized. Supposing half of the image boundaries have

been fitted with one cubic Bézier curve defined by four control points p1, p2,

p3, p4 whose coordinates are (x1, y1), (x2, y2), (x3, y3), (x4, y4), respectively

in the same coordinate system as the symmetric axis. Then the boundary

points lying on the other side of the symmetric axis can be vectorized by

another cubic Bézier curve, whose control can be obtained by mirroring p0,

42

Figure 3.2: Symmetric axes detection

p1, p2, and p3 around the symmetric axis using the following equation: given

a point coordinate (p, q) and a symmetric axis equation ay + bx + c = 0, the

symmetric point (ps, qs) of the given point about the symmetric axis is shown

in Eq. 3.1.

ps =
p ∗ (a2 − b2) − 2 ∗ b ∗ (a ∗ q + c)

a2 + b2
, qs =

q ∗ (b2 − a2) − 2 ∗ a ∗ (b ∗ q + c)

a2 + b2
(3.1)

As demonstrated in Fig. 3.3, for a symmetric shape, only half of the shape

needs to be vectorized. So, for an axis-symmetric image shape, we just need

to keep half of the control points and three variables which represent the

symmetric line. By doing so, the number of curves can be further reduced.

Figure 3.3: A cubic Bézier curve and its mirrored counterpart about an axis

To determine whether an image shape is symmetric around a point, if so,

it can be observed that the centric point of the image boundaries should be

43

Figure 3.4: Symmetric point detection

the symmetric point. In such cases, we then use the Connected Component

Labelling technique (He et al. 2017) to segment the images into multiple

regions (number= r). Because the corner points (number= n) detected are

ordered based on the quality level, there are t = n
r

corner points correspon-

dences for each region with other regions, as shown in Fig. 3.4, the corner

points (x1, y1), (x2, y2), and (x3, y3) in Region 1 correspond to the corner

points (x′
1, y

′
1), (x

′
2, y

′
2), and (x′

3, y
′
3) in Region 2, respectively. With these

corresponding points, we can estimate the potential rotational angle (θ) of

one region with respect to its adjacent region around the symmetric point

using the following equation:

x1 −y1

y1 x1

x2 −y2

y2 x2

...
...

xt −yt

yt xt

[
cos(θ)

sin(θ)

]
=

x
′
1

y
′
1

x
′
2

y
′
2
...

x
′
t

y
′
t

(3.2)

where (x1, y1), (x
′
1, y

′
1), . . . , (xt, yt), (x

′
t, y

′
t) are corresponding corner points for

the two regions. This is normally an overdetermined linear system of equa-

tions. To find the best solution, we use the pseudoinverse method. After

obtaining the potential rotating angle θ, we can rotate one region about the

centric point by θ and calculate the ratio between the intersection and union.

44

By doing so, we can also reduce the number of curves needed. Lastly, if an

image shape is neither symmetric about an axis nor about a point, then it is

treated as a regular image, which has to be vectorized fully.

3.2 Fitting

A cubic Bézier curve is defined by Eq. (2.6). Given N points (P1, P2, . . . , Pn)

of a segment, the parameter ti associated with each point can be obtained

using one of the points parameterization methods that we discussed in Sec-

tion 2.1, then a cubic Bézier curve will be used to fit to those points. So, the

following error function should be minimised:

min
N∑
i=1

(C(ti,p) − Pi)
2 (3.3)

As a cubic Bézier curve would go through its two end control points, it

means that the two end control points p0 and p3 are fixed at the first and

last point of the segment. So, p0 = P1, p3 = PN only p1 and p2 are to be

optimised. To minimise the error function, we take its derivative with respect

to p1 and p2, and set the derived equations to zeros, which can be used to

derive p1 and p2. Specifically, let

f(p1, p2) =
N∑
i=1

(C(ti, p) − Pi)
2 =

N∑
i=1

[(C(ti, p) − Pi)]
T [C(ti, p) − Pi]

(3.4)

We also define ai = 3 ∗ ti ∗ (1 − ti)
2, bi = 3 ∗ (1 − ti) ∗ t2i and ci =

(1 − ti)
3 ∗ p0 + t3i ∗ p3 − Pi, which are known once given the points of a

segment, then Eq. (3.4) becomes:

f(p1, p2) =
N∑
i=1

[(ai ∗ p1 + bi ∗ p2 + ci)]
T

[(ai ∗ p1 + bi ∗ p2 + ci)]

(3.5)

45

(a) (b) 6 curves (c) 6 curves (d) error (e) 4 curves

Figure 3.5: (a) Input images; (b) adding break points at positions with max-
imum error (Schneider 1990); (c) positions at middle point (Gonczarowski
1991); (d) at positions with minimum error (Pavlidis 1983); (e) our bisection
method.

Taking the derivate of f(p1, p2) with respect to p1, p2, we obtain

∂f

∂p1
=

N−1∑
i=2

[2 ∗ a2i ∗ pT1 + 2 ∗ ai∗

bi ∗ pT2 + 2 ∗ ai ∗ ci]
(3.6)

∂f

∂p2
=

N−1∑
i=2

[2 ∗ a2i ∗ pT1 + 2 ∗ ai∗

bi ∗ pT2 + 2 ∗ ai ∗ ci]
(3.7)

We then define a1 =
∑N−1

i=2 2∗a2i , b1 =
∑N−1

i=2 2∗ai∗bi, b1 =
∑N−1

i=2 2∗ai∗ci,
b1 =

∑N−1
i=2 2 ∗ b2i , b1 =

∑N−1
i=2 2 ∗ bi ∗ ci, which are all known given points of

a segment. Then equation (3.6) and (3.7) becomes:

a1 ∗ pT1 + b1 ∗ pT2 = −c1 (3.8)

b1 ∗ pT1 + a1 ∗ pT2 = −c2 (3.9)

Let matrix A =

[
a1 b1

b1 a2

]
, b =

[
−c1

−c2

]
. Then we can obtain our solution[

pT1

pT2

]
= A−1 ∗ b.

3.3 Bisection method

As we mentioned in the introduction section, the bisection method is applied

when one cubic Bézier curve cannot fit all the points of a segment well.

46

Algorithm 1 Bisection method to determine the break point(input:: points
in a segment):

//comments: In a segment, l is the index of the left point, r is the index
of right point, and m is the index of the middle point.
l0 = 0, r0 = len(points)-1, l = l0, r = r0, m = (l + r)/2
if a curve can fit the points between l0 and r0 then return

// no break point needed
else

while (m changes) do
m = (l + r)/2
if a curve can fit points between l0 and m then

l = m
else

r = m
end if

end while
return m as break point index
end if

The bisection method works similarly to the bisection algorithm in matching

an element to an ordered list. The pseudocode algorithm using the bisection

method to find breaking points is presented in Algorithm 1. In the algorithm,

we use l0 to indicate the index of the left point and r0 to indicate the index

of the right point. If l0 and r0 are two adjacent corner points and a cubic

Bézier curve can fit all the points from l0 to r0, no breaking points are added

between the two adjacent corner points l0 and r0. Otherwise, we find a middle

point m so that all the points from l0 to m can be fitted by a cubic Bézier

curve with the following iteration algorithm below. First, we set l = l0 and

r = r0. Then we calculate the middle point m = (l + r)/2. If a cubic Bézier

curve can be used to fit all the points from l0 to the middle point m, we

set l = m. Otherwise, we set r = m. Then we calculate the new middle

point m = (l + r)/2 and check whether a cubic Bézier curve can be used to

fit all the points from l0 to the new middle point m. A breaking point m is

found by repeating the iteration until the middle point m does not change.

After the middle point m becomes a breaking point, we set l0 = m and check

whether all the points from l0 to r0 can be fitted by a cubic Bézier curve. If

47

yes, no breaking points are added between l0 and r0. Otherwise, the above

iteration is used to find another braking point m. This process is repeated

until all the points from l0 to r0 can be fitted with cubic Bézier curves.

To demonstrate that the bisection method outperforms traditional meth-

ods in determining the suitable positions of break points, we compare it with

three other methods, which choose the break point at the middle point, the

point with the largest error, and the smallest error respectively. We set the

threshold the same for all the cases, as we can see from Fig. 3.5(b) and 3.5(c),

more curves will be used if we add the break points at the positions with

the maximum error or at the middle point position. Besides, putting break

point at the position with the minimum error may cause a failure because

the chosen position is just one point away from its near endpoint, resulting

in a segment with just three points as shown in Fig. 3.5(d), with which a

Bézier curve cannot be determined. However, using the bisection method,

the number of curves is further minimised as shown in Fig. 3.5(e).

3.4 Results and comparison

In this section, we present the results of vectorizing image boundaries using

our method and compare it with the classical and new methods. We set the

error tolerance the same for our method and the new method to make the

comparison fair. For the classic method, setting the error tolerance is not

available, so we keep the default setting.

First, we use some less complex image shapes to compare our method

with two existing methods, i.e., the classical Image tracer method and the

new Affine scale-space method. The fitted boundary curves are shown in

Fig. 3.6 and the number of curves needed for each of the input images shown

in Fig. 3.6 is given in Table 3.1. As we can see from Figure 3.6 and Table 3.1,

our proposed method outperforms the Image tracer method and the Affine

scale-space method in terms of using a minimal number of cubic Bézier curves

while achieving a similar good approximation.

48

49

Figure 3.6: (a) Input images (S.L. 2025); (b) Image tracer; (c) Affine scale
space; (d) Our method

Table 3.1: Number of curves required for our method and other methods for
less complex image shapes.

Input Image tracer Affine scale-space Our method

bird >20 15 15

heel >20 9 7

apple 17 14 8

bulb 12 5 3

ship 17 14 14

circle like >10 10 5

airplane >18 not good 10

To further demonstrate the effectiveness and advantages of our proposed

method, we compare our method with the Image tracer method and the

Affine scale-space method on more complex and diverse image shapes and

present the comparison results in Fig. 3.7 and Table 3.2. Once again, Fig. 3.7

and Table 3.2 show our proposed method outperforms the Image tracer

method and the Affine scale-space method on these complex and diverse

50

Figure 3.7: (a) Input images (S.L. 2025); (b) Image tracer; (c) Affine scale
space; (d) Our method

51

image shapes.

Table 3.2: Number of curves required for our method and other methods for
more complex image shapes.

Input Image tracer Affine scale-space Our method

man 44 29 28

flower >126 126 6

wolves >55 55 40

new bird >36 36 26

star >52 52 48

tree >142 not good (too smooth) 142

The image shapes shown in Fig. 3.6 and Fig. 3.7 are noise-free. For

such noise-free image shapes, the above comparisons demonstrate the ad-

vantages of our proposed method over the existing methods. We have also

used our proposed method, the Image tracer method, and the Affine scale-

space method to vectorize the boundary of a noisy image shape shown in

Fig. 3.8(a) and present the results in Figs. 3.8(b), 3.8(c) and 3.8(d) where

Figs. 3.8(b) and 3.8(c) are obtained with the Image tracer method and the

Affine scale-space method, respectively, and Fig. 3.8(d) is obtained with our

proposed method. The fitted curves in these figures clearly indicate our pro-

posed method uses fewer curves and achieves better quality, which indicates

that our proposed method also outperforms the Image tracer method and

the Affine scale-space method in vectorizing the boundary of the noisy image

shape.

Lastly, we investigate the impact of different parameterization methods,

as shown in Figs. 3.9(b) and 3.9(c), each coloured curve represents a cubic

Bézier curve fitted to a segment, and there are eight of them. Even though

two vectorized images using two approaches look similar, their fitting error

is different, which is demonstrated in Table 3.3. As we can see, the optimal

parameterization should be chosen for each segment to reduce the fitting

52

(a) (b) (c) (d)

Figure 3.8: (a) Input noise images; (b) Image tracer; (c) Affine scale-space;
(d) Our method.

(a) (b) (c)

Figure 3.9: (a)Input images, (b) traditional parameterization method (chord
length method), (c) our optimal parameterization method.

Table 3.3: Comparison between chord length parameterization and optimal
parameterization methods.

Segment NO. Traditional Our optimal

1 1.168 1.168 (chord)

2 1.144 1.054(uniform)

3 1.484 1.484 (chord)

4 1.468 1.410(uniform)

5 1.482 1.482 (chord)

6 1.416 1.416 (chord)

7 1.456 1.456 (chord)

8 1.337 1.222 (centri)

error further rather than just adopting one method for all cases as most

papers did.

53

Using a small number of curves while keeping tight approximation i. e.,

high accuracy in converting binary image boundaries into vector representa-

tions has many impacts. It has been acknowledged that presenting images as

a list of mathematical curves can compress data to provide a more compact

representation and reduce data storage, increase data transmission speed,

and achieve faster processing to raise computational efficiency (Joshi 2014).

The proposed method obviously reduces the number of cubic Bézier curves

to further maximise its impact on these applications. Fitting quality quan-

tified by fitting errors plays an important role in representing original image

boundaries accurately. Due to its importance, existing vectorization meth-

ods mainly focus on accuracy during the conversion from raster images to

vector images (Xiong et al. 2017). The proposed method has smaller fit-

ting errors than existing methods, demonstrating its advantage in accurately

representing original image boundaries.

3.5 Summary

This work proposes a method which incorporates symmetric image shape de-

tection, bisection, and optimal parameterization to vectorize image bound-

aries, aiming to minimise the number of Bézier curves needed while keeping

good approximation. We take advantage of the affine transformation invari-

ant property of Bézier curves and present a method for detecting a symmetric

axis or point for an image shape if it exists, which can further reduce the

number of curves required. Besides, we apply the bisection method to add

suitable break points in an efficient way. Lastly, we also find different param-

eterization methods for each segment that can be adopted to further reduce

the fitting error or even the number of curves.

54

Chapter 4

Parametric surface
reconstruction using
closed-form solution of a
fourth-order PDE

Compared to other types of surface representations, PDE-based representa-

tion has many advantages such as smaller data storage, physics-based and

good continuity under certain conditions. However, a main difficulty for

PDE-based shape manipulation is how to solve partial differential equations.

Due to this difficulty, most studies investigated implicit PDE-based shape

reconstruction which involves numerically solving partial differential equa-

tions. Although some research studies investigated explicit PDE-based shape

reconstruction by interpolating four curves or satisfying the constraints on

two opposite boundaries of a PDE patch, few studies presented closed-form

solutions of partial differential equations for 4-sided PDE patches. In this

chapter, we will propose a mathematical model, derive its closed-form solu-

tions, and use one of the closed-form solutions to achieve shape reconstruction

from point clouds.

We will first derive the closed-form solution to a fourth-order PDE, then

the analytical form will be used to reconstruct a parametric surface from

one single patch of points. Furthermore, more complex point sets will be

used to validate the powerful capability of our method in fitting. Lastly,

55

the closed-form solution will be extended to an analytical form with more

design variables, so it will have a more powerful fitting capability, which also

showcases the flexibility of our method.

4.1 Mathematical model and closed-form so-

lution

Partial differential equation-based shape reconstruction can be roughly di-

vided into two categories: one uses implicit solutions of partial differential

equations and the other uses explicit solutions of partial differential equa-

tions. Shape reconstruction using implicit solutions of partial differential

equations involves a lot of numerical calculations, causing slow shape re-

construction which is not suitable for many applications requiring real-time

performance. In contrast, shape reconstruction using explicit solutions of

partial differential equations is based on accurate analytical or approximate

analytical solutions of partial differential equations, which involves fewer cal-

culations and is more efficient than shape construction using implicit solu-

tions of partial differential equations. However, a main problem for shape

reconstruction using explicit solutions of partial differential equations is how

to obtain accurate analytical or approximate analytical solutions of partial

differential equations. Since solving partial differential equations analyti-

cally is not an easy task, the current explicit solutions of partial differential

equations used for PDE-based geometric modelling and shape reconstruction

mainly deal with two boundaries of a PDE surface patch, i.e., accurately sat-

isfy partial differential equations and continuity constraints at two opposite

boundaries of a PDE surface patch. How to obtain accurate analytical solu-

tions of partial differential equations which exactly satisfy partial differential

equations and continuity constraints on four boundaries of a PDE surface

patch is an important topic. A vector-valued partial differential equation

used to describe a 3D surface patch involves two parametric variables u and

v. The four boundaries of the 3D surface patch are defined by u=0, u=1, v=0,

and v=1. In order to satisfy positional continuities, four unknowns should

be included in a closed-form solution to a vector-valued partial differential

56

equation to satisfy four positional functions, i.e. boundary curves at the four

boundaries of a 3D surface patch. Similarly, to satisfy up to tangential con-

tinuities, eight unknowns should be involved in a closed-form solution of a

vector-valued partial differential equation to satisfy four positional functions

and four tangential functions at the four boundaries of a 3D surface patch.

From the theory of partial differential equations, the closed-form solution to

a second-order partial differential equation of parametric variables u and v

has four unknowns, and the closed-form solution to a fourth-order partial

differential equation has eight unknowns. Tangential continuities are most

popularly used to create smooth 3D models. Taking all of these factors and

a closed-form solution into account, we propose to use the following vector-

valued fourth-order partial differential equation for shape reconstruction:

a1
∂4X(u, v)

∂u4
+ a2

∂4X(u, v)

∂v4
= F(u, v) (4.1)

where a1 and a2 are three-dimentional vectors, and X(u, v), and F(u, v) are

three-dimensional vector-valued functions. Each of them has three compo-

nents. Note that in this chapter vectors and vector-valued functions are

denoted in bold.

4.1.1 Closed-form solution derivation

To simplify the notation in the chapter, the following mathematical opera-

tions are defined:

f ′′′′(u) = d4f(u)
du4 g′′′′(v) = d4g(v)

dv4

ea1 = [ea1x , ea1y , ea1z] a1a2 = [a1xa2x, a1ya2y, a1za2z]
T

a1

a2

=

[
a1x
a2x

,
a1y
a2y

,
a1z
a2z

]T
n

√
a1

a2

=

[
n

√
a1x
a2x

, n

√
a1y
a2y

, n

√
a1z
a2z

]T (4.2)

In the future, we will investigate how to use a general expression for

F(u, v) in order to make PDE patch-based surface reconstruction more pow-

erful. In this chapter, we set F(u, v) to 0, which makes Eq. (4.1) homoge-

neous. In that case, we can use the method of separation of variables to

57

derive its four closed-form solutions. Assuming that the variables u and v in

Eq. (4.1) are separable, X(u, v) can be expressed as follows:

X(u, v) = f(u)g(v) (4.3)

Substituting Eq. (4.3) back to Eq. (4.1), we get:

a1g(v)d
4f(u)
du4 + a2f(u)d

4g(v)
dv4

= 0 ⇒
a1f

′′′′(u) 1
f(u)

= −a2g
′′′′(v) 1

g(v)

(4.4)

By setting both sides in Eq. (4.4) to c0, which is a vector-valued constant,

we get Eq. (4.5):

a1f
′′′′(u)

1

f(u)
= −a2g

′′′′(v)
1

g(v)
= c0 (4.5)

With the above treatment, the partial differential equation in Eq. (4.1) is

transformed into two ordinary differential equations given in Eq. (4.5). The

first ordinary differential equation is:

a1f
′′′′(u) = c0f(u) (4.6)

From Eq. (4.6), we know that f(u) can be taken to be:

f(u) = eru (4.7)

From the above equation, we obtain the fourth-order derivative of f(u)

as:

f ′′′′(u) = r4eru

Substituting the expressions of f(u) and f ′′′′(u) into Eq. (4.6), we obtain:

a1r
4eru = c0e

ru (4.8)

From Eq. (4.8), we obtain:

r4 =
c0
a1

(4.9)

To solve Eq. (4.9) for r two cases should be considered. The first case

is
c0
a1

> 0 and the second case is
c0
a1

< 0, where the inequalities must be

understood as component-wise.

58

For the first case,
c0
a1

> 0, we have
c0
a1

=

∣∣∣∣c0a1

∣∣∣∣ > 0. To simplify mathe-

matical notations, we let:

q1 = 4

√
c0
a1

= 4

√∣∣∣∣c0a1

∣∣∣∣
Now we can obtain the four roots of Eq. (4.9) as follows:

r1 = q1, r2 = −q1, r3 = iq1, r4 = −iq1 (4.10)

where i2 = −1. Substituting Eq. (4.10) back to Eq. (4.7), we obtain f(u) as

follows:

f(u) = c1e
q1u + c2e

−q1u + c3cos(q1u) + c4sin(q1u) (4.11)

where c1, c2, c3, c4, are vector-valued constants.

For the second case,
c0
a1

< 0,we let:

q2 =

√
2

2
4

√∣∣∣∣c0a1

∣∣∣∣ =

√
2

2
q1

We can also obtain the four roots of Eq. (4.8) as follows:

r1 = q2(1 + i), r2 = −q2(1 + i), r3 = q2(1 − i), r4 = −q2(1 − i)

In such a case, f(u) can be expressed as follows:

f(u) = eq2u [c1cos(q2u) + c2sin(q2u)] +

e−q2u [c3cos(q2u) + c4sin(q2u)]
(4.12)

The second ordinary differential equation given in Eq. (4.5) can be written

as:

−a2g
′′′′(v) = c0g(v) (4.13)

We can use the same method as solving f(u) to obtain the solution of

g(v) for the two cases:
c0
a2

> 0 and
c0
a2

< 0.

For the first case,
c0
a2

> 0, we let:

q3 = 4

√∣∣∣∣c0a2

∣∣∣∣
59

We can get the solution of g(v) below:

g(v) = c5e
q3v + c6e

−q3v + c7cos(q3v) + c8sin(q3v) (4.14)

where c5, c6, c7, c8 are vector-valued constants.

For the second case,
c0
a2

< 0, we define:

q4 =

√
2

2
4

√∣∣∣∣c0a2

∣∣∣∣ =

√
2

2
q3

Under such a case, we obtain the expression of g(v) as follows:

g(v) = eq4v [c5cos(q4v) + c6sin(q4v)] +

e−q4v [c7cos(q4v) + c8sin(qq4v)]
(4.15)

Since f(u) and g(v) both have two forms, which are Eq. (4.11) and

Eq. (4.12) for f(u) and Eq. (4.14) and Eq. (4.15) for g(v), they can be sub-

stituted into Eq. (4.3) to obtain four solutions of X(u, v) = f(u)g(v). We

use X1(u, v), X2(u, v), X3(u, v), and X4(u, v), to denote the four solutions,

which are obtained below. Multiplying Eq. (4.11) with Eq. (4.14), we get

X1(u, v) below:

X1(u, v) = [c1e
q1u + c2e

−q1u + c3cos(q1u) + c4sin(q1u)]

[c5e
q3v + c6e

−q3v + c7cos(q3v) + c8sin(q3v)]
(4.16)

Multiplying Eq. (4.11) with Eq. (4.15), we get X2(u, v) below:

X2(u, v) = [c1e
q1u + c2e

−q1u + c3cos(q1u) + c4sin(q1u)]

(eq2u [c1cos(q2u) + c2sin(q2u)] +

e−q2u [c3cos(q2u) + c4sin(q2u)])

(4.17)

Multiplying Eq. (4.12) with Eq. (4.14), we get X3(u, v) below:

X3(u, v) = (eq2u [c1cos(q2u) + c2sin(q2u)] +

e−q2u [c3cos(q2u) + c4sin(q2u)])

[c5e
q3v + c6e

−q3v + c7cos(q3v) + c8sin(q3v)]

(4.18)

60

Multiplying Eq. (4.12) with Eq. (4.15), we get X4(u, v) below:

X4(u, v) = (eq2u [c1cos(q2u) + c2sin(q2u)] +

e−q2u [c3cos(q2u) + c4sin(q2u)])

(eq4v [c5cos(q4v) + c6sin(q4v)] +

e−q4v [c7cos(q4v) + c8sin(q4v)])

(4.19)

Each of the above four solutions can be used to define 4-sided PDE

patches for surface reconstruction. In this paper, X4(u, v) is adopted to re-

construct 3D surfaces from point clouds. The reason why we select X4(u, v)

over X1(u, v), X2(u, v), and X3(u, v) is that it exhibits a slightly superior

fitting capability, which will be demonstrated in Section 4.2

Conducting the multiplication operation in Eq. (4.19) and letting:

f1(u, v) = eq2ueq4vcos(q2u)cos(q4v)

f2(u, v) = eq2ueq4vcos(q2u)sin(q4v)

f3(u, v) = eq2ueq4vsin(q2u)cos(q4v)

f4(u, v) = eq2ueq4vsin(q2u)sin(q4v)

f5(u, v) = eq2ue−q4vcos(q2u)cos(q4v)

f6(u, v) = eq2ue−q4vcos(q2u)sin(q4v)

f7(u, v) = eq2ue−q4vsin(q2u)cos(q4v)

f8(u, v) = eq2ue−q4vsin(q2u)sin(q4v)

f9(u, v) = e−q2ueq4vcos(q2u)cos(q4v)

f10(u, v) = e−q2ueq4vcos(q2u)sin(q4v)

f11(u, v) = e−q2ueq4vsin(q2u)cos(q4v)

f12(u, v) = e−q2ueq4vsin(q2u)sin(q4v)

f13(u, v) = e−q2ue−q4vcos(q2u)cos(q4v)

f14(u, v) = e−q2ue−q4vcos(q2u)sin(q4v)

f15(u, v) = e−q2ue−q4vsin(q2u)cos(q4v)

f16(u, v) = e−q2ue−q4vsin(q2u)sin(q4v)

(4.20)

Eq. (4.19) can be transformed into:

X(u, v) =
16∑
j=1

djfj(u, v) (4.21)

61

Table 4.1: 16 points used to define the surface.

(x, y, z) (x, y, z) (x, y, z) (x, y, z)

(0.05,−0.07,−1.12) (0.07,−0.07,−1.11) (0.10,−0.07,−1.11) (0.13,−0.07,−1.12)

(0.04,−0.10,−1.10) (0.07,−0.10,−1.09) (0.10,−0.10,−1.10) (0.13,−0.10,−1.10)

(0.04,−0.13,−1.08) (0.07,−0.13,−1.06) (0.10,−0.13,−1.07) (0.13,−0.13,−1.09)

(0.04,−0.16,−1.05) (0.07,−0.16,−1.04) (0.10,−0.16,−1.04) (0.13,−0.16,−1.06)

where dj, (j = 1, . . . , 16) are the vector-valued unknowns. Note that X(u, v)

in Eq. (4.21) is a parametric surface, which defines a 4-sided PDE patch.

The unknowns dj, (j = 1, . . . , 16) can be calculated by using the linear least

square method.

4.2 Reconstruction from a single patch of points

Firstly, we consider reconstructing a surface from 16 points given in Table 4.1.

Since a PDE surface patch (defined by Eq. (4.21)) involves 16 unknowns, the

PDE surface patch should pass through the 16 points if the interpolation

operation is used to determine the 16 unknowns. In this chapter, the fitting

operation, not the interpolation operation, is used to determine the 16 un-

knowns. Although the interpolation operation is not used, it is expected that

the fitting operation should give high accuracy if not passing the 16 points.

The original surface defined by the 16 points and the reconstructed PDE-

based parametric surface is shown in Fig. 4.1. Comparing the two surfaces,

we could not find any differences, indicating the reconstructed PDE surface

is the same as the original surface defined by the 16 points. This observation

is also supported by the maximum error and average error given in Table 4.2.

The maximum error between the two surfaces is 5.52× 10−5 and the average

error between the two surfaces is 2.31 × 10−5. Both errors are very small,

which indicates high accuracy of the fitting operation.

Similarly, we consider reconstructing a surface from 25, 36, 49, 64 and

81 points respectively, their original surfaces defined by those points and

the reconstructed PDE-based parametric surfaces are shown in Fig. 4.2 to

62

(a) (b) (c)

Figure 4.1: (a) Input 16 points. (b) surface defined by 16 original points. (c)
the reconstructed PDE Surface.

(a) (b) (c)

Figure 4.2: (a) Input 25 points. (b) surface defined by 25 original points. (c)
the reconstructed PDE Surface.

63

Table 4.2: Maximum errors and average errors between the two surfaces.

N ErrM ErrA

16 5.52 × 10−5 2.31 × 10−5

25 1.56 × 10−3 4.47 × 10−4

36 2.96 × 10−3 1.33 × 10−3

49 9.68 × 10−3 3.80 × 10−3

64 1.40 × 10−2 5.76 × 10−3

81 2.02 × 10−2 8.16 × 10−3

(a) (b) (c)

Figure 4.3: (a) Input 36 points. (b) surface defined by 36 original points. (c)
the reconstructed PDE Surface.

Fig. 4.6. The maximum error and the average error between the two surfaces

are given in Table 4.2, and we can see the fitting errors in all cases are small,

indicating the powerful capability in parametric surface reconstruction of our

proposed method.

Note that the data points used in this study are sampled from a nose

model, which is defined by the 81 points shown in Fig. 4.7 (a). The surfaces

in the middle from Fig. 4.1 to Fig. 4.6 are generated by lofting the curves

defined by these points, as demonstrated in Fig. 4.7 (b). The 16, 25, 36, 49,

64 and 81 points are extracted from the full set of 81 points in Fig. 4.7 (a),

64

(a) (b) (c)

Figure 4.4: (a) Input 49 points. (b) surface defined by 49 original points. (c)
the reconstructed PDE Surface.

(a) (b) (c)

Figure 4.5: (a) Input 64 points. (b) surface defined by 64 original points. (c)
the reconstructed PDE Surface.

65

(a) (b) (c)

Figure 4.6: (a) Input 81 points. (b) surface defined by 81 original points. (c)
the reconstructed PDE Surface.

(a) (b) (c)

Figure 4.7: (a) whole 81 points from a nose model. (b) curves defined by the
input points. (c) 16, 25, 36, 49, 64 and 81 are sampled from the 81 points.

66

with the extraction process visualised in Fig. 4.7 (c). As more points are

included, the shapes defined by the points become more complex, enabling

a thorough evaluation of our method’s fitting capability.

As discussed in Section 4.1, X4(u, v) is chosen for reconstruction instead

of X1(u, v), X2(u, v), and X3(u, v) because it offers slightly enhanced fitting

performance. To validate this, we apply all four models - X1(u, v), X2(u, v),

X3(u, v) and X4(u, v) - to fit the data points from Fig. 4.1 to Fig. 4.6. The

mean square errors (MSE) are computed and compared, given that MSE

serves as the criterion in the linear least squares method used for this fitting

process. A smaller MSE indicates a more effective model. As shown in

Table 4.3, X4(u, v) consistently produces the lowest fitting errors across all

datasets, supporting its selection.

Table 4.3: Mean fitting errors of the four solutions on various input data

X1(u, v) X2(u, v) X3(u, v) X4(u, v)

16 4.9378 × 10−4 4.1927 × 10−5 1.2499 × 10−4 2.31× 10−5

25 2.3544 × 10−3 4.4776 × 10−4 5.2367 × 10−4 4.4668× 10−4

36 2.4141 × 10−3 1.3359 × 10−3 1.3428 × 10−3 1.3331× 10−3

49 4.0697 × 10−3 3.8148 × 10−3 3.8288 × 10−3 3.7957× 10−3

64 6.3903 × 10−3 5.8645 × 10−3 5.8476 × 10−3 5.76× 10−3

81 8.3199 × 10−3 8.1952 × 10−3 8.2388 × 10−3 8.16× 10−3

4.3 Reconstruction from multiple patches of

points

Since it is difficult to reconstruct a complicated 3D shape with only a single

PDE patch, combining multiple PDE patches enables any complicated 3D

shape to be reconstructed. In this section, complex 3D shapes will be recon-

structed using the proposed PDE method.

The general pipeline of our proposed surface reconstruction method con-

sists of six steps as shown in Fig. 4.8. For an input point cloud shown

67

(a).Point cloud data (b).Preprocessing (c).Segmentation

(d).Parameterization (e).Patch fitting (f).Reconstructed surface

Figure 4.8: The pipeline of surface reconstruction from point clouds.

in Fig. 4.8(a), preprocessing is carried out to change the input point cloud

into the one shown in Fig. 4.8(b). Then, the preprocessed point cloud in

Fig. 4.8(b) is segmented into some subsets depicted in Fig. 4.8(c). Next, the

points in each of the subsets are parameterized to obtain their parametric

values in Fig. 4.8(d). After that, one 4-sided PDE patch in Fig. 4.8(e) is

used to fit the points in each of the subsets (note that the 3-sided patch in

that figure is a particular case of 4-sided patches). After fitting the points in

all the subsets, a reconstructed 3D shape shown in Fig. 4.8(f) consisting of

multiple 4-sided PDE patches is obtained.

4.3.1 Segmentation of point clouds

Like mesh segmentation, there are also a lot of works focusing on the segmen-

tation of point clouds. The survey paper in (Nguyen and Le 2013) classified

68

the existing methods into five main groups: edge-based methods (which detect

the boundaries of several regions to obtain segmented regions), region-based

methods (which group nearby points with similar properties while finding dis-

similarities for different regions), attributes-based methods (which rely on clus-

tering attributes to segment the point clouds), model-based methods (which

use geometric primitive shapes for assigning points to regions), and graph-

based methods (which describe the point clouds in terms of graphs and apply

standard techniques for graph clustering). As remarked by the authors, all

these methods can roughly grouped into two main approaches: a first (mostly

mathematical) approach based on geometric processing techniques combined

with linear or nonlinear fitting models, and a second (mostly computational)

approach based on 3D features extraction and machine learning techniques

to learn different classes of objects subsequently used to classify the data

points using the extracted features. The first approach provides reasonable

computation times and good results for simple 3D scenes, but is sensitive to

noise, and does not work well for complex 3D scenes. In such cases, machine

learning techniques are usually preferred, as they provide better results al-

though they tend to be slower and rely on the quality of the feature extraction

process.

Classical segmentation methods are RANSAC (RANdom SAmple Con-

sensus) (Schnabel et al. 2007), often combined with clustering methods (e.g.

K-means, DBSCAN) (Shi et al. 2011) and Hough transform (Illingworth and

Kittler 1988). An example of the application of RANSAC combined with

K-means will be discussed later for the PDE-based shape reconstruction of

a table.

Recently, it has been shown that deep learning techniques can be valu-

able tools to address these issues. As a consequence, deep learning has been

increasingly introduced into point cloud segmentation. A nice survey on

this topic can be found in (Guo et al. 2020), where they classified the ex-

isting 3D point cloud segmentation methods into three categories: semantic

segmentation, instance segmentation, and part segmentation. One of the

most commonly adopted methods is applying different neural networks to

part-segmentation of point clouds. For example, PointNet is a very popular

69

neural network architecture, which applies a specialised deep neural network

to point clouds for several tasks, including object classification and part seg-

mentation (Qi et al. 2017). Later work also proposed many methods to

improve the performance of part segmentation of point clouds. The graph

convolution is one of the most used neural network architectures. Please refer

to (He et al. 2021) and references within for a comprehensive review of deep

learning-based 3D segmentation.

The above methods have a problem when they are used to segment a

point cloud into some subsets. The problem is that the boundaries between

the two reconstructed patches are not very smooth because the points in the

regions around the boundaries are sparse and irregular. To tackle such a

problem, edge-based methods for segmentation can be an effective tool. For

instance, Bazazian proposed a weakly supervised learning approach to detect

the edges of point clouds (Bazazian and Parés 2021).

We will reconstruct several objects using our proposed PDE-based method,

including a sphere, a cylinder, a table, an umbrella and a car. The point

clouds of these objects can be segmented automatically or manually into

some subsets. Specifically, the point sets of the sphere and the cylinder can

be segmented into several subsets automatically based on the coordinates of

the point sets. As for the point set of the table, which is composed of planes,

an automatic method can also be applied to obtain several subsets (planes),

which will be introduced in detail in the experimental section. Lastly, we

perform segmentation of the point sets of the umbrella and the car examples

using software called CloudCompare by following a region-based approach.

We remark that it is also possible to perform automatic segmentation of these

point sets using more sophisticated techniques, such as point-based part seg-

mentation, as described above. Figure 4.9 shows the original point cloud and

the segmented result of an umbrella that we will reconstruct later. The points

in each of the subsets will be parameterized, and our proposed PDE-based

reconstruction method will be applied to reconstruct a PDE patch by fitting

these points. The parameterization of point clouds and the fitting process

will be described in detail in the following subsections.

70

Figure 4.9: Segmentation of a point cloud of the umbrella example: (a)
Original point set; (b) segmented point subsets.

Figure 4.10: Parameterization of points in a subset: (a) Fitting plane. (b)
Projecting points to a plane. (c) Aligned projected points with u and v
direction.

4.3.2 Point cloud parameterization

Proper parameterization of point clouds has a big impact on the final re-

construction quality. Various parameterization methods have been proposed

in the literature, as discussed in Chapter 2. When the point cloud is scat-

tered, the approach, based on projecting the data points on a base surface

may be a better choice. An illustrative example of this process is shown in

Fig. 4.10 where the base surface is a simple plane. In this Chapter, we apply

different parameterization methods to different types of models. For rela-

tively simple geometry primitives such as a sphere and a cylinder, we follow

a model-based approach: since they have an analytical representation, we use

their parametric mathematical equations to achieve their parameterization.

For example, a sphere can be parameterized with two angles in a spherical

coordinate system, which can be normalised to get the parametric values

71

(a) (b) (c) (d) (e)

Figure 4.11: (a) Point cloud of a sphere. (b) Segment the point clouds into
2 equal subsets. (c) Reconstructed shape with 2 PDE patches. (d) Segment
the point clouds into 4 equal subsets. (e) The spherical coordinate system.

of parametric variables u and v on the unit interval for the points on the

sphere. Since the points on a whole sphere cannot be reconstructed with a

single PDE patch, the point cloud representing a sphere is initially segmented

into two equal subsets, as shown in Fig. 4.11(b), which can readily be done

automatically. However, in our experiments, we found that the points in

the two subsets still cannot be well reconstructed by two PDE patches, as

Fig. 4.11(c) demonstrates, the reconstructed surface does not fit the upper

subset of points well. Consequently, we further divide the sphere into four

equal subsets, as depicted in Fig. 4.11(d) or eight equal subsets. We find

that the four-subset approach yields better reconstruction quality while also

requiring half the number of design variables compared to the eight-subset

approach. Finally, the points in each of the four subsets are parameterised

using a spherical coordinate system, as shown in Fig. 4.11(e), to obtain their

corresponding u and v parametric values.

A cylinder also has a parametric mathematical expression. Similar to the

parameterization of a sphere, we segment the point cloud defining a cylinder

into 2 subsets. For the points in each of the two subsets, we obtain the

parametric values of two parametric variables u and v from the two variables

angle and height defining the points in each of the two subsets.

The third model we reconstruct is a table that is completely composed

of planes. Segmenting the table into planes can also be done automatically.

The details of the automatic segmentation of the table will be given in the

next section. For each segmented plane, it can be regarded as a u− v plane.

72

Normalising the coordinates of the points on every plane would give us the

parametric values of the parametric variables u and v for each point on

the segmented plane. Then, the points on each of the planes are used to

reconstruct a PDE patch. Combining all the reconstructed PDE patches

generates the final reconstructed 3D shape of the table.

Next, an umbrella is also reconstructed. The point set is firstly segmented

into eight equal subsets, as shown in Fig. 4.9. For the points in each of the

segmented subsets, we find a plane that best fits the point set, as shown in

Fig. 4.10(a). Then the 3D points in the subset are projected onto the plane,

which can also be regarded as a u− v plane. Since the principal component

analysis (PCA) axes of the projected points on the u− v plane do not align

with the u and v directions as shown in Fig. 4.10(b), we apply a rotation

transformation to the projected points to make their PCA axes aligning with

the u and v directions as shown in Fig. 4.10(c). Finally, normalising opera-

tions are applied to the points on the u − v plane to obtain the parametric

values of the points in each of the segmented subsets. A similar approach

has also been applied to the car example. We omit the details here to avoid

unnecessary duplication of material.

In the case of very complicated 3D shapes, the previous parameterization

methods cannot be ensured to work properly. In such cases, a segmentation

procedure is first required to segment the whole point cloud into an appro-

priate number of multiple subsets, each of which is approximated by a PDE

surface patch. Then, the point cloud of each particular patch is projected

onto a base surface for coarse parameterization. The simplest solution is to

select a fitting plane that reflects well the distribution of points in the 3D

space (e.g., the PCA plane). However, this approach fails in case data points

cannot be projected in an unambiguous way. A possible solution is to segment

the subsets even further to remove the ambiguities of the projecting plane.

The counterpart of this approach is that the complexity of the model is in-

creased. An alternative solution is to consider other potential base surfaces,

such as cylinders or Coons patches. A third way is to apply evolutionary

methods to compute a suitable parameterization of the point cloud. This

approach has already been successfully applied to the cases of B-splines and

73

NURBS surfaces (Gálvez et al. 2012, Gálvez and Iglesias 2012) and could be

generalised to the case of PDE patches. The drawback is that such methods

are generally slow and might require high computational resources. Finally,

deep learning can also be applied to point cloud parameterization. For in-

stance, the ParSeNet deep network in (Sharma et al. 2020) applies a neural

architecture of edge convolution layers performing graph convolution com-

bined with max pooling to extract a global representation of the point cloud.

Then, a mean-shift clustering method is combined with segment classification

to decompose a 3D point cloud into parametric surface patches (fitted with

a SplineNet network) and basic geometric primitives (determined through

least-squares fitting). The resulting patches can be used as suitable base sur-

faces to address data parameterization of the segmented subsets with PDE

patches. Furthermore, the ParSeNet is also capable of generating robust and

reliable parameterizations, which could also be used directly in some cases.

Although this approach is powerful and can handle complex shapes, it relies

on the ability of the network to learn complex shapes through intensive train-

ing on a large dataset of object instances. It also requires post-processing

optimisation for high accuracy.

To summarise, point cloud parameterization of complex shapes is a chal-

lenging issue and there is no universal solution so far for this problem. Note,

however, that our method is general and does not preclude any parameteri-

zation method to be readily embedded into our approach.

4.3.3 Fitting

After parameterizing the points in each of the segmented subsets, we obtained

their parametric values un and vn for each point Xn in the subsets. Then we

fit the PDE patch to the points. As discussed above, applying our developed

PDE patch to surface reconstruction from point clouds requires finding the

16 vector-valued unknowns dj, (j = 1, 2, 3, . . . , 16) so that the PDE patch

X(u, v) will best approximate the points in the subset.

If there are N points Xn (n = 1, 2, 3, . . . , N) in a subset to be recon-

structed by one PDE patch X(u, v), the squared sum of the errors between

74

the known points Xn and the unknown points X(un, vn) can be determined

with the following equation:

E =
N∑

n=1

[X(un, vn) −Xn]2 =
N∑

n=1

[
16∑
j=1

djfj(un, vn) −Xn

]2
(4.22)

To minimise the error E and find the 16 vector-valued unknowns, we

apply the method of least squares, given by the following equation:

∂E

∂dk

= 0 (k = 1, 2, 3, . . . , 16) (4.23)

Substituting Eq. (4.22) into Eq. (4.23), the following system of equations

is obtained:

16∑
j=1

dj

N∑
n=1

fj(un, vn)fk(un, vn) =
N∑

n=1

Xnfk(un, vn) (4.24)

for k = 1, 2, 3, . . . , 16. Therefore, there are 16 equations in Eq. (4.24) that

must be solved to find the 16 vector-valued unknowns dk (k = 1, . . . , 16).

Note that in Eq. (4.24), fj(un, vn) and fk(un, vn) depend on the constants

q2 and q4, as indicated in Eq. (4.20). These constants can be considered as

design variables and optimised to obtain the optimal PDE patch that best fits

the points Xn (n = 1, . . . , N). However, treating q2 and q4 as design variables

would make the minimisation of Eq. (4.22) a nonlinear problem, thereby

increasing the complexity of solving for the 16 vector-valued unknowns dk.

To address this challenge, we simplify the approach in this paper by treating

q2 and q4 as constants and assigning q2 = q4 = 0.1, which has proven

effective across all our experiments.

4.3.4 Experiments and results

For the points in each of the subsets obtained from segmenting a point cloud,

we use Eq. 4.21 to reconstruct a PDE patch X(u, v). After the points in all

the subsets have been used to reconstruct PDE patches, the reconstructed

3D shape consisting of the reconstructed PDE patches is obtained. In what

follows, we present some examples to illustrate this process.

75

The first example is to reconstruct a sphere from its point cloud. As

discussed above, the point cloud describing a sphere is segmented into four

subsets as shown in Fig. 4.12(a). For the points in each of the four subsets,

Eq. (4.21) is used to reconstruct one PDE patch from the points. To do

this, the points in the subset are projected to a u − v plane as shown in

Fig. 4.12(b). After the four PDE patches have been reconstructed, they

are automatically connected together to represent the reconstructed shape

from the point cloud. However, we found that the reconstructed patches

have small overlaps between two PDE patches such as those between the

grey and red patches and between the green and blue patches as shown in

Fig. 4.12(c). To address the problem, we increase the density of points around

the boundaries. This is done by first upsampling the original point cloud,

as illustrated in Fig. 4.13(b), then keeping the points around the boundaries

using a boundary detection algorithm based on the coordinates of the point

cloud, and finally combining the extracted boundary points with the original

point cloud, which are demonstrated in Fig. 4.13(c) and (d). Increasing the

number of points near the boundary effectively increases their weight in the

fitting process, leading to better continuity between adjacent surfaces. As

shown in Fig. 4.12(e), this adjustment successfully eliminates small overlaps

and improves reconstruction quality.

The second example is to reconstruct a cylinder from its point cloud. As

discussed in Subsection 4.3.2, the point cloud has been segmented into two

equal subsets as shown in Fig. 4.14(a). Then, the points in each of the subsets

are projected to a u−v plane shown in Fig. 4.14(b). After using Eq. (4.21) to

reconstruct the two PDE patches shown in Fig. 4.14(c), small overlaps occur

again. With the same treatment as discussed above, we add more points in

the regions around the boundaries between the two PDE patches as shown in

Fig. 4.14(d). By adding new points, the small overlaps disappear as shown

by the two reconstructed PDE patches depicted in Fig. 4.14(e).

The third example is to reconstruct a table from its point cloud. The

points in the point cloud of a table are on some planes. This example is

used to demonstrate that our proposed PDE-based method can be used to

reconstruct not only 3D shapes consisting of curved surfaces but also 3D

76

(a) (b) (c) (d) (e)

Figure 4.12: PDE-based reconstruction from the point cloud of a sphere: (a)
Segmented point cloud of a sphere. (b) Projecting the points in a subset to
a u-v plane. (c) Reconstructed shape with small overlaps consisting of four
PDE patches without adding points in the regions around boundaries. (d)
The points in a subset after adding points to the regions around boundaries.
(e) The final result without overlaps is obtained by adding points to the
regions around boundaries.

Figure 4.13: Adding more points around the boundary of the original point
clouds: (a) original point cloud; (b) upsampled point clouds; (c) extracted
boundary points of the upsampled point clouds; (d) combined point clouds.

77

(a) (b) (c) (d) (e)

Figure 4.14: PDE-based reconstruction from the point cloud of a cylinder:
(a) Segmented point cloud of a cylinder. (b) Projecting the points in a subset
to a uv plane. (c) Reconstructed shape with small overlaps consisting of two
PDE patches without adding points in the regions around boundaries. (d)
The points in a subset after adding points to the regions around boundaries.
(e) The final result without overlaps obtained by adding points to the regions
around boundaries.

Figure 4.15: PDE-based reconstruction from the point cloud of a table
(left–right, top–bottom): (a) Point cloud of a table. (b) Segmenting the
point cloud of the table into a top part and a bottom part. (c) Using the
K-means clustering algorithm to segment the bottom part into four sub-
parts. (d) Using the RANSAC algorithm to segment each of the subparts
into six subsets. (e) Reconstructed shape with small gaps between two adja-
cent PDE patches. (f) Points in a subset after adding points to the regions
around boundaries. (g) The final result without gaps obtained by adding
points to the regions around boundaries.

78

Figure 4.16: (a) Reconstructed umbrella; (b) Final result after post-
processing.

shapes consisting of flat planes or a combination of curved surfaces and flat

planes. Even though a plane seems to be a simple primitive, plane detection

and reconstruction are important in many fields such as robotic perception

and image processing. For example, robots need to detect ground where it

is safe to walk, as well as the walls and other artificial (and mostly linear

and flattened) areas for collision avoidance. For a point cloud of this type,

it usually takes three steps to segment a point cloud. In the first step, we

segment the point cloud in Fig. 4.15(a) of the table into the top part and

leg part shown in Fig. 4.15(b). Then in the second step, we use a K-means

clustering algorithm for the leg part and change it into four subparts shown

in Fig. 4.15(c). Each subpart represents a leg. Finally, in the third step, we

use a plane detection algorithm called RANSAC, which is a state-of-the-art

plane detector, from Point Cloud Library (PCL) to segment each of the four

subparts into six subsets, which are six planes of a leg. With this treatment,

the points in each of the subparts are segmented into those in the six subsets

(planes) of a leg as shown in Fig. 4.15(d). For the points in each of the

segmented subsets, we reconstruct a PDE patch by applying our developed

PDE-based reconstruction method. Fig. 4.15(e) shows the reconstructed

PDE patches from the point cloud of the table. It can be observed that

there are very small gaps between reconstructed PDE patches. To tackle

this problem, we add more points in the regions around the boundaries.

79

Fig. 4.15(f) shows the result of adding more points in the regions around the

boundaries of a plane. The final result after adding more points is shown in

Fig. 4.15(g), which removes the gaps and is of good quality.

The fourth example is to reconstruct an umbrella from its point cloud.

The point cloud of the umbrella is segmented into eight subsets. The points in

each of the eight subsets are projected to a u− v plane. Since the projected

points do not fill the top left region and the top right region as shown in

Fig. 4.10(c), trimming the reconstructed PDE patch corresponding to the

two regions is necessary. Fig. 4.16(a) shows the reconstructed umbrella after

trimming the reconstructed PDE patches. As we can see, there are some

very small gaps. This problem can be addressed by sampling more points in

the regions around the boundaries of subsets. In this example, we manually

eliminate the gaps and obtain the result shown in Fig. 4.16(b).

Finally, a car model is reconstructed to further demonstrate that our

method can also be applied to reconstruct more complex 3D shapes. Note

that the car model is symmetric, so only half of the model is to be recon-

structed as the other half can readily be obtained by mirroring the recon-

structed result. Fig. 4.17(a) shows the point clouds of a car, while Fig. 4.17(b)

shows the segmented result of the point clouds. Fig. 4.17(c) shows the result

when we consider the point clouds in the back part of the car as a whole sub-

set, which is not visually good. To improve the quality, we keep segmenting

the point clouds in this part into three smaller subsets. The reconstructed re-

sult is shown in Fig. 4.17(d). As the reader can see, more details are captured

compared to Fig. 4.17(c). As expected, the reconstructed accuracy usually

improves as the number of subsets increases. So, for more complicated 3D

shapes, we can proceed by increasing the number of subsets until the final

result meets the desired accuracy. However, there are still some artefacts in

Fig. 4.17(d) as some small gaps exist between some adjacent reconstructed

patches. To remove them, we apply post-processing to the reconstructed re-

sult by filling the gaps. Figs. 4.17(e) and (f) show the final results from both

the rear view and the front view, respectively.

80

Figure 4.17: PDE-based reconstruction from the point cloud of a car
(left–right, top–bottom): (a) original point cloud; (b) segmented point cloud;
(c) rear part as a single subset; (d) segmentation refinement of the rear part;
(e) final reconstructed rear part after post-processing; (f) final reconstructed
front part after post-processing.

4.3.5 Comparison with implicit PDE method

To illustrate the advantages of our proposed PDE-based surface reconstruc-

tion technique, we also reconstruct polygon surfaces from the same point

clouds used in this paper by applying a widely adopted method called Pois-

son surface reconstruction (Kazhdan et al. 2006). The main aspect we con-

sider is the number of variables needed to reconstruct the same 3D shape

while keeping the reconstructed surface with high quality. The errors be-

tween the surface defined by the original points set and the reconstructed

surfaces, including the PDE surface and the polygon surface, are calculated

to demonstrate the quality of the result. Specifically, we calculate the error

between the surface defined by the original point set and the reconstructed

PDE surface through the following equations:

ErrMean =
1

N

N∑
n=1

|Xn −X(un, vn)|

ErrMax = max
n=1,2,...,N

|Xn −X(un, vn)|
(4.25)

81

Figure 4.18: 3D shapes reconstructed using the Poisson surface reconstruc-
tion technique: (a) Reconstructed sphere; (b) Reconstructed cylinder; (c)
Reconstructed umbrella; (d) Reconstructed table; (e) Close view of a leg of
the reconstructed table.

where ErrMean indicates the average error between the two surfaces, ErrMax

stands for the maximum error between the two surfaces, and |.| indicates the

Euclidean distance between two points (vectors). For the error between the

surface and the reconstructed polygon surface, we take advantage of a tool

in a point cloud processing software called CloudCompare and the tool is

designed to calculate the difference between two surfaces.

Fig. 4.18 shows the polygon surfaces reconstructed from the point cloud of

the sphere, cylinder, table and umbrella, which we used to reconstruct PDE

patches in the above subsection. Comparing the reconstructed shapes shown

in Fig. 4.18 obtained from the Poisson surface reconstruction algorithm with

those obtained with our proposed PDE-based method, it is clear that our

proposed PDE-based method has a better quality of reconstructed 3D shapes.

Table 4.4 gives the number of the design variables required by the polygon-

based method and PDE-based method to reconstruct different 3D shapes. We

can see that for the point clouds defining 3D shapes with curved surfaces,

our proposed PDE-based surface reconstruction method requires much fewer

design variables than the polygon-based method.

To demonstrate the quality of the reconstructed surface, we use the im-

plicit PDE method to reconstruct the 3D shapes in Table 4.4 to make their

vertex number roughly the same as the number of variables needed in the

corresponding PDE-based surface, thus the number of variables needed to

represent the same 3D shape would be roughly the same. Table 4.5 shows

the number of variables required to represent various 3D shapes for both the

82

polygon-based method and our proposed PDE-based method after simplify-

ing the reconstructed polygon mesh. Then we calculated the average error

Table 4.4: Number of the design variables needed by our proposed PDE-
based method and the implicit PDE method to reconstruct 3D shapes from
different point clouds.

Sphere Cylinder Table Umbrella

Implicit PDE 726 192 45,279 86,613

Our method 192 96 1080 384

Table 4.5: Number of variables required to represent different 3D shapes for
implicit PDE method and proposed PDE-based method after simplification
of the reconstructed polygon mesh.

Sphere Cylinder Table Umbrella

Implicit PDE 222 96 1131 552

Our method 192 96 1080 384

Table 4.6: The mean error and its deviation after simplification between the
surface defined by different point clouds and the reconstructed PDE surface
and the polygon surface respectively (a/b: a refers to the mean error, b refers
to the maximum error.)

Sphere Cylinder Table Umbrella

Implicit PDE 0.0091/ 0.0045/ 0.1083/ 0.0120/

0.0388 0.0224 3.5127 0.5446

Our method 0.0026/ 0.0029/ 9.0 × 10−6/ 0.0045/

0.0129 0.0084 5.6 × 10−5 0.0159

and the maximum error between the surface defined by the original point set

and the reconstructed surfaces. Table 4.6 shows the results and we can see

that both the mean error and the maximum error between the PDE surface

83

and the original point set is smaller than that between the polygon surface

and the original point set. In conclusion, our proposed PDE-based surface

reconstruction method from point clouds outperforms a classical implicit

PDE-based surface reconstruction technique from point clouds regarding the

number of variables and the quality of the output 3D shape.

4.4 Extended closed-form solution

There are 16 vector-valued unknowns in Eq. (4.20), which can be used to

reconstruct a single surface patch. However, complex shapes can rarely be

represented accurately through a single patch. Generally, multiple patches

are required for complicated shapes, each defined by Eq. (4.20). Unfortu-

nately, this solution may not be adequate in some instances. For example, it

is not easy to segment complicated 3D point clouds into an appropriate num-

ber of subsets automatically. This problem can be addressed by enlarging

the number of unknown variables in Eq. (4.20), thus providing extra degrees

of freedom to the problem. To achieve this, we can obtain more complex and

powerful solutions by combining the solutions to the fourth-order partial dif-

ferential equation under different conditions. Then, X(u, v) can be extended

to X∗(u, v) as following:

X4(u, v) = [eq2u (c1cos(q2u) + c2sin(q2u)) +

e−q2u (c3cos(q2u) + c4sin(q2u)) +

eq5u (c5cos(q5u) + c6sin(q5u)) +

e−q5u (c7cos(q5u) + c8sin(q5u))]

[eq4v (c9cos(q4v) + c10sin(q4v)) +

e−q4v (c11cos(q4v) + c12sin(q4u)) +

eq6v (c13cos(q6v) + c14sin(q6v)) +

e−q6v (c15cos(q6v) + c16sin(q6v))]

(4.26)

Conducting the multiplication operation in the above equation and letting

84

f1(u, v) = eq2ueq4v cos(q2u) cos(q4v), f2(u, v) = eq2ueq4v cos(q2u) sin(q4v)

f3(u, v) = eq2ue−q4v cos(q2u) cos(q4v), f4(u, v) = eq2ue−q4v cos(q2u) sin(q4v)

f5(u, v) = eq2ueq6v cos(q2u) cos(q6v), f6(u, v) = eq2ueq6v cos(q2u) sin(q6v)

f7(u, v) = eq2ue−q6v cos(q2u) cos(q6v), f8(u, v) = eq2ue−q6v cos(q2u) sin(q6v)

f9(u, v) = eq2ueq4v sin(q2u) cos(q4v), f10(u, v) = eq2ueq4v sin(q2u) sin(q4v)

f11(u, v) = eq2ue−q4v sin(q2u) cos(q4v), f12(u, v) = eq2ue−q4v sin(q2u) sin(q4v)

f13(u, v) = eq2ueq6v sin(q2u) cos(q6v), f14(u, v) = eq2ueq6v sin(q2u) sin(q6v)

f15(u, v) = eq2ue−q6v sin(q2u) cos(q6v), f16(u, v) = eq2ueq6v sin(q2u) sin(q6v)

f17(u, v) = e−q2ueq4v cos(q2u) cos(q4v), f18(u, v) = e−q2ueq4v cos(q2u) sin(q4v)

f19(u, v) = e−q2ue−q4v cos(q2u) cos(q4v), f20(u, v) = eq2ue−q4v cos(q2u) sin(q4v)

f21(u, v) = e−q2ueq6v cos(q2u) cos(q6v), f22(u, v) = e−q2ueq6v cos(q2u) sin(q6v)

f23(u, v) = e−q2ue−q6v cos(q2u) cos(q6v), f24(u, v) = e−q2ue−q6v cos(q2u) sin(q6v)

f25(u, v) = e−q2ueq4v sin(q2u) cos(q4v), f26(u, v) = e−q2ueq4v sin(q2u) sin(q4v)

f27(u, v) = e−q2ue−q4v sin(q2u) cos(q4v), f28(u, v) = e−q2ue−q4v sin(q2u) sin(q4v)

f29(u, v) = e−q2ueq6v sin(q2u) cos(q6v), f30(u, v) = e−q2ue−q6v sin(q2u) cos(q6v)

f31(u, v) = e−q2ue−q6v sin(q2u) cos(q6v), f32(u, v) = e−q2ue−q6v sin(q2u) sin(q6v)

f33(u, v) = eq5ueq4v cos(q5u) cos(q4v), f34(u, v) = eq5ueq4v cos(q5u) sin(q4v)

f35(u, v) = eq5ue−q4v cos(q5u) cos(q4v), f36(u, v) = eq5ue−q4v cos(q5u) sin(q4v)

f37(u, v) = eq5ueq6v cos(q5u) cos(q6v), f38(u, v) = eq5ueq6v cos(q5u) sin(q6v)

f39(u, v) = eq5ue−q6v cos(q5u) cos(q6v), f40(u, v) = eq5ue−q6v cos(q5u) sin(q6v)

f41(u, v) = eq5ue−q4v sin(q5u) cos(q4v), f42(u, v) = eq5ueq4v sin(q5u) sin(q4v)

f43(u, v) = eq5ue−q4v sin(q5u) cos(q4v), f44(u, v) = eq5ue−q4v sin(q5u) sin(q4v)

f45(u, v) = eq5ueq6v sin(q5u) cos(q6v), f46(u, v) = eq5ueq6v sin(q5u) sin(q6v)

f47(u, v) = eq5ue−q6v sin(q5u) cos(q6v), f48(u, v) = eq5ue−q6v sin(q5u) sin(q6v)
(4.27)

85

f49(u, v) = e−q5ueq4v cos(q5u) cos(q4v), f50(u, v) = e−q5ueq4v cos(q5u) sin(q4v)

f51(u, v) = e−q5ue−q4v cos(q5u) cos(q4v), f52(u, v) = e−q5ue−q4v cos(q5u) sin(q4v)

f53(u, v) = e−q5ueq6v cos(q5u) cos(q6v), f54(u, v) = e−q5ueq6v cos(q5u) sin(q6v)

f55(u, v) = e−q5ue−q6v cos(q5u) cos(q6v), f56(u, v) = e−q5ueq4v cos(q5u) sin(q6v)

f57(u, v) = e−q5ueq4v sin(q5u) cos(q4v), f58(u, v) = e−q5ueq4v sin(q5u) sin(q4v)

f59(u, v) = e−q5ue−q4v sin(q5u) cos(q4v), f60(u, v) = e−q5ue−q4v sin(q5u) sin(q4v)

f61(u, v) = e−q5ueq6v sin(q5u) cos(q6v), f62(u, v) = e−q5ueq6v sin(q5u) sin(q6v)

f63(u, v) = e−q5ue−q6v sin(q5u) cos(q6v), f64(u, v) = e−q5ue−q6v sin(q5u) sin(q6v)
(4.27)

Then Eq. (4.26) can be expressed as follows:

X∗(u, v) =
64∑
j=1

djfj(u, v) (4.28)

Similarly, the least square method can be used to apply Eq. (4.28) for para-

metric surface reconstruction from point clouds. We will also compare the

results with the previous equation of 16 variables.

4.5 Results and comparison

In this section, we use our proposed method to reconstruct the PDE surfaces

from the obtained point clouds. Because the capability of reconstructing 3D

surfaces for PDE with 16 variables and 64 variables is different, it is necessary

to choose a suitable approach for a certain type of object. To illustrate this

choice process, we also conduct a comparison between two PDE approaches

regarding reconstructing chosen 3D objects.

As a first example, we reconstruct the PDE surface from the point set

of the cylinder shape. To demonstrate their capability of reconstructing

the 3D surface for these two PDE models, we just use one PDE surface

patch to reconstruct the cylinder shape in both cases. Fig. 4.19 shows the

reconstructed result with the two proposed PDE models. We can see from

the reconstructed result in both cases that our proposed PDE model with

86

(a) (b) (c) (d) (e)

Figure 4.19: (a) Reconstructed 3D point cloud of a cylinder shape from multi-
view 2D images; (b) reconstructed PDE surface using a single PDE model
with 16 variables; (c) reconstructed PDE surface using a single PDE model
with 64 variables; (d) reconstructed PDE surface using two PDE models with
16 variables; (e) segmented point cloud.

64 variables, shown in Fig. 4.19(c), is more powerful in reconstructing 3D

surfaces than the PDE model with 16 variables, shown in Fig. 4.19(b). To

reconstruct the cylinder using the PDE model with 16 variables, we can firstly

segment the cylinder into equal two parts, each of which will be reconstructed

using one PDE surface patch defined by the 16-variable PDE model. The

reconstructed result in this way is shown in Fig. 4.19(d).

Secondly, we choose to reconstruct a bowl and make a comparison with

the implicit PDE method. The PDE-based surface is reconstructed from

the point cloud with both the 16-variable PDE model and the 64-variable

PDE model to demonstrate their capability to reconstruct more complex 3D

shapes. In this example, we use just one PDE patch under both conditions.

We also reconstruct a polygon surface from the obtained point cloud using

the Poisson surface reconstruction method. Fig. 4.20 shows the reconstructed

results using these methods. As we can see, the PDE model with 64 variables

outperforms the PDE model with 16 variables. Note also that some areas

are missing when reconstructing the 3D surface using the 16-variable PDE,

which are marked by red-coloured circles in Fig. 4.20(c).

Next, a bench and a slide model will be reconstructed, as shown in

Fig. 4.21 and 4.22 respectively, the PDE model with 64 variables gives bet-

87

(a) (b) (c) (d)

Figure 4.20: (a) Point set of a bowl; (b) surface reconstructed using Poisson;
(c) PDE-based surface using single 16-variables PDE model; (d) PDE-based
surface using single 64-variables PDE model.

(a) (b) (c) (d) (e)

Figure 4.21: (a) The ground truth of a bench surface; (b) point set of a bench
surface; (c) surface reconstructed using Poisson; (d) PDE-based surface using
a single 16-variables PDE model; and (e) PDE-based surface using a single
64-variables PDE mode.

ter results compared to the PDE model with 16 variables and the Poisson

method in both two cases. To better demonstrate the effects of different seg-

ments on reconstructed shapes and the applicability of our proposed method

in reconstructing complicated 3D shapes, we choose to reconstruct a hat and

a car model. Between them, the hat model is used to demonstrate the ef-

fects of different segments on reconstructed shapes, and the car model is used

to demonstrate the applicability of our proposed method in reconstructing

complicated 3D shapes.

In order to show how different numbers of segments affect the recon-

struction quality, we segment the top of the hat into two different segments:

two subsets only as shown in Fig. 4.23 (b), and three subsets as shown in

Fig. 4.23(d). The reconstructed models are shown in Figs. 4.23(c) and (e),

respectively. Comparing the shapes in Figs. 4.23(c) and (e), we can find that

when the top of the hat has one segment, the top part of the reconstructed

88

(a) (b) (c) (d) (e)

Figure 4.22: (a) The ground truth of a slide surface; (b) point set of a slide
surface; (c) surface reconstructured using Poisson after segmentation; (d)
PDE-based surface using a single 16-variable PDE model; (e) PDE-based
surface using a single 64-variable PDE model.

hat model is flat, which is different from the round shape of the correspond-

ing point set. In contrast, when the top of the hat is segmented into two

subsets, the top part of the reconstructed hat model becomes round, which

is closer to the shape of the corresponding point sets.

For the car model, we segment its point cloud shown in Fig. 4.24(a) into

10 subsets shown in Fig. 4.24(b). For each of the segmented subsets, a PDE

patch is reconstructed. The reconstructed car model consisting of 10 PDE

patches is shown in Fig. 4.24(c). This reconstruction example indicates that

for any complicated models, their point cloud can be segmented into subsets

with each of the segmented subsets having a less complicated shape, and our

proposed method can be used to reconstruct the shape from the points in

the subset and obtain the reconstructed shape of complicated models from

their point clouds.

4.6 Summary

In this Chapter, I develop a new method to reconstruct 3D shapes from

point clouds with multiple PDE patches. Each PDE patch is based on an

explicit closed-form solution to a vector-valued fourth-order partial differen-

tial equation, which is efficient and accurate due to the feature of analytical

89

(a) (b) (c) (d) (e)

Figure 4.23: (a) The point cloud of a hat; (b) segmented 2 subsets; (c)
reconstructed PDE-based surface using 2 PDE patches defined by the 64-
variables PDE model; (d) segmented 3 subsets; (e) reconstructed PDE-based
surface using 3 PDE patches defined by the 64-variable PDE mode.

(a) (b) (c)

Figure 4.24: (a) The point cloud of a truck; (b) segmented subsets; (c)
reconstructed PDE-based surface.

closed-form solutions of the obtained mathematical expressions. In com-

parison with the implicit PDE method, our proposed PDE-based surface

reconstruction method involves much fewer design variables. Since multiple

PDE patches are used in reconstructing 3D shapes from point clouds, many

complex shapes can be reconstructed with our proposed PDE-based method.

Furthermore, the explicit PDE model is expanded from 16 vector variables

to 64 vector variables, as it’s challenging to segment a given point cloud data

into an appropriate number of subsets. Experimental results show that the

PDE model with 64 vector-valued unknowns is more powerful and accurate

than the PDE model with 16 variables. So, in some cases, using multiple

16-variables PDE surface patches can be replaced by applying a single 64-

variables PDE surface patch, like in the cylinder example.

90

Chapter 5

Parametric surface
reconstruction from 3D point
data using partial differential
equation with positional and
tangential continuous patches

5.1 Background

Existing methods of parametric surface reconstruction from 3D point data

normally segment the points into several subsets, each fitted with a para-

metric surface patch. These methods have two problems. First, they fail

to achieve positional and tangential continuity between adjacent patches as

gaps or overlaps occur between them, or they require high storage. Second,

for the data in each subset, parameterization of them is a challenging task.

In this chapter, we address these two problems by proposing a new surface

reconstruction method based on Partial differential equation(PDE) based de-

formation surfaces and a specific form of deformation surface with bilinearly

and bicubic blended Coons patches. First, we extract four boundaries for

each of the subsets. Then, we generate a bilinearly or bicubic blended Coons

patch from the four extracted boundaries depending on the required order of

continuity. The errors between the points in the subset and the correspond-

ing points on the bilineraly or bicubic blended Coons patch are removed or

91

Figure 5.1: Pipeline of our proposed method.

minimised by a PDE deformation surface or a specific deformation surface,

which involves as many unknown constants as required in a lateral force to

achieve the aim. The proposed method has the following advantages. First, it

guarantees good positional or tangential continuity between adjacent patches

since the same boundary or tangent is shared by the patches. Second, the

reconstruction errors can be easily controlled by tuning the hyper-parameters

in the equation used to generate the PDE deformation surface, which changes

the number of unknown constants accordingly. Third, the problem of point

parameterization in each subset is solved easily by means of the Coons patch.

We test our proposed method on various data sets of different complexities

and shapes, and the results validate the effectiveness and advantages of our

proposed method.

5.2 Method Pipeline

The pipeline of our proposed method is illustrated in Fig. 5.1. Specifically,

given a point cloud data shown in Fig. 5.1(a), we first segment it into multiple

subsets as shown in Fig. 5.1(b). For each subset, we then extract its bound-

92

aries and corner points using an existing method, as depicted in Fig. 5.1(c).

Each extracted boundary is fitted using Bézier curves, following the approach

outlined in Chapter 3. The results, displayed in Fig. 5.1(d), reveal that mul-

tiple Bézier curves are necessary for each boundary of this data, as a single

curve does not provide sufficient accuracy. Next, we use these boundary

curves to generate a bilinearly or bicubic blended Coons patch, illustrated

in Fig. 5.1(e). This Coons patch serves as an excellent base surface for the

parameterization of the points within the subset, allowing us to obtain their

(u, v) parameters, as depicted in Fig. 5.1(f). Our proposed PDE patch or a

specific deformation surface is then applied to deform the interior part of the

Coons patch, ensuring that the combined parametric surface fits the points

in the subset well without altering the boundaries of the Coons patch, as

shown in Fig. 5.1(g). Since adjacent parametric surface patches share the

same boundary or boundary tangent, they are seamlessly connected with

positional or tangential continuity. The final result, shown in Fig. 5.1(h),

demonstrates that the adjacent patches are seamlessly connected, eliminat-

ing the need for postprocessing required by other methods.

5.2.1 Segmentation and boundary extraction of 3D point
data

Various approaches exist for segmenting 3D point data, including methods

using attributes, 3D models, and edges, etc. For a comprehensive and de-

tailed introduction to these methods, please refer to (Nguyen and Le 2013).

For simplicity, this paper adopts a geometric primitive (3D models) method

to segment an input point cloud into an appropriate number of subsets. To

detect the boundary points of a given point set, many techniques have been

proposed (Chen et al. 2022, Mineo et al. 2019, Edelsbrunner 2011). Specif-

ically, Chen et al. (Chen et al. 2022) proposed an improved Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) to detect point

cloud boundaries, but their method mainly focuses on planar points. Mineo

proposed a novel algorithm for point cloud boundary detection by calcu-

lating the local resolution of the point cloud with the aid of the K-nearest

93

Figure 5.2: Curvature calculation of points on the boundary.

neighbour method (Mineo et al. 2019). Alpha-shape (Edelsbrunner 2011), a

classical method for detecting the convex or concave regions of a given point

set, can also be used for point cloud detection. Here, we adopt the technique

in (Edelsbrunner 2011) as it meets our needs in most cases. In cases where the

extracted boundary is not satisfactory, we will fine-tune the parameters of the

boundary detection method to achieve better results. Specifically, if the ex-

tracted boundary points contain outliers or too few points, we will adjust the

parameters of the alpha-shape method, as this method is dependent on both

the parameters and the specific input. For the detected boundary points, we

also need to identify the corner points, which will divide the boundary points

into four or three segments (curves). To accomplish this, we first calculate

the curvature of each point using the following formulation (Belyaev 1999):

k = (4 ∗ S)/(a ∗ b ∗ c)

where S is the area formed by the point of interest (point B in Fig. 5.2) with

its two adjacent points (points A and C), and a, b, c are the length of the

AB, BC and AC, respectively, as shown in Fig. 5.2. The top four or three

curvature points will be treated as the corner points.

5.2.2 Bézier curves fitting

To fit the points along each boundary, we use a parametric curve that en-

sures the first and last points are included. A Bézier curve is well-suited for

this task, though for more complex shapes, multiple Bézier curves may be

required. We adopt the method introduced in Chapter 3.

94

As illustrated in Fig. 5.3(a), a single Bézier curve does not adequately fit

the boundary points, necessitating multiple curves. The final result, shown in

Fig. 5.3(b), is obtained using the method proposed in Chapter 3 and multiple

Bézier curves are used for the points on each boundary.

(a) (b)

Figure 5.3: (a).One Bézier curve can not fit the boundary points well.
(b).Multiple Bézier curves are used for the points on each boundary.

5.2.3 Point cloud parameterization for 3D surface fit-
ting

For unstructured 3D point data, the parameters associated with each point

are unknown and not easily obtained. The process of obtaining suitable pa-

rameters for each point is called point cloud parameterization. Numerous

techniques have been proposed to achieve this. One of the most widely used

methods involves using a base surface, which can be a plane, a sphere, or a

surface patch that approximates the shape of the 3D point data, as discussed

in Chapter 2. In our approach, a bilinearly blended Coons patch serves as

the base surface. Given the base surface and a point in a 3D point data,

we need to find the closest point on the base surface and use this point to

determine the parameter values u and v of the original point, which is a non-

linear problem. Many methods have been proposed to tackle this nonlinear

problem, which can be roughly divided into five categories: Newton-Raphson

method (Mortenson 1997), subdividing method (Johnson and Cohen 2005),

95

solver methods (Elber and Kim 2001), clipping method (Chen et al. 2008),

and geometric method (Li et al. 2019). Each method has its advantages and

disadvantages. After testing some methods from each category, we found

that the geometric method best fits our needs due to its effectiveness and ef-

ficiency. We adopt the geometric method proposed in (Li et al. 2019) to find

the closest point and its associated parameters on a parametric surface to a

given point. Specifically, given a parametric surface and a test point whose

parameters are to be obtained, a normal curvature sphere of the surface is

constructed. The radius and centre of this sphere, along with the initially

guessed parameters, are specified. Next, the intersection point between the

line segment defined by the test point and the centre of the normal curva-

ture sphere is found. Lastly, to iteratively update the parameters of the test

point, the iterative formula is derived using Taylor’s expansion of the para-

metric surface. This method is independent of the initial parameter values

and converges quickly. Since there may be tens of thousands of points in a

subset, using the geometric method point by point is inefficient. To tackle

this issue, we use parallel computing to improve the efficiency of point cloud

parameterization, as parameterizing each point using the geometric method

is independent of the others.

5.3 3D shape reconstruction from point clouds

with positional and tangential continuous

patches

5.3.1 Based surface

To achieve positional continuity, the bilinearly blended Coons patch is adopted,

which is a parametric surface defined by four boundary curves, and it passes

through these boundaries. Specifically, given four boundary curves P(u, 0),

P(u, 1), P(0, v) and P(1, v) which are all parametric curves with the para-

metric variables u and v normally defined in the range [0, 1], the correspond-

ing equation of the bilinearly blended Coons patch is given by the following

96

Figure 5.4: Bilinearly blended Coons patch.

equation (Salomon 2007):

Sc(u, v) =
(

1 − u u 1
)

−P00 −P01 P(0, v)

−P10 −P11 P(1, v)

P(u, 0) P(u, 1) (0, 0, 0)

1 − v

v

1

 (5.1)

where P00 is the intersecting point of curves P(u, 0) and P(0, v) when u takes

0 and v takes 0, respectively. Similarly, P01, P10 and P11 are the remaining

three corner points intersected by the other three pairs of adjacent boundary

curves. This is demonstrated in Fig. 5.4.

To achieve tangential continuity, a bicubic Coons patch can be used,

which exactly satisfies the positional and tangential continuity requirements

on the four boundaries of the patch and the twist continuity requirements at

the four corner points of the patch. It can be used as a base patch.

A bicubic Coons patch S(u, v) can be mathematically written as (Piegl

1988):

S(u, v) = S1(u, v) + S2(u, v) − S3(u, v) (5.2)

In the above equation, the function S1(u, v) is defined by:

S1(u, v) =
(
S(u, 0) S(u, 1) Sv(u, 0) Sv(u, 1)

)
H

v3

v2

v

1

 (5.3)

97

where Sv(u, v) is ∂S(u,v)
∂v

, and

H =

2 −3 0 1

−2 3 0 0

1 −2 1 0

1 −1 0 0

 (5.4)

The function S2(u, v) is defined by:

S2(u, v) =
(
S(0, v) S(1, v) Su(0, v) Su(1, v)

)
H

u3

u2

u

1

 (5.5)

where Su(u, v) = ∂S(u,v)
∂u

, and the function S3(u, v) is defined by:

S3(u, v) =
(
u3 u2 u 1

)
HT

(
S̄ S̄v

S̄u S̄uv

)
H

v3

v2

v

1

 (5.6)

where S̄ is a corner matrix, S̄u and S̄v are tangent matrices, and S̄uv is a

twist matrix, which has the forms of:

S̄ =

(
S(0, 0) S(0, 1)

S(1, 0) S(1, 1)

)
, S̄u =

(
Su(0, 0) Su(0, 1)

Su(1, 0) Su(1, 1)

)
,

S̄v =

(
Sv(0, 0) Sv(0, 1)

Sv(1, 0) Sv(1, 1)

)
, S̄uv =

(
Suv(0, 0) Suv(0, 1)

Suv(1, 0) Suv(1, 1)

) (5.7)

and the subscript u, v indicates the second partial derivatives of the patch

with respect to the parametric variables u and v, S(0, 0), S(0, 1), S(1, 0), and

S(1, 1) are corner vectors consisting of the coordinate values of the four cor-

ner vertices, Su(0, 0), Su(0, 1), Su(1, 0), Su(1, 1), Sv(0, 0), Sv(0, 1), Sv(1, 0),

Sv(1, 1) are eight tangent vectors consisting of the values of the first par-

tial derivatives at the four corner vertices, and Suv(0, 0), Suv(0, 1), Suv(1, 0),

98

Suv(1, 1) are twist vectors consisting of the values of the second partial deriva-

tives at the four corner vertices.

From the points in a segmented sub-region, we can obtain the four bound-

ary curves S(u, 0), S(u, 1), S(0, v), S(1, v) and the first partial derivative

functions curves Sv(u, 0), Sv(u, 1), Su(0, v), Su(1, v), on the four boundary

curves. From the four boundary curves, we can determine the four corner vec-

tors. From the first partial derivatives on the four boundary curves, we can

determine the eight tangent vectors. Finally, from the second partial deriva-

tives of the first partial derivatives with respect to u or v respectively, we

can determine the four twist vectors. Substituting the above-obtained quan-

tities into Eqs. (5.3), (5.5), (5.6), and (5.7), we obtain S1(u, v), S2(u, v) and

S3(u, v). Substituting them into Eq. (5.2), we obtain a base patch S(u, v).

Among two adjacent base patches constructed with the above methods, po-

sitional continuity, tangential continuity, and twist continuity between the

two adjacent base patches are achieved.

5.3.2 Deformation surface

To achieve positional continuity, PDE deformation surfaces are crucial in

removing or minimising the errors between the points in a segmented subset

and the corresponding points on the bilinearly blended Coons patch. These

surfaces can be derived from the particular solution to the PDE proposed

below. The bending equation of an elastic thin plate is:

D(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4
) = qw (5.8)

where x and y are the position variables,w is the lateral displacement,qw is

the lateral force, and

D =
Eh3

12(1 − µ2)
(5.9)

is called the flexural rigidity, which is determined by Young’s modulus E,

Poisson’s ratio µ, and the thickness h of the elastic plate. If we replace

the position variables x and y with the parametric parameters (u and v),

99

and replace the lateral displacement with the position displacements x, y, z,

Eq. (5.8) is changed into the following partial differential equations:

D(
∂4w

∂u4
+ 2

∂4w

∂u2∂v2
+

∂4w

∂v4
) = qw

(w = x, y, z)
(5.10)

For simplicity, we will not use Young’s modulus E, Poisson’s ratio µ, and

the thickness h to determine the flexural rigidity D. Instead, we set its value

to 1, i.e., D=1.

Since the purpose of using Eq. (5.10) is to add deformations to the bi-

linearly blended Coons patch to remove or minimise the errors between the

point clouds and the Coons patch, only the particular solution to Eq. (5.10)

is necessary. Although the deformations may be complex, they can be math-

ematically represented with a Fourier series. To ensure positional continuity

between reconstructed patches, the Fourier series can be taken to be the

following sine series. Taking these factors into account, the mathematical

expression of the lateral force qw are taken to be the following forms:

qw =
M∑

m=1

N∑
n=1

qwmnsin(mπu)sin(nπv)

(w = x, y, z)

(5.11)

where M and N are hyper-parameters, which can be tuned to control sur-

face reconstruction errors. For example, when the shape of a point cloud

is complicated and the reconstruction error exceeds the specified error, we

can increase the value of M and N to make the disparity between the recon-

structed surface and the point data no more than the specified error, which

will be demonstrated in Section 5.4.

According to Eq. (5.11), the displacement w can be taken to be

w =
M∑

m=1

N∑
n=1

wmnsin(mπu)sin(nπv)

(w = x, y, z)

(5.12)

100

From Eq. (5.12), we obtain the fourth partial derivatives of w with respect

to u, u and v, and v, respectively. They have the forms of:

∂4w

∂u4
= π4

M∑
m=1

N∑
n=1

m4wmnsin(mπu)sin(nπv)

∂4w

∂u2∂v2
= π4

M∑
m=1

N∑
n=1

m2n2wmnsin(mπu)sin(nπv)

∂4w

∂v4
= π4

M∑
m=1

N∑
n=1

n4wmnsin(mπu)sin(nπv)

(5.13)

Substituting the above Eq. (5.11) and Eq. (5.13) into Eq. (5.10), we obtain

D[π4

M∑
m=1

N∑
n=1

m4wmnsin(mπu)sin(nπv)+2π4

M∑
m=1

N∑
n=1

m2n2wmnsin(mπu)sin(nπv)

+ π4

M∑
m=1

N∑
n=1

n4wmnsin(mπu)sin(nπv)] =
M∑

m=1

N∑
n=1

qwmnsin(mπu)sin(nπv)

(5.14)

The above equation can be simplified as:

M∑
m=1

N∑
n=1

[Dπ4(m4 + 2m2n2 + n4)wmn − qwnm]sin(mπu)sin(nπv) = 0 (5.15)

From Eq. 5.15, we obtain the following wmn:

wmn =
qwmn

Dπ4(m4 + 2m2n2 + n4)

(w = x, y, z;m = 1, 2, 3, ...,M ;n = 1, 2, 3, ..., N)
(5.16)

By Substituting Eq. 5.16 into Eq. 5.12, the particular solution shown

below can be obtained

w =
1

Dπ4

M∑
m=1

N∑
n=1

qwmn

(m4 + 2m2n2 + n4)
sin(mπu)sin(nπv)

(w = x, y, z)

(5.17)

Suppose the number of points in a given point cloud subset is I, then

at the points (ui,vi) (i = 1, 2, 3, . . . , I), the errors between the points in

101

the point cloud and the corresponding points obtained from the bilinearly

blended Coons surface Sc(ui, vi) are wi. To fit a parametric surface to the

interior points, we minimise the following error:

Ew =
I∑

i=1

[wi −
1

Dπ4

M∑
m=1

N∑
n=1

qwmn

(m4 + 2m2n2 + n4)
sin(mπui)sin(nπvi)]

2

(5.18)

which can be solved using the least square method below:

∂Ew

∂qwkl

= 2
I∑

i=1

[wi −
1

Dπ4

M∑
m=1

N∑
n=1

qwmn

m4 + 2m2n2 + n4
sin(mπui)sin(nπvi)][

− 1

Dπ4

1

(k4 + 2k2l2 + l4)
sin(kπui)sin(lπvi)] = 0

(w = x, y, z; k = 1, 2, 3, . . . ,M ; l = 1, 2, 3, . . . , N) (5.19)

Solving the above M × N equations, we obtain qwmn(w = x, y, z;m =

1, 2, 3, . . . ,M ;n = 1, 2, 3, . . . , N). Substituting them into Eq. (5.17), we ob-

tain the PDE patch SPDE(u, v), which has the form SPDE(u, v) = [x(u, v), y(u,

v), z(u, v)]T . Finally, the reconstructed parametric surface S(u, v) is:

S(u, v) = Sc(u, v) + SPDE(u, v) (5.20)

To achieve tangential continuity, the deformation surface should not de-

form the boundary of the Bicubic Coons patch, which includes the four

boundary positions, tangents and the four twist vectors. Besides, the de-

formation surface also needs to own powerful capability to add deformation

to the interior part of the Coons patch to make it fit to the interior points. To

achieve this aim, we are inspired by the previous deformation surface defined

by the PDE and propose the following deformation surface:

w =
M∑

m=1

N∑
n=1

qwmn (sin(mπu))2 ∗ (sin(nπv))2

(w = x, y, z)

(5.21)

To assess the reconstruction accuracy of our proposed approach, we com-

pute the average error and maximum error between the reconstructed para-

metric surface and the original I points (P1,P2, . . . ,PI) in the point cloud

102

subset using the following expression:

ErrMean =
1

I

I∑
i=1

|Pi − S(ui, vi)|

ErrMax = max
i=1,2,...,I

|Pi − S(ui, vi)|
(5.22)

Notice that when the product M × N of the hyper-parameters M and

N is equal to the number I of the points in the point cloud subset, the

reconstruction error is removed, i.e., the reconstruction error is zero.

5.4 Results

To validate the effectiveness of our proposed method, we tested it on vari-

ous datasets, including structured point clouds, unstructured point clouds of

varying complexities, and data with different levels of noise.

5.4.1 Surface reconstruction from structured point clouds

There are mainly two types of point clouds: structured and unstructured. In

structured point clouds, the relationship between points is known, whereas

in unstructured point clouds, this relationship is unknown and more com-

plex. To obtain a structured point cloud, we uniformly sample points on a

parametric Bézier surface, knowing the position of each point and its corre-

sponding parameters (ui, vi). The point cloud is shown in Fig. 5.5(a), with

fewer points sampled for clarity.

Notice the Bézier surface from which the points are sampled is not cubic;

however, since we fit cubic Bézier curves to the boundary points following

the method in Chapter 3, the parametric equations of the four boundaries

cannot be derived simply by fixing u = 0, 1 and v = 0, 1 in the parametric

equation of the Bézier surface. Instead, we follow the proposed method in

Chapter 3 to fit cubic Bézier curves to the boundary points. From these

four boundaries, we construct a bilinearly blended Coons patch based on

Eq. (5.1), which is shown in Fig. 5.5(b). The figure illustrates that while the

bilinearly blended Coons patch passes through the four boundaries, it does

103

not fit the interior points well, with a mean reconstruction error of 0.7120. To

reduce this error, we apply the particular solution of Eq. (5.17) to the PDE in

Eq. (5.10), adding deformations to the bilinearly blended Coons patch. With

hyper-parameters M = 5 and N = 5, the resulting reconstruction surface,

which combines the PDE patch and the bilinearly blended Coons patch, is

shown in Fig. 5.5(c). As illustrated, the combined parametric surface fits all

the points very well, significantly reducing the mean reconstruction error to

0.0035.

(a) (b) (c)

Figure 5.5: Reconstruction of the surface from structured point clouds:
(a).Input point clouds. (b).Generated Coons patch with an average error
of 0.7120. (c).Final parametric surface with an average error of 0.0035.

5.4.2 Surface reconstruction from unstructured point
clouds

We first test our method with an unstructured point cloud of one patch with

four sides. The point cloud is shown in black in Fig. 5.6(a), representing the

front part of a skirt model. To obtain the Coons patch, we first identify the

four boundaries of the point cloud, ensuring that one endpoint of adjacent

boundaries is the same point, serving as the corner point of the Coons patch.

The detected boundary points are shown in blue in Fig. 5.6(a) and the fitting

Bézier curves are shown in Fig. 5.6(b). After obtaining the Bézier curves

equations for the four boundaries, the bilinearly blended Coons patch is

generated from these four boundaries using Eq. (5.1), as shown in Fig. 5.6(c).

The Coons patch does not fit the point cloud well. To improve the fitting,

104

we calculate the distances between the points in the point cloud and the

corresponding points on the Coons patch. The PDE deformation surface

from Eq. (5.17) is then used to compensate for this discrepancy. The final

result is shown in Fig. 5.6(d), demonstrating that the reconstructed surface

fits the point cloud very well.

(a) (b) (c) (d)

Figure 5.6: Reconstruction of the surface from unconstructed point clouds of
the front part of a skirt model:(a)Input point clouds and extracted bound-
aries. (b)Reconstructed Bézier curves. (c)Generated Coons patch. (d)Final
parametric surface.

To further demonstrate the effectiveness and controllability of our method,

we apply it to reconstruct the back part of the skirt model using the same

procedure. Figs. 5.7(a), 5.7(b) and 5.7(c) show the original input point cloud,

the reconstructed bilinearly blended Coons patch and the final parametric

surface, respectively. As expected, the Coons patch does not fit the point

cloud well initially, but by adding our proposed PDE deformation surface,

the final reconstruction result is satisfactory. Furthermore, the reconstruc-

tion error from our proposed method is controllable. This can be achieved

by adjusting the values of M and N. The reconstruction surface shown in

Fig. 5.7(c) uses M = 5, N = 5, with corresponding mean error and maxi-

mum errors of 0.0052 and 0.0216, respectively. To reduce the reconstruction

error, we can increase the value of M and N . Fig. 5.7(d) shows the result

with M = 10, N = 10, where the mean and maximum errors are 0.0015 and

0.0077, respectively.

105

(a) (b) (c) (d)

Figure 5.7: Reconstruction of the surface from unconstructed point clouds
of the back part of a skirt model:(a)Input point clouds. (b)Generated
Coons patch. (c)Reconstructed parametric surface with M = 5, N = 5.
(d)Reconstructed parametric surface with M = 10, N = 10.

The point clouds shown in Fig. 5.6(a) and Fig. 5.7(a) are the front and

back parts of the point clouds shown in Fig. 5.8(a), respectively. Their re-

constructed surfaces are shown in Fig. 5.8(b). As depicted, the reconstruc-

tion surfaces fit the point cloud very well. Moreover, the two reconstructed

surfaces are seamlessly connected, requiring no post-processing, unlike the

PDE-based reconstruction method presented in (Zhu et al. 2022b).

(a) (b)

Figure 5.8: Reconstruction of the surface from unconstructed point clouds
of a skirt model:(a)Input point clouds. (b)Reconstructed parametric surface
after combination.

We further test our method with the examples shown in Fig. 5.9 and

Fig. 5.10. In Figure 5.9, we use one patch to reconstruct the flag shape from

106

the point cloud shown in Fig. 5.9(a), with the reconstructed surface shown

in Fig. 5.9(b). In Fig. 5.10, we segment the point cloud in Fig. 5.10(a) into

12 subsets, using a single parametric surface to approximate the 3D points in

each subset. These reconstructed surfaces are seamlessly connected to form

the pot shape in Fig. 5.10(b). These examples further illustrate the capability

of our method to effectively generate parametric surfaces that closely match

various datasets.

(a) (b)

Figure 5.9: Reconstruction of the surface from unstructured point data of a
flag model:(a)Input point clouds. (b)Reconstructed parametric surface.

(a) (b)

Figure 5.10: Reconstruction of the surface from unstructured point data of
a pot model:(a)Input point clouds. (b)Reconstructed parametric surface.

The above examples demonstrate our method’s effectiveness in recon-

structing four-sided patches from 3D point data. However, not all point

clouds have four boundaries or can be segmented into subsets with four

107

boundaries. Some point clouds may have three boundaries. In such cases,

one boundary of the reconstructed patch degenerates to a single point, and

our proposed method can still handle such datasets. Fig. 5.11(a) shows such

a point cloud, segmented into eight subsets, each with three boundaries, as

shown in Fig. 5.11(b). Notice that since the underlying structures of the

three boundaries are relatively simple, our experiments indicate that a sin-

gle Bézier curve is sufficient to fit the points on each boundary, as shown in

Fig. 5.11(b). Our approach reconstructs the shape from the points within

each subset. The result for one subset is depicted in Fig. 5.11(c), while com-

bining the reconstructions from all subsets yields the final result, as shown in

Fig. 5.11(d). This demonstrates that the reconstructed surfaces accurately

align with the original point cloud.

(a) (b) (c) (d)

Figure 5.11: Surface reconstruction from unstructured point clouds of an
umbrella model:(a)Input point clouds. (b)Points on the three boundaries
can be fitted with just one Bézier curve. (c)Reconstructed parametric sur-
face for a subset with three boundaries. (c) Final parametric surface after
combination.

5.4.3 Surface reconstruction from complicated point
clouds

It is difficult or impossible to reconstruct a point cloud with a complicated

shape by using a single parametric patch. In such a situation, we first segment

a complicated point cloud into some sub-regions. After that, we use one patch

to fit the points in one sub-region and assemble all the patches to obtain 3D

shape reconstruction from complicated point clouds.

108

(a) (b)

(c)

Figure 5.12: Reconstruction of the surface from constructed point data. (a).
Input point clouds; (b). Generated bicubic Coons patch; (c). Final results
after applying the deformation surface

To achieve both positional and tangential continuities between two patches

reconstructed from two adjacent sub-regions, we treat a patch as the sum of a

base patch and a deformation patch. The base patch exactly satisfies the po-

sitional and tangential continuity requirements on the four boundaries of the

patch and the twisting continuity requirements at the four corner points of

the patch. The deformation patch does not change the positional, tangential,

and twisting requirements.

The first point clouds data is sampled from a fourth-order Bézier surface,

as shown in Fig. 5.12(a), and a bicubic Coons patch is generated based on

Eq. (5.2). We can see that the bicubic Coons patch does not fit the point

clouds very well, specifically, the mean and maximum fitting errors are 0.1830

and 0.5968, respectively. Then we apply the deformation surface defined by

Eq. (5.21) to the bicubic Coons patch to obtain the final parametric surface,

as shown in Fig. 5.12(c), and it fits the point clouds very well with mean and

maximum errors reduced to 1.9707 × 10−4 and 5.6038 × 10−4, respectively.

Next, we consider a more complicated object. The input point cloud

109

(a)
(b)

(c)

(d)

Figure 5.13: Reconstruction of the surface from structured point data. (a).
Input point clouds; (b). Generated bicubic Coons patch of left side point
clouds; (c). Final results after applying the deformation surface; (d). The
Zebra analysis of the two reconstructed parametric surfaces

data is shown in Fig. 5.13, as it is difficult to fit the points with just one

parametric surface patch, we segment it into two subsets. Similarly, the

bicubic Coons patch for one subset is generated based on Eq. (5.2), and

there exists a disparity between it and the point clouds. Specifically, the

mean and maximum fitting errors are 0.0248 and 0.0836 respectively. Then

we apply the deformation surface and the final parametric surface is shown in

Fig. 5.13(c), it can be seen that the final parametric surface fit the point cloud

very well, with mean and maximum fitting errors decreased to 3.1 × 10−3

and 7.5 × 10−3, respectively. To maintain C1 continuity between the two

110

parametric surface patches, we make sure the second bicubic Coons patch

shares the required boundary condition as the first bicubic Coons patch,

which includes the 2 boundary curves, the tangent at the 2 boundary curves

and the twist at the endpoints of the 2 shared boundary curves. Since our

deformation would not change these conditions and only deforms the interior

part of the bicubic Coons patch to fit the points, the C1 continuity is kept.

To see this, we use the Zebra analysis tool in Rhino software to analyse the

continuity between the two reconstructed parametric surfaces. We can see

the zebra crossing runs smoothly from one surface patch to another one,

which means C1 continuity is obtained.

5.4.4 The impact of hyper-parameters

To further investigate how different values of the hyper-parameters M and N

affect reconstruction errors, we set M = N = 5 and M = N = 10 for surface

reconstruction from the point clouds shown in Figs. 5.5, 5.6, 5.7, 5.9, 5.10

and 5.11. The mean errors and maximum errors are presented in Table 5.1

for M = N = 5 and in Table 5.2 for M = N = 10. Comparing the mean

errors and the maximum errors given in the tables, we can conclude that both

the mean error and maximum error can be reduced by increasing the values

of M and N, which further demonstrates the effectiveness and controllability

of our suggested approach. To provide a clearer comparison, we also plot the

mean and maximum errors for different degrees of freedom (M×N) across all

datasets. Fig. 5.14 illustrates the mean fitting errors relative to the degrees

of freedom, showing a consistent decrease in mean errors as the degrees of

freedom increase in all cases. For the maximum errors, the trend is less clear

when plotted together due to varying scales, so we present them in three

separate subplots in Fig. 5.15. In all cases, the maximum errors decrease

as the degrees of freedom increase. These figures demonstrate the flexibility

and controllability of our method.

In Section 5.3, we take the value of D as 1 for simplicity and use it in

Eq. (5.19) for linear least square fitting. Here, we investigate the impact

of its values on the fitting results. It is important to note that the value

111

Figure 5.14: Mean errors respect to M ×N for all the datasets

of D does not affect the reconstructed results or the fitting errors. This is

because in Eq. (5.19), D can be incorporated into the expression within the

sum, allowing qwmn/D to be treated as a new variable. Therefore, altering

D would change qwmn correspondingly, leaving their ratio unchanged. To

illustrate this, we varied the value of D in Eq. (5.19) for the least squares

fitting multiple times, selecting random values between 10−3 and 103. Each

time, both the average error and the maximum error remained constant, and

the value of qwmn/D were unchanged.

Figure
5.5:
Struc-
tured
points

Figure
5.6:
Front
part of
skirt

Figure
5.7:
Back
part of
skirt

Figure
5.9:
Flag

Figure
5.10:
Pot

Figure
5.11:
Umbrella

Mean
error

0.0035 0.0025 0.0052 0.0024 5.1492×
10−4

0.0039

Max er-
ror

0.0131 0.0096 0.0216 0.0053 0.0021 0.0206

Table 5.1: Reconstruction errors when M = N = 5.

112

Figure 5.15: Max errors respect to M ×N for all the datasets

Figure
5.5:
Struc-
tured
points

Figure
5.6:
Front
part of
skirt

Figure
5.7:
Back
part of
skirt

Figure
5.9:
Flag

Figure
5.10:
Pot

Figure
5.11:
Umbrella

Mean
error

9.1745 ×
10−4

9.1820 ×
10−4

0.0015 0.0012 2.0462×
10−4

0.0023

Max er-
ror

0.0042 0.0036 0.0077 0.0043 0.0012 0.0191

Table 5.2: Reconstruction errors when M = N = 10.

5.4.5 Surface reconstruction from point clouds with
various levels of noise

To investigate the robustness of our method to various levels of noise (defined

as l), we begin with the constructed point sets sampled from a Bézier surface

that is used as the structured point cloud in Section 5.4.1, which is noise-

113

Figure 5.16: Noise free point cloud

free and can be used as the ground truth for calculating the fitting errors.

Similar to other methods to test the performance on point clouds with various

levels of noise (Yuwen et al. 2006, Khameneifar and Ghorbani 2019), which

reconstruct B-Spline surfaces for sharp feature preservation and curvature

estimation respectively, we define the noise level as follows: We first compute

the smallest bounding box that encapsulates the noise-free point cloud, and

the diagonal length of the bounding box is calculated and defined as d. Then

each point is displaced in a random direction with a random magnitude, and

the magnitude is drawn from a Gaussian distribution with zero mean and a

certain standard deviation, which is calculated by (l ∗ d)%.

Given the noise-free point set, as shown in Fig. 5.16, we set l = 0.5. The

obtained noisy data using the aforementioned steps with noise levels l = 0.5,

l = 1.0, and l = 1.5, together with the detected boundaries, are shown in the

first row of Fig. 5.17. The base surfaces from the detected boundaries are

shown in the second row. The last two rows show the reconstructed results

and those superimposed on the structured point cloud that is free of noise.

Notice we set M = N = 5 in this section. As we can see, our method gives

a relatively good result when l is no more than 1.0. As l gets larger, the

quality of the result decreases. However, it is important to note that the

first step of the general pipeline for parametric surface reconstruction from

noisy data involves preprocessing, which filters noise and outliers or adds

points to make the data complete. Since this section aims to investigate

114

(a) l = 0.5 (b) l = 1.0 (c) l = 1.5

Figure 5.17: Reconstruction of the surface from unstructured point data with
l = 0.5(first column), 1.0(second column), 1.5(third column).
Row 1:Noisy point clouds; Row 2: Base surface; Row 3: Reconstructed para-
metric surface; Row 4: Reconstructed parametric surface with structured
point cloud.

115

the robustness of our method to various levels of noise, preprocessing is not

carried out to denoise the data. As the level of noise increases, the detected

boundary degrades, and the generated base surface also deteriorates, as seen

in the third row when l = 1.5. This affects the parameterization of points and

the subsequent fitting process, thus impacting the final result. To illustrate,

we use the boundary of the original structured point cloud to generate the

base surface shown in Fig. 5.18(a), which is used for the noisy data (l = 1.5)

parameterization, and the final result is shown in Fig. 5.18(b). We can see a

better result can be obtained if a better base surface is generated, which can

be achieved when the data is processed to filter the noise.

Finally, we plot the fitting errors along the way in all cases, as shown in

Fig. 5.19. Our PDE model consistently reduces the error between the base

surface (Coons patch) and the structured points in all cases.

(a) (b)

Figure 5.18: Case l = 1.5: (a).Generated base surface from the boundary of
the structured points; (b).Reconstructed parametric surface

116

(a) (b)

Figure 5.19: Errors between Coons patch with reconstructed surface and the
structured point clouds (a).Mean errors; (b).Maximum errors

5.5 Summary

In this chapter, I developed a new physics-based method using PDE defor-

mation surfaces and bilinearly blended Coons patches for parametric surface

reconstruction from point clouds. The proposed approach modifies the gov-

erning equation for elastic bending of thin plates to derive a PDE incorpo-

rating several unknown constants within the lateral force term, allowing for

minimisation or elimination of reconstruction errors. The particular solution

of this PDE is derived and used to generate a PDE deformation surface, which

is then combined with a bilinearly blended Coons surface—constructed by in-

terpolating the four boundaries of a point cloud or its subsets—to obtain the

final reconstruction surface. Experimental results validate the effectiveness

of this approach, demonstrating its advantages: seamless continuity between

reconstructed patches, easily controllable reconstruction errors, and efficient

parameterisation of point data.

Meanwhile, inspired by the PDE-based deformation surface, a similar

methodology is applied, but a new base surface and a new deformation surface

are introduced to achieve both positional and tangential continuity between

adjacent reconstructed patches derived from point clouds.

117

Chapter 6

Conclusion and Future Work

In this chapter, we conclude the thesis by summarising our work and out-

lining potential future research, which are addressed in Sections 6.1 and 6.2,

respectively.

6.1 Conclusion

In various fields, such as computer graphics and manufacturing, parametric

forms play a crucial role due to their numerous advantages, including high

precision, low storage requirements, compactness, and ease of editing. In

particular, some products can only be produced accurately when a parametric

(mathematical) representation is available. Often, we are presented with

discrete point cloud data representing certain objects, and the challenge is to

find a good approximation using parametric forms while minimising storage

requirements (number of design variables).

This thesis explores the reconstruction of both parametric curves and

surfaces from point clouds. In the context of parametric curve reconstruc-

tion, several key factors are considered to achieve optimal results. Firstly,

by leveraging the affine transform invariant property of Bézier curves, only

a portion of the entire point cloud needs to be reconstructed for data with

certain symmetries. Additionally, since the parameterization of point clouds

significantly influences the final outcomes, selecting the appropriate param-

eterization method based on the specific data is crucial to further reducing

118

fitting errors. Lastly, when dealing with complex point cloud segments that

require multiple curves, we employ an efficient algorithm called bisection to

determine the optimal break points, dividing the segment into an appropri-

ate number of sub-segments. This approach ensures a tight approximation

while minimising the number of curves used.

For parametric surface reconstruction from point clouds, various repre-

sentations exist, such as Bézier surfaces, B-spline surfaces, and NURBS sur-

faces. However, PDE-based parametric surfaces offer distinct advantages,

including low storage requirements, excellent continuity, and physics-based

properties. A significant challenge with PDE-based representations, however,

lies in solving the partial differential equations, as most existing methods rely

on implicit PDE representations or numerical solutions, which can be com-

putationally expensive and prone to accuracy loss. To address this issue, we

first introduce closed-form solutions for partial differential equations applied

to 4-sided PDE patches, utilising them as a parametric representation for sur-

face reconstruction from point clouds. We validate the effectiveness of our

method using datasets of varying complexity. Furthermore, we extend the

closed-form solution to include additional variables, enhancing its capability

to fit more complex point cloud data.

Although PDE-based representations in 3D modelling can achieve higher-

order continuity by specifying boundary conditions, including positional, tan-

gential, or higher-order derivative conditions, applying this approach to PDE-

based parametric surface reconstruction from point clouds presents chal-

lenges. Specifically, it is difficult to satisfy the boundary conditions while

accurately approximating the interior points. To address this issue, we pro-

posed a PDE-based deformation surface, combined with the bilinearly Coons

patch to ensure that the boundary positional conditions of the point cloud

are met while also approximating the interior points. The Coons patch also

serves as a better base surface compared to a plane to parameterize the point

clouds more effectively. Our method results in accurate outcomes without

the need for postprocessing.

In some cases, achieving G1 or C1 continuity is essential, meaning that

tangential information, in addition to positional conditions, must be consid-

119

ered when constructing the initial surfaces. To accomplish this, we employ a

bicubic Coons patch as the initial base surface and propose a parametric de-

formation surface that adjusts the base surface to fit the interior points while

preserving both its positional and tangential conditions at the boundaries.

This approach ensures that C1 continuity is maintained.

Although this research has focused on parametric curve and surface recon-

struction from point clouds, aiming to use as few variables as possible while

maintaining a good approximation, certain limitations remain. For instance,

the corner point detection algorithm used in the parametric curve reconstruc-

tion is case-dependent, and developing a more general and robust detection

method would be a valuable area for further exploration. Additionally, de-

tecting other types of affine transformations, such as shear transformations,

presents another challenge worth investigating.

Regarding parametric surface reconstruction, while we address gaps in

PDE-based representations for surface reconstruction from point clouds, a

significant challenge remains in ensuring that the analytical solution satisfies

various boundary conditions to achieve higher-order continuity. Further ex-

ploration is needed to develop methods for using PDE-based representations

to consistently achieve higher-order continuity.

6.2 Future Work

This research explores parametric curve and PDE-based parametric surface

reconstruction from point clouds, and several areas for future work are iden-

tified.

Corner points detection. In the parametric curve reconstruction sec-

tion, this thesis identifies corner points, segmenting the point set into mul-

tiple segments using existing methods. However, these methods are case-

dependent. Future research will aim to develop a more general and robust

corner point detection approach. Furthermore, treating the parameters for

each point as free variables to be optimised might eliminate the need for

parameterizing these points and could reduce the fitting error. However, this

120

approach leads to a high-dimensional, non-linear problem that is challeng-

ing to optimise. We believe that deep learning techniques have significant

potential to address these tasks.

Higher order continuity. In the area of 3D modelling, higher-order

continuity (C2 or even higher) is desirable and can be achieved with PDE

representations (Wang 2021). Specifically, PDEs ensure continuity by satis-

fying boundary conditions between adjacent patches. However, maintaining

higher-order continuity while considering both boundary conditions and in-

terior points remains challenging. Improving point cloud segmentation could

enhance reconstruction results. With the rapid advancement of deep learn-

ing techniques, integrating them into the reconstruction pipeline could help

achieve this goal. For example, Deng et al. (Deng et al. 2020) proposed us-

ing deep learning techniques for parametric surface reconstruction, aiming

to improve the stitching between patches. However, they did not succeed

in achieving higher-order continuity between patches. To address this, new

architectures or loss functions could be developed. Furthermore, Physics-

Informed Neural Networks (PINNs) have garnered significant attention, as

they allow for solving complex PDEs (particularly nonlinear ones) subject

to various boundary conditions using neural networks to some extent (Raissi

et al. 2019). In future work, we will explore the application of this technique

to PDE-based parametric surface reconstruction from point clouds.

Dynamic shape reconstruction. In some cases, the objects to be re-

constructed may be in motion, making dynamic object reconstruction a chal-

lenging task in computer graphics and computer vision. By incorporating the

variable t (representing time) into the PDE, dynamic object reconstruction

will require more complex PDE forms and advanced solvers. Future research

will explore this direction.

121

Bibliography

Amenta, N., Bern, M. and Kamvysselis, M., 1998. A new voronoi-based

surface reconstruction algorithm. Proceedings of the 25th annual conference

on Computer graphics and interactive techniques , 415–421.

Azariadis, P. and Sapidis, N., 2005. Efficient parameterization of 3d point-

sets using recursive dynamic base surfaces. Panhellenic Conference on In-

formatics , Springer, 296–306.

Azariadis, P. and Sapidis, N., 2007. Product design using point-cloud sur-

faces: A recursive subdivision technique for point parameterization. Com-

puters in Industry , 58 (8-9), 832–843.

Azariadis, P. N., 2004. Parameterization of clouds of unorganized points using

dynamic base surfaces. Computer-Aided Design, 36 (7), 607–623.

Badki, A., Gallo, O., Kautz, J. and Sen, P., 2020. Meshlet priors for 3d mesh

reconstruction. Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2849–2858.

Balta, C., Öztürk, S., Kuncan, M. and Kandilli, I., 2019. Dynamic centripetal

parameterization method for b-spline curve interpolation. IEEE Access , 8,

589–598.

Barhak, J. and Fischer, A., 2001. Parameterization and reconstruction from

3d scattered points based on neural network and pde techniques. IEEE

Transactions on visualization and computer graphics , 7 (1), 1–16.

Bazazian, D. and Parés, M. E., 2021. Edc-net: Edge detection capsule net-

work for 3d point clouds. Applied Sciences , 11 (4), 1833.

122

Beauville, A., 1996. Complex algebraic surfaces . 34, Cambridge University

Press.

Belyaev, A. G., 1999. A note on invariant three-point curvature approxima-

tions (singularity theory and differential equations). , 1111, 157–164.

Berger, M., Tagliasacchi, A., Seversky, L. M., Alliez, P., Guennebaud, G.,

Levine, J. A., Sharf, A. and Silva, C. T., 2017. A survey of surface re-

construction from point clouds. Computer graphics forum, Wiley Online

Library, volume 36, 301–329.

Berger, M., Tagliasacchi, A., Seversky, L. M., Alliez, P., Levine, J. A., Sharf,

A. and Silva, C. T., 2014. State of the art in surface reconstruction from

point clouds. 35th Annual Conference of the European Association for

Computer Graphics, Eurographics 2014-State of the Art Reports , The Eu-

rographics Association.

Bhunia, A. K., Chowdhury, P. N., Yang, Y., Hospedales, T. M., Xiang, T. and

Song, Y.-Z., 2021. Vectorization and rasterization: Self-supervised learning

for sketch and handwriting. Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 5672–5681.

Bo, P., Ling, R. and Wang, W., 2012. A revisit to fitting parametric surfaces

to point clouds. Computers & Graphics , 36 (5), 534–540.

Boissonnat, J.-D. and Cazals, F., 2000. Smooth surface reconstruction via

natural neighbour interpolation of distance functions. Proceedings of the

sixteenth annual symposium on Computational geometry , 223–232.

Bo ltuć, A. and Zieniuk, E., 2021. Parametric integral equation system (pies)

for solving problems with inclusions and non-homogeneous domains using

bézier surfaces. Journal of Computational Science, 51, 101343.

Calakli, F. and Taubin, G., 2011. Ssd: Smooth signed distance surface recon-

struction. Computer Graphics Forum, Wiley Online Library, volume 30,

1993–2002.

123

Chang, H.-H. and Yan, H., 1998. Vectorization of hand-drawn image using

piecewise cubic bezier curves fitting. Pattern recognition, 31 (11), 1747–

1755.

Chen, H., Liang, M., Liu, W., Wang, W. and Liu, P. X., 2022. An approach

to boundary detection for 3d point clouds based on dbscan clustering.

Pattern Recognition, 124, 108431.

Chen, X.-D., Yong, J.-H., Wang, G., Paul, J.-C. and Xu, G., 2008. Comput-

ing the minimum distance between a point and a nurbs curve. Computer-

Aided Design, 40 (10-11), 1051–1054.

Chiang, J. Y., Tue, S. and Leu, Y., 1998. A new algorithm for line image

vectorization. Pattern recognition, 31 (10), 1541–1549.

Choi, G. P., Liu, Y. and Lui, L. M., 2022. Free-boundary conformal param-

eterization of point clouds. Journal of Scientific Computing , 90, 1–26.

Choi, G. P.-T., Ho, K. T. and Lui, L. M., 2016. Spherical conformal parame-

terization of genus-0 point clouds for meshing. SIAM Journal on Imaging

Sciences , 9 (4), 1582–1618.

Culjak, I., Abram, D., Pribanic, T., Dzapo, H. and Cifrek, M., 2012. A

brief introduction to opencv. 2012 proceedings of the 35th international

convention MIPRO , IEEE, 1725–1730.

Deng, Z., Bednař́ık, J., Salzmann, M. and Fua, P., 2020. Better patch stitch-

ing for parametric surface reconstruction. 2020 International Conference

on 3D Vision (3DV), IEEE, 593–602.

Dimitrov, A. and Golparvar-Fard, M., 2014. Robust nurbs surface fitting from

unorganized 3d point clouds for infrastructure as-built modeling. Comput-

ing in civil and building engineering (2014), 81–88.

Dominici, E. A., Schertler, N., Griffin, J., Hoshyari, S., Sigal, L. and Sheffer,

A., 2020. Polyfit: Perception-aligned vectorization of raster clip-art via

intermediate polygonal fitting. ACM Transactions on Graphics (TOG),

39 (4), 77–1.

124

Duan, Y., Yang, L., Qin, H. and Samaras, D., 2004. Shape reconstruc-

tion from 3d and 2d data using pde-based deformable surfaces. Com-

puter Vision-ECCV 2004: 8th European Conference on Computer Vi-

sion, Prague, Czech Republic, May 11-14, 2004. Proceedings, Part III 8 ,

Springer, 238–251.

Edelsbrunner, H., 1998. Shape reconstruction with delaunay complex. Latin

American Symposium on Theoretical Informatics , Springer, 119–132.

Edelsbrunner, H., 2011. Alpha shapes-a survey. Tessellations in the sciences:

Virtues, techniques and applications of geometric tilings .

Elber, G. and Kim, M.-S., 2001. Geometric constraint solver using multivari-

ate rational spline functions. Proceedings of the sixth ACM symposium on

Solid modeling and applications , 1–10.

Fang, J.-J. and Hung, C.-L., 2013. An improved parameterization method

for b-spline curve and surface interpolation. Computer-aided design, 45 (6),

1005–1028.

Farin, G., 2014. Curves and surfaces for computer-aided geometric design: a

practical guide. Elsevier.

Floater, M. S., 1997. Parametrization and smooth approximation of surface

triangulations. Computer aided geometric design, 14 (3), 231–250.

Floater, M. S., 2000. Meshless parameterization and b-spline surface approx-

imation. The Mathematics of Surfaces IX: Proceedings of the Ninth IMA

Conference on the Mathematics of Surfaces , Springer, 1–18.

Floater, M. S. and Reimers, M., 2001. Meshless parameterization and surface

reconstruction. Computer Aided Geometric Design, 18 (2), 77–92.

Floater, M. S. and Surazhsky, T., 2006. Parameterization for curve interpola-

tion. Studies in Computational Mathematics , Elsevier, volume 12, 39–54.

125

Franchini, E., Morigi, S., Sgallari, F. et al., 2010. Implicit shape reconstruc-

tion of unorganized points using pde-based deformable 3d manifolds. Nu-

merical Mathematics: Theory, Methods and Applications , 3 (4), 405–430.

Fuhrmann, S. and Goesele, M., 2014. Floating scale surface reconstruction.

ACM Transactions on Graphics (ToG), 33 (4), 1–11.

G. Farin, J. H. and Kim, M.-S., 2002. Handbook of computer aided geometric

design. Elsevier.

Gálvez, A. and Iglesias, A., 2012. Particle swarm optimization for non-

uniform rational b-spline surface reconstruction from clouds of 3d data

points. Information Sciences , 192, 174–192.

Gálvez, A. and Iglesias, A., 2013. A new iterative mutually coupled hybrid

ga–pso approach for curve fitting in manufacturing. Applied Soft Comput-

ing , 13 (3), 1491–1504.

Gálvez, A., Iglesias, A. and Puig-Pey, J., 2012. Iterative two-step genetic-

algorithm-based method for efficient polynomial b-spline surface recon-

struction. Information Sciences , 182 (1), 56–76.

Gomes, L., Bellon, O. R. P. and Silva, L., 2014. 3d reconstruction methods

for digital preservation of cultural heritage: A survey. Pattern Recognition

Letters , 50, 3–14.

Gonczarowski, J., 1991. A fast approach to auto-tracing (with parametric

cubics). Raster imaging and digital typography , volume 91, 1–15.

Gordon, W. J. and Riesenfeld, R. F., 1974. B-spline curves and surfaces.

Computer aided geometric design, Elsevier, 95–126.

Gu, P. and Yan, X., 1995. Neural network approach to the reconstruction of

freeform surfaces for reverse engineering. Computer-Aided Design, 27 (1),

59–64.

126

Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L. and Bennamoun, M., 2020.

Deep learning for 3d point clouds: A survey. IEEE transactions on pattern

analysis and machine intelligence, 43 (12), 4338–4364.

Hadenfeld, J., 1995. Local energy fairing of b-spline surfaces.

He, L., Ren, X., Gao, Q., Zhao, X., Yao, B. and Chao, Y., 2017. The

connected-component labeling problem: A review of state-of-the-art al-

gorithms. Pattern Recognition, 70, 25–43.

He, Y., Kang, S. H. and Morel, J.-M., 2023. Binary shape vectorization by

affine scale-space. Image Processing On Line, 13, 22–37.

He, Y., Yu, H., Liu, X., Yang, Z., Sun, W. and Mian, A., 2021. Deep learning

based 3d segmentation: A survey. arXiv preprint arXiv:2103.05423 .

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J. and Stuetzle, W., 1992.

Surface reconstruction from unorganized points. Proceedings of the 19th

annual conference on computer graphics and interactive techniques , 71–

78.

Hormann, K. and Greiner, G., 2000. Mips: An efficient global parametriza-

tion method. Curve and Surface Design: Saint-Malo 1999 , 153–162.

Hormann, K. and Reimers, M., 2002. Triangulating point clouds with spher-

ical topology. Curve and Surface Design: Saint-Malo, 215–224.

Hoshyari, S., Dominici, E. A., Sheffer, A., Carr, N., Wang, Z., Ceylan, D.

and Shen, I.-C., 2018. Perception-driven semi-structured boundary vector-

ization. ACM Transactions on Graphics (TOG), 37 (4), 1–14.

Iglesias, A., Gálvez, A. and Collantes, M., 2015. Bat algorithm for curve

parameterization in data fitting with polynomial bézier curves. 2015 In-

ternational Conference on Cyberworlds (CW), IEEE, 107–114.

Illingworth, J. and Kittler, J., 1988. A survey of the hough transform. Com-

puter vision, graphics, and image processing , 44 (1), 87–116.

127

Johnson, D. E. and Cohen, E., 2005. Distance extrema for spline models

using tangent cones. Proceedings of Graphics Interface 2005 , 169–175.

Joshi, P., 2014. Image vectorization and significant point detection. AIAA,

Proceedings of International Conference on Advances in Engineering and

Technology, 74–78.

Jung, H. and Kim, K., 2000. A new parameterisation method for nurbs sur-

face interpolation. The International Journal of Advanced Manufacturing

Technology , 16 (11), 784–790.

Kanazawa, A., Tulsiani, S., Efros, A. A. and Malik, J., 2018. Learning

category-specific mesh reconstruction from image collections. Proceedings

of the European Conference on Computer Vision (ECCV), 371–386.

Kato, H., Ushiku, Y. and Harada, T., 2018. Neural 3d mesh renderer. Pro-

ceedings of the IEEE conference on computer vision and pattern recogni-

tion, 3907–3916.

Kazhdan, M., Bolitho, M. and Hoppe, H., 2006. Poisson surface reconstruc-

tion. Proceedings of the fourth Eurographics symposium on Geometry pro-

cessing , volume 7.

Khameneifar, F. and Ghorbani, H., 2019. On the curvature estimation for

noisy point cloud data via local quadric surface fitting. Comput.-Aided

Des. Appl., 16 (1), 140–149.

Kirsanov, A., Vavilin, A. and Jo, K., 2010. Contour-based algorithm for vec-

torization of satellite images. International Forum on Strategic Technology

2010 , IEEE, 241–245.

Laidlaw, D. H., Trumbore, W. B. and Hughes, J. F., 1986. Constructive solid

geometry for polyhedral objects. Proceedings of the 13th annual conference

on Computer graphics and interactive techniques , 161–170.

128

Laube, P., Franz, M. O. and Umlauf, G., 2018. Deep learning parametrization

for b-spline curve approximation. 2018 International Conference on 3D

Vision (3DV), IEEE, 691–699.

Lee, D., Quan, I., Wu, C., Wu, J., Tamir, D. and Rishe, N., 2020. Opti-

mizing b-spline surface reconstruction for sharp feature preservation. 2020

10th Annual Computing and Communication Workshop and Conference

(CCWC), IEEE, 0359–0364.

Li, E., Che, W., Zhang, X., Zhang, Y.-K. and Xu, B., 2011a. Direct quad-

dominant meshing of point cloud via global parameterization. Computers

& Graphics , 35 (3), 452–460.

Li, E., Lévy, B., Zhang, X., Che, W., Dong, W. and Paul, J.-C., 2011b. Mesh-

less quadrangulation by global parameterization. Computers & Graphics ,

35 (5), 992–1000.

Li, X., Wu, Z., Pan, F., Liang, J., Zhang, J. and Hou, L., 2019. A geometric

strategy algorithm for orthogonal projection onto a parametric surface.

Journal of Computer Science and Technology , 34, 1279–1293.

Lim, C.-G., 1998. A universal parametrization in B-spline curve and surface

interpolation and its performance evaluation. Louisiana State University

and Agricultural & Mechanical College.

Lim, S. P. and Haron, H., 2014. Surface reconstruction techniques: a review.

Artificial Intelligence Review , 42, 59–78.

Linz, C., Goldlücke, B. and Magnor, M., 2006. A point-based approach

to pde-based surface reconstruction. Pattern Recognition: 28th DAGM

Symposium, Berlin, Germany, September 12-14, 2006. Proceedings 28 ,

Springer, 729–738.

Lopes, R. G., Ha, D., Eck, D. and Shlens, J., 2019. A learned representation

for scalable vector graphics. Proceedings of the IEEE/CVF International

Conference on Computer Vision, 7930–7939.

129

Ma, W. and Kruth, J.-P., 1995. Parameterization of randomly measured

points for least squares fitting of b-spline curves and surfaces. Computer-

Aided Design, 27 (9), 663–675.

McNamee, J. M. and Pan, V., 2013. Numerical Methods for Roots of

Polynomials-Part II . Newnes.

Meng, Q., Li, B., Holstein, H. and Liu, Y., 2013. Parameterization of point-

cloud freeform surfaces using adaptive sequential learning rbfnetworks.

Pattern Recognition, 46 (8), 2361–2375.

Meng, T. W., Choi, G. P.-T. and Lui, L. M., 2016. Tempo: feature-endowed

teichmuller extremal mappings of point clouds. SIAM Journal on Imaging

Sciences , 9 (4), 1922–1962.

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S. and Geiger, A.,

2019. Occupancy networks: Learning 3d reconstruction in function space.

Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, 4460–4470.

Mineo, C., Pierce, S. G. and Summan, R., 2019. Novel algorithms for 3d

surface point cloud boundary detection and edge reconstruction. Journal

of Computational Design and Engineering , 6 (1), 81–91.

Monterde, J. and Ugail, H., 2006. A general 4th-order pde method to generate

bézier surfaces from the boundary. Computer Aided Geometric Design,

23 (2), 208–225.

Mortenson, M. E., 1997. Geometric modeling . John Wiley & Sons, Inc.

Nadal, C., Legault, R. and Suen, C. Y., 1990. Complementary algorithms

for the recognition of totally unconstrained handwritten numerals. [1990]

Proceedings. 10th International Conference on Pattern Recognition, IEEE,

volume 1, 443–449.

Nguyen, A. and Le, B., 2013. ª3d point cloud segmentation: A survey, º in

2013 6th ieee conference on robotics, automation and mechatronics (ram).

130

Nielson, G. M. and Foley, T. A., 1989. A survey of applications of an affine

invariant norm. Mathematical methods in computer aided geometric design,

Elsevier, 445–467.

Othman, M., Yusoff, Y., Haron, H. and You, L., 2019. An overview of surface

reconstruction using partial differential equation (pde). IOP Conference

Series: Materials Science and Engineering , IOP Publishing, volume 551,

012054.

Pal, S., Ganguly, P. and Biswas, P., 2007. Cubic bézier approximation of a

digitized curve. Pattern recognition, 40 (10), 2730–2741.

Pavlidis, T., 1983. Curve fitting with conic splines. ACM Transactions on

Graphics (TOG), 2 (1), 1–31.

Piegl, L., 1988. Coons-type patches. Computers & graphics , 12 (2), 221–228.

Piegl, L. and Tiller, W., 2012. The NURBS book . Springer Science & Business

Media.

Plass, M. and Stone, M., 1983. Curve-fitting with piecewise parametric cu-

bics. Proceedings of the 10th annual conference on Computer graphics and

interactive techniques , 229–239.

Pottmann, H., Leopoldseder, S. and Hofer, M., 2002. Approximation with

active b-spline curves and surfaces. 10th Pacific Conference on Computer

Graphics and Applications, 2002. Proceedings., IEEE, 8–25.

Qi, C. R., Su, H., Mo, K. and Guibas, L. J., 2017. Pointnet: Deep learning on

point sets for 3d classification and segmentation. Proceedings of the IEEE

conference on computer vision and pattern recognition, 652–660.

Raissi, M., Perdikaris, P. and Karniadakis, G. E., 2019. Physics-informed

neural networks: A deep learning framework for solving forward and in-

verse problems involving nonlinear partial differential equations. Journal

of Computational physics , 378, 686–707.

131

Raja, V. and Fernandes, K. J., 2007. Reverse engineering: an industrial

perspective. Springer Science & Business Media.

Rodrigues, M., Osman, A. and Robinson, A., 2013. Partial differential equa-

tions for 3d data compression and reconstruction. ADSA Advances in Dy-

namical Systems and Applications , 8 (2), 303–315.

Rouhani, M., Sappa, A. D. and Boyer, E., 2014. Implicit b-spline surface

reconstruction. IEEE transactions on image processing , 24 (1), 22–32.

Salomon, D., 2007. Curves and surfaces for computer graphics . Springer Sci-

ence & Business Media.

Sarfraz, M. and Khan, M., 2004. An automatic algorithm for approximat-

ing boundary of bitmap characters. Future Generation Computer Systems ,

20 (8), 1327–1336.

Schnabel, R., Wahl, R. and Klein, R., 2007. Efficient ransac for point-cloud

shape detection. Computer graphics forum, Wiley Online Library, vol-

ume 26, 214–226.

Schneider, P. J., 1990. An algorithm for automatically fitting digitized curves.

Graphics gems , 612–626.

Scholz, F. and Jüttler, B., 2021. Parameterization for polynomial curve ap-

proximation via residual deep neural networks. Computer Aided Geometric

Design, 85, 101977.

Shamsuddin, S. M. H. and Ahmed, M. A., 2004. A hybrid parameteriza-

tion method for nurbs. Proceedings. International Conference on Computer

Graphics, Imaging and Visualization, 2004. CGIV 2004., IEEE, 15–20.

Sharma, G., Liu, D., Maji, S., Kalogerakis, E., Chaudhuri, S. and Měch, R.,

2020. Parsenet: A parametric surface fitting network for 3d point clouds.

Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,

August 23–28, 2020, Proceedings, Part VII 16 , Springer, 261–276.

132

Sharma, R., Schwandt, T., Kunert, C., Urban, S. and Broll, W., 2021. Point

cloud upsampling and normal estimation using deep learning for robust

surface reconstruction. arXiv preprint arXiv:2102.13391 .

Shen, Y., Ren, J., Huang, N., Zhang, Y., Zhang, X. and Zhu, L., 2023.

Surface form inspection with contact coordinate measurement: a review.

International Journal of Extreme Manufacturing , 5 (2), 022006.

Shi, B.-Q., Liang, J. and Liu, Q., 2011. Adaptive simplification of point cloud

using k-means clustering. Computer-Aided Design, 43 (8), 910–922.

S.L., F. C., 2025. FREEPik. URL https://www.freepik.com, [Accessed 5

February 2023].

Sulzer, R., Marlet, R., Vallet, B. and Landrieu, L., 2023. A survey and

benchmark of automatic surface reconstruction from point clouds. arXiv

preprint arXiv:2301.13656 .

Tewari, G., Gotsman, C. and Gortler, S. J., 2006. Meshing genus-1 point

clouds using discrete one-forms. Computers & Graphics , 30 (6), 917–926.

Ugail, H. and Kirmani, S., 2006. Method of surface reconstruction using

partial differential equations. Proceedings of the 10th WSEAS International

Conference on Computers, Athens, Greece, 13–15.

Unther Greiner, G. and Hormann, K., 1996. Interpolating and approximating

scattered 3d-data with hierarchical tensor product b-splines. Proceedings

of Chamonix , volume 1.

Varady, T., Martin, R. R. and Cox, J., 1997. Reverse engineering of geometric

models—an introduction. Computer-aided design, 29 (4), 255–268.

Wang, L., Yuan, B. and Miao, Z., 2008. 3d point clouds parameterization

alogrithm. 2008 9th International Conference on Signal Processing , IEEE,

1410–1413.

Wang, S., 2021. Partial differential equation-based surface modelling and ap-

plications.. Ph.D. thesis, Bournemouth University.

133

https://www.freepik.com

Williams, F., Schneider, T., Silva, C., Zorin, D., Bruna, J. and Panozzo, D.,

2019. Deep geometric prior for surface reconstruction. Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, 10130–

10139.

Xiao, J. and Furukawa, Y., 2014. Reconstructing the world’s museums. In-

ternational journal of computer vision, 110, 243–258.

Xiong, X., Feng, J. and Zhou, B., 2017. Real-time contour image vectoriza-

tion on gpu. Computer Vision, Imaging and Computer Graphics Theory

and Applications: 11th International Joint Conference, VISIGRAPP 2016,

Rome, Italy, February 27–29, 2016, Revised Selected Papers 11 , Springer,

35–50.

Xiyu, L., Mingxi, T. and Hamilton Frazer, J., 2003. Shape reconstruction by

genetic algorithms and artificial neural networks. Engineering Computa-

tions , 20 (2), 129–151.

Xu, H., Zhao, G., Liu, Y. and Ye, N., 2022. An improved parameterized in-

terpolation method based on modified chord length. Journal of Computing

and Information Science in Engineering , 22 (6), 061001.

Yavartanoo, M., Chung, J., Neshatavar, R. and Lee, K. M., 2021. 3dias: 3d

shape reconstruction with implicit algebraic surfaces. Proceedings of the

IEEE/CVF International Conference on Computer Vision, 12446–12455.

Yuwen, S., Dongming, G., Zhenyuan, J. and Weijun, L., 2006. B-spline sur-

face reconstruction and direct slicing from point clouds. The International

Journal of Advanced Manufacturing Technology , 27, 918–924.

Zhang, L., Liu, L., Gotsman, C. and Huang, H., 2010. Mesh reconstruction by

meshless denoising and parameterization. Computers & Graphics , 34 (3),

198–208.

Zhao, H.-K., Osher, S. and Fedkiw, R., 2001. Fast surface reconstruction

using the level set method. Proceedings IEEE workshop on variational and

level set methods in computer vision, IEEE, 194–201.

134

Zhu, Z., Iglesias, A., You, L. and Zhang, J. J., 2022a. A review of 3d point

clouds parameterization methods. International Conference on Computa-

tional Science, Springer, 690–703.

Zhu, Z., Zheng, A., Iglesias, A., Wang, S., Xia, Y., Chaudhry, E., You, L.

and Zhang, J., 2022b. Pde patch-based surface reconstruction from point

clouds. Journal of Computational Science, 61, 101647.

Zou, J. J. and Yan, H., 2001. Cartoon image vectorization based on shape

subdivision. Proceedings. Computer Graphics International 2001 , IEEE,

225–231.

Zwicker, M. and Gotsman, C., 2004. Meshing point clouds using spherical

parameterization. PBG , Citeseer, 173–180.

Zwicker, M., Pauly, M., Knoll, O. and Gross, M., 2002. Pointshop 3d: An

interactive system for point-based surface editing. ACM Transactions on

Graphics (TOG), 21 (3), 322–329.

135

	Copyright
	Acknowledgements
	Abstract
	Table of contents
	List of figures
	List of tables
	Introduction
	Background
	Main Challenge
	Aims and Objectives
	Contribution
	List of Publications
	Outline of Thesis

	Literature Review
	Points set parameterization for curve fitting
	Methods in the first category
	Methods in the second category
	Metaheuristics-based parameterization
	Deep learning-based methods

	Points set parameterization for surface fitting
	Some concepts
	Parameterization methods of organised point clouds
	Parameterization methods of unorganised point clouds
	Base surfaces-based methods
	Neural networks-based methods

	Curves and surfaces reconstruction from point clouds
	Curve reconstruction
	Surface reconstruction

	Vectorizing binary image boundaries with symmetric shape detection, bisection and optimal parameteterization
	Symmetric axis and point detection
	Fitting
	Bisection method
	Results and comparison
	Summary

	Parametric surface reconstruction using closed-form solution of a fourth-order PDE
	Mathematical model and closed-form solution
	Closed-form solution derivation

	Reconstruction from a single patch of points
	Reconstruction from multiple patches of points
	Segmentation of point clouds
	Point cloud parameterization
	Fitting
	Experiments and results
	Comparison with implicit PDE method

	Extended closed-form solution
	Results and comparison
	Summary

	Parametric surface reconstruction from 3D point data using partial differential equation with positional and tangential continuous patches
	Background
	Method Pipeline
	Segmentation and boundary extraction of 3D point data
	Bézier curves fitting
	Point cloud parameterization for 3D surface fitting

	3D shape reconstruction from point clouds with positional and tangential continuous patches
	Based surface
	Deformation surface

	Results
	Surface reconstruction from structured point clouds
	Surface reconstruction from unstructured point clouds
	Surface reconstruction from complicated point clouds
	The impact of hyper-parameters
	Surface reconstruction from point clouds with various levels of noise

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

