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Abstract

Understanding dynamic 3D scenes—critical for applications

like autonomous navigation and mixed reality—requires pars-

ing both motion (scene flow) and object interactions (segmen-

tation). Scene flow captures 3D motion fields, while segmen-

tation isolates objects, enabling systems to interpret evolving

environments. Integrating these tasks offers a holistic view

but faces computational challenges due to scene flow’s high

dimensionality.

This work proposes a lightweight deep learning architecture

combining an enhanced Point Transformer for efficient fea-

ture extraction and a point-voxel correlation module for sta-

ble motion estimation.

To bypass labor-intensive object annotations, scene flow is

leveraged as auxiliary supervision. Instead of predicting masks

for all points, this thesis focuses on key points, reducing com-

plexity while maintaining accuracy. The proposed clustering-

free approach achieves state-of-the-art results on indoor datasets.

For temporal consistency, an unsupervised method integrates

continuous point cloud sequences (encoding spatial embed-

dings) with time-independent queries (encoding object se-

mantics). This enables gradual mask prediction across frames

without direct labels, accommodating dynamic inputs. This

framework advances dynamic scene understanding by harmo-

nizing motion and segmentation, validated through competi-

tive benchmarks and flexible input handling.
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1
Introduction

1.1 Motivations

Most organisms perceive their surrounding environment through their

eyes, benefiting from biological visual sensors that allow them to inter-

act with their surroundings and make safe decisions. However, for au-

tonomous systems and intelligent robotics, understanding the observed

scene and identifying potential dynamic objects is extremely challenging

(Muhammad et al. 2022), due to the processing of a large amount of

complex data resulting from the diversity and variability of visual infor-

mation, as well as the need for low-latency perceptual reasoning (Falanga

et al. 2019).

The stack of tasks in understanding dynamic scenes is inherently com-

positional. In the human brain, object- and scene-agnostic estimation of

apparent motion occurs at an early stage in the visual cortex (Hubel and

Wiesel 1968), characterized by very low latency. This initial processing

stage provides crucial information for low-latency body control and re-

action, enabling actions like catching an incoming ball with millisecond

precision. Higher-level recognition of known objects takes place later in
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the visual cortex utilizing motion estimates. Although this higher-level

reasoning operates with a larger latency, it builds on the foundational

motion estimation mechanism provided by the early stages of visual pro-

cessing. Thus, the estimation of apparent motion serves as a vital input

for both high-level visual reasoning and low-latency behavioral responses,

demonstrating its importance across multiple levels of dynamic scene un-

derstanding.

Therefore, the aim of this thesis is to take advantage of the com-

positional structure of scenes to enhance the understanding of dynamic

scenes. This complex vision can be further split into two sub-problems:

scene flow estimation and object segmentation.

Dynamic scene understanding is important for effectively interacting

with the environment. It is not only paramount in computer vision,

but also in robotics and neuroscience. This insight has driven extensive

research into estimating 3D motion in point cloud sequences (Liu et al.

2019b, Huang et al. 2022a) and segmenting distinct objects over time

(Chen et al. 2021a, Sun et al. 2020). However, despite significant scientific

advances of the past decades, these tasks are not solved to satisfaction

yet.

Humans naturally perceive the surrounding environment in three di-

mensions. Scene flow is mathematically described as the 3D displace-

ments between two consecutive frames (Vedula et al. 1999). However,

scene flow estimation is a high-dimensional and computationally de-

manding task (Vedder et al. 2023). At its core, scene flow estimation

is a pointwise matching problem in 3D vision, which requires one-to-one

correspondence computation. Moreover, the unordered and uneven dis-

tribution of 3D point clouds presents a challenge in determining the ap-

propriate target point for computing the flow vector from a given source

point. To address these problems, many frameworks (Xu et al. 2022, Gu

et al. 2019, Liu et al. 2019a, Kittenplon et al. 2021) propose to learn point
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cloud features and compute feature similarity to obtain point correspon-

dences in a trainable fashion. However, the dynamic nature of objects

themselves can cause them to move unpredictably, making it difficult to

establish stable correspondences across frames.

Thus, the first research question (RQ) studied in this thesis is: RQ1:

how to ensure efficiency (fast feature extraction on point cloud) and

efficacy (stable point correspondence learning) in scene flow estima-

tion. Intuitively, this question requires solutions of feature learning for

unordered point cloud data and the dense matching problem in a train-

able fashion to fit available scene flow datasets.

Once the scene flow estimation task is addressed, the subsequent ques-

tion pertains to RQ2: how to effectively segment 3D object with

observed motion patterns . The complexity of this problem arises from

the inherent variability in the motion patterns of objects. Moreover, the

diversity in object types and shapes adds another layer of complexity to

the segmentation process. Segmenting object in given dynamic sequences

is quite tricky without any annotations. Typical method of object seg-

mentation leverage clustering-based algorithms (Ahmed and Chew 2020,

Zhang et al. 2020). However, these methods could be significantly af-

fected when the data contains noise or outliers, which leads to unstable

clustering results or even incorrect segmentation. As presented in the

Gestalt theory (Fussell 2023), humans subconsciously impose pattern

and structure on visual representation. This indicates that the identifi-

cation and segmentation of individual objects could be addressed with

compositional structure of motion patterns rather than rely on classical

clustering-based algorithms (Ester et al. 1996).

Unlike supervised segmentation, which relies on annotated data, un-

supervised methods are more flexible to segment objects in dynamic

scenes. Therefore, a natural question arises: Does unsupervised method

still useful in segmenting objects where their positions and appearances
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change across frames? If so, RQ3: how to obtain consistent ob-

ject segmentation through unsupervised learning? Furthermore,

this unsupervised method should be flexible to varying number of input

frames and maintain segmentation consistency of multiple frames.

In conclusion, by combining unsupervised segmentation with scene

flow estimation, it is possible to develop a framework that identifies, seg-

ments, and tracks objects without the need for expensive labeled data.

This advancement not only propels progress in 3D scene flow estima-

tion but also establishes robust computational frameworks for critical

downstream applications including object recognition, motion analysis,

and trajectory prediction. The framework’s robustness is evident in its

ability to handle partial occlusions, sensor noise, and complex motion

patterns through an unsupervised learning mechanism.

1.2 Research Objectives

Following the research questions discussed above, this thesis aims to

achieve three major objectives:

• A novel scene flow estimation model: To tackle the chal-

lenge of scene flow estimation mentioned before, this thesis aims

to develop an architecture that can balance efficacy (stable flow

estimation) and efficiency (fast feature aggregation). The first sub-

objective is to construct a network architecture that can directly

detect both local and global patterns, such as small object move-

ments within localized regions and broader changes across the entire

scene. The learned point features is then used in point correlation

reasoning. Thus the second sub-objective is to develop an effec-

tive point correlation module that can generate scene flow between

consecutive point clouds.

• A clustering-free object segmentation framework: The sec-

ond aim of this thesis is to effectively segment 3D objects from
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observed motion patterns. This includes exploring techniques that

can segment point clouds into distinct objects without relying on

any object-level labels and clustering algorithms. A sub-objective

focuses on developing strategies to handle over-segmentation (a

rigid object has multiple labels) and under-segmentation (two or

more objects share the same label) issue simultaneously.

• Unsupervised object segmentation from multi-frame point

clouds: The third aim of this thesis is to develop a multi-frame

object segmentation network. The initial sub-objective is to es-

tablish an effective learning framework for segmenting multi-frame

point clouds. The subsequent sub-objective focuses on enhancing

the robustness of the segmentation model and ensuring temporal

consistency on multi-frame input.

1.3 Contributions

This thesis contributes to the field of dynamic scene understanding,

specifically within the context of scene flow estimation and object seg-

mentation from point cloud sequences. The contributions of this thesis

follow the above motivations.

C1: Literature Review This thesis provides a comprehensive com-

parison and in-depth analysis of recent deep learning methods for scene

flow estimation from 2019 to 2023, covering supervised, weakly-supervised,

and self-supervised approaches. In addition, an overview of current chal-

lenges in scene flow estimation, which are categorized into data-related

challenges and deep learning-specific challenges is presented. Further-

more, a review of static object segmentation and dynamic object seg-

mentation is outlined.

C2: A novel scene flow estimation model This thesis studies the

problem of estimating scene flow from two consecutive point clouds. The

proposed method integrates the local feature learning and global feature
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learning via an improved point Transformers. The point Transformer al-

lows the proposed model to capture fine-grained point features efficiently

while maintains a global understanding of scene context. Furthermore,

a global motion aggregation module boosts the efficacy of point-voxel

correlation learning. The proposed method achieves competitive results

compared to other learning frameworks.

C3: A clustering-free object segmentation framework A clustering-

free, compact framework is studied to predict 3D object segmentation

masks via key points. It is inspired by the physical moving patterns,

which indicates that object points essentially move in groups or sets.

Consequently, the per-point mask can be predicted by only optimizing

on a smaller set of points, which reduces the computational burden.

Unlike previous approaches that rely on clustering methods or object

detectors, this study utilizes scene flow as auxiliary supervisory. The

proposed method achieves state-of-the-art segmentation results on an

indoor dataset, as well as its single-view counterpart. The Indoor Dy-

namic Room dataset is selected for its complex motion patterns and

cluttered layouts, which inherently exacerbate segmentation challenges

due to occlusions and partial object visibility. Moreover, this framework

is enhanced by leveraging multi-frame sequence inputs, which ensures

temporal consistency across frames.

C4: Unsupervised object segmentation on multi-frame point

clouds Based on C3, an end-to-end trainable architecture is stud-

ied in this thesis. While short-term observations often fail to capture

the complete shape of an object, combining multiple frames provides a

more comprehensive view. This thesis verifies that continuous obser-

vations over multiple frames are more beneficial for segmenting moving

objects. The experimental results show that this multi-frame approach

yields more accurate and robust segmentation outcomes. By utilizing

key points coupled with sequence of continuous point cloud frames (that

provide point embeddings) and a time-independent query ( that provided
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object embedding), the proposed network is able to predict gradual seg-

ment mask without direct supervision. Moreover, it allows a more flexible

input of dynamic sequence.

1.4 Organizations

This thesis is laid out as follows.

Chapter 2 introduces synthetic and real scene flow datasets, followed by

an overview of previous works in scene flow esitmation and point cloud

segmentation.

Chapter 3 presents a Transformer-based paradigm for scene flow estima-

tion, alongside experimental results on the FlyingThings3D and KITTI

benchmarks.

Chapter 4 introduces a clustering-free object segmentation algorithm

that leverages key points and kernel function to improve object segmen-

tation accuracy without any direct object-level labels.

Chapter 5 outlines an unsupervised learning method for object segmen-

tation in dynamic sequences, describing the multi-frame segmentation

pipeline for moving object segmentation in detail. Finally a discussion is

presented on how the utilization of object masks can enhance scene flow

estimation.

Chapter 6 concludes the presented work and gives an outlook for future

research.
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2
Literature Review

In this thesis, the research of point cloud scene flow estimation is con-

ducted using a deep-learning method while the task of object segmen-

tation is addressed in both non-learning and deep learning manner. To

begin with, this chapter demonstrates related datasets for scene flow es-

timation (Chapter 2.1). Then this chapter gives a comprehensive review

on existing deep-learning methods for scene flow estimation (Chapter

2.2). Finally, to follow the course of this research, which is to seg-

ment individual object in given point cloud sequence, recent advance-

ment of static segmentation and dynamic segmentation approaches are

introduced. (Chapter 2.3).

2.1 Scene Flow Datasets

As an analog of optical flow (Xu et al. 2022), 3D scene flow has attracted

increasing research attention in recent years. Scene flow (shown in Fig

2.1) is defined as the 3D motion field that describes the movement of

each point in a scene over time (Li et al. 2022d), providing essential

information for understanding dynamic environments. Scene flow esti-
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Background 

Figure 2.1: While 2D optical flow (upper figure from (Brox and Malik
2010)) quantifies the apparent motion of pixels between consecutive 2D
image frames, 3D scene flow (lower figure) constitutes its extension into
three-dimensional space. By employing depth sensors such as LiDAR,
two temporally consecutive point clouds, denoted as S (source) and T
(target), are acquired. The 3D scene flow is defined as the 3D vector
field that associates each point with a displacement vector SF, which
maps S to its corresponding location in the subsequent point cloud T.

mation datasets are designed to capture this motion across consecutive

frames, offering valuable benchmarks for developing and evaluating algo-

rithms in this area. These datasets can vary significantly in their data

sources, each bringing unique challenges and advantages.

In the context of dynamic scenes represented by point clouds, syn-

thetic data refers to data created through software with manually de-

signed attributes. These datasets provide the necessary ground truth

information for models to learn from, enabling them to gradually rec-

ognize specific entities of the real world. Real data, on the other hand,

typically refers to data collected by laser scanners, Kinect sensors, and

LiDAR sensors in actual driving scenarios. This section introduces and

compares point cloud datasets for scene flow estimation. A taxonomic

study is presented in terms of the source of the data, as elaborated in

Fig. 2.2.
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Figure 2.2: Illustration and summarization of the differences between
datasets: Single ShapeNet, Multi ShapeNet (Chang et al. 2015), Fly-
ingThings3D (Mayer et al. 2016), KITTI Object (Menze and Geiger
2015), Lyft (Houston et al. 2020), Argoverse (Chang et al. 2019), and
NuScenes (Caesar et al. 2020). For clarify here, two datasets (NuScenes
(Caesar et al. 2020) and Argoverse (Chang et al. 2019)) are added based
on the version of (Zuanazzi et al. 2020).

2.1.1 Synthetic datasets

• Single ShapeNet is made of one moving object in a single scene

and is fully visible. The geometry information of the object does not

change between frames. Multi ShapeNet extends the complexity

of the whole scene by introducing additional objects. Although

the geometry of individual object is always kept consistent, the

geometry of the scene may unsteadily change. The two datasets are

generated from ShapeNet (Chang et al. 2015) where the objects are

represented by point cloud. Each 3D object in the second frame is

yielded through a transformation matrix.

• Flyingthings3D is a synthetic dataset tailored for tasks such as

optical flow, disparity, and scene flow estimation. It introduces

multiple partial visible objects, which means different objects may

occlude each other, and there are some objects excluded in the

scene. It contains over 35,000 stereo image pairs with ground truth

disparity, optical flow, and scene flow. The training set consists

of 19,640 examples and the test set has 3,824 examples. Existing

literature proposed two versions of this dataset for scene flow esti-

mation task. The first strategy of data preprocessing proposed by

HPLFlowNet (Gu et al. 2019) directly removed occlusion from the

raw data, which ensures hard correspondences between two frames.
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Name

Avg
points
per

frame

Train Test Scenes Resolution D&N Traf. Annotation

KITTI2015
(Menze

et al. 2015)
N/A 150 50 22 (375,1242) ✗

urban,
rural

150
frames

LiDAR
KITTI
(Geiger

et al. 2012a)

120K N/A N/A N/A N/A ✗ urban
Occlusion
labels, 3D

labels

NuScenes
(Caesar

et al. 2020)
34K 1,513 310 1,000 N/A ✓ urban 40K

frames

Waymo
(Sun et al.

2020)
117K N/A N/A 1,150 (1920,

1280/1040) ✓ urban 230K
frames

Argoverse
(Chang

et al. 2019)
107K 2,691 212 113 (2056,2464) ✗ urban 22K

frames

Lyft
(Kesten

et al. 2019)
N/A 18,900 3,780 22,680 N/A ✗ urban 46K

frames

Table 2.1: Open real-world datasets. "Avg points per frame" refers to
LiDAR returns. "N/A" indicates unavailable data. "Train" refers to the
number of training samples, "Test" refers to the number of testing sam-
ples. "D&N" refers to day & night. "Traf." refers to traffic conditions.

The second strategy is proposed by FlowNet3D (Liu et al. 2019a).

FlowNet3D preserves occluded point clouds as well as masks that

indicate the invalid points without corresponding ones in the sub-

sequent frame.

• GTA-SF is proposed by DCA-SRSFE (Jin et al. 2022) for syn-

thesizing real-world scenarios. GTA-SF has 54,287 pairs of consec-

utive point clouds with dense annotations. It collects larger-scale

and more realistic point clouds than existing synthetic datasets.

Another advantage of GTA-SF is the rich variety of scenarios. The

data was collected from downtown areas, highways, streets and

other driving areas along six different routes at outdoor areas.

2.1.2 Real datasets

As shown in Table. 2.1, this section summarize the key properties (e.g.,

the scale of point clouds, resolution, annotations, etc.) of real scene

11



datasets used by current scene flow estimation approaches.

• LiDAR KITTI (Geiger et al. 2012a) was originally proposed in

2012 for stereo matching and optical flow estimation. It also pro-

vides 3D object benchmarks and 3D visual odometry dataset. The

dataset captures real-world driving scenarios with challenges such

as occlusions, partial visibility (e.g., distant or truncated objects),

and dynamic interactions between multiple agents. However, the

scene flow annotations are limited to sparse subsets of LiDAR

points due to the labor-intensive nature of manual labeling in non-

rigid environments. This sparsity necessitates robust algorithms

capable of inferring dense motion fields from incomplete supervi-

sion. A subset of 150 driving scenes with sparse but precise scene

flow annotations is widely used in scene flow estimation.

• KITTI Object (Menze and Geiger 2015) is a subsequent extension

of the original LiDAR KITTI benchmark. It provides 200 densely

annotated driving scenes captured using a Velodyne HDL-64E Li-

DAR sensor. The annotations prioritize road-relevant objects, with

an emphasis on vehicles and vulnerable road users, reflecting real-

world safety-critical applications. However, the dataset’s focus on

sparse, class-specific annotations (versus dense scene flow) limits

its utility for tasks requiring full-scene motion fields.

• StereoKITTI (Menze et al. 2015 2018) removes 58 scenes from

original data (200 training samples and 200 testing samples). It

contains 142 point cloud pairs for testing. The ground-truth scene

flow is generated via lifting the disparity maps and optical flow to

3D space (Gu et al. 2019).

• SemanticKITTI (Behley et al. 2019) is based on the odometry

dataset of the KITTI Vision Benchmark (Geiger et al. 2012a) col-

lected in both urban and rural areas. It includes 21 LiDAR se-
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quences which are split into eleven (00-10) LiDAR sequences for

training and eleven (11-21) for testing. SemanticKITTI encom-

passes a diverse range of urban scenes captured by Velodyne Li-

DAR sensors, providing high-resolution point cloud data for 22 se-

quences. Each sequence offers complex scenarios, including various

traffic scenarios, pedestrians, and diverse objects encountered in ur-

ban landscapes. The dataset includes semantic labels for 20 object

classes, such as cars, pedestrians, cyclists, and vegetation, enabling

the training and evaluation of models for semantic segmentation.

• Lyft (Kesten et al. 2019) contains 22,680 real-scanned scenes with

multi-objects. However, it does not provide any point correspon-

dence and is a partially visible dataset. The term partially visible

refers to the lack of complete object geometries in individual scans

due to occlusions, single-view LiDAR captures, or missing point

correspondences across frames. Specifically, objects are often trun-

cated or observed from limited viewpoints, and the dataset provides

no explicit point-level tracking or dense annotations. These limita-

tions restrict its utility to weakly-supervised training.

• Argoverse (Chang et al. 2019) is a dataset primarily for autonomous

vehicle perception tasks including 3D tracking and motion forecast-

ing. In the spirit of KITTI, a novel format of this dataset, “Argov-

erse Scene Flow ” has been created by Pontes et al. (Pontes et al.

2020). The point clouds are collected from two Velodyne VLP-32

sensors. It is noteworthy that the vehicle poses and the 3D object

trackings in the original Argoverse 3D Tracking set are utilized to

generate pseudo scene flow annotations (Pontes et al. 2020). The

whole dataset contains 2,691 training samples and 212 test samples.

• NuScenes (Caesar et al. 2020) is a dataset that has recorded di-

verse data from Boston and Singapore, which consists of tracking
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information, map information, and LiDAR point clouds sensed by

a Velodyne VLP-32 sensor. It is different from the KITTI dataset

collected by the 64-beam Velodyne rotating at 10 Hz. The dataset

consists of 20-second clips captured at a frequency of 20 Hz, metic-

ulously selected to showcase a diverse range of driving maneuvers,

traffic situations, and unexpected behaviors. Each scene is anno-

tated at 2Hz, which means the bounding boxes are only annotated

every 10 frames. nuScenes is the first large-scale dataset to pro-

vide data from the entire sensor suite of an autonomous vehicle (6

cameras, 1 LIDAR, 5 RADAR, GPS, IMU). Compared to KITTI

(Geiger et al. 2012b), nuScenes includes 7x more object annota-

tions. This difference leads to a discrepancy in data sparsity that

yields a distribution shift between KITTI and NuScenes. However,

NuScenes does not provide scene flow annotations, which poses a

great challenge in deep learning based methods to predict accurate

scene flow.

• Waymo. The Waymo dataset (Sun et al. 2020) includes a large

number of 3D ground truth bounding boxes for LiDAR data and

2D tightly fitting bounding boxes for camera images, all of which

are high quality and have been manually annotated. Each scene

is a 20-second clip recorded by a 64-beam LiDAR sensor operating

at a frequency of 10 Hz. It contains 158,081 training and 39,987

validation frames of point clouds with LiDAR labels (Jin et al.

2022), such as vehicles, pedestrians, signs and cyclists. However,

scene flow labels are not included.

2.2 Scene flow estimation methods

As shown in Fig. 2.1, scene flow represents the pointwise motion field of a

3D scene (Vedula et al. 1999). Scene can be represented by depth images

and point clouds. Methods based on images extract depth, disparity,
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and optical information separately to learn the flow vector. However,

image-based methods usually rely on standard variational formulations

and energy minimization (Hur and Roth 2020), which yield limited accu-

racy and suffers from long runtime. The advent of affordable 3D sensors,

e.g., LiDARs and RGB-D cameras, simplifies the process of acquiring

large-scale 3D point clouds. With the flourishing demand from industry,

leveraging point clouds as scene representations is becoming a hotspot in

recent years.

2.2.1 The relation between point cloud odometry and
scene flow estimation

Point cloud odometry and scene flow estimation are both essential for

understanding motion within a 3D environment, but they serve distinct

and complementary roles. Point cloud odometry focuses on estimating

the overall displacement or movement of the sensor (LiDAR or RGB-D

camera) itself, allowing systems to track their own position and orienta-

tion over time. This is crucial for tasks such as localization and naviga-

tion, where knowing the precise location and trajectory of the sensor (or

vehicle) is essential (Chen et al. 2022). One of the primary challenges in

LiDAR point cloud odometry is achieving precise scan-to-scan alignment,

which necessitates the registration of corresponding points between con-

secutive point clouds. This registration often relies on nearest-neighbor

searches, a computationally intensive task that can become increasingly

demanding as the number of points per scan rises.

In contrast, scene flow estimation extends the concept of optical flow

from 2D images into 3D space by capturing the motion of each individual

point within the scene. Rather than tracking only the sensor’s movement,

scene flow provides detailed motion information for every visible point,

describing how objects and surfaces within the environment move relative

to the sensor. This enables a richer analysis of the dynamics within a

scene, as scene flow captures pointwise velocity and direction.
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The distinction highlights their complementary roles: odometry pro-

vides a global view of sensor movement, essential for navigation and local-

ization, while scene flow delivers granular, per-point motion information

that supports finer analysis of object interactions and scene dynamics.

2.2.2 Challenges

Thanks to the introduction of large-scale synthetic dataset FlyingTh-

ings3D (Mayer et al. 2016) with ground-truth flow annotations, many

supervised methods are allowed to learn deep hierarchical features of

point clouds and fuse these features to estimate scene flow. This super-

vised training strategy outperforms traditional registration algorithms,

e.g., ICP (Besl and McKay 1992) and shows great potential to be ap-

plied in real scenarios. To this end, datasets such as KITTI (Menze and

Geiger 2015), NuScenes (Caesar et al. 2020), and Argoverse (Chang et al.

2019) are created, which contain various real scenes.

However, datasets collected by LiDAR do not provide reliable corre-

spondences between consecutive scans. Therefore, a lot of deep learning

(deep learning) models have performance gap between synthetic dataset

and real dataset. In addition, there are many unexpected occlusions in

real scenarios which will affect the overall accuracy. In spite of recent

attempts that exploit the advantages of deep learning models, unleashing

the full power of deep neural networks on 3D point cloud understanding

is still in its infancy. This section categorizes challenges in scene flow es-

timation into data challenges and deep learning models challenges, which

are introduced in the following.

Data challenges

• Noise. Point cloud, as one of the most popular format of three di-

mensional data, is unstructured and noisy. Noise is inevitable from

the scanning and reconstruction process. It will hinder the feature

extraction and misguide the searching of correspondent points in

the neighborhood.
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• Difference in point density. A LiDAR system identifies the po-

sition of the light energy returns from a target to the LiDAR sen-

sor. This inherent attribute of the LiDAR sensor leads to unevenly

distributed points underlying a surface. The density decreases dra-

matically as distance from sensors increases. How to address the

diversified point density is still an open problem.

• Big data challenge. Scene represented by point clouds contains

millions of points. For example, in the Argoverse dataset, each

point cloud produced by LiDAR sensor has 107k points at 10 Hz.

Such amount of data increase the burden in processing.

• Diversified motion fields. Background motion and foreground

motion co-exist in a scene. Likewise, large and small motion, close

and far objects, rigid and non-rigid objects co-exist in dynamic

scenes. The diversity of motion scales poses a great challenge on

discriminating different motion fields.

• Occlusions. Scene points taken at time t, may be occluded in sub-

sequent time steps. Consequently, a few objects will disappear due

to occlusions. The presence of occlusions will significantly influence

the flow estimation accuracy.

Challenges from Deep Learning models

• Generalization ability. Existing wisdom aims to improve the

performance on a specific dataset but fails to generalize to other

datasets, especially on the generalization from the simulated to real

scenes.

• Accuracy challenge. It is impossible to obtain 100% accurate

ground-truth scene flow from real scenarios. Due to limited an-

notations for real scenes, it is challenging to achieve satisfactory

accuracy in deep learning algorithms.
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• Efficiency challenge. Real-time processing ability is imperative

for autonomous driving entities. However, the computing power

and memory space allocated for processing massive 3D data con-

structed on vehicles are limited. Currently, efficient deep learning

model that can produce real-time large scene perception is still

under-explored.

As mentioned before, this thesis aims to balance efficiency and effi-

cacy for scene flow estimation. Therefore, the challenge of generaliza-

tion ability and accuracy challenge are closely related to this thesis. In

the following sections, a comprehensive review on up-to-date compelling

deep learning models applied in point cloud-based scene flow estimation

approaches is presented from the perspective of supervision. A particu-

lar focus is set on analyzing how the state-of-the-art methods deal with

challenges in scene flow estimation. These methods are roughly cat-

egorized into the following types: supervised, weakly supervised, and

self-supervised methods.

2.2.3 Supervised methods

Early methods (Baur et al. 2019, Zou et al. 2019) project the point clouds

onto 2D cylindrical maps and apply traditional CNNs to train their flow

estimation model. Starting from methods that tackle a large amount of

data, a core set of the most innovative work on supervised learning ap-

proaches have been identified for scene flow estimation. Many supervised

learning approaches rely on ground-truth labels of scene flow. The deep

networks are initially trained on synthetic datasets and then fine-tuned

on real data.

FlowNet3D. FlowNet3D (Liu et al. 2019a) is the first work that ex-

tracts point features from point clouds directly to estimate scene flow. It

has three main layers for point cloud processing and uses PointNet++
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(Qi et al. 2017b) as its backbone for feature learning. The flow embed-

ding layer aims to aggregate point similarities for scene flow encoding.

FlowNet3D (Liu et al. 2019a) finds soft correspondences between point

clouds in two consecutive frames. The set up convolutional layer is used

for flow refinement. The model has shown good results on synthetic

datasets, but has not achieved equivalent performance in real-world set-

tings due to the difficulty of obtaining point-level supervision from real-

world data.

HALFNet. Wang et al. (Wang et al. 2021b) proposed a hierarchical

attention learning network with two different attentions in each flow em-

bedding. Especially, a hierarchical attentive flow refinement module is

designed to propagate and refine scene flow estimations layer by layer.

HALFNet (Wang et al. 2021b) adopts a more-for-less strategy, which

means the number of input points is greater than the number of output

points in scene flow estimation. HALFNet has approved its effectiveness

in gaining precise structure information of the scene and reducing the

consumption of GPU memory. It is also noteworthy that HALFNet uses

multiple Euclidean information, which allows the attentive flow embed-

ded in a patch-to-patch manner. Generally, HALFNet demonstrates a

better generalization ability of the 3D method than FlowNet3 (Ilg et al.

2018) in 2D metric (e.g., optical flow) and achieves reasonable accuracy

compared with existing supervised methods. However, HALFNet does

not train on a large real-world dataset, which limits its generalization

ability.

FESTA. Previous methods, e.g., FlowNet3D (Liu et al. 2019a) and

MeteorNet (Liu et al. 2019b) apply Farthest Point Sampling (FPS) to

extract point features. However, FPS usually leads to different down-

sampled results from two point clouds that represent the same manifold

(Wang et al. 2021c). Hence it is intractable to estimate accurate scene

flow with the unstable features extracted by FPS. FESTA (Wang et al.

2021c) address this issue via the spatial abstraction with attention (SA2)
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Methods Highlights Datasets
used

Flownet3D⋆

(Liu et al.
2019a)

Pros: Pioneer work in using flow embedding layer. Cons:
Suffer from occlusion and non-uniform data; Unable to main-
tain local geometric smoothness.

KITTI2015,
FLY3D

Feature
embedding
based
Methods

Flownet3D++
(Wang et al.

2020)

Pros: RGB-D data as input; Capable for non-static scenes;
Point-to-plane loss; Geometry-aware; Effective for dynamic
reconstruction. Cons: Error accumulated when iterating.

KITTI2015,
FLY3D

FESTA⋆

(Wang et al.
2021c)

Pros: Point clouds with RGB information as input;
Temporal-Spatial attention mechanism; Occlusion aware.
Cons: Poor generalization ability.

LiDAR KITTI,
FLY3D

HALFlow
(Wang et al.

2021b)

Pros: More-for-less hierarchical architecture; Double atten-
tive flow embedding; Good practical application ability on
real LiDAR odometry task. Cons: Complex network struc-
ture; Poor efficiency.

StereoKITTI,
FLY3D

HCRF-Flow
(Li et al.
2021a)

Pros: Point-level and region-level constraints; Good general-
ization ability. Cons: Time-consuming.

StereoKITTI,
FLY3D

Bi-
PointFlowNet⋆

(Cheng and Ko
2022)

Pros: High accuracy on both occluded version and non-
occluded version of FLY3D and KITTI. Cons: Struggles with
extreme sparsity

KITTI2015,
StereoKITTI,

FLY3D

RMS-
Flownet(Battrawy

et al. 2022)

Pros: Hierarchical learning method; Efficient.
Cons: Limited generalization across sensor types.

StereoKITTI,
FLY3D

WhatMatters⋆

(Wang et al.
2022b)

Pros: All-to-all flow embedding layer; Achieved SOTA per-
formance on both synthetic dataset and real dataset. Cons:
Limitations on occluded scenarios.

StereoKITTI,
FLY3D

FH-Net⋆(Ding
et al. 2022)

Pros: New data-augmentation strategy; Cross-frame feature
enhancement; High inference speed.

KITTI2015,
FLY3D,
Waymo

FLOT⋆ (Puy
et al. 2020)

Pros: Simple and efficient; Addressed transformation challenge.
Cons: Annotation-hungry; Poor performance on occluded points.

StereoKITTI,
FLY3D

Correspon-
dences
based
Methods

SCTN⋆ (Li
et al. 2022a)

Pros: Pioneer in using a sparse convolution and transformer to exploit the
coherent motions and model point correlations; Spatial feature-aware.
Cons: Annotation-hungry.

KITTI2018,
FLY3D

PV-RAFT⋆

(Wei et al.
2021)

Pros: Pioneer in integrating point and voxel correlations in
recurrent all-pairs field to estimate scene flow; GRU-based it-
erative method. Cons: Structure distortion; High time con-
sumption.

KITTI2015,
FLY3D

SAFIT⋆ (Shi
and Ma 2022)

Pros: Supervised and self-supervised training fashion; Small model size.
Cons: Annotation-hungry.

KITTI2015,
FLY3D,

StereoKITTI

Cost
volume
based
Methods

PointPWC-
Net⋆ (Wu et al.

2020)

Pros: Coarse-to-fine strategy; Supervised and self-supervised
training fashion. Cons: Some objects are out of view; Error
accumulation in the early step.

StereoKITTI,
FLY3D

Res3DSF
(Wang et al.

2021a)

Pros: Context-aware feature encoding layer and residual flow
learning block; Good at learning long-distance motion and
discriminating objects with similar pattern. Cons: Compu-
tation expensive.

KITTI2018,
FLY3D

PointConvFormer⋆

(Wu et al.
2022a)

Pros: Feature-based attention module; Improved re-
weighting mechanism in calculating convolutional weights.
Cons: Poor performance on occlusions.

StereoKITTI,
FLY3D

Est&Pro⋆

(Wang and
Shen 2022)

Pros: Occlusion-aware; Uncertainty guided network. Cons:
The overall performance relies on ground-truth occlusion
masks.

KITTI2015,
FLY3D

Other
Methods

HPLFlowNet⋆

(Gu et al.
2019)

Pros: Efficient; Addressed the difference in density challenge
and big data challenge. Cons: Lack of evaluation on large-
scale real dataset: NuScenes.

StereoKITTI,
FLY3D

MoNet (Lu
et al. 2022)

Pros: Variations of motion across frames are captured; Point
cloud prediction with content features; Recurrent neural net-
work; Attention-based motion alignment module. Cons: Suf-
fer from accuracy challenge.

Argoverse,
LiDAR KITTI

Table 2.2: Summarization of fully supervised deep learning architectures
for scene flow estimation. FLY3D is the abbreviation of FlyingThings3D.
⋆ denotes methods with open-sourced code.
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layer and the temporal abstraction with attention layer. In the SA2 layer,

FESTA utilizes a trainable Aggregate Pooling module which is based on

the shifted position of points by defining the attended regions.

PointPWC-Net. PointPWC-Net (Wu et al. 2020) predicts scene flow

via constructing the cost volume at each feature pyramid level. To cap-

ture large motions, PointPWC-Net utilizes a coarse-to-fine strategy that

concatenates the feature at level L with upsampled feature from level

L + 1. The scene flows are refined by features generated from the cost

volume, the upsampled flow, and the source point clouds. However,

PointPWC-Net has some limitations on the KITTI dataset (Menze and

Geiger 2015). It is hard to obtain effective correspondences from two con-

secutive frames due to the strong deformation of local shapes. At last,

PointPWC-Net retains the ground points, which may affect the overall

performance. PointConvFormer (Wu et al. 2022a) modifies the feature

learning mechanism via transformers. It explores the computation of con-

volutional weights, leveraging the difference in features between points

to recalculate the convolutional weights. Additionally, PointConvFormer

uses a sigmoid activation for the attention weights that outperformed

the use of softmax. These insights resulted in improved performance

in experiments compared to traditional Transformer models. PointCon-

vFormer has a 10% improvement of EPE3D on FlyingThings3D dataset

than PointPWC-Net.

Res3DSF. Based on the observation that humans are good at perceiv-

ing the surrounding dynamic movement, Res3DSF (Wang et al. 2021a)

includes a context-aware point feature pyramid module together with

a residual flow refinement layer for scene flow estimation. Many pre-

vious methods ignored the discrimination of repetitive patterns in dy-

namic scenes. Res3DSF incorporates the contextual structure learning

into their 3D spatial feature extraction layer and learn soft aggregation

weights. Res3DSF adopts attentive cost volume to learn flow embeddings

from the context-aware feature pyramid module. These flow embeddings
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are then refined by the Three-NN interpolation and multiple MLP layers

to acquire the final complete scene flow. The evaluation results illus-

trated in Table 3.1 indicate the effectiveness of the framework proposed

by Res3DSF (Wang et al. 2021a). Res3DSF well addresses the diversity

of motion fields, so that it can estimate long-distance motion.

FLOT. Several studies in graph matching, such as (Maretic et al. 2019,

Nikolentzos et al. 2017), utilize optimal transport to find correspondences

between two different graphs. Inspired by these works, FLOT (Puy et al.

2020) casts the task of scene flow estimation as finding soft correspon-

dences on a pair of point clouds via solving an optimal transport prob-

lem. FLOT extracts point features through several convolution layers.

The transport cost is then measured by cosine similarity of these point

features. To circumvent the absence of correspondence on some points,

FLOT (Puy et al. 2020) proposes a mass regularisation to ensure that

mass is uniformly distributed over all points. A residual network is pro-

posed to improve flow estimation through linear interpolation. FLOT

demonstrates the superiority of the algorithm unrolling technique in scene

flow estimation. Sinkhorn algorithm (Altschuler et al. 2017) is iteratively

applied to update the cost matrix, further enhancing scene flow qualities.

SCTN. Different from FLOT (Puy et al. 2020) which only focuses on

sparse 3D coordinates and applies point-based convolutions (Qi et al.

2017b) to learn features, SCTN (Li et al. 2022a) introduces a voxel-

based convolution to produce consistent flows in 3D space. SCTN uses

a combination of sparse convolution for feature extraction and a trans-

former module for accurate scene flow prediction. It is the first work

to incorporate the transformer with sparse convolution, which allows it

to learn relation-based contextual information on point clouds. SCTN

uses a correlation matrix to estimate soft correspondences by combining

features from both the sparse convolution and the transformer module.

Additionally, SCTN proposes a feature-aware spatial consistency loss to

improve its ability to distinguish different motion fields.
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HCRF-Flow. Rigid and non-rigid motion co-exist in dynamic scenes,

which hinders the estimation of accurate scene flow. In this setting, meth-

ods that only consider pointwise motion tend to neglect rigid motion in

local regions. Therefore, it is indispensable to add constraints on the

rigidity of the local transformation in local regions. To this end, HCRF-

Flow (Li et al. 2021a) leverages a traditional graphical model: high-order

conditional random fields (CRFs) where DNNs and CRFs work collabora-

tively to achieve pointwise motion regression. In particular, HCRF-Flow

proposes a novel position-aware flow estimation module (PAFE) to get

the matching cost. PAFE follows the same architecture of FlowNet3D

(Liu et al. 2019a), leveraging its core components—set convolutional lay-

ers for local feature extraction, flow embedding layers for motion ag-

gregation, and set upconvolutional layers for multi-scale refinement. To

enhance spatial reasoning, PAFE integrates positional encoding mech-

anisms that explicitly encode 3D coordinates into the feature learning

process, enabling the model to better capture geometric relationships for

robust correspondence estimation. Furthermore, the continuous CRFs

ensures the spatial smoothness and the local rigidity of the scene flow

predictions. Therefore, rigid motion is well-considered in HCRF-Flow

under the constraints of both point-level and region-level consistency.

PV-RAFT. As mentioned before, PointPWC-Net (Wu et al. 2020) uti-

lizes a coarse-to-fine strategy to find point correspondences. However, it

suffers from the error accumulation (Wei et al. 2021). PV-RAFT (Wei

et al. 2021) is an innovative approach that builds correlation volumes

to address limitations of previous cost-volume based methods. It is in-

spired by the recurrent all-pairs field used in 2D optical flow (Teed and

Deng 2020). With voxel correlation features that encodes long-range

point clouds, and point-based features that aggregates fine-grained local

details, PV-RAFT efficiently captures both short-range and long-range

correlations in consecutive point clouds. PV-RAFT utilizes a Gated Re-

current Unit (GRU) to iteratively update the predicted scene flow with
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context features as auxiliary information. Besides, PV-RAFT also devel-

ops a truncation operation and a refinement module to further increase

the accuracy.

HPLFlowNet. HPLFlowNet (Gu et al. 2019) operates on permuto-

hedral lattice points and processes the lattice points by a few Bilateral

Convolutional layers (BCL). This strategy improves feature extraction

globally and shows better performance. HPLFlowNet directly removes

all the occluded points to reduce computational cost. There are three

BCL layers in HPLFlowNet, including DownBCL, UpBCL, and Cor-

rBCL. HPLFlowNet also shows great generalization ability to different

point densities. It evaluates on 16,384, 32,768, 65,536 points and the

network is able to process up to 86K points in one pass.

WhatMatters. WhatMatters (Wang et al. 2022b) follows common

practices to compute point features through the set convolutional layer.

To capture reliable match candidates from point clouds even in a long

distance, WhatMatters proposes a novel pointwise mixture module with

backward reliability validation. A comprehensively analysis on point sim-

ilarity calculation, designs of scene flow predictor, input elements of scene

flow predictor, and flow refinement level design showcase what matters

in 3D scene flow network.

FH-Net. FH-Net (Ding et al. 2022) deals with multi-scale flows from

different layers with a much faster speed. To this end, FH-Net extracts

keypoint features via hierarchical Trans-flow layer. The computed sparse

flow is then used to obtain hierarchical flows at different resolutions

through an inverse Trans-up layer. FH-Net also introduces a new data

augmentation strategy to enhance the accuracy of predicted flow, par-

ticularly on complex dynamic objects. This work sets new standards for

performance on the KITTI and Waymo datasets.

SAFIT. SAFIT (Shi and Ma 2022) introduces the concept of relation

reasoning between object-level and point-level relations. The relation

module captures relational features between objects, which diversifies the
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feature palette of 3D point cloud and can be combined with other fea-

tures to boost the performance of scene flow. This is different from other

methods that only extract geometry or location features for individual

objects. As presented in SAFIT, the supervised training scheme out-

performs FLOT by 3.8%, 22.58% on preprocessed FlyingThings3D and

KITTI dataset (Gu et al. 2019). Besides, SAFIT has 10.90% and 21.82%

accuracy improvement over FLOT on FlyingThings3D and KITTI where

occluded points are not removed (Liu et al. 2019a).

Dynamic3DSA. To facilatate the analysis of point cloud sequences, four

different tasks are integrated into a complete multi-frame 4D scene anal-

ysis approach. Huang et al.(Huang et al. 2022b) comprehensively study

point cloud registration, motion segmentation, instance segmentation,

and piece-wise rigid scene flow estimation. To this end, it is necessary to

separate individual moving objects from the static background and infer

their temporal and spatial properties. Dynamic3DSA accumulates 3D

points across multiple frames while representing the scene as a collection

of rigid moving agents, followed by the reasoning of motion by agents.

Bi-PointFlowNet. Built upon successful bidirectional learning in time

series-based tasks and 2D optical flow estimation, Bi-PointFlowNet (Cheng

and Ko 2022) develops the first bidirectional model for 3D scene flow es-

timation. Bi-PointFlowNet targets at estimating the optimal non-rigid

transformation that represents the best alignment from the source to

the target frame. Previous standard procedure (i.e., grouping and pool-

ing) usually leads to redundant computations. To address this issue,

Bi-PointFlowNet decomposes the MLP weights in bidirectional flow em-

bedding layer into three sub-weights. In this way, the local coordinates,

the propogated feature, and the replicated feature of two point clouds

can be transformed to produce a new fused feature vector. The following

upsampling and warping layer are the same as PointPWC-Net. Com-

pared to PointPWC-Net (Wu et al. 2020), Bi-PointFlowNet reduces the

total operation by 44% and accelerates the inference by 33%.
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Est&Pro. Est&Pro (Wang and Shen 2022) employs a subnet to predict

the occlusion mask, which guides the flow predictor to focus on estimat-

ing the motion flows of non-occluded points. In this way, more valid

matching costs can be calculated. Est&Pro designs a local-adaptive cost

volume, which addresses the dissimilarity in local structure caused by

sparse depth sensor (LiDAR) sampling. For occluded points, Est& Pro

proposes an uncertainty-truncated propagation network to propagate the

flows from nonoccluded points to those occluded points. Intuitively, the

flow estimator is responsible forr the non-occluded points, while the flow

propagation network focuses on motion flows of the occluded points.

RMS-FlowNet. RMS-FlowNet (Battrawy et al. 2022) employs feature

extraction module consists of top-down pathway and bottom-up pathway.

From the beginning level, they apply local-feature-aggregation and down-

sampling to proceed features at each level. Then utilize up-sampling and

transposed convolution to propogate point features. Unlike previous hier-

archical structure (Wang et al. 2021b), RMS-FlowNet proposes a patch-

to-dilated-patch flow embedding approach, which recomputes features

generated from previous steps. This desgin could speed up the model

without sacrificing the accuracy. RMS-FlowNet usess a fully supervised

loss function similar to PointPWC-Net. This work achieves significant

advancements in accelerating the prediction of large-scale, consecutive

point clouds (e.g., >250K points), addressing critical efficiency challenges

in prior methods. However, despite these advancements, a key limitation

arises from its reliance on predefined scale hierarchies. Such fixed scales

often inadequately adapt to scenes with variable object sizes (e.g., pedes-

trians versus trucks) or mixed resolutions, resulting in suboptimal feature

aggregation for dynamically varying spatial structures.

2.2.4 Weakly/Self-supervised methods

While promising results have been shown, fully supervised methods rely

on the absolute ground truth flow as supervision. Whereas the astro-
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Methods Highlights Datasets used

F
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em

b
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d
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g
b
as

ed

Just-Go⋆

(Mittal et al.
2020)

Pros: Proposed a nearest neighbour loss and a cycle consis-
tency loss; Addressed annotation challenge. Cons: Violated
the real data distribution; Suffer from accuracy challenge.

FLY3D, NuScenes,
LK, KITTI2018

SFPC
(Pontes et al.

2020)

Pros: Self supervised learning and non-learning scheme; Ap-
plied to point cloud densification and motion segmentation
application. Cons: Suffer from occlusion challenge and effi-
ciency challenge.

KITTI2015,
FLY3D, Argoverse,

NuScenes

Adversarial-
SFE

(Zuanazzi
et al. 2020)

Pros: Addressed deep model generalization challenge; Local
structures aware. Cons: Suffer from occlusions.

KITTI Object,
FLY3D, Lyft

SFGAN
(Wang et al.

2022c)

Pros: Adversarial learning between the scene flow generator
and the point cloud discriminator. Cons: Suffer from occlu-
sion challenge.

FLY3D, LK

OGC⋆ (Song
and Yang

2022)

Pros: Simultaneous 3D objeccts segmentation and scene
flow estimation. FLY3D, KITTI2015

Self-Point-
Flow⋆ (Li

et al. 2021b)

Pros: Combined multiple clues (i.e., colors, surface normal);
Addressed annotation challenge; Good generalization ability.
Cons: Suffer from occlusion challenge.

KITTI2015,
FLY3D

Noisy-Pseudo
(Li et al.
2022b)

Pros: Monocular RGB images and point clouds as data
source; Addressed annotation challenge and generalization
challenge. Cons: Suffer from efficiency challenge.

FLY3D, SK, LK

Pseudo-
LiDAR⋆

(Jiang et al.
2022)

Pros: Adapted 2D stereo images to 3D scene flow estimation.
Cons: Suffer from data noise and accuracy challenge.

FLY3D, SK,
NuScenes,
Argoverse

C
or
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sp

on
d
en

ce
s

b
as

ed

SCOOP⋆

(Lang et al.
2022)

Pros: A good balance between error reduction and inference
time. Cons: Suffer from occlusion challenge; Computation-
ally expensive due to multiple optimization objectives.

FLY3D, KITTI2015

RC-SFE
(Dong et al.

2022)

Pros: State-of-the-art weakly supervised; Good generaliza-
tion ability; Addressed the transformation challenge. Cons:
Sensitive to the accuracy of background masks; Rely on rigid-
ity assumption; Suffer from occlusions.

SeK, SK, Waymo

RigidFlow
(Li et al.
2022d)

Pros: Enhanced local rigidity in scene flow estimation; Good
generalization ability. Cons: Failed on non-rigid motion; Suf-
fer from occlusions.

SK, FLY3D

FlowStep3D⋆

(Kittenplon
et al. 2021)

Pros: Recurrent architecture for non-rigid scene flow; All-
to-all correlation learning; Addressed big data challenge and
annotation challenge. Cons: Manually set iteration parame-
ters; Suffer from occlusion challenge.

SK, FLY3D

RCP (Gu
et al. 2022)

Pros: Addressed the difference in sampling data challenge;
Simultaneous scene flow estimation and point registration.
Cons: Suffer from efficiency challenge and occlusion chal-
lenge.

FLY3D, SK,
ModelNet40 ?

Rigid3DSF⋆

(Gojcic et al.
2021)

Pros: Weakly supervised; Robust to different motion fields
and occluded points. Cons: Relies on soft correspondence;
Lack of the similarity measurement of point spatial features.

SK, SeK, FLY3D

DCA-
SRSFE⋆ (Jin
et al. 2022)

Pros: Reduced the domain gap between the synthetic dataset
and the real dataset; Avoided shape deformations; Addressed
the transformation challenge. Cons: The predictions on non-
rigid objects are not accurate.

GTA-SF, FLY3D,
Waymo, Lyft, SK

C
or

re
sp

on
d
en

ce
s

fr
ee SLIM ⋆(Baur

et al. 2021a)

Pros: Motion-aware; Good generalization to unseen data.
Cons: The aggregated transform matrix is only suitable for
stationary points

FLY3D, NuScenes,
CARLA, KITTI2018

Occlusion-G⋆

(Ouyang and
Raviv 2021b)

Pros: Occlusion-weighted cost volume structure; Detection
on large motion and occlusions. Cons: Poor generalization
ability.

KITTI2015,
FLY3D

PillarML⋆

(Luo et al.
2021)

Pros: Multi-modal data as input; Accurate motion learn-
ing; Good generalization ability; Efficient. Cons: Multi-
resolution features are not aggregated in the pillar motion.

NuScenes

Table 2.3: Summarization of self-supervised/weakly supervised deep
learning scene flow estimation methods. ⋆ denotes methods with open-
sourced code.
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nomical cost of time and money on annotating scene flow for real dataset

is expensive. To solve problems from limited annotations, some efforts

have been made to relax the expensive labeling burden through explor-

ing weakly-supervised and self-supervised learning strategy. Addition-

ally, several works aim to address the performance gap across different

datasets by developing self-supervised architectures. Based on the back-

bone used by these self-supervised methods, they can be categorized

into flow embedding-based, correspondence-based, and correspondence-

free approaches. A summary of self-supervised and weakly-supervised

deep learning architectures for point cloud-based scene flow estimation is

provided in Table. 2.3, where FLY3D refers to FlyingThings3D, LK to

LiDAR KITTI, SeK to SemanticKITTI, and SK to StereoKITTI.

Just-Go. Mittal et al. (Mittal et al. 2020) utilize nearest neighbor

loss and cycle consistency loss based on the framework of FlowNet3D

(Liu et al. 2019a). Nearest neighbor loss is formulated as the average

Euclidean distance of the transformed point to its nearest neighbor in

the second point cloud. So it regularizes the initial flow to be as close

as possible to the correct scene flow. Cycle consistency loss is calculated

through the absolute Euclidean distance between the transformed point

from reverse flow and the original point. The combination of the above

two self-supervised losses enables training on large unlabeled autonomous

driving datasets that contain sequential point cloud data. However, it

ignores the local geometrical properties of point clouds.

Adversarial-SFE. Victor et al. (Zuanazzi et al. 2020) proposed a metric

learning approach for self-supervised scene flow estimation. Unlike previ-

ous self-supervised methods which rely on fine-tuning and finding corre-

spondence in the input data to search for nearest neighbors, Adversarial-

SFE. (Zuanazzi et al. 2020) utilizes an adversarially learning loss. Hence

Adversarial-SFE does not suffer from the domain shift between synthetic

data and real data. Moreover, Adversarial-SFE takes advantage of the

permutation invariant nature of the point cloud. It proposes triplet loss
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by sampling points together with cycle consistency loss. Adversarial-SFE

computes the distance between a pair of point clouds on a latent space.

The proposed adversarial metric learning consists of four components:(1)

a triplet loss with anchor and positive sampling, (2) a cycle consistency

loss, (3) multi-scale triplets for global and local consistency, and (4) ad-

versarial optimization.

SFGAN. 3D point clouds represent the continuous motion of objects in

real scenarios. Based on this insight, Wang et al. (Wang et al. 2022c) uti-

lize generative adversarial networks (GANs) to learn scene flow. SFGAN

(Wang et al. 2022c) presents a novel strategy via discriminating between

the generated point clouds and the real point clouds. The predicted

scene flow and the source point cloud are incorporated to generate the

fake point cloud identical to the target point cloud. Then the discrimina-

tor discerns the consistency between the real scene and the synthesized

3D scene (fake point cloud) to enhance the performance of the scene

flow generator. SFGAN’s adversarial training ensures temporal scene

consistency.

Self-Point-Flow. Note that each point not only possesses a spatial

position (x, y, z) but also potentially has vectors of attributes, such as

normal, color, or material reflection. Self-Point-Flow (Li et al. 2021b)

uses global mass constraints with multiple descriptors to formulate one-

to-one matching with 3D point coordinate, color, and surface normal

as measures. In the optimal transport module, the sum of these three

individual costs represents the final transport cost in the entropic regu-

larization term that is solved by the Sinkhorn algorithm. This enables

the generation of pseudo labels for real data, which is generated from

the assignment matrix. However, conflicting results that exist on local

regions will lead to incomplete pseudo-label generation. To address this

issue, Self-point-Flow builds a graph through random walk theory that

integrates local consistency to refine the pseudo labels. This algorithm is
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executed on a fully-connected undirected subgraph and refined with sev-

eral random walk steps. Then, it propagates to directed subgraph with-

out initial pseudo labels and infers new pseudo labels based on the affinity

matrix that describe the nearness between each point in the undirected

subgraph (labeled node set) and directed subgraph (unlabeled node set).

FlowStep3D. Inspired by RAFT (Teed and Deng 2020), FlowStep3D

(Kittenplon et al. 2021) introduces a recurrent structure to unroll scene

flow estimation model with refinement operation. In FlowStep3D, the ini-

tial flow vector is estimated by a global correlation matrix, then the rest

of the flow sequences are updated based on local correlations in the GRU.

FlowStep3D adopts several basic layers, e.g., set convolutional layer, flow

embedding layer in Flownet3D (Liu et al. 2019a). Two regularization loss

weights are proposed to adjust the regularization. It contributes to the

updating of scene flow during iterations.

SFPC. SFPC (Pontes et al. 2020) defines a geometrically interpretable

objective function to optimize the scene flow and provides an alternative

strategy with learning as self-supervisory signal. Basically, the objective

function consists of two different terms. The first term minimizes the 3D

distance while the second term is a graph laplacian constraint for keep-

ing the nearby points from shifting too much. To explore the underlying

topology connection and context information, SFPC builds an explicit

graph on the source point cloud. Compared with recent methods (Wu

et al. 2020, Mittal et al. 2020) that group point features in multi-scales,

SFPC presents a new clue for estimating scene flow without relying on re-

cursive point features by using an interpretable objective function. SFPC

performs well on both synthetic data and real data where the learning

strategy shows optimal speed while the non-learning strategy gains bet-

ter robustness. However, SFPC requires more computation when dealing

with larger scale point clouds because a denser point cloud yields more

complicated graph connectivity and searching space.
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PillarML. Stemmed from the merits of motion representation in bird’s

eye view (BEV), PillarML (Luo et al. 2021) organizes points into different

pillars in vertical order and estimate pillar motion by the velocity resid-

ing on each pillar. PillarML (Luo et al. 2021) consists of LiDAR-based

structural consistency, probabilistic motion masking, and a cross-sensor

motion regularization module. The pillar motion is estimated from unla-

beled point clouds paired with 2D images. Statistical observation shows

that a self-driving vehicle generates abundant data but only 5% of the

data is usable. Therefore, PillarML utilizes multi-sensor as sources of

data and exploit free signals from them.

SLIM. SLIM (Baur et al. 2021a) removes the annotation requirement

constraint on realistic data by integrating the self-supervised scene flow

estimation and the motion segmentation framework. SLIM presents that

the motion segmentation signal can be generated by detecting the dis-

crepancy between raw flow predictions and rigid ego-motion. Compared

to existing methods (Mittal et al. 2020, Wu et al. 2020), SLIM leverages

arbitrary point densities and does not rely on one-to-one correspondences.

SLIM is upgraded based on RAFT (Teed and Deng 2020) and evaluated

on several real datasets: KITTI2018 (Menze et al. 2018), Nuscenes (Cae-

sar et al. 2020), CARLA (Dosovitskiy et al. 2017), and KITTI-RL (Geiger

et al. 2013).

Occlusion-G. A dynamic scene contains multiple different objects that

hold their own moving patterns and different 3D object possess specific

complicated geometry, hence making it inefficient for scene flow estima-

tion by simply removing occluded regions. The main difficulty of scene

flow estimation under occlusion is related to acquiring the exact mag-

nitude of the occlusion. Occlusion-G (Ouyang and Raviv 2021b) aims

to estimate 3D scene flow with occlusions in a self-supervised way. It

uses a cost volume structure same as PointPWC-Net (Wu et al. 2020),

but with added occlusion masking operation where the cost volume of

the occluded point is assigned with zero. Besides, Occlusion-G is an
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occlusion-weighted mechanism that treats occluded and non-occluded re-

gions separately. Occlusion-G varies from the previous version (Ouyang

and Raviv 2021a) in the training stage, where Occlusion-G is free from

ground-truth occlusion labels. The idea stemmed from using a synthetic

target point cloud to predict occlusion.

Noisy-Pseudo. Noisy-Pseudo (Li et al. 2022b) is a novel multi-modality

framework that utilizes both RGB images and point clouds to generate

pseudo labels for training scene flow networks. The selection of pseudo

labels depends on the geometric information of point clouds. The dis-

tance between pseudo labels and their nearest point in the second point

cloud tells the reliability of the pseudo label. So that these inaccurate

noisy labels are assigned low confidence to reduce the negative effect

on network training. To refine the confidence scores of pseudo labels,

Noisy-Pseudo updates the confidence score via a local geometry-aware

weighted confidence of all the neighboring pseudo labels. Additionally,

the combination of both 2D information and 3D information contributes

to the self-supervised learning and leads to good performance on both

synthetic data and real-world LiDAR data. This method highlights the

effectiveness of using multi-sensor data in scene flow estimation.

DCA-SRSFE. Jin et al. (Jin et al. 2022) proposed a mean-teacher

framework for unsupervised domain adaptation from synthetic data to

real data. DCA-SRSFE (Jin et al. 2022) consists of a student model that

uses ground-truth scene flow labels for supervision and a teacher model

updated as the Exponential Moving Average (EMA) of the student model

weights. A deformation regularization module and a correspondence re-

finement module are introduced to produce high-quality pseudo labels.

In the deformation regularization module, a rigid motion between the

first point cloud and the warped point cloud is predicted via Kabsch al-

gorithm (Kabsch 1976). This module encourages shape distortion aware-

ness in the student model and promotes adaptive deformations for the
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target domain. The flow vector is later improved with surface correspon-

dence by refining local geometry. DCA-SRSFE is supervised by ground

truth flow labels in the source domain and trained with a consistency

loss over the target domain. The proposed synthetic dataset GTA-SF

is a large-scale dataset with real-world labels. According to the exper-

iments, DCA-SRSFE has narrowed down the performance gap between

synthetic datasets and real-world scenarios.

RCP. RCP (Gu et al. 2022) decomposes scene flow estimation into two

interlaced steps. The first step optimizes 3D flow pointwisely, followed

by a recurrent network to optimize 3D flow globally. In the pointwise

optimization module, an auxiliary flow vector is calculated by concate-

nating the point feature and positional encoding. In the second opti-

mization step, RCP leverages GRU to update the hidden state for the

estimation of residual flow vectors. RCP is trained in both the fully-

supervised manner and the self-supervised manner. RCP also conducts

experiments on point cloud registration, where 6-DoF poses are gener-

ated by point-to-point costs. The results on scene flow estimation and

point cloud registration have achieved on-par performances with state-

of-the-art methods.

Ego-motion. Inspired by HPLFlowNet (Gu et al. 2019), Ego-motion

(Tishchenko et al. 2020) uses DownBCL and CorrBCL as building blocks

to regress relative poses from a pair of point clouds. It estimates non-

rigid flow and ego-motion jointly with iterative update module to re-

fine the rigid transformation. Ego-motion also compares performance

between fully-supervised, hybrid, and self-supervised training strategy,

which shows that hybrid training scheme performs better on FlyingTh-

ings3D (Mayer et al. 2016) and KITTI2015 (Menze et al. 2015, Menze

and Geiger 2015).

RigidFlow. RigidFlow (Li et al. 2022d) introduces local rigidity prior

in self-supervised scene flow learning. Based on the assumption that a

scene is composed of several rigid moving parts, RigidFlow decomposes
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the source point cloud into a collection of local rigid regions. Different

from recent self-supervised works (Baur et al. 2021a, Pontes et al. 2020)

that utilize local rigidity as regularization terms, RigidFlow enhances the

pseudo label generation module via integrating local rigidity in region-

wise scene flow estimation. With a pre-trained predicted flow (Li et al.

2021b), the initial point mapping and rigid transformation are calculated.

Then the rigid transformation and pseudo labels for each supervoxel is

updated accordingly by solving a least-square problem. This least-square

problem aims at calculating rotation matrix and translation vector that

aligns independent rigid body from source to target. After several iter-

ations, all of the optimal pseudo rigid scene flow from every supervoxel

are combined to form the complete pseudo scene flow.

Pseudo-LiDAR (Jiang et al. 2022). This work can accurately perceives

3D dynamics in 2D images by utilizing a pseudo-LiDAR point cloud as

a bridge to compensate for the limmitations of estimating 3D scene flow

from LiDAR point clouds. Points that do not contribute to the scene

flow preditons are filtered out. In addition, a disparity consistency loss

is proposed to boost the self-supervised training.

OGC. OGC (Song and Yang 2022) focuses on making use of inherent

object dynamics to assist object segmentation. To extract per-point fea-

tures and generate object masks, an object segmentation network is first

applied to a single point cloud. Then, a self-supervised network is uti-

lized to estimate per-point motions from a pair of point clouds. Due to

the challenging moving patterns of different objects, how to fully uti-

lize object dynamics to assist object segmentation becomes more tricky.

To tackle this problem, OGC introduces three loss terms to yield effec-

tive segmentation supervision. The geometry consistency over dynamic

object transformations allows for high-quality masks learning for given

flows. Regularization of geometry smoothness ensures that flow vectors

in a local area remain consistent with the central point. The geometry
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invariance loss drives the estimated object masks to be invariant across

different views of point clouds.

MBSE3. MBSE3 (Zhong et al. 2023) leverages SE(3)-equivariant net-

works to inherently respect 3D rigid transformations, ensuring consistent

predictions under arbitrary viewpoint changes. This eliminates the need

for explicit data augmentation to handle geometric transformations. It

achieves joint rigid object segmentation and motion estimation without

labeled data, reducing reliance on costly annotations. However, MBSE3

relies on distinguishable motion patterns between objects and struggles

with static scenes or objects with identical motions.

SCOOP. SCOOP (Lang et al. 2022) consists of a self-supervised neural

network and an optimization module that work hybrideep learningy to

estimate scene flow. In the initialization step of scene flow estimation,

SCOOP focuses on extracting point features to obtain soft correspon-

dences, in which cosine similarity is applied to compute matching cost.

In the flow refinement step, two optimization functions, basically de-

ployed for reducing the error and increasing the consistency of scene flow

field. According to the results, SCOOP reduces errors by over 50% com-

pared to feed-forward models and provides 10 times faster inference time

than the Neural Prior work (Li et al. 2021c) relying solely on optimiza-

tion. Additionally, SCOOP allows for a unique trade-off between time

and performance.

Rigid3DSF. To ease the high demand of supervision in scene flow es-

timation problem, Gojcic et al. (Gojcic et al. 2021) proposed a data-

driven method that integrates flow into a higher-level scene abstraction

represented by multi rigid-body motion. Rigid3DSF (Gojcic et al. 2021)

connects pointwise flow with other higher level scene understanding tasks

through an object-level deep network. In detail, Rigid3DSF divides the

scene into foreground, background, and abstract rigid objects as scene

components. As such, scene flow in the background is assigned as ego-

motion of sensors and motion prediction in the foreground can be rea-
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soned on the level of individual object. To exploit the geometry of the

rigid entities, Rigid3DSF introduces an inductive bias. Rigid3DSF also

proposes a new test-time optimization to refine the flow predictions. For

the training on real dataset under weak supervision, Rigid3DSF uses Se-

manticKITTI (Behley et al. 2019) without dense scene flow annotations.

RC-SFE. RC-SFE (Dong et al. 2022) is a weakly-supervised scene flow

learning framework based on GRU recurrent network. Apart from the

source point cloud and the target point cloud, RC-SFE also takes a set of

abstraction masks of the source point cloud generated by a pre-trained

segmentation network (Gojcic et al. 2021) as input. To convert the ini-

tial point correspondences status and pre-warped scene flow, RC-SFE

applies Kabsch algorithm (Kabsch 1976) to obtain transformations for

each segmented abstractions. So the rigid flow is calculated by the ab-

straction transformations and abstraction masks. During the updating

stage, an GRU-based error awarded optimization is utilized to refine the

prediction. Compared to previous work that use indirect constraints into

iterative optimization, RC-SFE introduces direct multi-body rigidity con-

straints to alleviate structure distortion. After several recurrent updates,

an optimal mix of scene flow and rigid flow are calculated to form the

final hybrid scene flow. However, RC-SFE cannot address the estimation

of scene with many non-rigid parts. Same as Rigid3DSF (Gojcic et al.

2021), RC-SFE relies on the segmentation of background to generate

accurate estimation. Dealing with non-rigid motions and occlusions is

worthy of further exploration in the future.

The contributions of current notable works, highlight the potential

for improved accuracy, robustness, and generalization in scene flow esti-

mation. In the following section, this thesis presents related works for

another sub-task of dynamic scene understanding: object segmentation.
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2.2.5 Hybrid methods

Traditional approaches to scene flow estimation predominantly rely on

single-modality data, which introduces inherent limitations depending

on the sensor type. These constraints stem from the inability of single-

modality systems to capture complementary scene properties (e.g., ge-

ometry and appearance and motion). Consequently, recent works like

CM-Flow (Ding et al. 2023) advocate for cross-modal fusion, integrating

LiDAR, radar, and camera inputs to overcome the trade-offs of unimodal

frameworks. Hybrid methods (Teed and Deng 2021, Liu et al. 2022)

fuse 3D point clouds (geometry) with 2D images/videos (appearance) to

harness complementary information, demonstrating superior robustness,

occlusion handeep learninging, and accuracy in motion estimation. This

multimodal paradigm has emerged as a key research focus in recent years.

CM-Flow. CM-Flow (Ding et al. 2023) introduces a cross-modal learn-

ing framework for 4D radar-based scene flow estimation by leveraging

co-located sensors on autonomous vehicles. The core innovation lies in

its use of odometer, LiDAR, and camera to generate pseudo-supervision

signals, enabling training without human-annotated labels. This ap-

proach frames scene flow estimation as a multi-task learning problem,

where modality-specific tasks (e.g., optical flow estimation) provide aux-

iliary supervision. However, two critical limitations arise: Noisy Su-

pervision: Signals from individual modalities (e.g., optical flow) inher-

ently contain higher noise compared to human annotations. Sparse Con-

straints: Pseudo-labels for scene/optical flow only apply to detected mov-

ing points, which are vastly outnumbered by static points, thereby lim-

iting their impact on overall model performance.

To mitigate these issues, CM-Flow opportunistically fuses cross-modal

supervision from three sensors commonly co-deployed with 4D radar:

Odometer (GPS/INS) for ego-motion compensation, LiDAR for sparse

3D geometric priors, RGB Camera for dense texture-based correspon-
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dence.

RAFT-3D (Teed and Deng 2021) extends the RAFT optical flow frame-

work by integrating monocular depth estimation with point cloud motion

through a 2D-3D correlation volume, achieving state-of-the-art (SOTA)

performance on the KITTI dataset.

2.3 Point cloud segmentation

Point cloud object segmentation is the task of identifying and isolating

individual objects within 3D point cloud data. By separating distinct

objects, such as cars, pedestrians, or other dynamic elements, segmenta-

tion lays the groundwork for understanding and analyzing object motion

in real-world environments. In this section, a brief review of point cloud

object segmentation techniques is introduced, covering approaches from

static inputs to dynamic sequences.

2.3.1 Segmentation on Static point clouds

Before the advent of deep learning methods, point cloud segmentation re-

lied heavily on optimization techniques and hand-crafted features. Meth-

ods often involved fitting geometric models to the point clouds or us-

ing graph-based approaches with optimization algorithms such as the

Expectation-Maximization (EM) algorithm, RANSAC (Random Sample

Consensus), and Markov Random Fields (MRFs) to segment and classify

regions. These techniques aimed to optimize a cost function that encap-

sulated prior knowledge about the structure of the scene or the properties

of the objects to be segmented. The introduction of deep learning, par-

ticularly PointNet and its variants, has since revolutionized the field by

directly learning feature representations from raw point clouds, reducing

the need for explicit optimization of such models as the primary strategy.

Recent research has focused on enhancing the interpretability and

generalization of point cloud segmentation models. Techniques such as
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attention mechanisms (Zhao et al. 2021, Mazur and Lempitsky 2021) and

graph neural networks (Wang et al. 2019) are being integrated to bet-

ter capture local structures and relationships among points, which can

be crucial for understanding complex scenes in semantic level and in-

stance level. Point Transformer (Zhao et al. 2021) employs self-attention

to capture long-range dependencies among points, enhancing the model’s

ability to focus on relevant features while ignoring noise. This has proven

particularly beneficial in complex environments where point clouds may

contain significant variations. Additionally, emerging methods are com-

bining multiple modalities, such as RGB images and point cloud data

(Krispel et al. 2020, Lu et al. 2023). This integration helps create richer

representations, enhancing the overall quality of segmentation. By lever-

aging information from different sources, these approaches improve ac-

curacy and robustness in complex environments.

2.3.2 Segmentation on Dynamic point clouds

Dynamic point cloud segmentation is a challenging task due to the unique

characteristics of point cloud data, which lacks a consistent structure

and exhibits high variability in object appearances across frames. A no-

table approach, P4Transformer (Fan et al. 2021), introduces a novel deep

learning model specifically designed to handeep learninge raw point cloud

videos without relying on point tracking. This is achieved through a 4D

convolution layer that captures local spatio-temporal patterns, along-

side a self-attention transformer module that models long-term depen-

dencies across frames. By focusing on self-attention mechanisms rather

than explicit tracking, P4Transformer effectively captures appearance

and motion information in the video, demonstrating success in 3D action

recognition and 4D semantic segmentation tasks.

In contrast, (Lin et al. 2018) proposes a hierarchical segmentation

method for RGBD data, which leverages the inherent 3D geometry cap-

tured by depth sensors. This method operates on low-level geometric
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features like connectivity and compactness to form a hierarchical repre-

sentation of objects that is propagated through time, maintaining tempo-

ral coherence by managing object connectivity, splits, and merges. This

geometry-based method bypasses the need for large annotated datasets,

making it suitable for generic scenes and settings with limited data.

While P4Transformer excels in high-accuracy scenarios given ample data

and computational resources, the RGBD-based method (Lin et al. 2018)

offers a more efficient alternative for applications where depth informa-

tion is available but annotated data is scarce. Together, these two ap-

proaches illustrate complementary strategies in dynamic point cloud seg-

mentation: a data-driven, transformer-based model that excels with ex-

tensive data and compute resources, and a geometry-based, data-efficient

model suitable for real-time applications and resource-limited environ-

ments.

In recent years, several works have explored segmentation of moving

objects directly from point cloud sequences, independent of video data.

These methods leverage the spatial and temporal continuity of point

clouds captured over time, such as those generated by LiDAR sensors,

to segment dynamic elements in scenes. A common approach involves

tracking point clusters frame by frame, using point-based motion infor-

mation to identify and isolate moving objects or moving rigid parts. For

instance, some methods compute pointwise or cluster-wise trajectories

across frames (Shi et al. 2021), detecting anomalies or deviations from

static backgrounds to segment dynamic objects. Other approaches (Fan

et al. 2022, Yin et al. 2021) employ spatio-temporal graph networks,

where point clouds are represented as graphs and temporal edges cap-

ture the movement of points. These graph-based methods can capture

complex motion patterns and relationships among points across frames,

providing a robust basis for segmenting moving objects even in cluttered

environments. Another set of works focuses on deep learning models,
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utilizing recurrent neural networks (RNNs) (Shi et al. 2020) or 3D convo-

lutional neural networks (3D CNNs) (Li et al. 2023) to process sequential

point clouds and learn temporal features that help distinguish between

static and moving objects. These methods demonstrate the effective-

ness of using point cloud sequences alone, leveraging the inherent 3D

information and temporal coherence of point clouds to achieve reliable

segmentation of dynamic objects without relying on RGB video data.

Despite their impressive network architectures, current static and dy-

namic point cloud segmentation models typically adhere to a scene-wise

training protocol. These approach treats each point cloud as an individ-

ual training sample, aggregating all classification errors within each scene

for the optimization of network parameters. Consequently, these models

overlook the rich relationships between points across different scenes, fail-

ing to regularize the feature embedding space from a holistic perspective.

In this thesis, this limitation is addressed by integrating scene flow with

object segmentation. In detail, this thesis aims to propose an unsuper-

vised approach for segmentation on dynamic point clouds. Moreover, a

multi-frame unsupervised learning framework is studied to produce accu-

rate and robust object segmentations. The combination of scene flow and

object segments enables systems not only to perceive changes across the

entire scene but also to capture movement patterns of individual objects.

2.3.3 Evaluation Metrics for Object Segmentation

This section illustrates eight metrics in evaluating object segmentation

performance.

2.3.3.1 Panoptic Quality

The Panoptic Quality (PQ) metric is designed to provide a comprehensive

evaluation of panoptic segmentation results. It combines aspects of both

semantic and instance segmentation evaluation into a single metric. PQ
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is defined as follows:

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP|+ 1
2
|FP|+ 1

2
|FN|

(2.1)

where: TP (True Positives) is the set of correctly matched pairs of pre-

dicted segments and ground truth segments and FP (False Positives) is

the set of predicted segments that do not match any ground truth seg-

ment. FN (False Negatives) represents the set of ground truth segments

that do not match any predicted segment. IoU(p,g) is the Intersection

over Union between a predicted segment p and a ground truth segment g.

The total number of segments involved in evaluation. This includes the

count of true positives |TP| and false positives |FP|, and false negatives

|FN|coefficients for FP and FN penalize the metric for each error, bal-

ancing the trade-off between precision and recall. High PQ indicates that

the algorithm performs well in both correctly segmenting and accurately

classifying instances while a low PQ suggests that the algorithm either

misses many segments, produces many false segments, or the predicted

segments do not match well with the ground truth segments.

2.3.3.2 UQ

Unknown quality, namely UQ is a recall-based metric that measures the

performance on annotated instances only. It is defined as:

UQ =

∑
(p,g)∈TP IoU(p, g)

|TP|︸ ︷︷ ︸
segmentation quality (SQ)

× |TP|
|TP|+ |FN|︸ ︷︷ ︸

recall quality (RQ)

(2.2)

2.3.3.3 Precision

A predicted segment is considered as a match (True Positive) if its IoU

with a ground truth segment exceeds 0.5. The ratio of true positive

segments to the sum of true positive and false positive segments is rep-

resented by Pre:

Pre =
TP

TP + FP
(2.3)
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2.3.3.4 Average Precision (AP)

AP score is a widely used evaluation metric in object segmentation task

(Lin et al. 2014, Song and Yang 2022). AP is the average of the inter-

polated precision values at the 101 recall points. In object segmentation

tasks, AP is a crucial metric because it balances both precision and recall,

providing a single measure of the model’s performance. High AP indi-

cates that the model performs well in correctly identifying and accurately

segmenting objects while minimizing false positives and false negatives.

2.3.3.5 Recall

Recall is the ratio of true positive segments to the sum of true positive

and false negative segments (Powers 2020).

Recall =
TP

TP + FN
(2.4)

2.3.3.6 Mean Intersection over Union

For each correctly matched pair of predicted and ground truth segments,

the IoU is computed as the area of their intersection divided by the area

of their union. The IoU is a measure of the overlap between two regions.

A predicted segment and a ground truth segment are considered a match

if their IoU exceeds a threshold, typically set to 0.5 (Everingham et al.

2010).

2.3.3.7 F1-score

F1 is the harmonic mean of Precision and Recall:

F1 = 2 · P ·R
P +R

(2.5)

2.3.3.8 Rand Index

Rand index, also known as rand statistic, ranging from 0 to 1, it counts

the number of agreements and disagreements between two clusterings.

Given a set of n elements, let: C be the set of clusters in the ground
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truth, C ′ be the set of clusters produced by the clustering algorithm.

The Rand Index is computed as follows:

• A: The number of pairs of elements that are in the same cluster in

both C and C ′.

• B: The number of pairs of elements that are in different clusters in

both C and C ′.

• C: The number of pairs of elements that are in the same cluster in

C ′ but in different clusters in C.

• D: The number of pairs of elements that are in different clusters in

C ′ but in the same cluster in C.

The total count of A+B+C+D is denoted as N, and the Rand Index is

calculated as (A+B)/N.

This chapter provides a comprehensive review of methodologies for

advancing scene flow estimation and 3D object segmentation in point

cloud data. It systematically contrasts current approaches for estimating

scene flow based on learning strategies. Additionally, the chapter explores

methods for 3D object segmentation, including strategies that work with-

out extensive labeled datasets or strong supervision. In conclusion, the

landscape of dynamic scene understanding is rapideep learningy advanc-

ing, driven by innovative methodologies and a growing understanding

of the complexities involved in 3D dynamic analysis. By highlighting

recent innovations in both scene flow estimation and unsupervised seg-

mentation, this thesis aims to enhance dynamic scene understanding via

deep learning method.
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3
Estimating 3D Scene Flow via
Grouped Attention and Global

Motion Aggregation

This chapter introduces a novel scene flow estimation method: GAMAFlow.

To ensure efficiency and efficacy, a point Transformer model with grouped

attention mechanism is proposed, which can be effectively used for point

feature extraction. Moreover, the necessary building blocks and network

layers are explained. Next, a new operation: global motion aggregation

is introduced to enhance the local motion feature with global-aware con-

text feature. In summary, this chapter has been previously published

(with some amendments) as, Zhiqi Li, et al. GAMAFLOW: Estimating

3D Scene Flow via Grouped Attention and Global Motion Aggregation.

3.1 Motivation

Scene flow estimation was proposed by Vedula et al. (Vedula et al. 1999),

where scene flow is defined as 3D motion vector and predicted through

optimization process. It is a crucial primitive to various visual perception

and understanding tasks like motion segmentation (Baur et al. 2021b, Ay-
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gun et al. 2021), object tracking (Zhai et al. 2020), and motion predic-

tion (Wang et al. 2022a, Chen et al. 2021b). Many scene flow estimation

methods (Shi and Ma 2022, Liu et al. 2019a, Kittenplon et al. 2021, Wei

et al. 2021, Li et al. 2022c) have been proposed to predict 3D scene flow

between two consecutive point cloud frames directly through deep neural

networks. The first pioneer work is FlowNet3D (Liu et al. 2019a), which

is built based on PointNet++ (Qi et al. 2017b) layers. FLOT (Puy et al.

2020) utilizes optimal transport to find soft correspondences between a

pair of point clouds.

Many recent methods have emphasized feature embedding to aggre-

gate local features across multiple scales (Wu et al. 2020, Wang et al.

2021b a, Ding et al. 2022). Techniques such as coarse-to-fine architec-

tures and hierarchical feature learning have demonstrated the strength of

deep neural networks for scene flow estimation by performing multi-stage

refinements at various scales (Kittenplon et al. 2021) or single resolutions

(Wang et al. 2022d). These pipelines generally predict flow at each stage

by regressing scene flow from local neighborhoods using convolutions (Wu

et al. 2022a, Cheng and Ko 2022). However, such approaches face chal-

lenges with large displacements, often requiring multistage refinements

to incrementally estimate extensive motion.

This leads to a critical insight: high-quality point features are essen-

tial for the success of supervised 3D scene flow estimation. Our analysis

indicates that these methods generally achieve optimal performance only

after several rounds of flow refinement. Consequently, the question arises:

how to generate higher-quality point features efficiently? This question

is central to advancing the robustness and accuracy of these methods, as

high-quality point features enable better local neighborhood understand-

ing and finer motion detail extraction, thereby reducing the dependency

on multiple refinement stages. Additionally, achieving rich point feature

representations would help mitigate the challenges posed by large dis-
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placements, allowing models to better generalize across varied dynamic

scenes.

Building on the aforementioned advancements in point feature learn-

ing and scene flow estimation, recent work has extended attention-based

models to scene flow estimation. Networks that employ spatio-temporal

attention models further improves the performance on non-uniform point

clouds (Wang et al. 2021c a). SAFIT (Shi and Ma 2022) proposes a

segmentation-aware approach that aggregate the features of all points

with both self-attention and cross-attention. RPPformer-Flow (Li et al.

2022c) is an approach embedded with transformer layer at all stage of es-

timating flow vector. Despite the effectiveness shown by these transformer-

based approaches, most have overlooked the potential of transformers to

capture long-range dependencies, primarily due to the high quadratic

computational cost associated with the number of input points. This

limitation has restricted the full capacity of transformers to model global

interactions, particularly in large and complex scenes.

With this in mind, this chapter aims to balance efficacy (stable flow

estimation) and efficiency (fast-feature aggregation), motivating the de-

sign of an improved Transformer architecture that captures both local

and global information at a modest computational cost. The design

principle is inspired by advances in Transformer-based methods for 3D

tasks, as demonstrated in prior work (Wu et al. 2022b).

Given the current state-of-the-art in scene flow estimation, it is ob-

served that prediction errors primarily stem from occlusions and invis-

ible long-distance objects, which pose significant challenges in discrimi-

nating multi-scaled motion fields. From prior work, this thesis has the

following observations: (1) Voxel-based representations can efficiently

encode multi-scale features of 3D point clouds, which are then used

for object detection or segmentation. However, the downside of voxel-

based representation is that it degrades localization quality due to the
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coarse voxelization. (2) Point-based representation could preserve ac-

curate point positions with flexible receptive fields, which benefits flow

estimation without heavy computation overhead. In light of these, the

recent work PV-RAFT (Wei et al. 2021) integrates the voxel-based and

point-based feature learning strategy. Meanwhile, SCTN (Li et al. 2022a)

combines the point feature extracted through Transformers with voxel

feature extracted via sparse 3D convolution. Despite yielding promising

results, this integration of voxel-based and point-based feature represen-

tations poses two problems. The voxel-to-point encoding through voxel

set abstraction operations introduces significant computational overhead,

which is further exacerbated by the multi-stage point feature abstrac-

tion. On the other hand, the pooling operation in the voxel branch fails

to fully harness the valuable dense points, resulting in little performance

improvement for faraway or small objects with sparse points.

To address these challenges, this chapter introduces GAMAFlow,

a Transformer-based scene flow estimation model that integrates point-

voxel correlations. First, the model augments point features using a point

Transformer layer, where grouped vector attention is employed to propa-

gate pointwise features and guide the learning of discriminative patterns

at the voxel level. Second, a context-aware global motion aggregation

(GMA) module is proposed to enhance local motion features by aggre-

gating global contextual cues. Extensive experiments demonstrate the

superiority of the proposed method—GAMAFlow—on both synthetic

and real-world datasets, outperforming existing approaches in accuracy

and robustness.

3.2 Methods

Overview: The whole pipeline of the proposed method is depicted

in Fig. 3.1. It takes two consecutive point clouds X ∈ RN×3 and
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Figure 3.1: The pipeline of GAMAFlow: The input comprises two
point clouds X ,Y ∈ R3 with 3D positions. The correlation field is con-
structed from point-level features computed by feature net and voxel-level
features. These fine-grained correlations Cf , combined with the current
flow estimate Vt−1, are processed by a motion encoder to produce a mo-
tion feature E . GMA integrates context feature FM and local motion
feature E to refine motion representation. The GRU iteratively updates
its hidden state using the concatenated context feature, local and global
motion features. A flow head predicts the residual flow Vt−1. This refines
the warped point cloud Qt−1 = X + Vt−1 for subsequent iterations.

Y ∈ RM×3 as input. GAMAFlow aims to predict a set of flow vectors

V = {vi ∈ R3}Ni=1 that describe the motion field, which means point xi in

the source point cloud X is expected to move to yi = (xi + vi) ∈ Y . The

proposed model initiates with the extraction of pointwise feature repre-

sentations FX , FY from the source point cloud X and target point cloud

Y , respectively, leveraging a geometric-aware feature encoding frame-

work (Sec 3.2.2). The context net shares same structure of feature net.

Subsequently, a dense correlation lookup table is constructed by comput-

ing feature affinity scores between all pairs of points in X and Y . This

correlation field establishes preliminary correspondences for motion esti-

mation (Sec 3.2.3). Following this, a global motion aggregator module

is employed to refine the initial correlations by integrating contextual

and structural dependencies across the point clouds, thereby enhancing

the discriminative capacity of motion-related features (Sec 3.2.4). These

enriched features are then processed through a Gated Recurrent Unit

(GRU)-based recurrent network, which iteratively refines the scene flow
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prediction through temporal feature propagation. At each iteration t,

the network generates an incremental flow vector ∆Vt which updates the

current flow estimate Vt as Vt = Vt−1 +∆Vt−1 (Sec 3.2.5). Concurrently,

the source point cloud X is progressively warped to an intermediate rep-

resentation Qt−1 = X + Vt−1, aligning it geometrically with the target Y

at each step. This iterative alignment enables the model to resolve ambi-

guities in large displacements through coarse-to-fine refinement. After T

iterations, the final flow estimate VT represents the optimized displace-

ment field that optimally deforms X to match the structural topology of

Y .

3.2.1 PointTransformer Layer

Before detailing the proposed method, a brief review of transformers is

presented. PointTransformer (Zhao et al. 2021) employs self-attention

during feature learning, which indeed brings efficiency down when the

network becomes deeper and weight parameters increase. The attention

mechanism introduced in PointTransformer is as follows:

Q = WqFi, K = WkFj, V = WvFj,

Aij = SoftMax (M (Q−K+Pemb)) ,

F ′
i =

∑
Fj∈G(i) Aij ⊙ (V +Pemb) .

(3.1)

Let F = {Fi}i be a set of feature vectors. F ′
i is the output feature.

Wq,Wk, and Wv are pointwise transformations. Here G(i) ∈ F is k

nearest neighbors of Fi. The attention weights Aij in the above equation

are the scalars computed by the scaled dot product of the query and

the key elements (Wu et al. 2022b). M denotes a mapping function

such as multilayer perceptron (MLP) that computes the attention vectors

to reweight the value vector V before aggregation. Pemb is postional

embedding.

As shown in Eq. 3.1, transformers and their variants rely on the

encoded representation of input features. PointTransformer (Zhao et al.

2021) justifies the use of local attention by stating that computing global
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Figure 3.2: The detailed design of pooling module in point Transformer
layer. The original point set is separated into non-overlapping partitions.
Maxpooling is applied on the point-level feature. For each partition,
the maximum feature value is selected among all points in the group.
Meanpooling computes the average position of all points in the group.

attention on all input points is almost infeasible, especially when dealing

with large-scale data, which indicates that the computational complexity

of performing global attention on the entire point cloud is prohibitive.

Remarks: Existing attention blocks applied on 3D point cloud mainly

follow two streams: scalar attention and vector attention, where the point

features are projected by linear layers or MLPs to generate query, key,

and value vectors. In contrast to scalar attention, vector attention in-

troduces a weight encoding function to modulate the interaction between

the query and key vectors. However, the parameters in weight encoding

unit of grouped vector attention have been reduced, leading to a more

powerful and efficient model.

3.2.2 Point Feature Extraction via Grouped Atten-
tion

Previous attention-based approaches (Li et al. 2022a, Shi and Ma 2022)

compute features directly on the whole point cloud, ignoring the exis-

tence of multi scale motion fields in the scene. To address this issue, the
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Figure 3.3: The detailed design of unpooling module in point Transformer
layer. The widely adopted interpolation-based unpooling method can be
extended to partition-based unpooling module, preserving the structural
integrity of point features while maintaining computational efficiency.

feature and context networks are constructed using PointTransformerV2

(Wu et al. 2022b), enabling multi-scale point feature learning. The fea-

ture network is designed to generate 128-dimensional per-point descrip-

tors for input point clouds, denoted as FX ∈ RN×D, FY ∈ RM×D in

Fig. 3.1. The feature network architecture comprises four Point Trans-

former blocks operating at distinct resolutions. Each block begins with a

downsampling layer, followed by grouped attention for localized feature

aggregation. Subsequently, features are decoded and upsampled to re-

store the original point cloud resolution. To achieve this, partition-based

pooling is employed to divide the point cloud into L non-overlapping sub-

sets. Each subset is defined as Si = (Pi,Fi), where xi = (pi, fi) belongs

to Si. Feature fi is updated via maxpooling operation and point position

pi is updated via meanpooling. Partition-based pooling is illustrated in

Fig. 3.2 and grid uncoupling is illustrated in Fig. 3.3. Partition-based

pooling performs separation on point clouds without overlapping. Given

a point set S = (P ,F) from L subsets [S1,S2, ...,SL], the point feature
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Figure 3.4: PointTransformerV2 attention module.

is updated via

f ′
i = MaxPool

({
f jU | f j ∈ Fi

})
, p′

i = MeanPool
({

pj | pj ∈ Pi

})
.

(3.2)

The pointwise feature vector will go through a linear projection U

before the max pooling operation. Collection of the updated position p′
i

and point feature f ′
i gives the contents for the next stage encoding. The

unpooling operation follows a common practice by interpolation of the

k = 3 nearest neighbors based on an inverse distance weighted average.

The point feature in higher resolution are obtained by mapping point

feature to all points from the same subset Sj, which is given by

fup
i = f ′

j, if(pi,f i) ∈ Sj. (3.3)

Grouped Vector Attention (Fig. 3.4) efficiently learns spatial features

across diverse regions of point clouds through a partitioned attention

mechanism. Formally, for a point xi, the attention weights and aggre-

gated features are computed as:

Aij = β(γ(qi,kj)), fa
i =

S(pi)∑
xj

g∑
l=1

c/g∑
m=1

Softmax (Ai)jl v
lc/g+m
j , (3.4)

where γ denotes a relational function encoding geometric or semantic

dependencies, and β(·) generates grouped attention weights Aij. By di-
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Figure 3.5: The structural components of Point Transformer v2, show-
casing its multi-scale architecture designed to handle varying number:
N4, N3, N2, N1, and N points. The model incorporates group vector at-
tention to process point cloud data at different scales, utilizing grid pool-
ing units for dimensionality reduction and unpooling units for upscaling.
Additionally, it employs multi-layer perceptrons (MLP) for complex fea-
ture interactions. The sequence of these components facilitates efficient
feature extraction and transformation across different scales within the
point cloud.

viding the channels of the value vector into g groups, the number of

parameters required for the aggregation of features is reduced by a factor

of g. The aggregation operates locally over the reference set S(pi), typ-

ically defined as the k−nearest neighbors of xi (size k ≪ N), avoiding

global O(N2) complexity. Moreover, computing g independent Softmax

operations on c/g channels rather than one over c channels further re-

duces computational overhead.

The full feature extraction network is illustrated in Fig. 3.5. The

network input consists of raw 3D point coordinates, which also serve as

the initialized feature vector. Tuples below each stage block denote the

sampled point count and feature dimensions for each encoding layer. The

downsampled resolutions N1, N2, N3, N4 are determined by grid sizes. In

the experiments, the grid sizes for the four stages are set to [0.06, 0.12,

0.24, 0.48]. The local attention group sizes are configured as [12,24,48,64]

for the encoder and [6,12,24,48] for the decoder.

Context Net: A context feature FM ∈ RN×D is extracted to enrich con-

text information (e.g., category cues) during the flow estimation process.

The context net shares the same structure as the feature net, without

weight sharing.
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Figure 3.6: The illustration of correlation field, figure from (Wang et al.
2023). For a point in the source point cloud (blue), its k-nearest neighbors
in the target point cloud (magenta) are identified to establish point-based
correlations. Long-range interactions are further modeled by construct-
ing voxel structures centered on the source point.

3.2.3 Point voxel correlation field

PV-RAFT (Wei et al. 2021) introduces point-voxel correlation fields

based on feature similarities. Following this insight, GAMAFlow con-

structs two correlation volumes from the feature net introduced in Sec.

3.2.2. The correlation volume integrates features at point-level and

voxel-level, as shown in Fig. 3.6. Let Nk = N (Qt)k represents the

top-k nearest neighbors of Qt in Y .

Point-level correlation feature between Qt and Y is defined as

Cp (Qt,Y) = Γ (MLP(concat(CM(Nk,Qt),Nk −Qt))). (3.5)

In Eq. 3.5, CM ∈ RN×M is the correlation value between Qt and Nk,

which has been truncated to save memory. concat denotes concatenation

of correlation and spatial information. Γ is a max pooling operation on

k dimension.
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Voxel-level correlation feature is defined as

Cv (Qt,Y) = MLP

(
concat

i

(
1

ni

∑
ni

CM

(
N (i)

r

)))
, (3.6)

where ni denotes the number of points in Y that located in a sub-cube of

Qt and N (i)
r indexes all neighbor points of a sub-cube in Qt. In Eq. 3.5

and Eq. 3.6, CM(Nk) represents the corresponding truncated correlation

values, which is computed through the pairwise dot-product between fea-

ture vectors CM = Ft
q · Fy. The combination of Cv and Cp is denoted

as Cf . In the current paradigm, a correlation volume serves as the fun-

damental module for consecutive frame point matching. Conceptually,

the correlation volume at the point-level focus on local regions while

correlation volume at voxel-level compensates for large displacements.

3.2.4 Global Motion Aggregation Module

This chapter notices that the flow estimation is significantly degraded

or even fails when dealing with large motions, which frequently occurs

in non-local regions. To mitigate this issue, an enhanced global motion

aggregation module is introduced, which reduces the number of isolated

points and the need for masking operation (Song and Yang 2022). This

chapter posit that temporal coherence exists between two consecutive

point clouds, which can be utilized to build long-distance correlations

among two point clouds.

To this end, this chapter first encodes motion feature E ∈ RN×Dm us-

ing the previously estimated flow vector Vt−1 and the correlation feature

Cf generated by the point-voxel correlation field. Crucially, the motion

motion encoder preserves the original motion signals by concatenating

the processed features with the raw flow data (transposed for dimen-

sional consistency), ensuring that both temporal relationships and low-

level motion dynamics are retained. This architecture balances learned

feature extraction with direct motion preservation. Let θ, ϵ, σ denote the

projection functions to calculate query, key, and value vector in Fig. 3.7.
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The projection functions for the context feature fi ∈ FM and motion

feature ei ∈ E are given by

θ (fi) = Wqfi,

ϕ (fi) = Wkfi,

σ (ei) = Wvei.

(3.7)

The learnable parameters include weight Wq,Wk,Wv, and α. The key

and query is from the context feature FM , while the value is from the

motion feature E . The aggregated motion feature is denoted as

Ê = E + α
N∑
j=1

h (θ(FM,j), ϵ(FM,j))σ (Ej) , (3.8)

where α is a hyperparameter initialized to zero. The attention matrix

(Eq. 3.9) is utilized for aggregating the value vector that represents tem-

poral coherence. It dynamically weights and aggregates motion features

based on their consistency and relevance across sequential frames.

h (qi,kj) =
exp

(
q⊤
i kj/

√
D
)

∑N
j=1 exp

(
q⊤
i kj/

√
D
) . (3.9)

The final output is the concatenation [E , Ê ]. An illustration of the global

motion aggregation module is provided in Fig. 3.7. Intuitively, concate-

nation enables flexible merging of motion vectors influenced by contextual

attributes, potentially introducing uncertainty during the encoding pro-

cess prior to decoding the combined motion vector. A critical question

arises regarding the inclusion of positional encoding at this stage. Ex-

perimental results indicate that positional encoding offers limited value

during motion enhancement, as positional information is already incor-

porated in the earlier feature extraction module. Furthermore, adding

positional encoding increases computational overhead without significant

performance gains.

To enhance motion feature representation, supervision from the cor-

relation matrix is introduced, improving the model’s ability to resolve

ambiguities in motion estimation.
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Figure 3.7: The detailed motion feature aggregator. E denotes the input
motion feature for value vector. Context feature is the source for query
vector and key vector. The aggregated motion feature is computed based
on query, key, and value. The final output is the concatenation of original
motion feature E and aggregated motion feature Ê .

3.2.5 Iterative update

The scene flow estimation is iteratively refined through a GRU-based

framework that builds on PV-RAFT’s approach (Wei et al. 2021) to

integrate voxel and point feature representations. The GRU cell takes

three inputs: the contextual feature FM (initialized as the hidden state

h0), the concatenated global motion features [Ê , E ]. xt is initialized by

the concatenation of global motion features and FM at current iteration

step. At each iteration step, the hidden state ht is updated by combining

the previous state ht−1 with the input xt, enabling progressive refinement

of motion dynamics and spatial correlations. The components of GRU

unit are as follows:

zt = σ (Conv1 d ([ht−1, xt] ,Wz))

rt = σ (Conv1 d ([ht−1, xt] ,Wr))

ĥt = tanh (Conv1 d ([rt ⊙ ht−1, xt] ,Wh))

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt

(3.10)

The final hidden state ht is processed by a flow head to produce incre-

mental flow. The updated flow Vt−1 warps the source point cloud X into

an intermediate translated point cloud Qt−1 = X +Vt−1, which serves as

input for the subsequent iteration.

Refinement Step: In pursuit of enhanced performance in scene flow

estimation networks (Fu et al. 2023), a subsequent refinement step is
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implemented to produce the final refined flow prediction Vref . Unlike the

pre-training stage, the refinement module only utilizes the final predicted

flow vector from iterative update stage and point feature FY of the targe

frame. This refinement step promotes the smoothness and consistency

of flow estimation.

3.3 Loss Terms

The proposed model is trained in a supervised manner, where the flow

vectors are iteratively updated. The loss of early iterations is formed as:

Liter =
T∑
t=1

wt ∥(Vt − Vgt)∥1 , (3.11)

where Vt is the predicted flow vector from the tth iteration in the first

updating stage. Vgt denotes the ground-truth flow vector. T is the total

number of iterations and the weight for tth iteration is wt. Let V̂ref

denotes the refined flow estimation. The loss of the refinement module is

Lref =
∥∥∥(V̂ref − Vgt

)∥∥∥
1
. (3.12)

3.4 Experiments

3.4.1 Datasets and Performance Metrics

FlyingThings3D (Mayer et al. 2016) collects rendered stereo and RGB-D

images from ShapeNet (Chang et al. 2015), which is the first synthetic

benchmark to estimate scene flow. We follow (Wei et al. 2021) to pre-

process and separate FlyingThings3D into a training set (19, 640 pairs)

and a test set (3, 824 pairs). To evaluate the effectiveness of our model

in a real dataset, we choose KITTI scene flow dataset (Menze et al. 2015

2018) and leverage the trained model on FlyingThings3D.

Implementation details. The proposed GAMAFlow is implemented in

Pytorch. The number N,M of the input point clouds are set to 8192. The

whole network is first trained for 50 epochs, with another 10 epochs for
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Method EPE3D ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓

PointPWC-Net (Wu et al. 2020) 0.059 0.738 0.928 0.342
FLOT (Puy et al. 2020) 0.052 0.732 0.927 0.357
FlowStep3D (Kittenplon et al. 2021) 0.046 0.816 0.961 0.217
SCTN (Li et al. 2022a) 0.038 0.847 0.968 0.268
PV-RAFT (Wei et al. 2021) 0.046 0.817 0.957 0.292
PT-FlowNet (Fu et al. 2023) 0.031 0.914 0.981 0.175
Ours 0.027 0.929 0.981 0.146

Table 3.1: Quantitative evaluation on Flyingthings3D dataset. Lower
values are better for the error metrics including EPE3D and Outliers.
Higher values are better for the accuracy metrics including Acc3DS and
Acc3DR.

the refinement step. Experiments were conducted on a machine equipped

with four NVIDIA A100-SXM4-80GB GPUs.

Evaluation Metrics. Several metrics are used for comprehensive com-

parison. 3D end-point-error (EPE3D) is the mean L2 distance between

the ground truth scene flow and predicted result. End point error is cal-

culated to compare the difference between a predicted scene flow vector

and a ground truth scene flow vector. It is averaged over all points in

meters:
1

N

∑
p∈X

∥∥∥V̂(p)− Vgt(p)∥∥∥
2

(3.13)

where X is the set of source point cloud with N points. V̂(p) and Vgt(p)

describes the predicted flow and ground truth flow. Strict accuracy

(Acc3DS) is the percentage of points whose EPE3D < 0.05m or rela-

tive error < 5%. Relaxed accuracy (Acc3DR) is the percentage of points

whose EPE3D < 0.1m or relative error < 10%. In benchmarks like Fly-

ingThings3D and KITTI, an outlier is typically defined if absolute error

(EPE3D) exceeds 0.3 meters per second or relative error exceeds 5% of

the ground truth flow (Liu et al. 2019a).

3.4.2 Quantitative Analysis

This section report the performance of the proposed method compared

to the state-of-the-art approches on both FlyingThings3D and KITTI
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Method EPE3D ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓

PointPWC-Net (Wu et al. 2020) 0.069 0.728 0.888 0.265
FLOT (Puy et al. 2020) 0.056 0.755 0.908 0.242
FlowStep3D (Kittenplon et al. 2021) 0.055 0.805 0.925 0.149
SCTN (Li et al. 2022a) 0.037 0.873 0.959 0.179
PV-RAFT (Wei et al. 2021) 0.056 0.823 0.937 0.216
PT-FlowNet (Fu et al. 2023) 0.023 0.958 0.979 0.121
Ours 0.022 0.963 0.983 0.122

Table 3.2: Quantitative evaluation on KITTI dataset. Lower values are
better for the error metrics including EPE3D and Outliers. Higher values
are better for the accuracy metrics including Acc3DS and Acc3DR.

dataset. The comparisons are shown in Table. 3.1 and Table. 3.2, re-

spectively. The evaluation results demonstrate that the proposed model,

which is trained using a synthetic dataset, exhibits strong generalization

capabilities when applied to real KITTI scans. Specifically, GAMAFlow

reduces EPE3D to 0.027m, achieved a 12% drop from PT-FlowNet (Fu

et al. 2023) on FlyingThings3D. The evaluation results confirm the ef-

fectiveness of GAMAFlow on this dataset. GAMAFlow also presents

superior performance on KITTI in terms of Acc3DS and Acc3DR.

3.4.3 Qualitative Comparison

As shown in Fig. 3.8, the proposed method shows excellent results in

three scenes from the synthetic dataset: FlyingThings3D. The results

are visualized through an error distribution map, where purple hues in-

dicate minimal errors, transitioning to warmer colors (e.g., red) for larger

deviations. The proposed GAMAFlow achieved satisfied Acc and avoid

large EPE3D. The scene flow results on FlyingThings3D and KITTI

are compared in Fig. 3.9. Large EPE3D error is highlighted with red

rectangle. It is noticeable that GAMAFlow shows the minimum error

commpared to the baseline methods: PV-RAFT (Wei et al. 2021) and

PT-FlowNet (Fu et al. 2023).
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GT pair Ours

Figure 3.8: Visual Results on FlyingThings3D. Left figures are selected
ground truth point cloud frames, where source point cloud is in red and
target point cloud in blue. The transformed point cloud with GT flow is
shown in green. The right panel illustrates the discrepancy between the
target frame and the flow-warped source frame (generated by applying
predicted scene flow vectors to the source frame). The error distribution
is visualized using a colormap gradient, where purple hues represent min-
imal deviations and red indicates larger errors.
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Figure 3.9: Visual comparison between PV-RAFT (Wei et al. 2021), PT-
FlowNet (Fu et al. 2023), and our method on FlyingThings3D and KITTI
dataset. Large error is highlighted in a red rectangle.

3.4.4 Ablation Study

The effectiveness of key components. Ablation experiments are

conducted to verify the rationality of the proposed method. Variant I

is trained on PT-FlowNet (Fu et al. 2023) without the refinement step.

Subsequently, the core components are replaced with grouped attention

for feature extraction (II) and global motion aggregation (III). Thirdly,

the flow refinement module is incorporated into the plain model with

the grouped attention mechanism (IV). The last variant (V) corresponds

to the proposed method. As shown in Table 3.3, the grouped attention

module improves performance by 13.5%, and the GMA module (Variant

III) achieves a 16.2% improvement compared to Variant I.

3.4.5 Flow Refinement Module.

In the proposed framework, it independently integrate both the convolu-

tional layers from (Puy et al. 2020) and a transformer-based refinement

module for comparative analysis. Experimental results in Table. 3.3
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ID GA GMA FR EPE3D

I 0.037
II ✓ 0.032
III ✓ ✓ 0.031
IV ✓ ✓ 0.028
V ✓ ✓ ✓ 0.027

Table 3.3: Ablation study results on grouped attention module and global
motion aggregation module. These experiments are conducted on Fly-
ingThings3D.

demonstrate that methods equipped with a refinement module consis-

tently outperform those lacking it.

3.4.6 Running time comparison

Method
FlyingThings3D
T=8 T=32

PV-RAFT 293ms 719ms
PT-FlowNet 355ms 886ms

Ours 453ms 985ms

Table 3.4: Ablation study results on time consumption. All experiments
are conducted on the same device and the number of points is set to
8192.

As shown in Table 3.4, the proposed method exhibits a higher running

time compared to PV-RAFT (Wei et al. 2021) and PT-FlowNet (Fu et al.

2023). This is attributed to the inclusion of the global motion aggrega-

tion module, which introduces additional computational costs from its

convolutional layers. Furthermore, the runtime scales with the number

of iterations due to the iterative refinement process.
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3.5 Concluding remarks

In this chapter, a new method: GAMAFlow is proposed for scene flow

estimation between two point clouds. The core insight of this method

is the integration of local motion feature and long-distance global infor-

mation. Experimental results of GAMAFlow on the FlyingThings3D

and KITTI datasets demonstrate its effectiveness. GAMAFlow is able

to address the generalization challenge and accuracy challenge within

reasonable computational cost.
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4
Clustering-free unsupervised object

segmentation via key points

This chapter introduces a clustering-free method for object segmenta-

tion with auxiliary supervision from scene flow. The proposed method

tackles the problem of under-segmentation (two or more objects share

the same label) and over-segmentation (a rigid object has multiple la-

bels). In the following, the motivation and fundamentals are outlined.

Then, the proposed method is introduced, which includes the frame-

work and task-specific design choices. Moreover, two datasets are used

for evaluating the proposed method: the Indoor Dynamic Room dataset

(OGC-DR) and the outdoor KITTI-SF dataset. The Indoor Dynamic

Room dataset is selected for its complex motion patterns and cluttered

layouts, which inherently exacerbate segmentation challenges due to oc-

clusions and partial object visibility, while its range of motion scales tests

robustness in real-world scenarios. Experiments on two variants of the

indoor dataset—one with extended point cloud frames and another with

smaller motions—further verify the method’s effectiveness.
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4.1 Motivation

Originating nearly a century ago, Gestalt theory (Fussell 2023) has in-

fluenced countless applications that shape modern life. Rooted in the

understanding that humans, as innate order-seekers, subconsciously or-

ganize visual elements into patterns and structures. Gestalt theory aims

to dissect how this behavior manifests in the perception of images. Its

fundamental principles have provided invaluable insights into how hu-

mans perceive and organize visual information in complex environments.

Despite its true in the real world (where solid objects typically exhibit

strong correlations in rigid motions), today’s technology struggles to learn

how to segment multiple objects all at once from a single point cloud.

The capacity to identify and segment moving objects in sequential

data holds paramount importance in various applications (Marichal and

Umeda 2003, Kenney et al. 2009, Chen et al. 2023). In particular, discern-

ing and isolating dynamic entities gives insights in autonomous vehicles

to navigate complex traffic scenarios (Chen et al. 2021a).

Dynamic shape segmentation in autonomous driving contexts faces

two key challenges when processing sequential observations: Large posi-

tional shifts: Objects undergo significant displacements within the world

coordinate system, complicating continuous tracking of their precise po-

sitions; Incomplete data capture: many observations of objects are in-

complete or fragmented due to various positioning relative to sensors and

heavy obstructions in cluttered environments. These challenges make it

difficult to achieve accurate segmentation across frames.

Recent methods have sidestepped the dynamic object analysis, such

as 4D Discovery (Wang et al. 2022e), which employ multi modality data

to predict object mask in a joint optimization way. A bunch of work

studied on grouping similar motion vectors and then predict bounding

box and mask for moving objects only (Huang et al. 2021, You et al.

2022). In contrast, the proposed method operates without any training
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process or clustering steps. Instead, it focuses on segmenting objects

in dynamic point cloud sequences across both single-frame and multi-

frame formats, providing a more direct approach to understanding object

motion in complex environments.

To effectively segment moving objects, this study adopts a key point

based approach rather than relying on the full set of object points. Ini-

tially, segmentation signals are predicted for a subset of key points and

subsequently propagated across the entire point set using a kernel func-

tion. To refine the segmentation, a dynamic loss and a smoothness loss

are used together. The full pipeline is illustrated in Fig. 4.1. The

proposed method is compact and efficient, with only α as a learnable pa-

rameter. The per-point mask is derived through the dot product of the

kernel function and key mask. Leveraging rigid object motion as super-

visory information further enhances segmentation quality by enforcing

geometric consistency constraints. Furthermore, considering the incom-

plete or occluded views of objects, the proposed method is extended to

enable multi-frame segmentation. The results show that the proposed

method indeed yields more accurate and robust segmentation outcomes.

This chapter presents a novel approach that employs classical kernel

representations from point cloud only. This representation enables the

proposed approach to describe the point feature even with dense point

clouds while demonstrating exceptional segmentation accuracy —com-

petitive among recent deep approaches. Another advantage of the pro-

posed approach is its generalizability across various out-of-distribution

scenarios. Through the positional encoding-based kernel, the proposed

approach can effectively predict object mask in dynamic scenes. System-

atic evaluations show that the proposed approach is significantly more

powerful in predicting object masks, while being lightweight and highly

stable in inference.

68



Key Mask initialization

Key points

Per-point Mask

Raw points

Feature 
Embedding

Kernel Function

Mask Optimization !

!

! <⋅>
Scene flow 

t t+1

Figure 4.1: To construct kernel function, the proposed method begins by
sampling key points from the input point cloud. Three sampling methods
are compared in this chapter. Next, K key points and N raw points are
embedded to extract corresponding features. The kernel function repre-
sents similarity matrix between these two feature embeddings. Finally, a
linear coefficient vector α, which depicts the key mask, is optimized per
sample to predict the per-point mask. Scene flow vectors are leveraged
in the dynamic loss term to optimize the object masks.

4.2 Methods

Given that real-world dynamics encompass both observer motion and ob-

ject motion, the proposed approach initially compensates for ego-motion

before applying the segmentation method to sequence of point clouds. A

core challenge in object segmentation lies in balancing under segmenta-

tion —where multiple rigid objects are mistakenly merged into a single

cluster—and over-segmentation, where a single rigid object is divided

into multiple clusters. To address these issues, an optimized segmenta-

tion technique is proposed with the following key objectives:

• Achieving segmentation without relying on traditional clustering

techniques

• Mitigating the problem of over-segmentation to preserve the in-

tegrity of individual objects
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• Enabling effective and simultaneous segmentation across multi-frame

inputs for consistent dynamic scene understanding

4.2.1 Kernel function

The ability to automatically discover patterns and perform extrapolation

is a key feature of intelligent systems. Kernel methods, such as Gaussian

processes, are particularly well-suited for pattern extrapolation because

the kernel governs the generalization properties of these methods in a flex-

ible and interpretable way (Schölkopf and Smola 2002). However, extrap-

olating large-scale, multidimensional patterns is generally challenging,

and developing Gaussian process models for such tasks presents several

difficulties. Most kernels are effective primarily for smoothing and in-

terpolation rather than true extrapolation (Seeger 2004). This challenge

is further complicated by the fact that Gaussian processes are typically

computationally feasible only for small datasets. Scaling a kernel learn-

ing approach that is expressive enough for complex patterns introduces

additional difficulties compared to scaling a standard Gaussian process

model (Wilson and Nickisch 2015).

In this work, no complex Gaussian process is involved in segmenta-

tion prediction. Instead, the proposed method applies a simple kernel

function K =< x, x′ >, which is an inner product of feature vector.

This kernel representation is inspired by FastKernelFlow (Li and Lucey

2024). Specifically, the kernel function is utilized to describe the weight

between each key points to raw points in the source point cloud. The key

points that are far apart have a lower probability of being picked than

the key points that are close together. According to the experimental

results, this data-dependent kernels brings more expressibility. The key

novelty of the proposed approach lies in extending the classical kernel

function, which explores the kernel representation of object mask, ergo

achieving a disentanglement of object segmentation and object motion

in an unsupervised manner.
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In detail, the proposed method first identifies K key points through

sampling methods such as random sampling, FPS, or grid sampling. Po-

sition embeddings are then extracted for both the key points (K points)

and raw points (N points), where K ≤ N . The position encoding is

based on Random Fourier Feature (Li and Lucey 2024), it is defined as:

KΘ = Kβ = K (ϕ(p; β), ϕ (p∗; β)) (4.1)

This kernel function embeds the relationship of key points p∗ and raw

points p. This chapter compared different kernel functions in Sec 4.5.4.

In Equation. 4.1, ϕ denotes feature embedding function. The kernel has

size N ×K. Formally, the predicted mask of point cloud P is defined as:

S =
K∑
i

αiK (p,p∗) (4.2)

In Equation. 4.2, α denotes the initial parameters, also known as kernel

coefficient. It is the optimization target. In our setting, we initialize α

as the mask prediction of key points. It has size K1 ×K2, where K1 is

the number of key points p∗ selected and K2 is a predefined number of

objects that is large enough for a specific dataset.

4.2.2 Weight Initialization

Weight initialization method could affect the training process, including

the time required to reach the optimized solution and solve the problem

of vanishing or exploding gradients. This section explains the criteria for

a robust weight initialization method and the preferred choice.

Common initialization methods that satisfy these criteria include He

initialization (He et al. 2015) (also known as Kaiming initialization) and

Xavier initialization (Glorot et al. 2011) (also known as Glorot initializa-

tion). These methods scale the variance of the initial weights based on

the number of input and output units of the layer to help maintain the

magnitude of the gradients during training. The orthogonal initialization
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and uniform initialization method are also included in the comparison ex-

periments. Based on the empirical analysis, He initialization (He et al.

2015) is particularly well-suited to the proposed framework.

4.2.3 Shared key points

While short-term observations often fail to capture the complete shape

of an object, combining multiple frames provides a more comprehensive

view. We hypothesize that continuous observations over multiple frames

are more beneficial for segmenting moving objects. In this study, par-

tial representation of an object in a sequence are accumulated to form a

more complete object shape. Key points is then computed on accumu-

lated point set. To obtain the accumulated point set, each frame in the

original sequence is first aligned within a common coordinate system.

During this alignment, the proposed method utilizes the ground truth

object pose for each frame, transforming each frame to match the first

frame by applying the inverse of the respective transformation matrices.

This process accumulates points from subsequent frames onto the first

frame, ultimately yielding a more comprehensive 3D representation of the

detected object, capturing both occluded and partially visible regions.

In this study, the goal is to learn an anchor mask that can propagate

to any single frame in the sequence. Let Up = {P 1, . . . ,P T} denotes T

frames of point clouds in a scene and U ′
p = {P ′

1, . . . ,P
′
T} is the aligned

point cloud frames. Each frame of point cloud P t = {(x, y, z)j}Nt

j=1 con-

tains point coordinates, where t ∈ [1, , T ] denotes the frame index. Nt

denotes the number of points in a single frame. Additionally, the scene

flow vector extracted by the flow estimation network (Kittenplon et al.

2021) is define as Fp = {F 1, . . . ,F T}.

Same as Equation. 4.2, the predicted masks of point cloud P in a

sequence Up are obtained as follows:

SPt =
K∑
i

αiK (P′
t,P

∗) ,P′
t ∈ U ′

p (4.3)
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Figure 4.2: From left to right: GT, prediction without smooth loss,
prediciton with smooth loss. Over-segmentation: a single rigid object
is divided into multiple clusters, as shown in the middle. Smooth loss
could address over-segmentation by adjusting neighboring number and
searching radius.

where P∗ is sampled from accumulated point set Ap = {P′
1 ⊕ · · · ⊕P′

t}

and is shared across frames.

The number of key points K is initialized to match the maximum

expected object count M in the input scene (Kinit = M). However,

standard sampling methods—including Farthest Point Sampling (FPS),

Random Sampling, and Grid Sampling—often fail to guarantee at least

one key point per physical object due to undersampling or irregular spa-

tial distributions. To address this, the framework employs oversampling

by scaling K to α ·M (α ∈ {4, 8, 16}), ensuring robust coverage even for

occluded or densely clustered objects. A detailed comparison on different

key point numbers is provided in Sec. 4.5.3.

4.2.4 Loss functions

As shown in Fig. 4.2, some object may have several different label as-

signments due to over segmentation. To address this issue, a smooth

regularization controlled by neighboring number and searching radius is

employed, which is defined as:

Ls =
1

N

N∑
n=1

(
1

H

H∑
h=1

d (on,onh
)

)
. (4.4)

This geometry-aware loss enforces spatial connectivity between object

points since physically neighboring points typically belong to the same

object. on is the mask prediction of center point, followed by neighboring
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Figure 4.3: Leftmost: two ground truth objects in purple and blue. The
right blocks show how the dynamic loss is computed.

point mask prediction onh
. KNN is utilized to search H points from point

pn. This smooth loss then force the neighboring mask assignments to be

consistent with the center point pn. The distance function d() is flexible

to choose L1 or L2. A weighted combination of smoothness regularization

terms is applied, where (n1, n1) represents the number of nearest neighbor

point and (r1, r2) denotes the searching radius. The weights for the first

and second smoothness losses are set to (3.0, 1.0).

When processing point cloud data in dynamic settings, certain chal-

lenges arise. For instance, if an inferred object mask encompasses points

from two distinct groups moving in different directions, the resulting

transformed point cloud might only align with one of these directions,

consequently increasing the error rate. The OGC model, as described

in Song et al. (2022) (Song and Yang 2022), introduces a dynamic loss

function designed to assign different labels to objects exhibiting varied

dynamic behaviors. We adopt this dynamic loss to constrain the pre-

dicted point masks. The dynamic loss is defined as:

Ld =
1

N

N∑
n=1

∥∥∥∥∥
(

K∑
k=1

onk · (T k ◦ pn)

)
− (pn + an)

∥∥∥∥∥
2

. (4.5)

Each point will be assigned a mask on ∈ (0, 1), here onk denotes the

probability of point belongs to the k-th object. Tk ∈ R4×4 is estimated

transformation matrix generated by Weighted Kabsch algorithm. The

Weighted Kabsch algorithm is introduced in Appendix A.2.2. an rep-

resents the motion of point pn. A visual illustration of dynamic loss is

provided in Fig. 4.3.
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Figure 4.4: The data generation process of OGC-DR and OGC-DRSV,
figure from the author of OGC (Song and Yang 2022).

As shown in Fig. 4.3, the blue and purple points belong to two esti-

mated objects. After applying rigid transformations to the two objects,

we can easily observe the inconsistency between the desired gray points

and blue/purple points in the rightmost block of Fig. 4.3. Given fixed

motion estimation, the target is to minimize inconsistency of mask pre-

dictions during optimization, the estimated object masks are expected to

be better and better with this dynamic constraints. The full loss function

is:

L =
1

T

T∑
t=1

(
wdLd

t + wsLs
t

)
(4.6)

The total optimization loss is a weighted sum of smooth loss and dynamic

loss, the proposed method sets the weight ws to 0.1 for smooth loss and

wd = 10 for dynamic loss.

4.3 Datasets & Metrics

OGC-DR (Song and Yang 2022), KITTI-SF (Menze and Geiger 2015)

are used to evaluate the proposed approach. These datasets correspond

to two application scenarios with three datasets: 1) OGC-DR for full-

shape indoor furniture arrangements; 2) OGC-DR single-view counter-

part OGC-DRSV and its two varaints; 3) KITTI-SF for real-world ve-

hicular traffic.
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4.3.1 OGC-DynamicRoom Single View

OGC-DR contains 3,750, 250, and 1,000 indoor scenes for training, vali-

dation, and testing, respectively. Each sequence contains four consecutive

frames of point clouds (resolution: 2,048 points per frame), where rigid

dynamics are simulated by applying random transformations to 4–8 ob-

jects selected from 7 ShapeNet categories: chair, table, lamp, sofa, cab-

inet, bench, display. To mimic real-world partial observations, partial

scans are generated by rendering depth images from random viewpoints

on the upper hemisphere and un-projecting depth pixels into 3D space.

The single view version (OGC-DRSV) has a total of 5,000 scenes, ad-

hering to the original dataset split (3,750 training, 250 validation, 1,000

testing). The generation algorithm for single view dataset OGC-DRSV

is provided by OGC (Song and Yang 2022). To unveil the motion predic-

tion and segmentation from long-sequence point clouds. Two varaints of

the synthetic dataset OGC-DRSV (OGC-DRSV-A) are created, resulting

in OGC-DRSV-B and OGC-DRSV-C. The OGC-DR and OGC-DRSV

generation process is shown in Fig. 4.4.

Here are the details of how we build new dataset:

(1) OGC-DRSV-B. This dataset is interpolated from frame-1 and

frame-4 from original OGC-DR(Song and Yang 2022). We use linear

interpolation, generating same amount of data frames while with smaller

motion scale compared to the original version OGC-DRSV-A. As shown

in Fig. 4.5, two new frames are interpolated between the start frame and

end frame in each sequence.

(2) OGC-DRSV-C. In the extended version, the object categories

and count remain consistent with the original OGC-DR dataset, but

the room scale is enlarged to accommodate larger inter-frame motions,

mitigating overlaps caused by proximal objects. This extension increases

the sequence length to six dynamic frames. Configuration details for

OGC-DRSV-C and OGC-DRSV-A are summarized in Table 4.1.
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TTT

Interpolating new frame

Start frame End frame

Figure 4.5: A variant of OGC-DRSV: OGC-DRSV-B which utilizes the
original first frame and second frame to interpolate intermediate frames.
This dataset has smaller motion scale than OGC-DRSV.

Dataset version Object scale Dynamic-rotation Dynamic-translation W&L of ground plane

OGC-DRSV-A 0.2 ∼ 0.45 Angle[-10,10] -0.04 ∼ 0.04 0.6 ∼ 1

OGC-DRSV-C 0.2 ∼ 0.45 Angle[-50,50] -0.2 ∼ 0.2 1 ∼ 2

Table 4.1: Dataset Configurations for OGC-DRSV A and its variant
OGC-DRSV-C.

4.3.2 Metrics

The following metrics are used during evaluation: Average Precision

(AP), Panoptic Quality (PQ), F1-score (F1), Precision (Pre), and Recall

(Rec) at an Intersection over Union threshold of 0.5, in addition to the

mean Intersection over Union (mIoU), Rand Index (RI), and Unknown

Quality (UQ).

A new metric called proportion (PP) is proposed to evaluate the ob-

jectness prediction. The rationale behind this metric is that the predicted

label should adhere to the underlying patterns of the objects being seg-

mented. This metric is defined as:

pp = max(maskgt ∩maskpred)/maskpred (4.7)

During inference, a point may be assigned to different labels. As shown

in the Fig. 4.6, an object may be assigned with two or more labels,

it will not affect the final prediction because the proposed method can

refine it through the smooth loss. However, if it is not covered by at
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(a) High proportion example.

(b) Low proportion example.

Figure 4.6: Partness metric for evaluating dynamic loss effectiveness.
Correct mask predictions (blue labels) achieve high proportion values,
while the yellow label demonstrates poor partness capability as it corre-
sponds to three distinct subsets in the ground truth (GT) set.

least one label, or it shares same label with another object. This is an

under segment phenomenon, which need to be addressed first by the

segmentation algorithm.

4.4 Main Results

This section introduces the main results of the proposed method, com-

pared to other baseline methods. In Sec. 4.4.1, it evaluates the pro-

posed framework by comparing with state-of-the-art methods on indoor

synthetic dataset OGC-DR and its single view variants. Additionally,

this section presents the results of the proposed framework in real world
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Method Category Methods AP ↑ PQ ↑ F1 ↑ Pre ↑ Rec ↑ mIoU ↑ RI ↑

Supervised Methods
OGC-sup (Song and Yang 2022) 90.7 82.6 87.6 83.7 92.0 89.2 97.7
MBSE3-sup (Zhong et al. 2024) 92.8 86.9 91.0 88.8 93.2 91.2 98.7

Unsupervised Methods

TrajAffn (Ochs et al. 2013) 42.6 46.7 57.8 69.6 49.4 46.8 80.1
SSC (Nunes and Demiris 2018) 74.5 79.2 84.2 92.5 77.3 74.6 91.5
WardLinkage (Ward Jr 1963) 72.3 74.0 82.5 93.9 73.6 69.9 94.3
DBSCAN (Ester et al. 1996) 73.9 76.0 81.6 85.8 77.8 74.7 91.5
OGC (Song and Yang 2022) 92.3 85.1 89.4 85.6 93.6 90.8 97.8
MBSE3 (Zhong et al. 2024) 93.9 87.0 91.1 87.0 95.6 92.4 98.1
Ours 96.6 92.4 96.5 96.4 97.2 93.2 98.5

Table 4.2: Segmentation performance on OGC-DR. Parameters in our
framework: (k1, k2): (32,32), (n1, n2): (32, 64), (r1, r2):(0.16, 0.32), learn-
ing rate: 0.004, early patience: 100.

datasets in Sec. 4.4.2.

4.4.1 Performance on OGC-DR and OGC-DRSV

4.4.1.1 OGC-DR.

The synthetic OGC-DR dataset is well-suited for joint point cloud se-

quence segmentation and scene flow estimation tasks. Comparisons are

conducted against unsupervised baselines, including clustering-based meth-

ods (DBSCAN (Ester et al. 1996), WardLinkage (Ward Jr 1963)) and

motion segmentation methods (TrajAffn (Ochs et al. 2013), SSC (Nunes

and Demiris 2018)). As shown in Table 4.2, the proposed multi-frame

segmentation framework outperforms all unsupervised baselines, achiev-

ing an average precision (AP) of 96.6—a significant improvement over

the previous state-of-the-art (92.8). Notably, the method even surpasses

fully supervised approaches, demonstrating its robustness in leveraging

temporal consistency. This performance validates the effectiveness of us-

ing shared key points across frames to enforce spatial-temporal coherence

in segmentation.

The OGC-DR dataset is high quality because the inclusion of com-

plete object shapes enables a rigorous evaluation of dynamic scene under-

standing. The qualitative results (Fig. 4.7) further highlight the superi-

ority of the proposed framework in addressing under/over-segmentation

problem. For example, DBSCAN (Ester et al. 1996) has segmentation
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Figure 4.7: Visual Results on OGC-DR. Four distinct scenes with vary-
ing object counts are selected for visualization. For optimal clarity, im-
ages are best viewed in zoomed mode. From left to right: DBSCAN
(eps = 0.05, nsample=10), OGC-R1, our multi-frame method, ground
truth (GT). Parameters in the proposed framework: (k1, k2): (32, 32),
(n1, n2): (32, 64), (r1, r2): (0.16, 0.32), learning rate: 0.004, early pa-
tience: 100.

and OGC (Song and Yang 2022) producess two different labels on the seg-

mentation of a single object, while the proposed method could perfectly

segment each object in the first scene.

4.4.1.2 OGC-DRSV

The single view version of OGC-DR presents a challenge due to the in-

complete representation of furniture caused by occlusion, which makes it

difficult to identify consistent rigidity. As shown in Table. 4.3, the pro-

posed multi-frame mask prediction framework consistently outperforms

state-of-the-art models across all metrics, even under the most chal-
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Methods AP ↑ PQ ↑ F1 ↑ Pre ↑ Rec ↑ mIoU ↑ RI ↑

TrajAffn (Ochs et al. 2013) 39.3 43.8 54.8 63.0 48.4 45.9 77.7
SSC (Nunes and Demiris 2018) 70.3 75.4 81.5 89.6 74.7 70.8 91.3
WardLinkage (Ward Jr 1963) 69.8 71.6 80.5 91.8 71.7 67.2 93.3
DBSCAN (Ester et al. 1996) 71.9 76.3 81.8 79.1 84.8 80.1 93.5
OGC (Song and Yang 2022) 86.8 77.0 83.9 77.7 91.2 84.8 95.4
MBSE3 (Zhong et al. 2024) 88.1 80.0 86.1 80.8 92.2 86.7 96.6
Ours 88.9 82.1 86.6 79.9 96.3 87.6 96.2

Table 4.3: Rigid segmentation results on OGC-DRSV-A compared with
state-of-the-art approaches. Parameters in our framework: (k1, k2):
(256,32), (n1, n2): (16, 32), (r1, r2): (0.16, 0.32), learning rate: 0.001,
early patience: 50.

Config AP ↑ PQ ↑ F1 ↑ Pre ↑ Rec ↑ mIoU ↑ RI ↑ PP ↑

OGC-R1 87.4 76.2 83.4 75.8 92.5 85.5 95.7 98

OGC-R1 voted 88.4 78.6 85.3 79.4 92.1 85.7 96 97.6

Ours-single 82.8 70.8 78.9 71.9 90 82.1 94.9 97

Ours-voted 89.6 78.5 85.5 81.4 91.8 84.9 96.1 96.7

Table 4.4: Ablation results about the voting mechanism in our single-
frame input optimization framework on the OGC-DRSV dataset. The
configuration of optimization algorithm: lr = 0.004, early patience= 100,
(k1, k2): (32, 32), (n1, n2): (16, 32), (r1, r2) : (0.08, 0.16). The OGC re-
sults are derived from the initial training round to ensure a fair compar-
ison.

lenging condition—unsupervised single-view. The proposed approach

achieves an AP of 88.9%, underscoring its robustness in handling in-

complete observations.

To rigorously evaluate the capabilities of the proposed framework, an

ablation study is conducted comparing single-frame segmentation perfor-

mance against the baseline method OGC (Song and Yang 2022) and its

voting-enhanced variant. As shown in Table 4.4, the proposed method

achieves 82.8% AP in the single-frame setting, trailing the OGC bench-

mark by 4 percentage points (87.4% AP). However, after integrating the

voting mechanism, which enforces the consistency of the label by averag-

ing the predictions in a 3-frame sliding window, the proposed framework
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Config
Object Segmentation Metrics

AP ↑ PQ ↑ F1 ↑ Pre ↑ Rec ↑ mIoU ↑ RI ↑ UQ ↑

OGC-DRSV-A
GT flow-Ours 95.5 86.9 91.5 86.9 97.8 92.3 98 92.5

Pred flow-Ours 89.4 75.5 82.3 73.8 95.4 87.8 96.2 87.0

Pred flow OGC 88.4 78.6 85.3 79.4 92.1 85.7 96.0 -

OGC-DRSV-B
GT Flow 95.5 90.7 95.1 94.6 96.3 91.4 98.2 98.0

Pred flow-Ours 80.9 67.0 74.7 66.4 88.1 81.3 94.1 78.7

Pred flow OGC 83.2 78.6 85.0 84.7 85.3 81.7 96.4 -

OGC-DRSV-C
GT Flow-Ours 96.7 88.0 91.7 86.6 98.6 94.1 98.2 99.4

Pred flow-Ours 93.0 81.9 86.8 79.6 97.1 91.6 97.3 91.3

Pred flow OGC 90.4 83.0 88.2 84.7 92.0 87.7 96.5 -

Table 4.5: Multi frame segmentation results on two variants of OGC-
DRSV: Ver-B with motion scale = 0.024 and Ver-C with motion scale
= 0.043. All groups share the same optimization configuration (lr =
0.004, early stopping patience = 100, (k1, k2) : (32, 32), (n1, n2) : (16, 32),
(r1, r2) = (0.08, 0.16)). Object segmentation performance and scene flow
quality are reported on the testing set. For fair comparison, the OGC
baseline employs unsupervised training limited to a single iteration. The
results of OGC is trained in unsupervised manner for only one round.

achieves 89.6% AP, outperforming OGC’s refined voting results (88.4%).

The results for OGC-DRSV-B and OGC-DRSV-C are presented in

Table. 4.5. In both datasets, predicted flow is generated using Flow-

Step3D (Kittenplon et al. 2021), while ground truth flow is computed

via rigid transformations based on ground truth object poses. OGC-

DRSV-C, which extends sequence length while preserving the motion

scale of OGC-DRSV-A, challenges methods with prolonged temporal de-

pendencies. Despite this complexity, the proposed framework achieves

competitive segmentation accuracy (AP: 90.4%), closely matching the

OGC baseline (Song and Yang 2022) (AP: 93%). This highlights the

method’s robustness to extended sequences without sacrificing spatial

coherence. However, the performance on OGC-DRSV-B is less satisfac-

tory in the AP and PQ metrics. This disparity likely stems from the

reduced motion scale in OGC-DRSV-B, which amplifies ambiguity in

motion cues—critical for the proposed method’s loss module. This sug-

gests that instance-aware metrics (AP, PQ) are more sensitive to subtle
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Method Category Methods AP ↑ PQ ↑ F1 ↑ Pre ↑ Rec ↑ mIoU ↑ RI ↑

Unsupervised Methods

TrajAffn (Ochs et al. 2013) 24.0 30.2 43.2 37.6 50.8 48.1 58.5
SSC (Nunes and Demiris 2018) 12.5 20.4 28.4 22.8 37.6 41.5 48.9
WardLinkage (Ward Jr 1963) 25.0 16.3 22.9 13.7 69.8 60.5 44.9
DBSCAN (Ester et al. 1996) 13.4 22.8 32.6 26.7 42.0 42.6 55.3
OGC (Song and Yang 2022) 36.0 24.6 35.4 26.4 53.8 53.7 57.8
Ours 25.2 34.9 36.8 96.2 24.7 23.3 87.0

Table 4.6: Quantitative results on KITTI-SF. Compared baseline meth-
ods include unsupervised algorithms: TrajAffn, SSC, WardLinkage, DB-
SCAN, and OGC. The proposed method is evaluated in unsupervised
manner. The results of OGC are collected from the first round training
for a fair comparison.

motion variations. In contrast, mIoU’s reliance on region-based overlap

rather than instance-level precision allows it to remain stable.

4.4.2 Performance on KITTI-SF

To validate the generalization capability of the proposed method, addi-

tional experiments on the challenging real-world outdoor KITTI Scene

Flow (KITTI-SF) dataset are conducted. This dataset consists of 200

training pairs captured from real-world traffic scenes and an online hidden

test for scene flow estimation (Song and Yang 2024). In the experiments,

the last 100 pairs from the dataset were selected to form the testing set,

comprising 200 individual point cloud frames. The quantitative results

is presented in Table. 4.6.

Empirically, the human annotations of cars and trucks are kept in each

frame to compute the segmentation scores. Other objects are grouped

into ground points. Due to the extreme imbalance of 3D points be-

tween foreground objects and background, KITTI-SF is considered as an

challenging dataset in the literature. For instance, clustering based al-

gorithms like DBSCAN tends to favor objects that distributed far apart.

Even in OGC (Song and Yang 2024), prior knowledge on ground planes is

required to assist the segmentation of objects in the foreground. KITTI-

SF is not a strictly defined multi-body rigid dataset, given that the back-

ground elements within its point clouds have the potential to undergo
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deformation. Nevertheless, the proposed method still surpasses classi-

cal clustering-based algorithms such as DBSCAN (Ester et al. 1996) and

achieves comparable results to other baseline methods.

The performance gap relative to the learning-based OGC method

(Song and Yang 2022) may stem from two factors: (1) Sparsity of mov-

ing objects: Autonomous driving datasets often contain fewer than 20%

moving objects (Khatri et al. 2025), posing challenges for frameworks re-

lying on object motion analysis through dynamic loss components. This

limitation is amplified in scenes dominated by static structures, where

motion cues are insufficient for robust segmentation. (2) Optimization

scope: Unlike learning-based approaches that leverage full-dataset train-

ing to iteratively refine predictions across sequences, the proposed frame-

work employs per-scene optimization. While this avoids overfitting to

dataset-specific biases, it sacrifices the error-correction benefits of end-to-

end training, where coherent temporal predictions across frames improve

generalization.

4.5 Ablation Studies

This section studies the contributions of different components described

in Sec. 4.2 , including the selection of key points, number of key points,

kernel function type, effect by flow source, as well as smooth loss settings.

4.5.1 Flow source

There are two groups of flow source used to compare the performance:

Group (i): We simulate the scattered signal of the background environ-

ment where the target is located by adding random Gaussian noise.

Group (ii): We substitute the best flow estimation with a flow estima-

tion generated by a flow model that is only trained for 30 epochs.
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Flow Source

Object Segmentation Scene Flow

AP ↑ PQ ↑ F1 ↑ Pre ↑ Rec ↑ mIoU ↑ RI ↑ UQ ↑ EPE3D ↓ AccR ↑

(i)
GT + Gaussian (std=0.1) 86.1 85.5 90.6 95.1 87.7 82.8 95.9 82.9 0.16 1

GT + Gaussian (std=0.05) 90.4 88.9 93.3 95.8 91.8 87.2 97.3 87.6 0.08 14

(ii)
FlowStep3D ( epoch= 30) 45.5 29.1 37.9 27.3 65.2 61.8 85.7 49.7 0.11 24.5

FlowStep3D ( epoch=50) 89.4 75.5 82.3 73.8 95.4 87.8 96.2 87 0.02 72.2

(iii) GT flow 95.5 86.9 91.5 86.9 97.8 92.3 98 92.5 0 100

Table 4.7: Ablation results about the robustness to scene flow distortions
on OGC-DRSV. The robustness of the proposed multi-frame approach to
scene flow distortions on OGC-DRSV. All groups share same configura-
tions of optimization: lr = 0.004, early patience= 100, (k1, k2) : (32, 32),
(n1, n2) = (16, 32), (r1, r2) = (0.08, 0.16). This table reports the object
segmentation performance on the testing set and scene flow quality on
testing set.

According to Table. 4.7, the proposed method is robust to Gaussian

noise in scene flows. The AP of noise flow with std 0.05 maintains 90.4

even the quality of flow degrades. In contrast, flow distortions caused

by undertrained estimators lead to a significant decrease in segmentation

performance, where AP drops from 89.4 to 45.5. Based on this compar-

ison, the proposed method demonstrates robustness against noisy flows

with significant variance but is more susceptible to large biases in the

estimated scene flows.

4.5.2 Key points selection

Point sampling is a frequently employed technique in the field of point

cloud analysis, particularly when the original point cloud set contains

an enormous quantity of points. As per the existing literature, three

of the most commonly utilized sampling methods—Farthest Point Sam-

pling, Random Sampling, and Grid Sampling—are selected as plug-in-

play modules for the proposed framework. Except sampling methods,

other parameters remain unchanged to achieve a fair comparison. The

results are shown in Table. 4.8. RS and FPS perform similarly, showing

comparable results across all metrics. FPS is used in other experiments

as it can balance the inference speed and segmentation performance.
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Sample Method AP ↑ PQ ↑ F1 ↑ Pre ↑ Rec ↑ mIoU ↑ RI ↑ PP ↑ UQ ↑

RS 89.3 75.4 82.2 73.7 95.3 87.7 96.2 98.3 87.0

FPS 89.5 75.6 82.5 74.0 95.5 87.7 96.2 98.3 87.0

Grid 83.7 72.2 81.0 76.4 88.5 80.2 94.6 95.8 78.6

Table 4.8: Sampling methods comparison in multi-frame approach. RS
denotes Random sampling. FPS represents Farthest Point Sampling.
Grid is Grid Sampling. Configurations of optimization: lr = 0.004, early
patience= 100, (n1, n2) = (16, 32), (r1, r2) = (0.08, 0.16).

Key & Object AP PQ F1 Pre Rec mIoU RI UQ PP Time

(8, 8) 65.9 55.1 70.3 69.1 73.4 63.2 87.6 57.4 87.8 14.6

(32, 32) 89.5 75.6 82.5 74.0 95.5 87.7 96.2 87.0 98.3 20.2

(64, 64) 87.9 76.9 82.6 73.7 96.3 89.6 96.8 89.1 99.2 24.0

(128, 128) 83.5 75.9 81.4 72.1 96.3 89.7 96.7 89.3 99.2 22.2

(256, 256) 79.7 72.7 78.4 68.1 95.5 88.7 96.3 87.9 99.1 32.7

(512, 512) 77.1 70.0 76.3 65.2 95.2 87.6 95.8 86.8 99.0 46.5

Table 4.9: Ablation of key number and maximum object number on
OGC-DRSV dataset. Configurations of optimization: lr = 0.004, early
patience= 100, (n1, n2) = (16, 32), (r1, r2) = (0.08, 0.16).

4.5.3 Key points &max object number

Five different sets of parameters are used to compare the performance

of the proposed segmentation algorithm. Notably, the number of key

points significantly impacts the evaluation, as both recall and precision

are closely tied to how well the predicted masks match the ground truth.

As shown in Table. 4.9, the configuration with 32 key points and a

maximum of 32 possible objects achieves the best overall performance.

Although the actual number of objects in the dataset is considerably

smaller than 32, this configuration enhances performance by allowing

the model to estimate a greater number of potential object masks, lead-

ing to more accurate segmentation. The increased mask quantity likely

improves the model’s capacity to capture finer details and better handle

object occlusions or overlaps. This flexibility in segment mask prediction

seems to provide a balanced trade-off between precision and recall, par-

ticularly in complex scenes where under-segmentation would reduce the
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Method AP ↑ PQ ↑ F1 ↑ Pre ↑ Rec ↑ mIoU ↑ RI ↑ UQ ↑
Softmax 84.7 72.1 79.6 70.0 95.3 86.8 95.7 86.0

RBF kernel 89.5 75.6 82.5 74.0 95.5 87.7 96.2 87.0

Table 4.10: Ablation of kernel function. Results on OGC-DRSV test set.
Parameters: lr = 0.004, early stopping patience = 100, (k1, k2) : (32, 32),
(n1, n2) = (16, 32), (r1, r2) : (0.08, 0.16).

recall, and over-segmentation would hurt precision.

4.5.4 Kernel function

Table. 4.10 compares the segmentation performance of the proposed

framework using two distinct kernel functions: the standard Softmax

and the Radial Basis Function (RBF) kernel. Results are evaluated on

the OGC-DRSV test set. The RBF kernel demonstrates consistent supe-

riority over Softmax, achieving 89.5% AP and 75.6% PQ—a significant

improvement of +4.8 AP and +3.5 PQ compared to the baseline. No-

tably, the RBF kernel enhances robustness in boundary-aware metrics

(e.g., +1.7 mIoU), likely due to its capacity to model non-linear spatial

relationships. This comparison validates the effectiveness of RBF-based

feature aggregation for dynamic point cloud segmentation.

4.5.4.1 Softmax kernel

The softmax kernel is a kernel function applied directly to the inner prod-

uct < · > of two feature vectors. This approach simplifies the parameter

space by reducing the number of hyperparameters from two (the posi-

tional encoding scale and the kernel scale) to just one (the positional

encoding scale). By leveraging the softmax function, the kernel acts as a

selection matrix, emphasizing the most dominant features from the sim-

ilarity matrix, thus enhancing the most relevant features for improved

representation. It is defined as:

Kβ = Softmax (⟨ϕ(p;β), ϕ (p∗;β)⟩) (4.8)
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Figure 4.8: Segmentation Results for three different smooth regulariza-
tion settings. H1 : (8, 16), (0.02, 0.04), H2 : (16,32), (0.08, 0.16), H3:
(32,64), (0.08,0.16). Results are evaluated on the OGC-DRSV test set
across eight metrics, including Average Precision (AP), Panoptic Quality
(PQ), F1 score, Precision (Pre), Recall (Rec), mean Intersection-over-
Union (mIoU), Rand Index (RI), Uncertainty Quality (UQ), and pro-
cessing time.

4.5.4.2 RBF Kernel

When dealing with data that has a nonlinear structure, the radial basis

function (RBF) kernel is a good choice to learn relationships between

point sets. The radial basis function kernel is defined as:

K (p,p∗) = exp

(
−∥p− p∗∥2

2σ2

)
(4.9)

We use it to capture the subtle variations in point sets. RBF kernel

is able to focus on and learn similarities in local regions of a point set,

which can help improve accuracy in distinguishing between similar and

dissimilar sets. The RBF kernel primarily depends on a single parameter

(the bandwidth or scale parameter), which controls the spread of the

kernel. This single parameter can be adjusted to tune the sensitivity to

variations within the point set, making it relatively simple to optimize

compared to other more complex kernels with many hyperparameters

(Cortes et al. 2002, Parra and Tobar 2017).
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Params Scene 1 Scene 2 Scene 3

H1

H2

H3

GT

Figure 4.9: Visual Results on OGC-DRSV for three smooth regu-
larization settings. Parameters held constant across comparisons for
H1, H2, H3 include: key points and max object number: (32,32), learning
rate: 0.004, early patience: 100.

4.5.5 Smooth loss

This section evaluates the influence of smoothness regularization hy-

perparameters on the OGC-DRSV dataset. Smooth loss address over-

segmentation through enforcing the mask to be consistent within an ge-

ometrical area. Moreover, when the regularization is strengthened by

enforcing smoothness in a larger local neighborhood, the Precision score

is improved with less over-segmentation. Fig. 4.8 shows qualitative re-
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Figure 4.10: Failure case when two objects have the same mask prediction
(red ellipse in the rightmost figure).

sults. It can be seen that larger neighboring area brings higher perfor-

mance. Expanding the neighboring region (e.g., increasing search radius

or neighbor count) allows the model to aggregate richer geometric and

semantic features from a broader spatial context. As shown in Fig. 4.9,

the smooth parameter H3 effectively reduces over-segmentation artifacts

by enforcing stronger spatial coherence. However, this enhancement en-

tails a computational cost: H3 significantly increases runtime due to its

reliance on larger neighborhood sizes. Algorithms like K-nearest neigh-

bors (KNN) or radius search scale non-linearly with neighborhood size.

According to Fig. 4.8, optimal parameters (H2 setting) are often deter-

mined empirically to balance accuracy and latency for target hardware.

The parameter set H2 is used in other ablation studies to save time.

4.6 Concluding remarks

Contributions. This chapter shows that the classical kernel function

provides a direct object mask prediction in a non-learning setting. Key

mask initialization and key mask propagation are implemented in a com-

pact and efficient manner, which could be used in various architectures.

Dynamic loss and smooth loss are employed to address the under segmen-

tation and over segmentation problem, respectively. Experimental results

confirm that the proposed method has adaptability to both a small mo-

tion sequence and a longer sequence. The proposed method succeeds in

generating an accurate object mask for dynamic scene analysis.
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Scene OGC Ours GT

1

2

Figure 4.11: Visual comparisons are shown for three methods (left to
right): OGC-R1, the proposed single-frame method, and ground truth
(GT). For optimal clarity, images should be viewed in zoomed mode.
In the first scene, the proposed method (middle column) struggles to
generate coherent object masks, likely due to insufficient motion cues.
In contrast, OGC-R1 (left) successfully identifies most instances, albeit
with minor false positives (e.g., fragmented masks in static regions).

Limitations. One issue is that the loss functions are not always suffi-

cient to ensure distinct mask predictions for object parts that are close

to each other (see Fig. 4.10). Furthermore, the optimization results on

the KITTI-SF dataset did not meet expectations. As shown in Fig. 4.11,

the proposed method failed to produce reasonable segmentation results

compared to OGC (Song and Yang 2022). The proposed method inher-

ently prioritizes scene-specific adaptation, which may limit scalability in

large-scale applications. In contrast, conventional learning-based meth-

ods leverage full-dataset training to iteratively refine predictions across

sequences, balancing errors and improving average performance through

holistic optimization. To bridge this gap and enhance the framework’s

generalizability while retaining its strengths, Chapter 5 introduces a novel

training strategy that integrates key points masks with dataset-wide

learning. This approach systematically validates the current methodol-

ogy while extending it to address scalability challenges, enabling efficient

adaptation across diverse scenarios without sacrificing temporal coher-

ence or segmentation precision.
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5
Learning to Segment 3D Objects

from Multiple Point Cloud Frames

This Chapter introduces a learning framework for object segmentation

from multiple frames. Moreprecisely, the framework is validated in both

fully supervised manner and unsupervised manner. Based on the limi-

tations discussed in Chapter 4, this chapter improves the segmentation

results on KITTI-SF dataset through a time-independent query. In the

following, a brief motivation is given why multiple frames promise to

achieve increased performance. Then, the methodology and network ar-

chitectures are presented. Finally, extensive experimental results are

illustrated.

5.1 Motivation

Recently, significant progress has been made in 3D instance segmenta-

tion (Vu et al. 2022, Wang et al. 2018, Liu et al. 2020, Yang et al. 2024),

enhancing both the accuracy and efficiency of object recognition and seg-

mentation. However, fully-supervised training for this task often requires

extensive human annotations, making it a costly and labor-intensive pro-
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Figure 5.1: Different frameworks to obtain instance segmentation in
static input and dynamic input. (a) Single frame static segmentation:
segment individual scans (Triess et al. 2020, Hui et al. 2022, Ren et al.
2024). (b) Single frame segmentation with dynamic supervision (Song
and Yang 2024, Zhong et al. 2024). (c) Multi-frame: segment individual
scans and associate predictions over time (Marcuzzi et al. 2022, Hong
et al. 2021). (d) Ours: directly segment multi-frame data without asso-
ciation between individual predictions.

cess. In the context of point cloud processing, single frame static segmen-

tation focuses on segmenting objects within a single point cloud (Triess

et al. 2020, Hui et al. 2022, Ren et al. 2024), while dynamic segmentation

deals with the temporal changes across multiple frames to track and pre-

dict the motion of objects (Marcuzzi et al. 2022, Hong et al. 2021). Static

segmentation is crucial for tasks where the scene is captured in a single

shot, such as in architectural modeling or in a stationary scene. On the

other hand, dynamic segmentation is vital for applications that involve

motion, such as in robotics or surveillance systems where the movement

of objects over time is critical.

Exploring objectness in given dynamic sequences is quite tricky with-

out any annotations. This study argues that geometry consistency and
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motion pattern consistency are the most obvious cues to distinguish mov-

ing object in dynamic sequences, which is to say, points that belongs to

the same rigid object should hold the same geometry characteristics, and

at least share same moving direction and speed.

Then it comes to the key question in this hypothesis. How to learn

motion patterns between consecutive frames? To this date, most segmen-

tation methods in the literature relies on object bounding boxes to detect

object. One solution is first detect object then estimate object-level scene

flow to explicitly learn the motion patterns (Khatri et al. 2024). In this

way, a perfect detector and tracker will produce perfect flow. However,

it requires strong supervision on the object bounding box to detect inter-

ested objects. The detection framework consists of clustering local points

into several segment, then apply Kalman filters to track segmented ob-

jects across time. Kalman filters is used to predict the state of an object

based on its previous state and measurements. Another attempt, as pro-

posed in (Wang et al. 2022e), trains a ClusterNet with supervision from

motion cues. The 3D instance segmentation output from ClusterNet can

guide the localization network when projected onto a 2D image. In turn,

leveraging appearance information from 2D detection can refine the 3D

instance segmentation process.

Previous work such as OGC (Song and Yang 2022) and MBSE3

(Zhong et al. 2024) integrates scene flow estimation with object seg-

mentation; however, they only leverages scene flow predictions from

two point cloud frames for segmentation. Existing methods for multi-

frame segmentation adopt a shared backbone for all frames (Marcuzzi

et al. 2022). Subsequently, VCSF (Vogel et al. 2014) introduced a view-

consistent multi-frame scene flow estimation architecture specifically for

stereo video. Both OGC (Song and Yang 2024) and VCSF utilize a slid-

ing temporal window to enforce consistency across frames, albeit through

different approaches. VCSF, for instance, represents a scene as a set of
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Frame 1 Frame 2 Frame 3 Frame 4

Figure 5.2: Visual Results on OGC-DRSV for inconsistent mask predic-
tions.

planar patches that remain consistent across views, with each patch un-

dergoing an approximately constant rigid motion over time. It formulates

the matching of these patches and their motion as the minimization of an

energy function, which optimizes over both continuous plane and motion

parameters and the discrete pixel-to-plane assignments.

This chapter introduces a method to ensure instance consistency

across sequences by linking predictions through keypoint-driven asso-

ciation. Unlike conventional approaches that depend on post-processing

(e.g., clustering or association steps), the proposed end-to-end frame-

work operates scan-to-scan, directly generating predictions for the input

sequence while accommodating variable frame numbers.

5.1.1 Inconsistency between object mask across frames

According to the results in Fig. 5.2, inconsistencies are observed between

frames. To investigate this further, a statistical analysis of prediction

accuracy gaps within sequences is conducted. As shown in Fig. 5.3, sig-

nificant inter-frame discrepancies arise in the absence of post-processing

techniques like voting. This observation motivates the exploration of so-

lutions to enforce consistency in object mask predictions across frame

sequences. The problem necessitates addressing both temporal point-

frame combination and robustness in segmentation.

Is multi-frame input more effective for object segmentation

than using just two frames? The intuition behind this question is

that continuous or, at the very least, multiple observations help us as
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Figure 5.3: mIou gap between frames in a sequence on OGC-DRSV.
Upper: before voting. Lower: after voting.

human beings perceive the world and make safer, more accurate deci-

sions. This concept becomes particularly relevant in 3D vision, where

robots and autonomous agents must predict the outcomes of potential

obstacles or changes in their environment. For these systems, relying on

just two frames often isn’t enough to capture the full context, especially

in dynamic settings.

The analysis on existing benchmarks supports this assumption. As

shown in Fig. 5.4, the motion of an object becomes more distinct as

more frames are detected, making segmentation of moving objects more

accurate. This observation naturally raises the question: how does multi-

frame perception impact the completeness of object shape? Indeed, mul-

tiple frames contribute to a more complete geometric representation of

objects, aligning with the structure-from-motion (SfM) principle from
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Figure 5.4: Vehicle motion distribution with different frame numbers in
SemanticKITTI-Seq 08.

T AP ↑ PQ ↑ F1 ↑ Pre ↑ Rec ↑ mIoU ↑ RI ↑
0 87.4 76.2 83.4 75.9 92.5 85.5 95.7
1 88.1 78.1 84.9 78.2 92.7 86.0 96.0
2 88.3 78.5 85.2 79.1 92.3 85.8 96.0
3 88.4 78.6 85.3 79.4 92.1 85.7 96.0

Table 5.1: The OGC-DRSV dataset employs multi-frame co-
segmentation, where the hyperparameter T controls the temporal win-
dow for consistency: adjacent frames within [t − T, t + T ] are leveraged
to compute segmentation coherence for the anchor frame t. The baseline
method (T = 0, OGC (Song and Yang 2022)) is trained once without
object-aware optimization. Test set results demonstrate the impact of
varying T on segmentation performance.

computer vision, which describes how the 3D structure of an object can

be inferred from sequential 2D images. This chapter doesn’t delve deeply

into multi-view geometry. Instead, it focus on enhancing data for unsu-

pervised object segmentation. The proposed approach is rooted in the

Gestalt principles, which suggest that moving agents often appear in

groups. This insight means that an anchor point cloud can effectively

represent the movement of points within its vicinity. Building on this,

this chapter explores the use of key points in multi-frame segmentation

tasks. Specifically, key point masks for the input sequence are predicted,
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which is then extrapolated to create a full point mask with linear com-

putational complexity.

5.1.2 Difference to co-segmentation of multiple frames

In the study presented in OGC-PAMI (Song and Yang 2024), a multi-

frame co-segmentation algorithm was introduced to enhance segmenta-

tion accuracy across temporal sequences. The core of this algorithm lies

in harnessing scene flows to align estimated object segmentation masks

across frames, enforcing geometric consistency and temporal coherence.

Table 5.1 shows the co-segmentation algorithm’s improvements in object

segmentation across sequential frames. These results align with the prin-

ciple of maintaining geometric consistency over time. The algorithm ef-

fectively ensures stable, coherent segmentation throughout the sequence.

While effective, this approach relies heavily on precomputed scene flow

vectors to guide mask alignment, which can propagate errors from inac-

curate flow estimations.

By contrast, the proposed method is an end-to-end learning frame-

work that balances temporal coherence with the flexibility to refine masks

based on intra-frame geometric cues. The proposed approach mitigates

error accumulation across frames without additional masks alignment

operation.

5.1.3 Difference to co-part segmentation

Object co-segmentation is aimed at segmenting common objects from

the background, whereas co-part segmentation focuses on jointly decom-

posing these common objects into semantically consistent parts across

point clouds. In other words, object co-segmentation targets the entire

object, while co-part segmentation is concerned with specific parts of the

object. For example, object co-segmentation would aim to segment all

cars in a scene, while co-part segmentation would be more interested in
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Figure 5.5: Architecture of the Proposed Multi-Frame Segmentation Net-
work. The network processes 2–4 sequential point clouds as input and
predicts a set of temporally consistent object masks. It comprises three
core components: (1) a PointNet++ encoder for hierarchical feature ex-
traction, (2) a transformer decoder to refine object queries using spa-
tiotemporal context, and (3) a key feature query head via k nearest
neighbor (knn) search. The per-point masks are extrapolated from the
key point mask by leveraging spatial relationships.

segmenting the wheels, windows, and doors of the cars. Due to the dif-

ficulty caused by the absence of labels, (Umam et al. 2024) investigate

the co-part segmentation task by two subnetworks, superpoint generation

network (SG-Net) and part aggregation network (PA-Net), respectively.

However, their target is static object segmentation.

5.2 Methods

This section provides a detailed description of the proposed object seg-

mentation network. The whole pipeline is illustrated in Fig. 5.5. The

point feature extraction module first generates point embeddings and

their corresponding features. Subsequently, transformer decoders em-

ploy K learnable queries alongside key point features—enhanced with

positional and temporal encodings—to compute K distinct object em-

beddings. Each object embedding is designed to encode the characteris-

tics of a specific object within the input point cloud. Following the key

point embedding query process, the key mask is derived by calculating

the dot product similarity between each object embedding and the key

99



Figure 5.6: The detailed architecture of PointNet++ for OGC-DR/OGC-
DRSV dataset.

point embeddings. This mask identifies regions of the point cloud asso-

ciated with each detected object. The framework leverages scene flow

vectors as a self-supervised signal, combining a dynamic consistency loss

(derived from scene flow alignment) and a motion smoothness loss to

enforce temporal coherence in predictions.

5.2.1 Pointnet++ backbone

PointNet++ (Qi et al. 2017b) is widely used as a feature backbone for

processing point cloud data. Its hierarchical structure is leveraged to

capture point features across multiple scales. By grouping points in

progressively larger neighborhoods, PointNet++ enables the network to

downsample the point cloud and learn features from coarse to dense res-

olutions. This hierarchical downsampling captures both local and global

information, enabling the model to effectively represent complex geome-

tries. At each level, the network aggregates features from increasingly

larger regions, capturing fine-grained details in early layers and broader

spatial structures in deeper layers. It is highly effective for various point

cloud processing tasks, such as segmentation and classification. In our

framework, PointNet++ serves as the backbone for point feature extrac-

tion, learning features from each point cloud frame simultaneously. The

detailed layers of PointNet++ backbone for OGC-DR/OGC-DRSV is

shown in Fig. 5.6.

Table. 5.2 lists the network layer parameters. The Set Abstraction
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OGC-DR / OGC-DRSV KITTI-SF

level s k r c s k r c

SA

1-1 1/2 64 0.1 (0.05) {3,64,64,64} 1/4 64 1.0 {3,32,32,32}
1-2 1/2 64 0.2 (0.1) {3,64,64,128} 1/4 64 2.0 {3,32,32,64}
2 1/4 64 0.4 (0.2) {192,128,128,256} 1/8 64 4.0 {96,64,64,128}
3 1/16 64 8.0 {128,128,128,256}

FP
3 1/8 1/8 {384,128,128}
2 1/2 {448,256,128} 1/4 {224,64,64}
1 1 {131,128,128,64} 1 {67,64,64,64}

KP 1 {256,256} 1 {256,256}

Table 5.2: Comparison of configurations for OGC-DR / OGC-DRSV and
KITTI-SF. In practice, the downsampling rate s and point neighborhood
selection in the PointNet++ backbone are adapted to the point densities
and sizes of different datasets. The parameter k determines the number
of nearest neighbors sampled within a spherical region of radius r. Mean-
while, c specifies the input channel dimension of the first MLP layer and
the output channel dimensions of subsequent layers in the MLP block.

(SA) modules employ a multi-scale grouping (MSG) strategy (Qi et al.

2017a), where levels 1-1 and 1-2 are combined and their outputs concate-

nated to capture hierarchical spatial features. In the Feature Propagation

(FP) modules, multi-level point features generated by the SA modules

are concatenated to form enriched input representations for upsampling

and feature refinement. The Kernel Propagation (KP) Block—a non-

parametric component within the key feature query head—maintains

fixed input and output feature dimensions, which preserves structural

relationships during feature propagation.

5.2.2 Point cloud accumulation

Scene flow predictions are utilized to accumulate a sequence of point

clouds. In the proposed approach, the input sequence lacks one-to-one

correspondences, making it challenging to directly superimpose one point

cloud onto another. However, the flow can be utilized to accumulate

these clouds through a process where the point cloud is first aligned to a

target frame and then concatenated to form a consolidated set of points.
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Algorithm 1 Accumulate Point Clouds According to Flow Vector
Require: pcs Up: (T,N, 3)

flows Fp : (T,N, 3)
Ensure: Ap: (T ×N, 3); U ′

p: (T,N, 3)
1: T ← length of pcs
2: U ′

p ← empty list
{Process each frame}

3: for i← 0 to T − 2 do
4: P ′

i ← P i + Fi

5: for j ← i+ 1 to T − 2 do
6: ids ← find_knn(P ′

i, Pj)
7: nn_flow ← index_flow(Fj, ids)
8: P ′

i ← P ′
i + nn_flow

9: end for
10: Append P ′

i to U ′
p

11: end for
{Add the last frame}

12: Append PT−1 to U ′
p

13: Ap ← torch.cat(U ′
p, dim=0)

14: return Ap, U ′
p

Let Up = {P 1, . . . ,P T} denotes T frames of point clouds in a scene

and U ′
p = {P ′

1, . . . ,P
′
T} is the aligned point cloud frames. Each frame

of point cloud P t = {(x, y, z)j}Nt

j=1 contains point coordinates, where

t ∈ [1, , T ] denotes the frame index. Nt denotes the number of points in a

single frame. Additionally, we define Fp = {F 1, . . . ,F T} as the scene flow

vector extracted by the flow estimation network (Kittenplon et al. 2021).

The accumulated point set, defined as Ap is generated through Alg. 1.

The flow is propagated through the sequence; the flow vector between

the first and second frames is employed to align the initial frame with the

subsequent one. Subsequently, once the first frame’s points are identified

within the second frame, the flow vector in the second frame is indexed

to transition towards the subsequent frame. In this manner, each frame

becomes aligned with the last frame in the sequence. The accumulated

point cloud is then utilized to sample key points for the subsequent mask

prediction process. The accumulated point sets and sampled key points

are illustrated in Fig. 5.7, which demonstrates the ability of the FPS

102



Figure 5.7: Dense accumulated point cloud (left) and sampled key points
(right).

algorithm to preserve the geometric structure of objects.

5.2.3 Key points feature

Key points are represented as a shared anchor set across all frames in

the sequence: H = {h1, · · · , hM}. These key points can be either real

or virtual. Farthest Point Sampling (FPS) is employed to ensure op-

timal coverage of the original point distribution, with M denoting the

number of key points. While a key point may not align precisely with

specific spatial locations across frames, it serves as a critical component

for temporal point mask prediction. Key embeddings are aggregated

by independently searching for corresponding features in each frame’s

original point embeddings. This cross-frame aggregation captures subtle

temporal variations, enriching the key embeddings with contextualized

motion and structural dynamics. The resulting temporally informed em-

beddings enhance robustness and consistency, establishing reliable an-

chors for cross-sequence coherence. Key point features are computed via

k-nearest neighbors (KNN) queries on the aligned point cloud. For each

key point hi
t, three nearest neighbors (h̃p1

t , h̃p2
t , h̃p3

t ) are sampled from P ′
t,

and an inverse distance-weighted average is applied to their features zpkt .

The aggregated feature for key points H at frame t is defined as :

ZHt = F(ZP ′
t
,P ′

t,H). (5.1)
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ZP ′
t
is raw point feature vector at frame t, with corresponding point set

represented by P ′
t. The feature query operation is as folllows:

Z i
t =

3∑
k=1

uk × zpkt∑K
k=1 uk

, i ≤M (5.2)

where uk is distance based weight defined as:

uk =
1

d
(
hi
t, h̃

pk
t

) (5.3)

The interpolated key point features from each frame {Z i
t ∈ Rc | i = 1, . . . ,M}

is then stacked to fuse multi-frame feature. The final key feature is:

ZH = [ZH1 ⊕ZH2 ⊕ZH3 ⊕ZHT ] ∈ RTM×C . (5.4)

Time encode head. Following KNN-based key feature retrieval, a time

encoding head integrates temporal information into each key point using

a sinusoidal encoding scheme, akin to positional embeddings in sequence

processing. This process augments each key point feature by appending a

three-dimensional temporal feature, yielding an enriched representation

Z ′
H ∈ RTM×(C+3). The sinusoidal encoding captures cyclical temporal

patterns, embedding consistent contextual information about each key

point’s position in the sequence. Structured temporal differentiation en-

ables the model to identify motion patterns and variations across frames

effectively. By augmenting key features with temporal signals, the en-

coding enhances cross-frame coherence through improved tracking of key

points over time. These temporally enriched features thereby provide a

robust foundation for downstream tasks requiring dynamic pattern anal-

ysis across frames.

5.2.4 Maskformer decoder

The Transformer decoder initializes with K instance queries and iter-

atively refines them through L stacked decoder layers, producing a set

of precise, context-aware instance embeddings. Each layer refines the
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queries by cross-attending to key point features and performing self-

attention to model inter-query relationships. The learnable queries act

as Q (query vectors), while key point features serve as K (keys) and V

(values) in the multi-head attention mechanism. Following the cross-

attention step, the instance queries undergo self-attention, where the

queries, keys, and values are computed from linear projections of the in-

stance queries themselves. This self-attention facilitates communication

between the instance queries, preventing multiple queries from focus-

ing on the same object, which would otherwise lead to duplicate instance

masks. An MLP layer is added to reduce the dimensionality of the object

embeddings, aligning them with the dimensionality of the point embed-

dings produced by the PointNet++ backbone.

This dual-attention design enables the decoder to adaptively focus on

geometrically salient regions while reasoning about instance-level inter-

actions.

Types of Queries: Parametric query approaches (Cheng et al. 2022,

Chen et al. 2024) learn both query features and positional encodings

during training. This requires optimizing a fixed set of K queries to

generalize across inference-time scene instances.

In contrast, methods like (Misra et al. 2021) employ non-parametric

queries. Instead of training queries, they create them by sampling 3D

points from the input (using a farthest-point sampling strategy). These

queries start with zero features and only use the sampled points’ positions

for encoding. Non-parametric queries offer flexibility: the query count

can vary between training and inference, enabling speed-performance

trade-offs without retraining. However, the proposed framework showed

no performance improvement with non-parametric queries. This result

motivated the adoption of parametric queries in this work.

Mask prediction: Each (soft) binary mask is derived by computing the

dot product between the object embedding and the embeddings of M key

points within the scene. This operation generates raw scores for every
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key point, indicating its affinity (or likelihood) of belonging to the kth

object. To interpret these scores as probabilities, a softmax activation

function is applied across all objects for each key point, normalizing the

scores to produce a probability distribution. This ensures that each key

point has a soft probability of being assigned to different objects, with

values that sum to 1 across all possible object classes. Per-point mask is

extrapolated from the key point mask without extra learning layers.

5.2.5 Loss functions

5.2.5.1 Smooth loss

The computed smoothness loss gives us a scalar value that indicates how

consistent or smooth the features are across neighboring points in the

point clouds. The lower the loss, the smoother the point cloud features

are, meaning that neighboring points have more similar features. Math-

matically, the smooth loss is defined as:

ℓs =
1

N

N∑
n=1

(
1

Q

Q∑
q=1

d
(
on,onq

))
(5.5)

where on ∈ R1×K denotes the object assignment of center point pn. The

neighboring point set around the center point pn is Qn =
{
p1
n, · · · ,pQ

n

}
and onq is mask of the qth point. We choose L1 distance function during

loss computation.

5.2.5.2 Dynamic loss

The dynamic loss is defined as:

ℓd =
1

N

N∑
n=1

∥∥∥∥∥
(

K∑
k=1

onk · (T k ◦ pn)

)
− (pn + an)

∥∥∥∥∥
2

. (5.6)

Each point will be assigned a mask on ∈ (0, 1), here onk denotes the

probability of point belongs to the k-th object. Tk ∈ R4×4 is estimated

transformation matrix generated by Weighted Kabsch algorithm. The

Weighted Kabsch algorithm is introduced in Appendix A.2.2. an repre-

sents the motion of point pn. Given fixed motion estimation, our target
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Method Category Methods AP ↑ PQ ↑ F1 ↑ Pre ↑ Rec ↑ mIoU ↑ RI ↑

Supervised Methods
OGC-sup (Song and Yang 2022) 90.7 82.6 87.6 83.7 92.0 89.2 97.7
MBSE3-sup (Zhong et al. 2024) 92.8 86.9 91.0 88.8 93.2 91.2 98.7
Ours-sup 91.7 85.1 89.6 86.6 92.9 90.3 98.1

Unsupervised Methods

TrajAffn (Ochs et al. 2013) 42.6 46.7 57.8 69.6 49.4 46.8 80.1
SSC (Nunes and Demiris 2018) 74.5 79.2 84.2 92.5 77.3 74.6 91.5
WardLinkage (Ward Jr 1963) 72.3 74.0 82.5 93.9 73.6 69.9 94.3
DBSCAN (Ester et al. 1996) 73.9 76.0 81.6 85.8 77.8 74.7 91.5
OGC (Song and Yang 2022) 92.3 85.1 89.4 85.6 93.6 90.8 97.8
MBSE3 (Zhong et al. 2024) 93.9 87.0 91.1 87.0 95.6 92.4 98.1
Ours 94.7 88.7 92.1 88.7 95.9 93.5 98.3

Table 5.3: Segmentation performance on OGC-DR. The proposed
method outperforms all unsupervised baselines across eight evaluation
metrics. Furthermore, its fully-supervised variant achieves performance
competitive with state-of-the-art supervised approaches.

is to minimize inconsistency of mask predictions during training, the es-

timated object masks are expected to be better and better with this

dynamic constraints. The total loss is a weighted combination of smooth

loss and dynamic loss, we set the weight to 0.1 for smooth loss and 10

for dynamic loss.

The proposed method can also be trained in a fully supervised man-

ner. Let ôn denotes the predicted object mask and on denotes the ground

truth label, cross entropy loss is computed as:

ℓce(on, ôn) = −on log(ôn)− (1− on) log(1− ôn). (5.7)

5.3 Experiments

The proposed method is evaluated on the following datasets:

• DynamicRoom synthetic dataset: object segmentation of indoor

scenes

• KITTI-SF dataset: object segmentation of real-world outdoor scenes

5.3.1 Training details

The initial learning rate is established at 1.0 × 10−4and undergoes a

decay at a rate of 0.7, with a minimum threshold set at 1.0× 10−5. The
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Method Category Methods AP ↑ PQ ↑ F1 ↑ Pre ↑ Rec ↑ mIoU ↑ RI ↑

Supervised Methods
OGC-sup (Song and Yang 2022) 86.3 78.8 85.0 82.2 88.0 83.9 97.1
MBSE3-sup (Zhong et al. 2024) 89.3 82.6 87.9 85.5 90.4 86.6 97.9
Ours-sup 90.2 84.7 89.5 87.6 91.4 88.7 97.7

Unsupervised Methods

TrajAffn (Ochs et al. 2013) 39.3 43.8 54.8 63.0 48.4 45.9 77.7
SSC (Nunes and Demiris 2018) 70.3 75.4 81.5 89.6 74.7 70.8 91.3
WardLinkage (Ward Jr 1963) 69.8 71.6 80.5 91.8 71.7 67.2 93.3
DBSCAN (Ester et al. 1996) 71.9 76.3 81.8 79.1 84.8 80.1 93.5
OGC (Song and Yang 2022) 86.8 77.0 83.9 77.7 91.2 84.8 95.4
MBSE3 (Zhong et al. 2024) 88.1 80.0 86.1 80.8 92.2 86.7 96.6

Ours 88.1 78.4 85.1 78.1 93.5 85.7 96.3

Table 5.4: Segmentation performance on OGC-DRSV. Minor perfor-
mance differences (PQ 80.0% vs 78.4%) arise between MBSE3 and the
proposed method. This discrepancy stems from MBSE3 updating flow
vectors during network training, whereas the proposed method employs
fixed flow vectors.

momentum for batch normalization is configured to 0.9, which influences

the stabilization of the batch normalization metrics. The decay step is

established at 2.0× 105, dictating how often the learning rate is reduced.

During the training of segmentation network, the Adam optimizer

is used. The learning rate is 0.001. The epochs for training on OGC-

DR/KITTI-SF is 150/400 epochs respectively.

The batch size is set as 4/2 on each dataset to fill in the whole memory

of a single RTX3090 GPU. The smooth loss is enabled after first 4000/400

sampleds on OGC-DR/KITTI-SF datasets. Data augmentation is intro-

duced in fully supervised training on KITTI-SF dataset, which enhance

the generalization ability of our network. The details of data augmenta-

tion is illustrated in Appendix A.2.1.

5.3.2 Results on OGC-DR and OGC-DRSV

As presented in Table. 5.3, the proposed method outperforms all classical

unsupervised methods including the clustering based and the motion

segmentation based methods on OGC-DR. Fig. 5.8 shows qualitative

results. The proposed approach generates comprehensive object masks

with minimal over-segmentation.
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Scene DBSCAN OGC Ours GT

1

2

3

Figure 5.8: Visual Results on OGC-DR. We have selected three single
scenes. Our method is compared with DBSCAN and OGC. For the best
clarity, view these images in zoomed mode.

On the single-view OGC-DRSV dataset, the proposed method demon-

strates superior performance and robustness to incomplete point clouds,

as shown in Table. 5.4. Compared to the baseline OGC (Song and

Yang 2022), the method achieves an AP score of 88.1 (+1.3 improve-

ment) without post-processing or iterative training. This contrasts with

OGC, which requires an object-aware ICP algorithm for flow refinement

and an additional training round to reach an AP of 86.8.

A visual comparison of mask predictions across three representative

scenes is provided in Fig. 5.9, evaluated under the challenging single-

view OGC-DRSV benchmark. While the framework achieves reasonable

segmentation accuracy overall, Scene 1 reveals a limitation where two ad-

jacent objects with overlapping geometries are erroneously assigned the

same mask, likely due to insufficient feature disentanglement in regions

of high similarity. In contrast, Scenes 2 and 3 demonstrate robust tem-

poral consistency, with mask predictions remaining coherent across all

four frames despite viewpoint shifts and partial occlusions. This dispar-

ity highlights the method’s sensitivity to object interaction complexity
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Figure 5.9: Visual Results on OGC-DRSV. We have selected three se-
quences, with each containing four frames. For the best clarity, view
these images in zoomed mode. The left subfigure presents the ground
truth (GT), while the right subfigure is our prediction.

Method Category Methods AP ↑ PQ ↑ F1 ↑ Pre ↑ Rec ↑ mIoU ↑ RI ↑

Supervised Methods
OGC-sup (Song and Yang 2022) 62.4 52.7 65.1 63.4 67.0 67.3 95.0
MBSE3-sup (Zhong et al. 2024) 65.1 56.3 68.6 69.4 67.8 69.5 95.7
Ours-sup 67.5 58.3 72.2 74.7 69.9 68.6 95.3

Unsupervised Methods

TrajAffn (Ochs et al. 2013) 24.0 30.2 43.2 37.6 50.8 48.1 58.5
SSC (Nunes and Demiris 2018) 12.5 20.4 28.4 22.8 37.6 41.5 48.9
WardLinkage (Ward Jr 1963) 25.0 16.3 22.9 13.7 69.8 60.5 44.9
DBSCAN (Ester et al. 1996) 13.4 22.8 32.6 26.7 42.0 42.6 55.3
Kernel-opt (Chapter 4) 25.2 34.9 36.8 96.2 24.7 23.3 87.0

OGC (Song and Yang 2022) 36.0 24.6 35.4 26.4 53.8 53.7 57.8
Ours 36.5 23.0 33.7 24.8 52.7 51.9 56.2

Table 5.5: Segmentation performance on KITTI-SF. The proposed su-
pervised framework use key point loss only. In unsupervised setting, the
results of OGC are collected from the first round training for a pair com-
parison.

but underscores its reliability in scenarios with clear spatial or motion

distinctions.
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Method Scene 1 Scene 2 Scene 3

DBSCAN

SSC

WardLinkage

TrajAffn

Ours-sup

Kernel-opt

GT

Figure 5.10: Visual Results on KITTI-SF. Three different scenes are
selected to compare different methods. For the best clarity, view these
images in zoomed mode. The results labeled Kernel-opt are generated
using the algorithm proposed in Chapter 4.

5.3.3 Results on KITTI-SF

The proposed framework, shown in Fig. 5.5, is trained on the KITTI-

SF dataset in a fully supervised manner. During experiments, it was

observed that positional encoding did not enhance performance; in fact,

disabling it yielded better results. Consequently, positional encoding is

omitted in the fully supervised training experiments on the KITTI-SF

111



Figure 5.11: Plain model where the extrapolation of key point mask is
omitted.

dataset. A visual comparison between the proposed method and other

baselines is illustrated in Fig. 5.10. Quantitative results are presented in

Table 5.5, where the proposed method outperforms baseline methods in

the fully supervised setting. Due to limitations of the KITTI-SF dataset,

multi-frame (more than two frames) joint learning segmentation could

not be performed. However, the proposed unsupervised network can be

effectively trained on the dataset. Even after the first round of training,

the proposed method outperformed classical segmentation algorithms.

5.3.4 Pilot Studies

We conduct experiments on OGC-DRSV to verify the generalizability of

the position encoding in MaskFormer Head and our mask extrapolation

head.

1. Can the position encoding help improve the segmentation?

As demonstrated in Section 5.2.4, non-parametric queries outperform

parametric queries in the proposed framework. To further validate de-

sign choices, this section presents ablation studies on positional encoding

configurations. Two variants are compared: (1) No Position Encod-

ing: The model operates solely on raw point features and key points,

excluding explicit spatial cues. (2) Position-Enhanced: The model in-

corporates a positional encoding module that explicitly models spatial

relationships both intra-frame and inter-frame.
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Results and Discussion: Models with position encoding consistently

achieved higher segmentation quality, improving Precision and Recall

metrics by capturing positional consistency across frames.

2. Role of Key Mask Extrapolation for Per-Frame Mask Pre-

diction

In the primary framework, key mask extrapolation is utilized to pro-

vide context for mask prediction in each frame by guiding segmentation

based on key points extracted from the entire sequence. Here, we as-

sess whether this extrapolation step is essential by creating a variant

that computes per-frame masks independently using point embeddings

without key mask guidance. A variant of the main framework is pro-

posed in which point embeddings from a sequence of frames are used to

compute per-point masks independently, without extrapolating from key

masks. The workflow is illustrated in Fig. 5.11. We compare segmen-

tation metrics under an unsupervised setting between this variant and

the main framework in Fig. 5.5. Results in Table. 5.6 show a slight

improvement in PQ and F1 scores, while the Pre score demonstrates less

favorable outcomes compared to the baseline A1. This is expected, as the

key mask, though aggregated from sequence features, may not capture

the full range of details. Using per-frame features enables richer, more

detailed information for each specific frame. The primary motivation is

that key points can guide mask prediction for each frame. To accomplish

this, the proposed method learns key features by leveraging point fea-

tures extracted from each frame individually. Once the key point mask

is predicted, a per-point mask can be extrapolated based on pointwise

distances. A comparison on this group of pilot study is shown in Fig.

5.12 with a focus on Recall, PQ, and F1 score.

Theoretical Insight: Key mask extrapolation facilitates mask consis-

tency across temporal sequences by using distance-based extrapolation

from key points. This guides the model in balancing frame-specific de-
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(a) Prec@50 (b) Recall@50 (c) F1@50

Figure 5.12: Comparison of models across different metrics discussed
in Section 5.3.4. In each subfigure, model without posenc, model with
posenc, plain model, plain model with posenc are compared. The per-
formance drop from training set to validation set is also illustrated.

(a) Zoom-in view of frame two. Red
markers indicate key points that
are distant from each aligned point
cloud.

(b) A sequence from OGC-DRSV.

Figure 5.13: Key points and their alignment across frames in the OGC-
DRSV dataset.

tails with sequence-level coherence, crucial in scenes with occlusions or

partially visible objects.
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Settings AP PQ F1 Pre Rec mIoU RI

Model-A1 84.6 77.4 84.2 79.9 90.0 85.0 96.3
Model-A2 87.5 78.4 85.0 80.0 90.9 85.9 96.2
Model-A3 88.7 78.3 84.8 77.9 93.1 87.5 96.3

Table 5.6: Performance metrics for multi-frame segmentation on OGC-
DRSV dataet; A1 is the results of using parametric queries (without
position encoding). A2 is the results of using position encoding in the
MaskFormer head. A3 is the results of using plain model to predict per-
point mask.

Figure 5.14: Comparison on usage of key point loss. In the accompanying
subfigures, pink-colored bars represent training set performance metrics,
while grey-colored bars correspond to testing set results. All models are
trained in a fully-supervised manner, with the sole variation being the
loss computation strategy.

3. Evaluation of Key Loss Alone in Model Training

The impact of using only key loss is also analyzed in this section,

which penalizes discrepancies between predicted and true positions of key

points rather than requiring alignment of every point. This approach is

particularly relevant for single-view datasets, where each frame may lack

full object information due to occlusions or limited viewpoints. Conse-

quently, key points may be positioned far from aligned points in certain

frame. As shown in Fig. 5.13, key points and aligned points are not fully

overlapping because the input sequence is unevenly distributed. This sit-
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Figure 5.15: Scene flow estimation on the KITTI-SF dataset. The seg-
mentation masks are used to enhance flow estimation through the object-
aware ICP algorithm introduced in OGC. Compared to baseline methods,
the proposed approach achieves the highest improvement in flow quality,
demonstrating superior accuracy and reduced EPE3D.

uation reflects real-life scenarios, where certain objects may be missing

from specific frames due to rapid movement.

Setup: Ablation study is performed with a fully-supervised model under

three settings: key loss only, weighted combination of key loss (0.5) and

per-point loss (0.5), and per-point loss only. All compared models incor-

porate both position encoding and time encoding. Notably, the model

optimized solely with key loss is still able to enforce per-point mask align-

ment, despite being optimized exclusively with key points. As shown in

Fig. 5.14, the model that only with key point loss achieved best results

on Precision and Recall, as well as mIou.

5.3.5 Flow improvement

Once the object segmentation is obtained, the scene flow quality can be

further improved using an iterative optimization algorithm. Given well-

trained segmentation models on KITTI-SF dataset, the object-aware ICP

algorithm (Song and Yang 2022) correct the inconsistency in flows and

lead to a larger improvement than fine-tuning flowstep3d (Kittenplon

et al. 2021) model. The comparison is shown in Fig. 5.15. According
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to the metric value, the proposed method performs better compared to

other baseline methods.

5.4 Concluding remarks

Contributions. This chapter presents an unsupervised learning frame-

work that incorporates geometry consistency and motion pattern consis-

tency to enable multi-frame object segmentation. This method utilizes

shared key point mask across frames, which allows a more flexible input

of dynamic sequence. The representational power of key point features is

significantly enhanced by a simple time encoding head. The segmentation

results can then be used to improve the quality of scene flow estimation.

Limitations. The main limitation of the proposed approach lies in its

generalization ability to real-world datasets. To address this, one poten-

tial solution is to explore incorporating sparse correspondences as part

of the input, a technique commonly used in computer graphics applica-

tions, which could facilitate automatic shape alignment. Additionally,

the fusion of sequence feature is worth-exploring to further improve the

capability of key points in the accumulated point set. This chapter dis-

cuss the usage of mean pooling to implement multi-frame feature fusion.

However, mean pooling is relatively simple and could lead to informa-

tion loss. This point feature fusion could be further improved by more

advanced modules, such as transformer with cross attention, etc.
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6
Conclusion and Future Work

6.1 Recapitulation of core contributions

The overall purpose of this thesis is to empower dynamic scene under-

standing by leveraging the compositional structure of scenes. Specifically,

it explores two main sub problems: how to effectively estimate scene flow

and how to use observed motion patterns to segment 3D objects.

In Chapter 2, a comprehensive comparison and in-depth analysis of

recent deep learning methods for scene flow estimation from 2019 to 2024

is presented, covering supervised, weakly-supervised, and self-supervised

approaches. This thesis systematically compares current approaches for

estimating scene flow according to their learning strategies. Additionally,

this thesis reviews methods for 3D object segmentation on both static

input and dynamic input.

In Chapter 3, a point Transformer architecture is integrated with

point-voxel correlation field to estimate scene flow effectively. Scene flow

estimation is a high-dimensional and computationally intensive task. To

address this challenge, this thesis employs a deep learning architecture

that balances efficiency (fast feature aggregation) and effectiveness (sta-
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ble flow estimation). An enhanced Point Transformer is utilized to ex-

tract point features efficiently while preserving a global understanding

of the scene context. Additionally, global motion aggregation further

enhances the effectiveness of the point-voxel correlation module. Evalu-

ation on synthetic dataset: FlyingThings3D, and real dataset: KITTI,

demonstrates its effectiveness and generalization ability.

In Chapter 4, a clustering-free framework for 3D object segmenta-

tion is presented. This chapter explores a compact algorithm which only

needs to optimize key point masks rather than full point masks. Then the

key point masks are propagated to full points via kernel function with-

out any direct object-level labels. The proposed method can effectively

address the under-segmentation and over segmentation problems with-

out relying on clustering methods or object detectors. Finally, extensive

experiments are conducted to demonstrates the competitive results on

object segmentation benchmarks.

Chapter 5 delves into unsupervised object segmentation with a focus

on multi-frame segmentation. The proposed method is flexible to input

frame numbers and end-to-end trainable, which utilizes shared key point

mask across frames. The representational power of key point features

is significantly enhanced by a simple time encoding head. Experimental

results on both indoor dataset and outdoor dataset show the effectiveness

of the method. Furthermore, the segmentation results can be used to

improve the quality of scene flow estimation.

6.2 Conclusion and Future Perspectives

The directions of research covered in this thesis are open-ended, and

many additional experiments and extensions are worth exploring. De-

spite being limited in scope, this thesis opens up broader, long-term

research directions for the problems covered.
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Label-free Efficient Scene Flow Estimation Models. In the task

of scene flow estimation, this thesis investigates an effective mechanism

to address feature extraction and the integration of local and global in-

formation between points. Current methods still require annotation in-

tervention. In future work, research can focus on weakly supervised and

self-supervised methods, specifically designing a unified framework ap-

plicable to multiple datasets. In the area of scene flow estimation, while

fast and highly accurate solutions exist, narrowing the gap between effi-

ciency and state-of-the-art performance in real-time systems for mobile

platforms remains a significant challenge. Pioneering works (Jund et al.

2021, Vedder et al. 2023, Li and Lucey 2024) demonstrate progress toward

lightweight, mobile-compatible systems, though computational bottle-

necks persist. For instance, the dual point-voxel architecture introduced

here incurs inference latency, hindering edge-device applicability. Fu-

ture research should prioritize end-to-end frameworks that unify weakly

or self-supervised paradigms—reducing annotation dependence—while

maintaining computational efficiency across diverse datasets. Addition-

ally, enhancing scene flow datasets for long-term motion and 3D shape

reconstruction could further alleviate supervision requirements. As hard-

ware constraints ease, integrating these advances may accelerate adoption

of high-accuracy, real-time label-free models for resource-limited plat-

forms.

Memory Optimization in 3D Point Cloud Segmentation. The

memory footprint of 3D point clouds in autonomous driving arises from

the need to process millions of points per frame, compounded by LiDAR’s

high sampling rates. This not strains hardware but also limits the scala-

bility of algorithms. For instance, the segmentation pipeline in this thesis

struggles with real-time performance due to iterative optimization steps

and redundant computations. To mitigate this, dataset-specific kernel

functions could dynamically adapt to regional geometric characteristics
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(e.g., road surfaces vs. pedestrians), optimizing resource allocation dur-

ing inference. As mentioned in previous chapters, multiple observations

is more effective in object segmentation than single observation. Thus,

exploring the fusion of sequence features can further improve the ca-

pabilities of key points within the accumulated point set. This thesis

employs mean pooling to fuse features and obtain key point embeddings.

However, mean pooling is a relatively simple method and may result

in information loss. Advanced fusion strategies, such as cross-attention

mechanisms in transformer architectures, could selectively preserve dis-

criminative features across frames. These mechanisms would allow the

model to weight features based on their relevance (e.g., prioritizing points

with high motion entropy), thereby improving segmentation precision

without proportional computational cost increases.

Enhancing Feature Propagation via Ground-Aware Preprocess-

ing. A critical limitation of nearest neighbor propagation in 3D point

cloud processing is its susceptibility to dominance by pervasive ground

points in autonomous driving datasets. While the method in Chapter 5

efficiently transfers features to key regions, its indiscriminate spatial ag-

gregation often dilutes foreground object features (e.g., vehicles, pedestri-

ans) due to the overwhelming density of ground-plane points. To address

this, ground plane fitting can be integrated as a preprocessing step to iso-

late and suppress ground points before feature propagation. For instance,

leveraging techniques like (Li et al. 2017), which robustly segment ground

surfaces using iterative plane estimation, could enable foreground-focused

feature aggregation. By masking or downweighting ground points early

in the pipeline, the propagation mechanism would prioritize dynamic or

semantically critical regions, improving segmentation accuracy for real-

world dataset.

Toward Integrated Perception: Meta-Supervision via Scene Flow

for Unified 3D Understand. In contemporary intelligent perception
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systems, critical tasks such as motion estimation, object detection, seg-

mentation, and tracking are often addressed through modular, isolated

frameworks. While effective, this fragmented approach limits holistic

scene understanding and computational efficiency. This thesis pioneers

a meta-supervision paradigm, where scene flow—the 3D motion field of

points between consecutive frames—serves as a supervisory signal for

training 3D object segmentation models. By leveraging scene flow’s in-

herent spatiotemporal consistency, the method circumvents reliance on

large-scale manual annotations, making it particularly advantageous in

domains where dense labels are impractical (e.g., long-range LiDAR se-

quences or rare object categories).

A unified network is expected to jointly predict scene flow, segmen-

tation, and detection in a single forward pass, minimizing computational

redundancy. To enhance segmentation under partial observations, de-

formable shape models should be incorporated, allowing the network to

adapt to dynamic object interactions, such as the articulation of a turn-

ing truck’s trailer. Additionally, the supervisory role of scene flow can

be extended to other modalities, such as radar-camera fusion, or to tasks

like trajectory prediction, leveraging motion as a universal prior for more

robust and comprehensive perception.
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A
Appendix

Figure A.1: The architecture of flow prediction in FlowStep3d (Kitten-
plon et al. 2021).

A.1 Self-Supervised Scene Flow Estimator for
object segmentation

FlowStep3D (Kittenplon et al. 2021) is used in Chapter 4 and Chapter 5

to produce flow estimations. The method uses a PointNet++ backbone

to extract per-point features from each of the two point cloud frames

independently. It leverage a recurrent architecture, GRU to refine the

scene flow predictions iteratively. The overall structure of flowstep3d is

shown in Fig. A.1.
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A.2 Object Segmentation

This section provides detailed algorithms used in object segmentation

and introduce data augmentation used on KITTI-SF dataset.

A.2.1 DBSCAN algorithm

DBSCAN stands for "Density-Based Spatial Clustering of Applications

with Noise". It is an unsupervised clustering-based segmentation method.

Hence, it is a typical baseline method for unsupervised segmentation.

Comparisons about this method and our method can be found in Sec.

5.3. The detail of DBSCAN is as the following:

Algorithm 2 DBSCAN Algorithm
1: Compute neighbors Nε(p) = {q | d(p, q) ≤ ε} for each point p and

identify core points; // Identify core points
2: Join neighboring core points into clusters Ci = {p |

p is connected to core points in Ci}; // Assign core points
3: for each non-core point p do
4: if p has a neighboring core point then
5: Assign p to a neighboring core point’s cluster; // Assign border

points
6: else
7: Mark p as noise; // Assign noise points
8: end if
9: end for

There are two hyper parameters to finetune the results of DBSCAN: eps

ε and minpoint.

A.2.2 The Weighted Kabsch Algorithm

The weighted Kabsch algorithm is a method for aligning two sets of points

in R3 in a way that minimizes the weighted root mean square deviation

(RMSD). It is commonly used in bioinformatics, computer vision, and

other fields where 3D shape comparison is important.

Let P = {p1,p2, . . . ,pN} and Q = {q1,q2, . . . ,qN} be two sets

of points in R3, where pi = (xi, yi, zi) and qi = (ui, vi, wi) for i =
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Figure A.2: DBSCAN algorithm.

1, 2, . . . , N . Furthermore, let {w1, w2, . . . , wN} be a set of correspond-

ing weights associated with each point pair.

The weighted Kabsch algorithm proceeds as follows:

1. Compute the weighted centroids of P and Q:

p̄ =
1∑N

i=1wi

N∑
i=1

wipi,

q̄ =
1∑N

i=1wi

N∑
i=1

wiqi.

2. Translate the point sets so that their weighted centroids are at the

origin:

p′
i = pi − p̄,

q′
i = qi − q̄.

3. Compute the weighted covariance matrix:

H =
N∑
i=1

wip
′
i ⊗ q′

i,

where ⊗ denotes the outer product.

4. Compute the optimal rotation matrix R by finding the best orthog-

onal matrix that minimizes the Frobenius norm of R−H. This is

typically done using the singular value decomposition (SVD) of H.
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5. Apply the rotation matrix R to the translated point set P′:

Paligned = {Rp′
1,Rp′

2, . . . ,Rp′
N}.

The weighted Kabsch algorithm thus provides a transformation that

aligns the point set P to Q in a weighted least-squares sense.

A.2.3 Data augmentation

In the fully-supervised object segmentation settings, OGC (Song and

Yang 2022) introduce a geometry invariance loss to increase the gener-

alization ability of segmentation network. In the training set, we apply

data augmentation to increase the model’s robustness to various trans-

formations and improve its generalization to real-world scenarios. The

augmentation pipeline includes translation and rotation designed to sim-

ulate realistic variations in scale, rotation, and position that a model

might encounter in deployment.

• Scaling:

We apply a scaling transformation where the scale factor is uni-

formly sampled from a range of 0.95 to 1.05. This means each

point cloud can be slightly shrunk or enlarged by up to 5%, simu-

lating variations in object sizes or distances from the sensor. This

scaling helps the model to generalize better across different scales

and prepares it for objects or scenes that may appear slightly larger

or smaller than those seen during training.

• Rotation:

The point cloud is randomly rotated around the vertical (y-axis),

with the rotation angle sampled from -180° to 180°. This rotation

mimics changes in orientation that the model might encounter in

different viewpoints or scene layouts. By randomly rotating the

point cloud around the y-axis, the model learns to recognize pat-

terns in the data regardless of their orientation, which is especially
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important in applications where the scene or objects can appear

from various angles.

• Translation (specific to KITTI-SF dataset):

For the KITTI-SF dataset, we add an additional translation step.

In the x and z directions, translations are uniformly sampled from

-1 to 1 units, allowing the entire point cloud to shift horizontally

or depth-wise by up to 1 unit in either direction. This simulates

slight shifts in the vehicle’s or sensor’s lateral or longitudinal posi-

tion between frames. In the y (vertical) direction, translations are

sampled from -0.1 to 0.1 units, adding a smaller, controlled vertical

shift. This slight vertical translation accounts for minor variations

in sensor height or terrain elevation changes. These translations

make the model more robust to positional variations, preparing it

for real-world scenes where the sensor might be in slightly different

positions across frames.
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