
 1 

Faculty of Health and Social Sciences 

Bournemouth University 

Injury risk and performance: Towards a better understanding of 

the complexities and intricacies of load monitoring  

within an elite football club 

 

A thesis submitted in partial fulfilment for the degree of  

Doctor of Philosophy 

 

Doctoral Thesis of  

Aritra Majumdar 

Supervisory Team: 

Prof. Tim Rees 

Dr. Rashid Bakirov 

 

 

March 2024 



 2 

This copy of the thesis has been supplied on condition that anyone who consults it is understood 

to recognise that its copyright rests with its author and due acknowledgement must always be 

made of the use of any material contained in, or derived from, this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3 

Abstract 

Load monitoring has emerged as a pivotal aspect of contemporary sports science, particularly 

in the context of athlete training and competition. This thesis delves into the dynamic landscape 

of load monitoring with a particular focus on soccer, a sport of unparalleled global popularity, 

boasting 200,000 professional and 240 million amateur players. The prevalence of soccer-

related injuries, surpassing those in other sports, has underscored the imperative for effective 

load monitoring strategies to optimize training adaptations, evaluate fatigue and recovery, and 

mitigate injury risks. Professional sports teams, cognizant of the multifaceted implications of 

inadequate load management, have invested significantly in this domain. In the realm of soccer, 

where injuries can lead to prolonged player absences, impacting team performance and 

incurring substantial financial costs, the need for comprehensive load monitoring becomes 

even more apparent. Notably, English Premier League soccer clubs bore an approximate 

financial burden of £45 million per season due to injuries from 2012-2013 through to the 2016-

2017 season. In response to the pressing demand for a nuanced understanding of the intricate 

relationship between training load and soccer injuries, this thesis integrates insights from 

machine learning. Building upon existing research, we explore how machine learning 

techniques contribute to the refinement of load monitoring strategies in soccer, offering a 

promising avenue for enhancing injury prevention protocols. By bridging the gap between 

traditional sports science methodologies and cutting-edge machine learning applications, this 

research seeks to provide a comprehensive framework for optimizing athlete performance and 

well-being in the dynamic context of soccer with the help of Machine learning.  

This thesis undertook three comprehensive investigations aimed at advancing the 

understanding of the relationship between training load and soccer injuries through the 

application of machine learning methodologies. 
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The initial inquiry critically examined recent research endeavours in football that incorporated 

machine learning techniques. This exploration highlighted the profound implications of 

football injuries, which not only result in prolonged player absences affecting team 

performance but also entail considerable financial ramifications. Despite the burgeoning 

interest in the relationship between training load and injuries, prevailing models and statistical 

approaches were found to inadequately capture the intricate nuances of this association. The 

lack of consensus on variables for analysis posed a significant challenge, hindering the 

effective utilization of existing studies in guiding the selection of key training load variables. 

(Chapter – 2)1 

Subsequently, the second investigation employed machine learning to scrutinize the connection 

between training load and soccer injuries, utilizing a multi-season dataset from an English 

Premier League club. A pioneering aspect of this chapter was the application of Artificial 

Neural Networks, marking the first instance of employing such a method on a multi-season 

dataset for injury prediction. The results indicated a promising capability to predict injuries 

with high recall, identifying a majority of injury cases. However, precision suffered due to the 

prevalent class imbalance, emphasizing the need for further refinement in this methodology. 

Despite these challenges, the chapter provided valuable insights for soccer organizations and 

practitioners engaged in load injury monitoring. (Chapter – 3)2 

The third and final investigation contributed a pioneering analysis of online continual and 

adaptive learning methodologies for soccer injury prediction, utilizing a distinctive multi-

season dataset from Elite Premier League players. Noteworthy findings demonstrated the 

 
1 The second chapter is published as a journal paper entitled “Machine Learning for Understanding and 

Predicting Injuries in Football” in the Sports Medicine – Open Journal (SMOA). 

 
2 The third chapter is published as a journal paper entitled “A Multi-Season Machine Learning Approach to 

Examine the Training Load and Injury relationship in Professional Soccer” in the Journal of Sports Analytics 

(JSA). 
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superiority of these adaptive learning approaches over static learning, with cumulative training 

identified as a critical factor enhancing model adaptability and performance. The practical 

applications extended to injury prevention and player well-being management in professional 

soccer. The research's forward-looking stance emphasized the necessity for future exploration 

into advanced continual learning frameworks and real-time injury prediction systems to refine 

and enhance the efficacy of injury prevention strategies. (Chapter – 4)3 

 

 

 

 

 

 

 

 

 

 

 

 
3 The fourth chapter, entitled as “A Multi-Season Continual Machine Learning Approach to Examine the 

Training Load and Injury relationship in Professional Soccer” is ready for submission. 
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Chapter 1 

1. Introduction 

1.1  Background and motivation 

Football clubs are increasingly adopting data-driven approaches as technological 

advancements in data collection and storage evolve. Sophisticated methods such as multi-

camera systems, electronic performance tracking, wearable sensors, and detailed 

questionnaires now enable the systematic collection of nuanced physical, technical, and 

psychological data from players (De Silva et al., 2018). Initially utilised for scouting, 

performance analysis, and tactical planning, these datasets now play a pivotal role in 

understanding injury aetiology. Injuries not only impact team performance but also carry 

substantial financial repercussions, particularly in elite leagues such as the English Premier 

League (Eliakim et al., 2020). Thus, the relationship between training load and injuries has 

become a central focus in sports science. 

Despite data-driven methodologies being widely applied in sectors like healthcare and 

autonomous vehicles, their adoption in football injury prediction remains limited (Claudino et 

al., 2019). Existing research primarily focuses on a restricted set of training load variables, 

neglecting the broader potential of multivariate and machine learning (ML) approaches (Rein 

and Memmert, 2016). This gap underscores the need for research harnessing ML to enhance 

prognostic insights into football injuries, thereby contributing to sports science and 

performance optimization. 

Machine learning offers a novel perspective on analysing the interplay between training load 

and injuries. As a field of chapter, ML leverages mathematical and statistical models to enable 
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computers to learn from data and improve decision-making. Its applications span various 

domains, including image detection, cancer diagnostics, stock market predictions, and 

customer behavior analysis (Guyon et al., 2002). In sports, the effective use of ML is still 

emerging (Oliver et al., 2020). 

Training load, a key component in injury risk analysis, is categorized into internal and external 

loads. Internal loads include biological and psychological factors like heart rate, blood lactate 

levels, session-RPE, and well-being metrics, recorded via wearable sensors and questionnaires 

(Halson, 2014). External loads measure physical activity, such as velocity, acceleration, total 

workload, and high-speed distances, captured using GPS and electronic performance tracking 

systems (Akenhead and Nassis, 2016). A comprehensive assessment of these loads provides 

insights into players' physiological and psychological stress during training and competition. 

Athletes subjected to training loads experience both fitness and fatigue responses. While fitness 

adaptations enhance resilience to injuries, fatigue increases injury susceptibility. Evidence 

links higher workloads to increased injury risk, leading to recommendations for careful 

workload management (Gabbett, 2016). However, the "Workload-Injury Paradox" suggests 

that high workloads might also promote injury resilience (Windt and Gabbett, 2017). 

Models like the Acute Chronic Workload Ratio (ACWR) illustrate this paradox. ACWR 

compares the rolling average of acute (5-10 days) and chronic (4-6 weeks) workloads, with 

values above 1.5 indicating a higher injury risk (Hulin et al., 2014). Innovations like the 

Exponential Weighted Moving Average (EWMA) improve the sensitivity of ACWR, 

emphasizing the importance of internal and external workload balance (Murray et al., 2017). 

Further, methodologies such as monotony and strain analysis have been employed to quantify 

workload impact. High monotony—the ratio of mean to standard deviation of training loads—
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has been associated with increased injury risk (Brink et al., 2010). Studies in sports like 

basketball and rugby highlight these metrics' predictive power, underscoring their relevance in 

soccer (Anderson et al., 2003). 

Advances in ML now allow deeper insights into the workload-injury relationship. By 

incorporating multiple explanatory variables, ML provides a holistic view, transcending 

traditional models like ACWR (Majumdar et al., 2022). Despite its promise, ML in soccer 

injury prediction faces challenges, including class imbalance and dynamic data shifts (concept 

drift), which necessitate adaptive learning frameworks (Lundberg and Lee, 2017). Concept 

drift—the temporal alteration of data distributions—poses significant challenges for static ML 

models, as it renders earlier assumptions obsolete. Addressing this requires ensemble methods, 

online learning algorithms, and adaptive modeling techniques (Hussain et al., 2021). 

Continual learning, also known as lifelong learning, represents a paradigm shift in ML. Unlike 

static models, it allows systems to learn from both historical and incoming data, adapting to 

evolving conditions while mitigating catastrophic forgetting (Disabato and Roveri, 2022). This 

dynamic framework is crucial for applications like soccer injury prediction, where training 

regimes and player conditions vary seasonally. 

This thesis aims to deepen the understanding of the intricate relationship between training load 

and soccer injuries through three interconnected investigations, each contributing uniquely to 

the field. First, it evaluates the current state of research, identifying gaps and limitations in 

existing injury prediction models (Majumdar et al., 2022). Second, it employs machine learning 

on a multi-season dataset from the English Premier League to uncover patterns and improve 

predictive accuracy (Majumdar et al., 2024). Finally, it pioneers the use of continual and 

adaptive learning methodologies to address the dynamic nature of football data, offering 

significant advancements in injury prevention strategies. The first evaluates existing research, 
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highlighting inadequacies in current models, such as the limited scope of training load variables 

considered, the lack of consensus on key predictors, and the reliance on static machine learning 

models that fail to account for the dynamic nature of football data. The second employs ML to 

analyze multi-season data from an English Premier League club, implementing a carefully pre-

processed pipeline that addresses data imbalances through resampling techniques. The chapter 

utilized an Artificial Neural Network (ANN) to identify patterns in training load and injury 

data, achieving high recall by effectively capturing injury cases despite the inherent class 

imbalance. This approach yielded insights into the predictive value of load variables, informing 

targeted injury prevention strategies. The third explores online continual and adaptive learning 

methodologies, showing their superiority in handling dynamic data. For instance, the chapter 

demonstrated that adaptive learning models achieved a 15% higher precision in injury 

prediction compared to static models when applied to a multi-season dataset. This 

improvement underscores the ability of adaptive approaches to adjust to evolving data 

distributions, offering practical advantages in real-world injury prevention scenarios. 

Collectively, these studies advocate for advanced frameworks to enhance injury prevention and 

athlete well-being. 

1.2  Overview of Thesis Contributions 

This thesis presents three major contributions that advance the understanding of training load 

and injury prediction in professional soccer: 

Comprehensive Literature Review and Identification of Research Gaps: 

The first contribution systematically reviews the existing literature on the relationship between 

training load and injuries, particularly in soccer. It identifies significant gaps, such as the lack 
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of multivariate analysis and limited application of machine learning methodologies, 

establishing a strong foundation for further investigation. 

Application of Machine Learning on Multi-Seasonal Data: 

The second contribution involves the innovative use of machine learning, particularly Artificial 

Neural Networks (ANNs), to analyze a longitudinal dataset from an English Premier League 

club. This research addresses challenges such as class imbalance and uncovers valuable 

insights into the predictive capabilities of specific training load variables. The results contribute 

to the development of precise and actionable injury prevention strategies. 

Integration of Continual and Adaptive Learning Techniques: 

The third and most novel contribution introduces continual and adaptive learning 

methodologies. These approaches address the limitations of static models by adapting to 

evolving data distributions (concept drift). By comparing static, continual, and adaptive 

models, the chapter highlights the superior performance of adaptive techniques in maintaining 

high predictive accuracy, ensuring the long-term relevance of injury prediction models in 

dynamic sports environments. 

Collectively, these contributions not only enhance injury prediction frameworks but also 

provide actionable insights for practitioners, paving the way for more effective injury 

prevention strategies in professional soccer. 
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1.3  Literature Review 

1.3.1 General Overview 

The English Premier League (EPL) is renowned as the most affluent, popular, and competitive 

football league worldwide (Ekstrand et al., 2016; Eliakim et al., 2020). Achievements within 

the league are diverse; elite teams compete for the championship and European Champions 

League qualifications, mid-tier teams strive for entry into the UEFA Cup, and others battle to 

avoid relegation (Ekstrand et al., 2016). These varying degrees of success correlate directly 

with financial gains, which are crucial for clubs to attract and retain top talent, thereby 

enhancing their competitive status (English Football League, 2018). As a result, the importance 

of load monitoring in athletes has gained considerable attention in the realm of sports science, 

leading professional sports teams to dedicate significant resources towards understanding and 

optimizing athlete workloads (Halson, 2014; Akenhead and Nassis, 2016). This process is 

crucial for evaluating how athletes adapt to training, gauging fatigue and recovery levels, and 

reducing the likelihood of injuries and illnesses (Soligard et al., 2016; Owoeye et al., 2020). 

Soccer, as the world's most widely played sport with a vast number of professional and amateur 

participants, experiences a higher incidence of injuries compared to other sports. These injuries 

not only restrict players to play for extended durations, negatively affecting team performance, 

but also carry substantial financial costs. In the context of the English Premier League, the 

financial toll of player injuries has been substantial, with costs reaching around £45 million 

annually over a five-year period (Eliakim et al., 2020). This underscores the critical need for 

effective load monitoring strategies to mitigate injury risks and their associated impacts in 

soccer. 
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The availability of players has been identified as a crucial factor influencing the success of 

football clubs across Europe (Ekstrand et al., 2016). Clubs that experienced lower injury rates 

and higher player availability compared to the previous season observed notable improvements 

in their average points per match and overall league standing. Essentially, having a fuller roster 

of available talent directly correlates with enhanced team performance. 

Over an extended period, muscle and tendon injuries, particularly in the hamstring and groin, 

along with ligament and joint injuries to the knee and ankle, emerged as the most significant 

contributors to injury burden, adversely affecting team outcomes (Bahr and Holme, 2003; 

Gabbett, 2016). A substantial portion of these injuries, which negatively impact team 

performance, are considered preventable. Despite ongoing injury prevention efforts, elite 

football players average two injuries each season, leading to a considerable number of injuries 

within a standard team (Ekstrand et al., 2016). Hamstring injuries alone account for 12% of 

these, resulting in significant time lost from training and matches (Ekstrand et al., 2016). 

Notably, while overall muscle injury rates have remained steady, hamstring injuries have seen 

an annual increase, exacerbated by the heightened intensity of competitive leagues like the 

EPL. 

The financial implications of injuries are substantial, with millions paid in wages to injured 

players each season, not including the additional costs for treatment. This financial strain is 

compounded by potential losses in club income due to diminished team performance and lower 

league placements. Clubs in the top half of the league, typically with larger squads and more 

depth, are less impacted by injuries to key players compared to those in the lower half, where 

the threat of relegation looms larger, potentially leading to significant decreases in revenue 

from various sources (Bourdon et al., 2017; Bowen et al., 2019). 
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Injuries not only impact the competitive edge and financial health of clubs but also highlight 

the importance of effective injury prevention measures. Without such strategies, clubs risk 

falling into a detrimental cycle where reduced player availability leads to poorer performance 

and, consequently, less financial capacity to invest in talent, perpetuating the cycle of injury 

and underperformance. This underscores the critical need for clubs to prioritize and refine their 

approach to injury prevention to safeguard both their athletic and financial futures. 

1.3.2 Training Loads and Injury 

Injuries in sports, while complex and resulting from various factors, invariably occur under the 

duress of training or competition workloads (Gabbett, 2016). Essentially, a sport injury 

manifests as structural damage when the applied physical forces surpass the body's resilience. 

This underscores the imperative for sport scientists to delineate workloads that stretch athletes' 

capabilities without breaching their physiological limits (Bahr and Holme, 2003; Carey et al., 

2017). Accordingly, the meticulous monitoring and tailoring of football players' training 

regimens are pivotal to optimizing workload, enhancing adaptability, and diminishing injury 

rates. 

Injuries within football are broadly characterized into three categories: any physical complaint 

derived from football activities, injuries necessitating medical intervention, and injuries 

causing absence from training or matches (Ekstrand et al., 2019; Gabbett and Ullah, 2012). The 

latter, known for its significant impact on performance, facilitates a practical approach to injury 

data collection. Furthermore, injuries are classified based on duration out of action—ranging 

from minimal to severe—and detailed by factors like location, type, and whether they represent 

new or recurrent issues. Distinctions between training versus match-induced injuries, and 

contact versus non-contact injuries, offer additional insights into their nature (Bahr, 2009; 

Windt and Gabbett, 2017). 
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Incorporating workloads into injury prevention frameworks demands a nuanced 

comprehension of how workloads interact with various injury risk factors. A developed 

Workload-Injury Aetiology Model clarifies the influence of workload on injury occurrence, an 

area not fully addressed in earlier models. This model outlines three primary pathways through 

which workload contributes to injury risk: exposure to external risk factors and potential injury 

events, the induction of negative adaptations such as fatigue, and the facilitation of positive 

adaptations like improved fitness (Soligard et al., 2016; Hulin et al., 2014). Workloads, 

therefore, play a dual role in both predisposing athletes to injuries by exposing them to external 

risks and modifying their injury risk through the body’s adaptations to physical stress. 

The relationship between athlete workloads and injury prevention is intricate, where workloads 

act as a means through which athletes encounter potentially injurious scenarios rather than 

being direct causes of injury (Brink et al., 2010; Drew et al., 2016). High workloads have been 

associated with increased injury risks across various sports, emphasizing the need for careful 

management. Initial studies in elite rugby highlighted strong correlations between training 

intensity, duration, and perceived exertion with injury occurrence, supporting the theory that 

higher workloads lead to increased injury risks. This concept was further explored in Australian 

football, revealing that cumulative workloads over weeks correlated with injury risks, 

particularly rapid increases in high-speed running which heightened the chance of injuries like 

hamstring strains (Carey et al., 2017; Murray et al., 2017). 

In soccer, the relationship between internal workload, as measured by perceived exertion, and 

non-contact injuries has been documented, indicating a higher probability of injury following 

periods of high workload intensity over several weeks (Halson, 2014; Owoeye et al., 2020). 

However, the measurement of workload and its impact on injury risk is multifaceted. 

Subjective measures like perceived exertion can be influenced by various factors including the 
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athlete's personality and environmental conditions, suggesting that both internal and external 

workload measurements should be considered for a more holistic understanding (Akenhead 

and Nassis, 2016; Gabbett and Ullah, 2012). 

Research incorporating both perceived exertion and GPS-derived external workloads in elite 

soccer has identified external workloads, such as total distance covered and decelerations over 

weeks, as significant injury risk factors (Rossi et al., 2018; Oliver et al., 2020). Moreover, while 

reducing workloads might lower injury risks, it could also inhibit positive physical adaptations 

essential for performance enhancement and injury tolerance (Bourdon et al., 2017; Bowen et 

al., 2019). Studies have shown that athletes with higher physical capacities can tolerate greater 

workloads and exhibit a decreased relative risk of injury, highlighting the bidirectional 

relationship between workload exposure and physical conditioning. Thus, a balanced approach 

to training, which avoids excessive workloads while fostering physical development, is crucial 

for minimizing injury risks and enhancing athlete performance (Gabbett, 2016; Windt and 

Gabbett, 2017). 

The English Premier League (EPL) has seen significant increases in the speed, intensity, and 

competitive nature of the game, alongside a rise in physical and technical demands. This 

evolution, coupled with a packed schedule, necessitates that players consistently perform under 

high workloads. Consequently, training regimens that do not adequately prepare players can 

lead to decreased fitness levels and a reduced ability to handle physical stress, thus increasing 

the risk of injury. It's been suggested that there's a U-shaped relationship between workload 

and injury risk, implying that both insufficient and excessive workloads can elevate injury risk. 

Previous chronic exposure to workloads can also influence an athlete's current injury risk 

(Ekstrand et al., 2016; Carey et al., 2017). 
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The concept of relative workload monitoring, specifically the acute chronic workload ratio 

(ACWR), has gained prominence (Hulin et al., 2014; Soligard et al., 2016). This involves 

comparing the workload of a recent week (acute workload) against the average workload over 

the past four weeks (chronic workload), offering insights into whether current workloads are 

above, equal to, or below what an athlete has been conditioned for (Murray et al., 2017; 

Gabbett, 2016). Chronic workload represents the athlete's fitness level, while acute workload 

is indicative of fatigue. A high chronic workload with a lower acute workload suggests an 

athlete is well-prepared, whereas a sudden increase in acute workload compared to chronic 

workload indicates excessive fatigue, potentially harming performance and elevating injury 

risk. Initial research in elite sports, like cricket and rugby league (Hulin et al., 2014), 

demonstrated that acute workloads significantly higher than the athlete's chronic workload 

were linked to an increased injury risk. Conversely, higher chronic workloads were associated 

with lower injury risks, attributed to positive training adaptations. 

Guidelines derived from this research suggest that ACWRs above 1.5 indicate a high risk of 

injury, while ratios between 0.8 to 1.3 are considered optimal for minimizing injury risk. 

Workloads below this optimal range or significantly above it are associated with increased 

injury risks. Thus, maintaining workloads within this 'sweet spot' can help balance the risks of 

under- and over-training, ensuring athletes are adequately prepared for competition demands 

while minimizing the likelihood of injury and performance decline (Bourdon et al., 2017; 

Bowen et al., 2019). 

The calculation of the Acute Chronic Workload Ratio (ACWR), a pivotal metric in sports 

science, primarily employs rolling averages, summarizing workloads over predefined periods 

to gauge chronic workload. This traditional method, however, overlooks the nuances of 

training stimuli variations and their timing within these intervals. It treats all stimuli equally, 
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regardless of whether they occurred recently or several weeks prior, thus potentially 

misrepresenting their true impact on an athlete's preparedness and risk of injury. 

As a response to these limitations, an alternative approach has been suggested, utilizing an 

exponentially weighted moving average (EWMA). This model assigns progressively lesser 

significance to older workload data, more accurately reflecting the diminishing influence of 

past training stimuli on the athlete's current state. This refinement aims to offer a more precise 

assessment of workload impacts, enhancing the applicability of the ACWR in monitoring and 

managing athlete training (Murray et al., 2017; Hulin et al., 2014). 

Workload management emerges as a strategic measure within the injury prevention framework, 

which is divided into primary, secondary, tertiary, universal, selective, and indicated 

prevention strategies (Soligard et al., 2016; Gabbett, 2016). Primary prevention focuses on 

avoiding potential injury risk factors by balancing workloads appropriately. Secondary 

prevention seeks to identify and mitigate early signs of injury through workload adjustments. 

Tertiary prevention aims to facilitate a safe return to activity post-injury, minimizing the risk 

of recurrence. 

Universal prevention considers general risk factors across sports disciplines, including mental 

health and physical activity, among others. Given the correlation between workload and injury 

risk across various sports, workload is regarded as a universal risk factor (Hulin et al., 2014; 

Soligard et al., 2016). Selective prevention targets specific demographic and physiological 

attributes that may influence an individual's injury risk, emphasizing personalized training 

programs. Lastly, indicated prevention concentrates on athletes with a heightened injury risk, 

necessitating vigilant workload management to prevent injury occurrence. 
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This holistic approach underscores the critical role of workload management in injury 

prevention, advocating for a nuanced understanding of each athlete's unique risk profile and 

adaptive capacity. In exploring workload management within sports, particularly Australian 

football, studies have contrasted two methods for calculating the Acute Chronic Workload 

Ratio (ACWR): the traditional rolling averages and the exponentially weighted moving 

average (EWMA) (Murray et al., 2017; Carey et al., 2017). While both methods link very high 

ACWRs to increased injury risk, the EWMA has shown greater sensitivity to these risks. 

Despite this, the practical application of rolling averages in planning training workloads seems 

more straightforward, allowing for easier adjustments to manage player load effectively. 

Conversely, the EWMA's complexity, due to its weighting system, poses challenges in 

applying specific workload adjustments in a dynamic training schedule (Bourdon et al., 2017; 

Bowen et al., 2019). 

The concept of ACWR serves as a foundational framework for injury prevention, emphasising 

that chronic workload builds an athlete's capacity to handle acute loads. However, individual 

factors such as age, training history, and physical fitness play a crucial role in moderating injury 

risk, making some athletes more resilient than others. Well-developed physical qualities are 

known to enhance an athlete's tolerance to higher workloads, highlighting the reciprocal 

relationship between workload exposure and physical conditioning. Effective workload 

management, which gradually increases chronic workload while avoiding abrupt spikes, is key 

to enhancing physical capacities and, by extension, workload tolerance. 

Research across various sports has investigated the predictive power of workload measures, 

including ACWR, for injury risk, often finding limited predictive accuracy. This limitation is 

attributed to the complex, multifactorial nature of injury occurrence and the inherently low 

probability of injury in certain sports like football. Nonetheless, the association between 
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workload and injury underscores the value of workload monitoring as a preventive tool, despite 

challenges in prediction. The overall evidence suggests that understanding and managing 

workloads can contribute to injury prevention strategies, yet the direct impact of such 

interventions on reducing injuries remains to be fully determined (Gabbett, 2016; Windt and 

Gabbett, 2017). 

1.3.3 Machine Learning 

Machine Learning (ML) is a foundational discipline within artificial intelligence (AI) that 

empowers computers to execute tasks without explicit programming. By leveraging 

sophisticated algorithms and statistical models, ML systems extract patterns from data, make 

predictions, and continually improve their accuracy (Lundberg and Lee, 2017; Guyon et al., 

2002). This ability to learn from data and adapt to changing conditions makes ML 

indispensable across numerous domains, including finance, healthcare, and sports science. 

The success of any ML model is contingent upon several critical components. Data serves as 

the cornerstone of ML, providing the raw material from which insights are drawn. Data can be 

unstructured, such as images or text, or structured, as in databases and spreadsheets. High-

quality, comprehensive datasets are essential to ensure robust model performance (Halson, 

2014; Mehlig, 2019). Algorithms form the backbone of the learning process, enabling systems 

to process data and uncover underlying patterns. Linear regression, logistic regression, decision 

trees, and neural networks are commonly used algorithms, each suited to specific types of 

problems and data structures (Chen and Guestrin, 2016; Krawczyk et al., 2017). Features, 

representing measurable attributes of the phenomenon under chapter, are integral to model 

training. Proper feature selection and engineering enhance a model’s predictive capability by 

focusing on the most relevant variables, ensuring that the model generalizes well to unseen 

data (Lundberg and Lee, 2017). 
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Training and inference are pivotal stages in ML. During training, the model learns from 

historical data by iteratively refining its parameters to minimize prediction errors. Once trained, 

the model enters the inference stage, where it applies its learned knowledge to new, unseen 

data, enabling real-time predictions and decision-making (Oliver et al., 2020). The evaluation 

of model performance involves metrics such as accuracy, precision, recall, and F1-score, which 

provide insights into the model’s strengths and areas for improvement (Guyon et al., 2002; 

Emmert-Streib et al., 2020). 

ML paradigms are broadly classified into four categories: supervised, unsupervised, semi-

supervised, and reinforcement learning. Supervised learning involves training a model on 

labeled data, where the relationship between inputs and outputs is known. This paradigm is 

widely used for tasks like regression and classification (Loyola-Gonzalez, 2019). Unsupervised 

learning, in contrast, focuses on identifying hidden patterns within unlabeled data, making it 

valuable for clustering and anomaly detection (Rossi et al., 2021). Semi-supervised learning 

strikes a balance by leveraging a small amount of labeled data alongside a larger volume of 

unlabeled data, improving model accuracy without the need for extensive labeling efforts 

(Bourdon et al., 2017). Reinforcement learning enables models to learn optimal strategies by 

interacting with an environment and receiving feedback in the form of rewards or penalties, 

making it particularly effective in robotics, gaming, and autonomous systems (Tang et al., 

2010). 

The versatility of ML is evident in its wide-ranging applications. In finance, ML enhances 

credit scoring, fraud detection, and algorithmic trading (Belle and Papantonis, 2020). 

Healthcare relies on ML for disease diagnosis, treatment personalization, drug discovery, and 

medical imaging (Bohr and Memarzadeh, 2020). In e-commerce, ML powers recommendation 

systems and optimizes supply chain management, while in the automotive industry, it drives 
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the development of autonomous vehicles and advanced safety systems (Chen and Guestrin, 

2016). In the domain of sports science, ML facilitates performance analysis, injury risk 

prediction, and the refinement of scouting and recruitment strategies (Majumdar et al., 2022). 

Furthermore, in cybersecurity, ML strengthens malware detection, threat prediction, and 

network defense mechanisms (Sáez et al., 2019). 

Despite its transformative potential, ML presents several challenges. Ensuring data privacy and 

security is paramount, particularly in sensitive domains such as healthcare and finance. Bias 

and fairness are critical concerns, as biased training data can lead to discriminatory outcomes 

and perpetuate social inequalities (Lundberg and Lee, 2017). The interpretability of complex 

models, especially those involving deep learning, remains a significant hurdle, as stakeholders 

demand transparent and explainable decision-making processes (Johnson and Khoshgoftaar, 

2019). Finally, the acquisition of high-quality, diverse datasets is often resource-intensive but 

essential for building reliable and unbiased models (Emmert-Streib et al., 2020). 

In sports science, ML is revolutionising the management of training loads and injury 

prevention. By analysing both historical and real-time data, ML models provide actionable 

insights to optimize athletic performance and reduce injury risks. Predictive models for injury 

risk, which integrate physiological, psychological, and biomechanical factors, surpass 

traditional statistical approaches by capturing complex, non-linear relationships (Oliver et al., 

2020). Wearable technologies, equipped with sensors, further enhance ML’s capabilities by 

enabling continuous monitoring of training loads, recovery, and player well-being. These real-

time insights allow coaches and medical staff to make data-driven decisions, tailoring training 

regimens to individual athletes and minimizing the likelihood of overtraining and injury 

(Majumdar et al., 2022). 
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Moreover, ML supports rehabilitation by predicting optimal recovery pathways and tracking 

an athlete’s progress post-injury. By personalizing rehabilitation programs, ML ensures that 

athletes regain peak performance levels safely and efficiently, reducing the risk of re-injury. 

Additionally, ML-driven performance analytics offer a competitive edge by identifying 

strengths and weaknesses in team dynamics and individual player contributions, enabling 

strategic adjustments that maximize success (Bohr and Memarzadeh, 2020; Rossi et al., 2021). 

In conclusion, ML represents a paradigm shift in sports science and beyond, providing 

innovative, data-driven solutions to complex challenges. By leveraging the power of ML, 

practitioners can deliver personalized, adaptive strategies that enhance performance, mitigate 

risks, and advance the broader understanding of athletic and physiological dynamics. As ML 

continues to evolve, its integration into sports science will undoubtedly drive further 

breakthroughs, solidifying its role as a cornerstone of modern innovation. 

1.3.4 Online Learning and Concept Drift: Significance and Strategies 

In the realm of machine learning and data analysis, concept drift refers to the temporal 

alteration of data distributions over time, posing a significant challenge for static predictive 

models (Wang et al., 2013; Krawczyk et al., 2017). Traditional machine learning models are 

often built under the assumption of a stationary data distribution. However, in dynamic 

environments such as football, where factors like coaching strategies, player performance, and 

training regimes evolve, these models may become obsolete or suboptimal without frequent 

retraining (Hussain et al., 2021; Zenisek et al., 2019). 

Concept drift manifests in various forms, including sudden, gradual, or recurring shifts in data 

patterns. Sudden drift occurs when a major change happens abruptly in the data distribution, 

such as an injury crisis leading to altered training strategies. Gradual drift involves a slow 
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change over time, like a team's progressive adaptation to a new tactical approach. Recurring 

drift, on the other hand, refers to patterns that re-emerge periodically, such as seasonal 

variations in player workload (Lundberg and Lee, 2017; Gama et al., 2014). 

Addressing concept drift is crucial for ensuring that injury prediction models remain accurate 

and relevant over time. Adaptive learning frameworks and continual learning methodologies 

help mitigate its effects by enabling models to incrementally update their knowledge base as 

new data becomes available (Disabato and Roveri, 2022). 

Various techniques exist to handle concept drift effectively. Online learning algorithms 

continuously update model parameters with incoming data, ensuring real-time adaptability 

(Goel and Batra, 2021). Ensemble methods combine multiple models trained on different data 

segments to enhance robustness against drift (Minku et al., 2010). Periodic retraining involves 

re-training models at scheduled intervals to capture recent trends. Additionally, drift detection 

methods like Drift Detection Method (DDM) and Early Drift Detection Method (EDDM) 

monitor changes in error rates to signal significant distributional shifts, prompting necessary 

model updates (Hussain et al., 2021; Gama et al., 2014). 

Online learning is a core approach to tackling dynamic data environments, especially in sports 

science. Unlike batch learning, where models are trained on entire datasets at once, online 

learning updates the model incrementally with each new data point. This ensures the model 

remains adaptable to real-time changes, a necessity in high-paced domains like football (Rossi 

et al., 2021). For instance, as new injury data is recorded daily, online learning allows 

immediate model refinement without the computational overhead of retraining from scratch. 

Online learning methods are particularly effective when combined with drift detection 

techniques. They ensure that the model evolves in response to concept drift while maintaining 
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robustness against overfitting to transient changes. Moreover, these methods support continual 

learning, enabling the integration of historical and incoming data without catastrophic 

forgetting—a common challenge in traditional retraining approaches (Disabato and Roveri, 

2022; Zenisek et al., 2019). 

In the context of this thesis, addressing concept drift and incorporating online learning are 

paramount for enhancing the reliability and applicability of injury prediction systems. By 

leveraging these techniques, the research ensures that the developed models remain resilient in 

the face of evolving football data, thereby improving both short-term and long-term injury 

prevention strategies. Ultimately, understanding and managing concept drift, coupled with 

robust online learning frameworks, not only enriches the scientific discourse on sports science 

but also contributes to the development of adaptive and effective predictive systems for real-

world applications. 

1.4  Aims and Objectives of the PhD  

This thesis presents three interconnected studies that utilize machine learning methodologies 

to deepen the understanding of the complex relationship between training load and soccer 

injuries. The first chapter provides a comprehensive review of existing literature, the second 

applies machine learning techniques to analyse multi-season data and develop predictive 

models, and the third further enhances these predictive models using adaptive machine learning 

techniques. 

Aim 1: Developing a clearer understanding of what we currently know and think about player 

load and injury, across sports specifically in soccer and the application of Machine Learning 

to unpick the relationship between training load and injury.  

Objectives: 
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1. In pursuit of the primary aim, a comprehensive literature review was undertaken, 

encompassing empirical studies, reviews, unpublished documents ('grey' literature), 

and anecdotal evidence pertaining to player load and injury.  

2. Additionally, an exploration of machine learning methodologies for injury prediction 

was conducted, alongside an examination of pertinent works from well-established 

application domains, notably industrial faults prediction. The fulfilment of these 

objectives establishes a foundational framework for subsequent research endeavours 

concerning machine learning applications in injury prediction, as expounded further 

within this thesis and potentially extending to broader academic discourse. 

Aim 2: To examine, employing sophisticated machine learning methodologies, the association 

between individual and multiple load variables and injury, utilizing a longitudinal dataset 

derived from the first team of AFCB, with the aim of constructing an interpretable machine 

learning model. 

Objectives: 

1. Employ exploratory methodologies, leveraging proficiency in data science and 

machine learning, to analyse a comprehensive 6-year longitudinal dataset 

encompassing player load and injury records curated by AFC Bournemouth. The 

dataset comprises diverse variables pertaining to GPS and on-field activities, general 

off-field and well-being indicators, gym-related metrics, readiness assessments, and 

altitude-related data—encompassing technical, physical, psychological load aspects, 

and personal information. 

2. Employing a distinctive pre-processing methodology involving data sampling, feature 

engineering, and feature selection techniques to construct a machine learning model. 
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The primary objective is to discern between instances of injuries and non-injuries, 

optimizing precision and recall metrics within the model. 

Aim 3: To enhance the prognostication of soccer injuries, integrating online continual and 

adaptive learning methodologies leveraging a longitudinal dataset sourced from the first team 

of AFC Bournemouth, contributing to the refinement and advancement of injury prediction 

models within the realm of professional soccer. 

Objectives: 

1. Focusing on static, continual, and adaptive learning, with the aim to construct continual 

and adaptive drift retraining models. 

2. Executing diverse adaptive machine learning methodologies with the objective of 

augmenting the predictive efficacy of the models beyond that achievable by static 

machine learning models. 

1.5  Original contributions 

1. Developing a clearer understanding between Training load and Injuries and 

prediction of injuries using Machine learning. Aligning with Aim 1, a 

comprehensive literature review is presented in Chapter 2 that identifies the key 

strengths and weaknesses of the current state-of-the-art approaches in training load and 

football injury relationship using Machine learning.  

2. Investigation of the relationship between training load and Injuries using Machine 

Learning. Addressing the challenges highlighted in Aim 1, and aligning with Aim 2, 

A Multi-Season Machine Learning Approach to Examine the Training Load and Injury 

Relationship in Professional Soccer is presented in Chapter 3.  
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a. To date, this is the first chapter that investigates the training load and injury 

relationship using machine learning with data from English Premier League. 

b. To date, this is the first chapter that uses multi-seasonal training load injury data 

to predict injuries.  

c. To date, this is the first chapter that uses Artificial Neural Network (ANN) to 

predict injuries.  

3. Investigation of the relationship between training load and Injuries using 

Continual and Adaptive Machine Learning. Addressing the challenges highlighted 

in Aim 2, and aligning with Aim 3, A Multi-Season Continual Machine Learning 

Approach to Examine the Training Load and Injury Relationship in Professional Soccer 

is presented in Chapter 4. 

a. To date, this is the first chapter that uses continual and adaptive machine 

learning technologies to predict injuries. 

b. To date, this is the first chapter that compares static, continual and adaptive 

machine learning technologies to predict injuries. 

1.6  List of resulting Publications 

The following publications are a result of this work: 

1. Majumdar, A., Bakirov, R., Hodges, D., et al. (2022) 'Machine learning for 

understanding and predicting injuries in football', Sports Medicine - Open, 8(1).  

2. Majumdar, A., Bakirov, R., Hodges, D., McCullagh, S. and Rees, T. (2024) ‘A multi-

season machine learning approach to examine the training load and injury relationship 

in professional soccer’, Journal of Sports Analytics, 1 January, pp. 47–65.  

3. Majumdar, A., Bakirov, R., Hodges, D., McCullagh, S. and Rees, T. (2024) ‘A multi-

season continual machine learning approach to examine the training load and injury 
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relationship in professional soccer’, is ready for submission at Journal of Sports 

Science and Medicine. 

1.7  Structure of the Thesis 

This thesis is structured as a compilation of interconnected research papers, each presented as 

an individual chapter, collectively constituting the three primary studies conducted. As a result, 

some content overlap is inherent across different chapters.  

Chapter One serves as the introduction, providing an overview of the subject areas under 

consideration. It aims to establish a comprehensive understanding of the major issues and 

limitations within these domains, offering a rationale that guides the research direction 

throughout the thesis. 

Chapter Two focuses on elucidating the existing knowledge and perspectives on player load 

and injury, particularly in the context of soccer. Additionally, it explores the application of 

Machine Learning to unravel the intricate relationship between training load and injury. 

Chapter Three employs sophisticated machine learning methodologies to investigate the 

association between individual and multiple load variables and injury. Utilizing a longitudinal 

dataset extracted from the first team of AFC Bournemouth, the objective is to construct an 

interpretable machine learning model, enhancing our understanding of the complex 

relationship between training load and injury occurrence. 

Chapter Four aims to advance the prognostication of soccer injuries by integrating online 

continual and adaptive learning methodologies. Leveraging a longitudinal dataset sourced from 

the first team of AFC Bournemouth, this chapter contributes to refining and advancing injury 

prediction models within the professional soccer domain. 
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Chapter Five encapsulates an overarching discussion of the entire thesis. It synthesizes the 

findings from the preceding chapters, delves into the limitations encountered, and outlines 

implications for future research and applied practices based on these insights. 
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Chapter 2 

2. Abstract 

Attempts to better understand the relationship between training and competition load and injury 

in football are essential for helping to understand adaptation to training programmes, assessing 

fatigue and recovery, and minimizing the risk of injury and illness. To this end, technological 

advancements have enabled the collection of multiple points of data for use in analysis and 

injury prediction. The full breadth of available data has, however, only recently begun to be 

explored using suitable statistical methods. Advances in automatic and interactive data analysis 

with the help of machine learning are now being used to better establish the intricacies of the 

player load and injury relationship. In this article, we examine this recent research, describing 

the analyses and algorithms used, reporting the key findings, and comparing model fit. To date, 

the vast array of variables used in analysis as proxy indicators of player load, alongside 

differences in approach to key aspects of data treatment—such as response to data imbalance, 

model fitting, and a lack of multi-season data—limit a systematic evaluation of findings and 

the drawing of a unified conclusion. If, however, the limitations of current studies can be 

addressed, machine learning has much to offer the field and could in future provide solutions 

to the training load and injury paradox through enhanced and systematic analysis of athlete 

data. 

Key Points 

Football injuries can lead to extended periods of absence from competition, with associated 

impacts on team performance, as well as financial implications. The relationship between 

training load and injuries is now a key research and applied focus, but current models and 
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statistical approaches to data analysis fail to sufficiently capture the nuances of this 

relationship. 

The application of machine learning to the training load and injury relationship is a new but 

fast growing research area, but there is a lack of consensus regarding which variables to 

consider for analysis, let alone those subsequently proving to be key in predicting players’ 

injuries, making it difficult at this time to draw on those studies when choosing which training 

load variables upon which to focus. 

Although questions remain as to the current utility of machine learning for real-world 

application, the use of machine learning has great potential to unearth new insights into the 

workload and injury relationship, if research is expanded to examine multiple seasons’ data, 

accounts for data imbalance, and uses explainable artificial intelligence. 
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2.1  Introduction 

With technological developments in data collection and storage, football clubs are increasingly 

data-driven (De Silva et al., 2018; Rein and Memmert, 2016). The multi-camera method and 

electronic performance and tracking systems, alongside wearable sensors and use of 

questionnaires, has allowed practitioners to collect more detailed physical, technical, and 

psychological data from players (De Silva et al., 2018; Rein and Memmert, 2016). These data 

can be used to inform scouting, performance analysis, and tactics (De Silva et al., 2018; 

Anderson and Sally, 2014), but increasingly they are being used to better understand the 

aetiology of injuries (Bourdon et al., 2017). Injuries can lead to extended periods of absence 

from matches, with associated impacts on team performance, as well as financial implications 

(De Silva et al., 2018; Bourdon et al., 2017). As such, the relationship between training load 

and injuries is now a key focus in football (as it is in all sports). In contrast to other data-centric 

contexts (e.g., health care; autonomous vehicles), however, comparatively little effort has been 

invested in understanding football injuries and their prediction using machine learning. Indeed, 

much of the existing injury research has tended to focus on a limited number of training load 

variables, while the application of multivariate statistical and machine learning methods—

despite their obvious utility for understanding complex, multi-dimensional, problems—has 

been largely ignored (Claudino et al., 2019). The few studies that have used machine learning 

techniques to understand and predict football injuries show its potential. The timeliness of 

using machine learning for sports injury prediction is also highlighted by recent reviews (Van 

Eetvelde et al., 2021; Rossi et al., 2022). We complement this work via close examination of 

research on injury prediction in football, providing details of the approaches employed, along 

with comparison of methods, data, and results, and by providing recommendations for 

practitioners. Before closer examination of these studies in football, we first briefly highlight 

current approaches to understanding the training load and injury relationship, and then 
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introduce machine learning and techniques from machine learning with application to 

understanding the prediction of football injuries. Thus, as well as highlighting the specifics of 

those studies on football injury, this article should serve to aid readers both from sport science 

and machine learning communities in their understanding of sports injury articles employing 

machine learning. 

2.2  Training Loads and Injuries 

Monitoring the load placed on athletes in training (and competition) is a current “hot topic” 

(Halson, 2014) in sport science, with professional sports teams investing substantial resources 

to this end (Bourdon et al., 2017). Load monitoring is essential for determining adaptation to 

training programmes, understanding responses to training, assessing fatigue and recovery, and 

minimizing the risk of injury and illness (Halson, 2014; Gabbett, 2016). Load can be broadly 

classified into two types: internal and external. Internal training load includes physiological 

(e.g., heart rate, blood lactate, oxygen consumption) and psychological (e.g., RPE—ratings of 

perceived exertion, stress, well-being) markers, collected via wearable sensors and 

questionnaires; external training load includes variables collected via electronic performance 

and tracking systems (EPTS)—e.g., velocity, acceleration, deceleration, average speed, top 

speed—as well as numerous other variables, such as power output and weight lifted. 

Although accumulated evidence that higher training workloads may be associated with greater 

injury risk has led to the recommendation that workloads should be reduced to minimise injury 

risk (Gabbett, 2016; Windt and Gabbett, 2017; Drew et al., 2016; Soligard et al., 2016), the 

“Workload-Injury Paradox” (Gabbett, 2016; Windt and Gabbett, 2017) describes the 

phenomenon whereby intense workloads may also be associated with injury resilience. Indeed, 

for sport scientists working full-time in the field, any instruction to reduce workloads for 

currently healthy players will frequently prove to be unpopular. In seeking to better understand 
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and unpick the key features and components of training load and associated injury risk, several 

methods have been developed. Banister and colleagues (Banister et al., 1976) described 

differences between a positive fitness function and a negative fatigue function. The “10% rule” 

(Buist et al., 2007) describes protection from injury to the extent that week-to-week workload 

changes do not exceed 10%. The Acute Chronic Workload Ratio (denoted ACWR), developed 

by Hulin and colleagues (Hulin et al., 2014), is the most popular and well-researched model of 

the injury process (despite known limitations; Impellizzeri et al., 2020), describing the ratio of 

acute (i.e., rolling average of training load completed in the past week) to chronic (i.e., rolling 

average of training load completed in the past 4-6 weeks) workload. ACWR values exceeding 

1.5 have been shown to lead to a 2-4 times greater injury risk over the following week, with an 

optimal range for ACWR suggested as between 0.85 and 1.35. Session load (Foster, 1998) is 

the product of RPE of training sessions and the duration of those sessions. “Overtraining 

syndrome” occurs when session loads exceed a player’s ability to fully recover (Foster, 1998), 

and the related concept of monotony (i.e., the ratio of the mean and standard deviation of 

training loads—the sum of all session loads—recorded each week) has been noted as a strong 

risk factor for injury in studies of skating, basketball, and football (Anderson et al., 2003) 

(Brink et al., 2010). Finally, the ratio of internal (e.g., physiological and psychological factors) 

and external (e.g., data collected via GPS) workload variables (Bourdon et al., 2017; Bowen et 

al., 2019) has been demonstrated to be important as a predictor of injury. 

2.3  Machine Learning 

Machine learning is the scientific chapter of mathematics and statistical models to enable 

computers to use data to automatically learn and make better decisions from experience (Hastie 

et al., 2009). Machine learning has been applied to many areas of science, health care, and 

finance industries, such as for image detection, cancer detection, stock market prediction, and 

customer churn prediction (Claudino et al., 2019; Hastie et al., 2009). In some areas, such as 
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sport, the effective use of machine learning is in its infancy (Claudino et al., 2019; Ruddy et 

al., 2019). 

The algorithms (the ‘rules’ to be followed in calculations) used in machine learning are termed 

supervised learning methods (e.g., regression and classification) and unsupervised learning 

methods (e.g., clustering) (Hastie et al., 2009). Supervised learning methods are based on 

labelled input and output data (i.e., every piece of input data has a corresponding output—in 

the case of injury prediction, training load variables would be considered input data; and injury 

occurrence as output data); unsupervised learning methods are based only on unlabeled input 

data (i.e., the input data do not have corresponding outputs) (Hastie et al., 2009; Ruddy et al., 

2019). The focus in this paper is on supervised algorithms, especially classification—

predicting classes or categories as opposed to continuous values—because injury prediction is 

commonly based on clearly labelled training data and player injuries. In its simplest form, the 

task of any machine learning model is to correctly predict injuries (a positive class) and non-

injuries (a negative class). Common supervised machine learning algorithms are linear and 

logistic regression, decision tree, random forest, k-nearest neighbors (often denoted KNN), 

support vector machine (often denoted SVM), artificial neural networks (often denoted ANN 

or NN), and ‘ensemble methods’ (e.g., bagging; and boosting) (Ruddy et al., 2019). Of these 

machine learning algorithms, some are termed white-box algorithms (e.g., linear regression, 

logistic regression, k-nearest neighbors, decision tree); some are termed black-box algorithms 

(e.g., ensemble methods, random forest, artificial neural networks, support vector machine) 

(Belle and Papantonis, 2020). White-box algorithms are known as interpretable approaches, 

which are useful, because they present a clear mapping from inputs to outputs, clarifying how 

analysis decisions are made—and potentially aiding practitioners and clinicians in deriving 

applied implications from such research. With black-box algorithms, however, this mapping 

from inputs to outputs is opaque. Thus, with the latter algorithms, additional post-hoc methods 
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are needed to interpret and understand their results (Belle and Papantonis, 2020; Loyola-

Gonzalez, 2019). The key point to note from the above is that all these terms are simply various 

algorithms that may be used, each of which may perform better or worse under different 

conditions. 

Many real-life machine learning tasks, including injury prediction, are based on imbalanced 

datasets. Imbalanced datasets include a far higher number of negative examples (i.e., non-

injuries) than positive examples (i.e., injuries). A problem for machine learning models can 

then arise, because they tend to learn from those data points present in the highest numbers (in 

this case, the non-injuries) and subsequently predict those non-injuries well, but fail to predict 

injuries (Krawczyk, 2016; Leevy et al., 2018). To improve the performance of models with 

such imbalanced data, studies can employ balancing techniques such as oversampling (e.g., to 

artificially create more injury data points) or undersampling (e.g., to remove non-injury data 

points), resulting in datasets with a more even balance of non-injuries and injuries. Although 

each approach has its drawbacks, such a process should lead to machine learning models which 

favour neither prediction of injury nor non-injury (Krawczyk, 2016; Leevy et al., 2018). 

Classification machine learning models are typically evaluated via a number of fit metrics, 

some of which, such as accuracy and area under the curve (AUC) are expressed as a single 

value, while others, such as precision, recall, and specificity can have different values 

depending on the choice of the positive class (Hastie et al., 2009; Ruddy et al., 2019). Assuming 

injuries are considered as the positive class and non-injuries as the negative class, accuracy is 

the ratio of correctly predicted injuries and non-injuries to the total number of observed injuries 

and non-injuries; precision is the ratio of either the correctly predicted injuries to the total 

number of correctly and incorrectly predicted injuries; recall is the ratio of correctly predicted 

injuries to the total observed injuries (often described as the true positive rate or sensitivity); 

specificity is the ratio of correctly predicted non-injuries to the total of observed non-injuries 
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(often described as the true negative rate); and F1-score is the “harmonic” mean (compared to 

a simple average, this helps to protect against any extreme values) of precision and recall (as 

such, this metric is sometimes considered an optimal blend of precision and recall). These 

metrics are often expressed in percentages. AUC is the probability curve of the true positive 

rate and false positive rate, with scores close to 1 indicating the best-fitting models (Ruddy et 

al., 2019). 

Often the per-class metrics (precision, recall, specificity, and F1-score) are calculated for each 

class (e.g., injuries and non-injuries) separately and averaged to provide a single overall score. 

Although this can be reasonable in some instances, the overall score can also be misleading 

with imbalanced datasets, such as is often the case with soccer injury data. This is because this 

overall score tends not to reflect how well the model performs on what is termed the “minority 

class” (in this case, the injury data, because there tend to be far fewer injury than non-injury 

data points)—our principal focus of interest. Thus, in the latter case, recall and F1-score of just 

the injury class would be considered particularly useful metrics, while at the same time 

precision and specificity of both the injury and non-injury data help to protect against drawing 

conclusions which may then be biased towards the prediction of injuries. Finally, although 

AUC is often regarded as a very useful evaluation metric, it has also been noted to be 

misleading with imbalanced data (Saito and Rehmsmeier, 2015). Studies (including those 

highlighted in the present article) do not use these metrics in a uniform manner—that is, studies 

employ some but not all of, and not the same, metrics—as such, comparing studies is far from 

a simple process. 

Extending the above, a typical machine learning chapter would proceed as follows: data 

collection, data pre-processing, application of machine learning algorithms (i.e., model 

training), and model evaluation (Kamiri and Mariga, 2021; Gibert et al., 2016). Following data 

collection, data pre-processing can include data cleaning (e.g., missing values imputation, 
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handling outliers, anomaly detection), data transformation (including data normalization), 

feature selection (where only a subset of the original data are used in the model), and feature 

extraction (where new features are created from the original raw data, to perform better within 

the machine learning algorithm) (Gibert et al., 2016; Kotsiantis et al., 2007). This pre-

processing stage generally enhances the performance of the machine learning algorithms than 

if they were fed with the original raw data (Gibert et al., 2016; Kotsiantis et al., 2007). 

Following data pre-processing, there are two main approaches to evaluate the performance of 

machine learning models. In the first approach, the dataset is divided into two parts—training 

data (c. 70%-80% of the dataset) and validation data (c. 20%-30% of the dataset). This process 

is termed train-validation split (although it is also frequently termed train-test split). The 

training data are fed into a machine learning algorithm (e.g., decision tree, support vector 

machine, or artificial neural network), resulting in a trained model. The predictive performance 

of this trained model is then subsequently assessed with the validation data. In the second 

approach, a machine learning model is trained on different subsets of the data and then assessed 

with further (validation) subsets of the same data. This process is termed cross-validation. 

Regardless of approach, some researchers also set aside a final portion of the dataset as “test” 

data—here, after validation, the models are applied to the test data to provide a final unbiased 

estimate of the models’ performance (Kamiri and Mariga, 2021; Gibert et al., 2016; Kotsiantis 

et al., 2007). How well the trained model performs with the (validation or) test data is then 

assessed by means of the evaluation metrics noted above (i.e., accuracy, precision, recall, 

specificity, F1-score, and AUC) (Kamiri and Mariga, 2021). The purpose of these validation 

and test processes is to try to reduce overfitting—a phenomenon whereby a model is biased 

towards the data it has been trained on, but has poor predictive performance when applied to 

previously unseen validation/test data. Machine learning is usually an iterative and cyclical 

process, such that, depending on the model’s performance, analysts return to earlier stages of 
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the process, to change feature selection, to modify the settings (often called hyperparameters) 

of their machine learning algorithm (a process termed hyperparameter optimisation), or to try 

an alternative machine learning algorithm. This entire iterative and cyclic process occurs 

during the training and validation phases (Kamiri and Mariga, 2021; Gibert et al., 2016; 

Kotsiantis et al., 2007). A key point to note from the above discussion is that pre-processing 

techniques are applied to the training, validation, and test data, but balancing techniques are 

only applied to the training data. Indeed, balancing of the validation or test data would be 

undesirable, because assessment of the trained model would not reflect its application and 

performance with real-world (and unbalanced) data. In following all the preceding steps, the 

prediction performance of the machine learning model is often assessed and compared against 

what is termed a baseline model. Baseline models may be simple machine learning algorithms 

or dummy classifiers which use simple heuristics such as predicting the most frequent class 

(i.e., in our case non-injuries). With regard to feature selection, baselines normally include the 

most basic set of features. These base classifiers vary across studies and are set by the 

researchers (i.e., there are no fixed baseline criteria that must be adhered to). Ordinarily, 

researchers also attempt to compare their results with those from similar previous studies, a 

challenging process with football injury prediction, given the infancy of the area, and (as we 

note below), the differences in load variables used and evaluation methods employed across 

these studies. Ultimately, the goal is to derive a model with the best evaluation metrics with 

the test data. For non-experts, understanding this process is useful when trying to glean the key 

message from research using machine learning. 

2.4  The Application of Machine Learning for Injury Prediction in Football 

In section 4.1 we highlight research applying machine learning techniques to football injury 

prediction, describing the type of injury, the machine learning algorithms employed, the 

machine learning methodology, and, if mentioned, the important injury predictors (it is worthy 
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of note that not all studies are explicit with regard to the key predictors in their models); section 

4.2 (and Tables 1-3) provides a summary.  

2.4.1 Existing research 

Rossi and colleagues (Rossi et al., 2018) examined non-contact injuries. The authors collected 

954 data recordings (each data record held information about players’ daily training load) from 

80 training sessions, using 18 training load variables. To account for data imbalance, they 

employed the “ADASYN” (He et al., 2008) oversampling technique. The authors used decision 

trees as the machine learning algorithm, employed both train-test split and cross-validation 

approaches, and constructed four baseline models with different combinations of training loads 

and machine learning models (i.e., logistic regression and random forest). The classification 

models examined in this chapter included ACWR, the ratio of mean and standard deviation 

(MSWR), and the exponentially moving average (EWMA) of each external training load 

variable (i.e., training load variables collected via GPS) individually, as well as with all training 

load variables simultaneously. The results demonstrated that a model including all load 

variables produced the best evaluation metrics when compared with standalone models for 

ACWR, MSWR and EWMA. In this model including all load variables, EWMA of previous 

injuries, EWMA of high-speed running distance, and MSWR of total distance monotony 

appeared to be the key predictors. 

Naglah and colleagues (2018) examined non-contact football injuries caused by what they 

termed high-intensity workouts (more detailed information is not presented). The authors 

initially implemented the k-means classification (an unsupervised classification algorithm) and 

k-nearest neighbors algorithm on each of 65 training load variables individually using a cross-

validation approach, albeit no baseline models are explicitly noted. Subsequently, using those 

training load variables which were significant in the initial approach simultaneously, and with 

support vector machine, they reported an accuracy score of 83.5%; for comparison, k-means 
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classification with each load variable individually generated accuracy of between 40% and 

75%. Overall, a model including all 65 training load variables appeared the most optimal, but 

further specifics on which individual variables might be most important are lacking. 

López-Valenciano and colleagues (2018) and Ayala and colleagues (Ayala et al., 2019) 

examined lower limb muscle injuries (López-Valenciano et al., 2018) and hamstring strains 

(Ayala et al., 2019), comparing a range of machine learning models using 151 and 229 training 

load variables respectively. To account for data imbalance, both studies employed several 

balancing techniques: random oversampling, random undersampling, and synthetic minority 

oversampling (SMOTE) (Chawla et al., 2002). Bagging and boosting machine learning 

algorithms were tested, in order to select the best performing machine learning model for injury 

prediction, with both studies using a cross-validation approach and the ADTree machine 

learning algorithm as a baseline model. The SmoteBoost (i.e., a combination of SMOTE and 

boosting) technique provided the best machine learning model (with 52 (López-Valenciano et 

al., 2018) and 66 (Ayala et al., 2019) of the load variables). Of the 52 variables found to be 

important for predicting injury in López-Valenciano and colleagues’ chapter, three key ones 

were history of lower extremity muscle injury in the last season, peak torque knee flexor 

concentric 300-degree dominant leg, and sport devaluation (an aspect of burnout). Of the 66 

variables found to be important for predicting injury in Ayala and colleagues’ chapter, history 

of hamstring strain injury last season, sleep quality, reduced sense of accomplishment, and 

range of motion-passive hip flexion with the knee extended-dominant leg appeared to be key 

variables. 

Rommers and colleagues (Rommers et al., 2020) examined both the prediction of (a) total 

injuries, and (b) acute versus overuse injuries. The authors used the XGBoost algorithm to 

build their machine learning models, employed both train-test (on the whole dataset) and cross-

validation (on the training data only) approaches, alongside grid-search (a type of 
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hyperparameter optimisation process) as the hyperparameter optimisation process. The authors 

did not, however, mention any baseline model. This chapter is notable for being interpretable 

(see following section on black-box models), because Shapley Additive exPlanations (SHAP) 

(Lundberg and Lee, 2017) was used for interpretation and visualization. SHAP demonstrated 

that, of the 29 training load variables examined, the five most important for predicting injuries 

were age at peak high velocity, body height, leg length, percent body fat, and standing broad 

jump. For classifying injuries as either acute or overuse, the five most important variables were 

age at peak high velocity, moving sideways, sitting height, 20-metre sprint, and T-test left (a 

specific form of sprint test, involving movements forwards and sideways). 

Oliver and colleagues (Oliver et al., 2020) examined non-contact lower limb injuries based on 

“neuromuscular” training loads (using 20 variables). The authors examined the relationship of 

continuous and categorical training load variables with injuries individually, then used those 

variables significantly associated with injuries as inputs for multivariate logistic regression. In 

the latter analysis, only single leg counter movement jump (SLCMJ) peak vertical ground 

reaction force asymmetry remained a significant contributor to injury. The authors also 

implemented different ensemble (e.g., bagging, boosting) machine learning algorithms. To 

account for the data imbalance inherent in this dataset, the authors employed four unspecified 

balancing techniques. The authors used a cross-validation approach, with the J48 machine 

learning algorithm as a baseline model. A total of 57 machine learning models were generated, 

with the bagging machine learning algorithm leading to the best performing model. Across all 

models SLCMJ asymmetry figured prominently, attesting to its importance. Single leg hop for 

distance asymmetry, hop and stick (75% hop) asymmetry, knee valgus on the left leg, age, 

body mass, height, and leg length were also (albeit less so) prominent. 

Vallance and colleagues (Vallance et al., 2020) examined non-contact injuries, with data from 

245 training sessions, using 27 training load variables. The authors ran analyses with a focus 
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on (a) the up-coming week; and (b) the following month, using machine learning with five 

different sets of training load variables (termed “feature sets”)—each set contained a 

combination of personal information, plus GPS, physical, and psychological data. The authors 

used a cross-validation approach, alongside Bayesian optimization (a type of hyperparameter 

optimization process) as the hyperparameter optimization process, with a baseline model which 

predicted only non-injuries. Across all analyses, k-nearest neighbors, random forest, decision 

tree, and XGBoost achieved the best results. The inclusion of personal, GPS, and psychological 

data to a baseline model (which considered past injuries only) resulted in the most accurate 

models. For the up-coming week, the best results were achieved using decision tree and random 

forest, with the following psychological features being the key predictors: RPE, pleasure, and 

satisfaction. For the subsequent month, the best results were achieved using XGBoost, with the 

following features being key predictors: RPE, pleasure, satisfaction, pain, physical shape, 

worry, fatigue, and maximum velocity. The presence of data imbalance in this chapter was 

likely somewhat alleviated by the increased number of positive cases (i.e., injuries) occurring 

with the focus on the upcoming week/month.  

Finally, Venturelli and colleagues (Venturelli et al., 2011) examined thigh muscle strains in 

young players using a survival probability model (i.e., evaluation of the time—from the first 

training load assessment date—players “survived” without injury until occurrence of a first 

injury) with univariate and multivariate Cox regression on 26 variables. In their multivariate 

analysis, previous injuries, height, and percentage difference between two kinds of jumps 

(countermovement jump and squat jump) were found to be significant injury predictors. 

Further, in an unpublished PhD thesis (Kampakis, 2016), using various machine learning 

models with 69 training load variables, supervised principal components analysis outperformed 

all other machine learning models for injury prediction, but model fits were quite poor. 
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2.4.2 Summary of the research 

In sum, Rossi et al. (2018), López-Valenciano et al. (2018), Ayala et al. (2019), Oliver et al. 

(2020) and Vallance et al. (2020) implemented various white-box, tree-based machine learning 

algorithms in their models. Naglah et al. (2018), Vallance et al. (2020), Venturelli et al. (2011), 

and Kampakis (2016) applied black-box machine learning algorithms (support vector machine, 

artificial neural networks, Cox regression). Rommers et al. (2020) also used a black-box model, 

but to counter the problem of interpretability, employed SHAP to interpret and visualise their 

results. The majority of articles used techniques such as SMOTE, random undersampling, and 

random oversampling to counter data imbalance. Further, all articles used cross-validation, 

although note that Rossi et al. (2018) used a prequential evaluation approach (common in 

stream data classification—also noted below), whereby their model was repeatedly tested on 

incoming (in their case, weekly) small data batches, which were then added to the training 

data—this approach of evaluation and up-dating with new data may more closely mirror the 

real-world experience of practitioners using all available data to predict injuries in real time. 

Table 1 (below) gives basic descriptive information about each chapter, including players' ages, 

types of injury, and time-frame—each of these factors could be important in determining which 

features are selected during machine learning as the most prominent injury predictors.  
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Table 1 Descriptive data for the highlighted papers 

 No. of 

players  

No. of 

injuries 

Age group 

(years) 

Injury type Dataset time 

span 

Rossi et al. (2018) 26  21 20-30 Every non-contact 23 weeks 

Naglah et al. (2018) 21  36 Unreported Every non-contact 16 months 

López-Valenciano et al. 

(2018) 

132  32 Unreported Lower leg muscle  Pre-season+ 

1 Season  

Ayala et al. (2019) 96  18 Unreported Hamstring strain Pre-season+ 

1 season 

Rommers et al. (2020) 734  368 10-15 Acute and overuse  Pre-season+ 

1 season 

Oliver et al. (2020) 400  99 10-18 Non-contact lower leg Pre-season+ 

1 season 

Vallance et al. (2020) 40 142 23.6-35.2 Every non-contact Pre-season+ 

1 season 

Venturelli et al. (2011) 84 27 14-18 Thigh muscle strain Pre-season+ 

1 season 

Kampakis (2016) Unreporte

d 

Unreporte

d 
Unreported 

Not specified Unreported 

Note. Only Oliver et al. and Vallance et al. specifically reported using “male” players. The other papers noted the 

following: young football players, elite football players, youth players, and/or professional football players.  

 

Table 2 (below) lists the training load variables considered as input features in the studies. 

Despite some consistency, there is also wide variability in features, meaning that drawing 

conclusions across studies is complex. Thus, the lack of consensus regarding which features to 

consider for analysis, let alone those subsequently proving to be key in predicting players’ 

injuries, makes it difficult at this time for practitioners to rely on these studies when choosing 

which training load features upon which to focus. 
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Table 2 Training load features in the highlighted papers 

 [1] [2] [3, 4] * [5] [6] [7] [8] [9] 

External Load    

Exposure       X  

Jumps  X     X  

Distance X X    X  X 

Accelerations and decelerations X X    X  X 

DSL (Total weighted impacts above 2g) X        

Duration  X    X   

Player Load  X    X  X 

Speed and velocity  X    X  X 

Meterage per minute  X       

Total efforts   X       

High Inertial Movement Analysis’s   X       

Average Metabolic Power        X 

Dynamic Stress Load        X 

Impacts        X 

Energy Expenditure        X 

Step Balance        X 

Dribbling    X     

Sprint    X     

Jumping, moving and balancing    X     

         

Internal Load – Physical Data      

Body Mass Index X  X X X X X  

Fat percentage    X   X  

Step yo-yo test    X   X  

Heart rate  X       

Ratings of perceived exertion (RPE)      X   

         

Internal Load – Psychological Data    

Sleep quality   X   X   

Physical exhaustion   X      

Reduced sense of exhaustion   X      

Sport devaluation   X      

Fatigue, shape, pain, pleasure, worry, satisfaction      X   

   

Personal Information     

Height and weight   X X X X X  
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Age X  X X X X X X 

Role of the player (Position)/ field position X  X   X X X 

Previous injury X  X   X X  

Minutes played in previous games X        

Number of games played  

before each training session  
X    

  
 

 

Dominant leg X  X      

Current level of play   X      

Injury details        X 

Season stage        X 

Activity        X 

Phase of play        X 

Footwear        X 

Surface condition        X 

Sitting height, curl-ups, leg length    X     

75% Hop, SLCMJ, SLHD, Y-balance, TJ Knee     X    

ACWR and MSWR of training loads X        

Neuromuscular training loads    X X    

Total training load features 55 65 151, 229 29 20 27 18 18 

Note. Neuromuscular training loads is an over-arching “feature” which includes multiple variables not explicitly 

mentioned here. *These two papers included 151 and 229 training load variables, under eight over-arching topics 

(with the most important ones noted here). 

[1] denotes Rossi et al. (2018), [2] denotes Naglah et al. (2018), [3] denotes López-Valenciano et al. (2018), [4] 

denotes Ayala et al. (2019), [5] denotes Rommers et al. (2020), [6] denotes Oliver et al. (2020), [7] denotes 

Vallance et al. (2020), [8] denotes Venturelli et al. (2011) and [9] denotes Kampakis (2016).   



 55 

The above notwithstanding, the evaluation metrics in Table 3 (below) appear to demonstrate 

that overall, the best models for injury prediction are those reported by Rossi et al. (2018), 

Ayala et al. (2019), Rommers et al. (2020), and Vallance et al. (2020) The work of Rommers 

et al. (2020) and Vallance et al (2020). considered a far greater number of injuries than the 

other studies, potentially improving prediction. Ayala et al. (2019), Rommers et al (2020)., and 

Vallance et al. (2020) used boosting-based algorithms, which thus appear to work well in this 

context. Both Rossi et al. (2018) and Ayala et al. (2019) used data oversampling, while 

Rommers et al. (2020) and Vallance et al. (2020) did not use any data balancing techniques, 

presumably because of their larger datasets and greater number of positive cases (i.e., injuries).  

Table 3 Model fit for the best-fitting models from each paper 

 Machine 

Learning 

Algorithm

s 

Pre-processing 

techniques 

Accura

cy 

(%) 

Precision 

(%) 

AUC  Recall 

(%) 

F1 

score 

(%) 

Specificit

y 

(%) 

Rossi et al. 

(2018) 

Decision 

Tree 

Feature 

selection, 

Oversampling 

– SMOTE 

- 50 0.76 80 64 - 

Naglah et 

al. (2018) 

SVM  Data 

Normalization 

83.50 - - - - - 

López-

Valenciano 

et al. 

(2018) 

SmoteBoo

st  

Oversampling 

- SMOTE 

- - 0.75 65.90 - 79.10 

Ayala et al. 

(2019) 

SmoteBoo

st  

Oversampling 

- SMOTE 

- - 0.84 77.80 - 83.80 

Rommers 

et al.(a) 

(2020) 

XGBoost  Unmentioned - 85 - 85 85 - 

Rommers 

et al. (b) 

(2020) 

 - 78 - 78 78 - 
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Oliver et 

al. (2020) 

Decision 

Tree 

Various 

balancing 

techniques 

- - 0.66 55.60 - 74.20 

Vallance et 

al. (a)* 

(2020) 

Random 

Forest 

Missing values 

imputation 

95.5 92.2 0.92 94.5 

- - 

Vallance et 

al. (b)* 

(2020) 

XGBoost 

97 97 0.97 97 - - 

Venturelli 

et al. 

(2011) 

Cox 

Regression 

Unmentioned - - - - - - 

Kampakis 

(a) (2016) 

Supervised 

Principal 

Componen

ts Analysis 

 

Unmentioned 

 

88.80 55 - 33 - - 

Kampakis 

(b) (2016) 

97.07 19 - 20 - - 

Note. Each paper used a different overall set of model fit metrics. In papers Rommers et al., Vallance et al. and 

Kampakis, two key differential approaches (denoted a and b) were used. *This article did not explicitly mention 

evaluation metrics—we approximated these values from the article’s presented boxplots. 

Overall, although the research highlighted in this article demonstrates the potential of machine 

learning for bringing new insight to our understanding of injury prediction in football, as 

readers might observe, there is considerable variability in chapter design and analysis. More 

generally, a major concern (and a future research issue) is that the studies examined here are 

based on data collected across a single season. An important future direction would be to test 

and refine the developed models on subsequent seasons’ data, with their inherent changes in 

players, coaches, training, and matches. Indeed, in addition to the above, might a consideration 

of aspects such as the workload-injury paradox, ACWR, and overtraining syndrome aid in the 

design of research and analysis plans to make the most of the predictive ability of machine 

learning models? The paper from Rossi and colleagues (Rossi et al., 2018) is the only one to 

take the latter approach, drawing on ACWR, MSWR and EWMA in their machine learning 

analysis. 



 57 

Building from the above, although the machine learning techniques employed in the research 

highlighted above are quite sound, greater detail regarding the machine learning approaches 

employed would help any objective assessment of their contribution towards better 

understanding the workload-injury relationship. For example, greater clarity with regard to 

whether the reported evaluation metrics are “per-class” or “averaged” would be important—

only Rossi and colleagues (2018) explicitly mentioned recall and precision of their models for 

injury and non-injury data separately. Further, as injury datasets likely have large amounts of 

missing and unclean data, greater detail regarding the various pre-processing techniques 

employed (e.g., in relation to any missing values, different data imputation techniques required, 

balancing, and clarity regarding all types of demographic data, and internal and external load 

variables) would be important for drawing conclusions and guiding future work. Here, only 

López-Valenciano et al. (2018) and Ayala et al. (2019) gave a complete account of all the 

various pre-processing techniques they used in their research. 

With the above said, researchers would be well advised to consider several key points before 

employing machine learning models. The first is to clearly define the task—often drawing on 

the needs and preferences of football practitioners. For example, is the interest simply in raw 

predictions, probabilities, or in examining specific features impacting injuries? Second, with 

regard to data compilation and pre-processing, practitioners at football clubs are likely to have 

varied sources of data, often in unique formats, such that great care should be taken to avoid 

errors when compiling such data into one final dataset. Third, we would recommend ensuring 

that input data are examined in relation to injuries occurring after collection of those input 

data—i.e., such that the model may predict injuries in the future (e.g., in one day’s time or in 

seven days’ time). That is, any training and input data from the same day that an injury has 

occurred should be disregarded, because such data may be confounded by the injury 

occurrence. Fourth, with regard to data pre-processing, given the longitudinal nature of football 
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injury datasets, it would make more sense to replace missing values on a player-by-player basis, 

rather than across the whole dataset, as well as using interpolation for this purpose for some 

features. Similarly, data balancing might also be conducted on a player-by-player and/or 

season-by-season basis.). Finally, as noted above, changes of coaches, managers, players, and 

training regimes across seasons mean that the underlying distribution and quality of data will 

vary from season to season. Traditional machine learning algorithms assume that the 

underlying distribution of the data is the same. To counter this problem, a focus on what is 

termed stream learning may help to better understand and interpret machine learning models 

with multi-season data. What the preceding lines suggest is that future machine learning 

research in this area could be well served by drawing from current expertise, insight, and 

understanding from sport science and sport practitioners. 

2.5  Conclusion 

Machine learning for football injury prediction is a new but fast growing research area. 

Machine learning approaches can help expand the focus from univariate models, to create a 

better understanding of the relative influence of various (physical and psychological) aspects 

of training load on injury risk. In this article, part of our aim was to highlight (and to an extent 

de-mystify) the machine learning process. Machine learning is simply an analytical technique, 

but its power lies in its ability to work so eloquently with such a vast array of load variables. 

Although this can offer greater flexibility over analysis with more simplified models (e.g., 

using ACWR), the myriad ways machine learning can be employed can also lead to difficulty 

in synthesising the current research evidence into an overall, unified, conclusion. Indeed, there 

remain questions as to the utility of these models for real-world application. The use of white-

box machine learning algorithms in a number of the present articles should aid understanding 

and application. Black-box models may, however, offer better predictive performance, despite 

being difficult to interpret and understand. The latter issue of interpretability can be addressed 
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using explainable artificial intelligence approaches, like SHAP (Lundberg and Lee, 2017), 

Local Interpretable Model-agnostic Explanations (Ribeiro et al., 2016), and partial dependency 

plots (Goldstein et al., 2014; Friedman, 2001). Despite its infancy, coupled with the limitations 

we have noted, machine learning for understanding the workload-injury relationship in football 

is clearly a method whose time has come. By expanding the focus to multiple seasons’ data, 

accounting for data imbalance, and using explainable artificial intelligence, machine learning 

should help to unlock new insights into the workload-injury relationship. 

 

 

 

 

 

 

 

 

 

 

 



 60 

Chapter 3 

3. Abstract  

The purpose of this chapter was to use machine learning to examine the relationship between 

training load and soccer injury with a multi-season dataset from one English Premier League 

club. Participants were 35 male professional soccer players (aged 25.79±3.75 years, range 18-

37 years; height 1.80±0.07 m, range 1.63-1.95 m; weight 80.70±6.78 kg, range 66.03-93.70 

kg), with data collected from the 2014-2015 season until the 2018-2019 season. A total of 106 

training loads variables (40 GPS data, 6 personal information, 14 physical data, 4 psychological 

data and 14 ACWR, 14 MSWR and 14 EWMA data) were examined in relation to 133 non-

contact injuries, with a high imbalance ratio of 0.013. XGBoost and Artificial Neural Network 

were implemented to train the machine learning models using four and a half seasons’ data, 

with the developed models subsequently tested on the following half season’s data. During the 

first four and a half seasons, there were 341 injuries; during the next half season there were 37 

injuries. To interpret and visualize the output of each model and the contribution of each feature 

(i.e., training load) towards the model, we used the Shapley Additive Explanations (SHAP) 

approach. Of 37 injuries, XGBoost correctly predicted 26 injuries, with recall and precision of 

73% and 10% respectively. Artificial Neural Network correctly predicted 28 injuries, with 

recall and precision of 77% and 13% respectively. In the model using Artificial Neural 

Network (the relatively more accurate model), last injury area and weight appeared to be the 

most important features contributing to the prediction of injury. This was the first chapter of 

its kind to use Artificial Neural Network and a multi-season dataset for injury prediction. Our 

results demonstrate the potential to predict injuries with high recall, thereby identifying most 

of the injury cases, albeit, due to high class imbalance, precision suffered. This approach to 
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using machine learning provides potentially valuable insights for soccer organizations and 

practitioners when monitoring load injuries. 
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3.1  Introduction 

Monitoring the load placed on athletes in training and competition is a current “hot topic” 

(Kalkhoven et al., 2021) in sport science, with professional sports teams investing substantial 

resources to this end (Bourdon et al., 2017). Load monitoring is essential for determining 

adaptation to training programs, assessing fatigue and recovery, and minimizing the risk of 

injury and illness (Kalkhoven et al., 2021; Halson, 2014). As the most popular global sport, 

with 200,000 professional and 240 million amateur players, and with injury incidence higher 

than any other sport (Rahnama, 2011; Owoeye et al., 2020; Jones et al., 2019), soccer has 

become a key focus for research into load monitoring and injury. Soccer injuries can lead to 

extended periods of absence from matches, with associated impacts on team performance, as 

well as financial implications (Rahnama, 2011; Owoeye et al., 2020; Jones et al., 2019; 

Ibrahimović et al., 2021). Indeed, from 2012-2013 through to the 2016-2017 season, injuries 

cost English Premier League soccer clubs approximately £45 million per season (Eliakim et 

al., 2020). In attempting to better understand the relationship between training load and soccer 

injury, recent research has begun to draw on techniques from machine learning (for a review, 

see Majumdar et al., 2022). In the present chapter, we employed a multi-dimensional and multi-

season interpretable machine learning approach to examine the relationship between training 

load and soccer injury using data from one English Premier League club. 

The timeliness of using machine learning for sports injury prediction is highlighted by recent 

reviews (Van Eetvelde et al., 2021; Rossi et al., 2021). Machine learning approaches can help 

expand the focus from more simplified models of the injury process—such as when using the 

Acute Chronic Workload Ratio (ACWR) (Hulin et al., 2013), the most popular and well-

researched model of the injury process—to create a better understanding of the relative 

influence of various (physical and psychological) aspects of training load on injury risk. The 

original research into the ACWR (Hulin et al., 2013) in the sport of cricket suggested an 
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optimal ACWR range of between 0.85 and 1.5, with ACWR values exceeding 1.5 leading to a 

2-4 times greater injury risk. But there have been recent methodological and theoretical 

criticisms of ACWR (e.g., see Impellizzeri et al., 2021). Further, although tests of the ACWR 

with data from the English Premier League (Bowen et al., 2019) have shown that if the ACWR 

exceeds a value of 2 when chronic load is low, there is 5-7 times greater risk of injury, other 

work within Italian professional soccer (Rossi et al., 2018) has not observed any training 

sessions with ACWR values exceeding 2, finding that the highest injury risks occur when the 

ACWR is less than 1. These sorts of concerns and equivocal results have led to recent machine 

learning research examining soccer injury with a greater number or explanatory load variables 

(Rossi et al., 2018; Vallance et al., 2020; Naglah et al., 2018; Lopez-Valenciano et al., 2018; 

Ayala et al., 2019; Rommers et al., 2020; Oliver et al., 2020; Venturelli et al., 2011; Kampakis, 

2016). The above notwithstanding, however, there are a number of limitations in this research 

that have been noted (Majumdar et al., 2022). These include, though are not limited to, a need 

for (a) greater clarity with regard to the reported evaluation metrics (e.g., recall and precision), 

and whether they are “per-class” of injury or “averaged” across injury and non-injury data; (b) 

greater detail regarding the various pre-processing techniques employed (e.g., in relation to any 

missing values, different data imputation techniques required, balancing, and clarity regarding 

all types of demographic data, and internal and external load variables); and (c) studies over 

more than one season, wherein models are tested and refined on subsequent seasons’ data, with 

their inherent changes in players, coaches, training, and matches.  

In the present chapter we addressed each of these limitations, examining the relationship 

between training load and soccer injury with a multi-season dataset from one English Premier 

League club. The latter point is important, because previous research has, with the exception 

of the work of Rossi and colleagues (2018), tended to focus on developing models with just 

one season’s data, using cross-validation and train-validation split, leaving questions as to how 
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accurate such models would be in predicting “unseen” data (such as from a subsequent season). 

Specifically, then, our novel approach was to train models on data collected across four and a 

half soccer seasons, and then to test those models on the next unseen half season’s data. 

Alongside addressing the known limitations of previous papers, we also sought to examine 

multiple forms of data (e.g., Global Positioning System data, physical data, psychological data, 

and demographic data)—something only Vallance et al. (2020) had previously reported.  

To provide the best opportunity to then unearth insights with our training load input data and 

injury output data, we drew upon state-of-the-art processes from machine learning (such as 

using the XGBoost algorithm: Chen and Guestrin, 2016), but also drew upon deep learning, 

wherein the employed algorithms are inspired by the structure and functions of biological 

neural networks—often called Artificial Neural Networks (or ANNs) (Mehlig, 2019). Finally, 

we should note another criticism of previous papers examining load monitoring and soccer 

injury—the lack of clarity with regard to the key variables underpinning the machine learning 

models developed. This is important, because if machine learning is to become a key part of a 

practitioner’s toolkit in understanding injury risk, machine learning models need to provide 

clarity with regard to the causes of (or key risks for) injury—i.e., the importance of 

“interpretability” (Belle and Papantonis, 2020). In this context, white-box models use 

algorithms (e.g., linear regression, logistic regression, k-nearest neighbors, decision tree) that 

are interpretable, presenting a clear mapping from inputs to outputs, clarifying how analysis 

decisions are made—and potentially aiding practitioners and clinicians in deriving applied 

implications from such research (Loyola-Gonzalez, 2019). On the other hand, black-box 

models use algorithms (e.g., ensemble methods, random forest, artificial neural networks, 

support vector machine) that are not easily interpretable, but may be more powerful. In the 

latter examples, the mapping from inputs to outputs is opaque, but additional post-hoc methods 

can then be used to interpret and understand the results (Loyola-Gonzalez, 2019). In the present 



 65 

chapter, we employed black-box methods, and thus to aid interpretability, we employed the 

Shapley Additive exPlanations (SHAP) approach (Lundberg and Lee, 2017)—an 

explainability framework based on game theory, which can be used to unpick the key predictors 

of machine learning models by computing the contribution of each feature to prediction. 

Overall, then, in the first chapter of its type, we report a novel approach which can address 

gaps in existing research and produce a practical solution for soccer injury prediction. Through 

comprehensive analysis of a unique multi-season dataset of Elite Premier League soccer 

players, we aimed to develop a multi-dimensional predictive machine learning model to assess 

injury risk among players in the following seven days.  

3.2  Materials and Methods 

3.2.1 Data collection and Feature creation 

Participants were 35 male professional soccer players (aged 25.79±3.75 years, range 18-37 

years; height 1.80±0.07 m, range 1.63-1.95 m; weight 80.70±6.78 kg, range 66.03-93.70 kg) 

from one English Premier League club, with data collected from the 2014-2015 season until 

the 2018-2019 season. Players’ positions were recorded as follows: eight full-backs, nine 

center-backs, seven central mid-fielders, eight wing-forwards, and three strikers. Data were 

provided to the research team by the club’s first team sports science department, having been 

collected as part of the club’s day-to-day data collection processes, and with all permissions in 

place. The dataset contained 343 injury data points, of which our focus was the 133 non-contact 

injuries. Of these 133 non-contact injuries, there were 43 thigh injuries, 29 knee injuries, 24 

hip injuries, 19 ankle injuries, and 18 ‘lower leg’ injuries. Across injuries, eight players were 

injured once, nine players were injured two times, four players were injured three times, two 

players were injured four times, four players were injured five times, two players were injured 

six times, four players were injured seven times, one player was injured 11 times, and one 
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player was injured 16 times. Overall, there were 11 injuries recorded in the 2014-2015 season, 

six in the 2015-2016 season (the club’s first in the English Premier League), 28 in the 2016-

2017 season, 41 in the 2017-2018 season, and 47 in the 2018-2019 season. 

The available ‘load’ data included Global Positioning System (termed GPS) data, physical 

(e.g., various skinfold measurements, bodyfat percentage) data, psychological (e.g., RPE) data, 

and demographic information. Feature selection first focused on removing features with more 

than 60% missing values. Please note, when players missed training sessions, their absence of 

training load data is not noted in the dataset and is thus not treated as missing data. 

Subsequently, different missing values imputation methods were used across the features. We 

also created two additional features within the dataset: “last injury area” and “days since last 

injury”. Below, Table 4 lists all training load variables considered as input features in the 

present chapter, along with their description, source, method of collection, frequency of data 

collection (e.g., GPS and psychological data are collected daily; physical data are collected 

every two weeks), and missing values imputation techniques. 

Table 4 Training Load Variables, Variable Descriptions, Missing Value Imputation 

Techniques, Method of Data Collection, and Data Collection Frequency 

Variable Name Variable Description Missing Value 

Imputation 

Method of data 

collection 

Frequency 

of data 

collection 

GPS measures/ External Load 

Total Duration  Total time in minutes an 

athlete is in activity 

knn Time taken from 

activity on GPS 

device 

Every pitch 

session and 

game 

Total Distance (m)* 

(TDM) 

Distance in meters 

covered during the 

activity 

knn GPS device Every pitch 

session and 

game 

Meterage Per 

Minute* (MPM) 

Distance in meters 

covered during the 

activity per minute 

knn GPS device Every pitch 

session and 

game 

Sprint Efforts* (SE) Number of efforts above 

7 m/s 

knn GPS device Every pitch 

session and 

game 
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Sprint Distance (m) Distance in meters 

covered above 7 m/s 

knn GPS device Every pitch 

session and 

game 

High Speed Distance 

(m)* (HSD) 

Distance in meters 

covered above 5.5 m/s 

knn GPS device Every pitch 

session and 

game 

High Speed Distance 

Per Minute (m/min) 

(m) 

Distance in meters 

covered above 5.5 m/s 

per minute of activity 

knn GPS device Every pitch 

session and 

game 

Maximum Velocity 

(m/s) * (MV) 

Maximum velocity 

reached in activity 

knn GPS device Every pitch 

session and 

game 

Velocity Band 7 

Total Effort Count 

Number of efforts above 

90% of players maximum 

velocity 

knn GPS device Every pitch 

session and 

game 

Velocity Band 7 

Total Distance (m) 

Distance in meters 

covered above 90% of 

players maximum 

velocity 

knn GPS device Every pitch 

session and 

game 

Total Player Load* 

(TPL) 

Sum of the accelerations 

across all axes of the 

internal tri-axial 

accelerometer during 

movement. It considers 

instantaneous rate of 

change of acceleration 

and divides it by a scaling 

factor (divided by 100).  

knn GPS device Every pitch 

session and 

game 

Accels* (ACC) Number of accelerations 

above 0.5 m/s² 

knn GPS device Every pitch 

session and 

game 

Decels* (DCC) Number of decelerations 

above -0.5 m/s² 

knn GPS device Every pitch 

session and 

game 

Perceived Exertion* 

(PE) 

The Borg Rating of 

Perceived Exertion (RPE) 

using Borg CR10 Scale 

knn Questionnaire Every pitch 

session and 

game 

Workload* (WD) Perceived Exertion x 

Total Duration 

knn Calculation of Total 

Duration x RPE 

Every pitch 

session and 

game 

Meta Energy (KJ/kg) 

* (ME) 

Estimated energy 

expenditure, based on 

GPS acceleration 

knn GPS device Every pitch 

session and 

game 

Velocity Work/Rest 

Ratio 

Time working divided by 

Time resting where work 

knn GPS device Every pitch 

session and 

game 
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and rest are defined by 

velocity thresholds  

Work/Rest Ratio The amount of time spent 

above the work velocity 

threshold divided by the 

amount of time spent 

below the rest velocity 

threshold  

knn GPS device Every pitch 

session and 

game 

Relative Intensity (High Speed Distance 

(m) / Total Distance (m)) 

* 100 

knn GPS device Every pitch 

session and 

game 

Mean Heart Rate Average heart rate (beats 

per minute) in activity 

knn GPS device Every pitch 

session and 

game 

Maximum Heart 

Rate 

Maximum heart rate 

(beats per minute) in 

activity 

knn GPS device Every pitch 

session and 

game 

Player Load Per 

Minute 

Average Player Load 

accumulated per minute 

of activity 

knn GPS device Every pitch 

session and 

game 

Player Load (1D 

Fwd) 

Player Load accumulated 

in the sagittal plane 

knn GPS device Every pitch 

session and 

game 

Player Load (1D 

Side) 

Player Load accumulated 

in the frontal plane 

knn GPS device Every pitch 

session and 

game 

Player Load (1D Up) Player Load accumulated 

in the sagittal plane 

knn GPS device Every pitch 

session and 

game 

Player Load (2D) Player Load accumulated 

in the frontal and sagittal 

planes 

knn GPS device Every pitch 

session and 

game 

RHIE Total Bouts The total occurrences of 

Repeated High Intensity 

Effort (RHIE) events 

knn GPS device Every pitch 

session and 

game 

RHIE Effort 

Duration - Mean 

The average duration of a 

RHIE event 

knn GPS device Every pitch 

session and 

game 

RHIE Effort 

Duration - Min 

The shortest duration of a 

RHIE event 

knn GPS device Every pitch 

session and 

game 

RHIE Effort 

Duration - Max 

The longest duration of a 

RHIE event 

knn GPS device Every pitch 

session and 

game 
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RHIE Bout Recovery 

- Mean 

The average amount of 

time between RHIE 

events 

knn GPS device Every pitch 

session and 

game 

RHIE Bout Recovery 

- Min 

The shortest time 

between RHIE events  

knn GPS device Every pitch 

session and 

game 

RHIE Bout Recovery 

- Max 

The longest amount of 

time between RHIE 

events 

knn GPS device Every pitch 

session and 

game 

IMA Jump Count 

Low Band 

The total number of 

jumps registered 0-20 cm 

knn GPS device Every pitch 

session and 

game 

IMA Jump Count 

Med Band 

The total number of 

jumps registered 20-40 

cm 

knn GPS device Every pitch 

session and 

game 

IMA Jump Count 

High Band 

The total number of 

jumps registered >40 cm 

knn GPS device Every pitch 

session and 

game 

HMLD* Distance in meters 

covered by a player 

where his/her Metabolic 

Power is >25.5 W/kg 

knn GPS device Every pitch 

session and 

game 

HML Distance Per 

Minute (m/min) (m) 

Distance in meters 

covered by a player 

where his/her Metabolic 

Power is >25.5 W/kg per 

minute 

knn GPS device Every pitch 

session and 

game 

Explosive Efforts* 

(EE) 

IMA Accel High + IMA 

Decel High + IMA CoD 

Left High + IMA CoD 

Right High + IMA Accel 

Medium + IMA Decel 

Medium + IMA CoD 

Left Medium + IMA 

CoD Right Medium 

knn GPS device Every pitch 

session and 

game 

Explosive Efforts per 

Min* (EEM) 

EE/ minute knn Calculation Every pitch 

session and 

game 

Personal Information 

Age Age of player    

BMI Body Mass Index; ratio 

between weight (in kg) 

and the square of height 

(in meters) 

None Calculation  

Height Player’s height in 

centimetres 

None Measurement from 

Sadiometer 

Pre-season 
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Weight Players weight in 

kilograms 

Linear 

Interpolation 

Measurement from 

Secca Scales 

Fortnightly 

Last Injury Area Last injury area  None   

Days since last injury 
 

None   

Internal Load – Physical data  

TRICEP Triceps’ skinfold 

measurement 

Linear 

Interpolation 

Skinfold 

measurement taken 

with Harpenden 

Callipers 

Fortnightly 

SUBSCAP Subscapular skinfold 

measurement 

Linear 

Interpolation 

Skinfold 

measurement taken 

with Harpenden 

Callipers 

Fortnightly 

BICEP Bicep skinfold 

measurement 

Linear 

Interpolation 

Skinfold 

measurement taken 

with Harpenden 

Callipers 

Fortnightly 

ILIAC Iliac Crest skinfold 

measurement 

Linear 

Interpolation 

Skinfold 

measurement taken 

with Harpenden 

Callipers 

Fortnightly 

SUPRA Supraspinal skinfold 

measurement 

Linear 

Interpolation  

Skinfold 

measurement taken 

with Harpenden 

Callipers 

Fortnightly 

ABDOM Abdominal skinfold 

measurement 

Linear 

Interpolation 

Skinfold 

measurement taken 

with Harpenden 

Callipers 

Fortnightly 

THIGH Thigh skinfold 

measurement 

Linear 

Interpolation 

Skinfold 

measurement taken 

with Harpenden 

Callipers 

Fortnightly 

CALF Calf skinfold 

measurement 

Linear 

Interpolation 

Skinfold 

measurement taken 

with Harpenden 

Callipers 

Fortnightly 

Skinfolds Sum of 8 site skinfold 

measurements 

Linear 

Interpolation 

Calculation Fortnightly 

% Bodyfat (Yuhasz). (0.1051 x sum 

of triceps, subscapular, su

praspinal, abdominal, thi

gh, calf) + 2.585 

Linear 

Interpolation 

Calculation Fortnightly 

% Bodyfat (Jackson) (0.29288 x sum of 

skinfolds) – (0.0005 x 

square of the sum of 

Linear 

Interpolation 

Calculation Fortnightly 
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skinfolds) + (0.15845 x 

age) – 5.76377 

Fat Mass (Weight/100) * % 

Bodyfat (Jackson) 

Linear 

Interpolation 

Calculation Fortnightly 

Lean Mass Weight - Fat Mass Linear 

Interpolation 

Calculation Fortnightly 

Relative Lean Mass Lean Mass/Weight Linear 

Interpolation 

Calculation Fortnightly 

Internal Load – Psychological data  

Sleep Previous night's sleep 

quality 

Forward fill and 

back fill 

Questionnaire Every 

training day 

Fatigue Fatigue level Forward fill and 

back fill 

Questionnaire Every 

training day 

Ext. Stress Stress level Forward fill and 

back fill 

Questionnaire Every 

training day 

Soreness Muscle Soreness Forward fill and 

back fill 

Questionnaire Every 

training day 

ACWR, MSWR and EWMA  

ACWR of 14 daily 

GPS features* 

Given a training load 

feature, the Acute 

Chronic Workload Ratio 

(ACWR) is the ratio of 

acute (i.e., rolling 

average of training load 

completed in the past 

week) to chronic (i.e., 

rolling average of 

training load completed 

in the past 4 weeks) 

workload.  

knn Calculation  

MSWR of 14 daily 

GPS features* 

Monotony of a player. 

Given a training load 

feature, MSWR is 

calculated by taking the 

ratio of the mean and 

standard deviation of the 

values of the training 

load in the past 1 week/ 7 

days.   

knn Calculation  

EWMA of 14 daily 

GPS features* 

Exponential weighted 

moving average puts 

greater weight and 

significance to the most 

recent training loads (i.e., 

data points). It follows a 

knn Calculation  
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decay rule of 𝛼 =
2

𝑆𝑝𝑎𝑛 +1
  

where the span is set to 7. 

Note. *These training load variables are used in the calculation of ACWR, MSWR and EWMA. 

3.2.2 Dataset construction 

We constructed a multi-dimensional load-injury prediction model to forecast whether a player 

would become injured in the next seven-day window. This seven-day window was chosen to 

mirror the standard frequency of English Premier League match occurrence—i.e., a match is 

played approximately every seven days (and generally at the weekend). A similar approach 

was employed by Vallance et al. (2020). There are generally between three and four training 

sessions each week, with training loads reaching their peak towards the end of each week. 

To accomplish the task of constructing an injury prediction model, we initially built a master 

dataset consisting of 106 training load variables (see Table 4): 40 GPS data variables, six 

personal information variables, 14 physical data variables, four psychological data variables, 

14 ACWR, 14 MSWR, and 14 EWMA data variables (mentioned in Table 4), one injury label 

(indicating 1 if the player is injured and 0 if not), and 10653 data points (i.e., each data point 

is a row which describes the training information and personal information for each player). In 

this master dataset, there were 10,520 non-injury data points and 133 injury data points, 

indicating a high imbalance ratio of 0.013. Importantly, in this master dataset, the injury label 

was assigned to the original injuries that happened on the same day (i.e., injuries that were 

recorded on the day of occurring), but our aim was to predict injuries in the next seven-day 

window. To achieve the latter focus, we thus assigned the previous data points (i.e., each data 

point or row that came before the original data points) present in the past seven days of the 

original injury data point to 1 and removed the original injury data points. The assumption 

behind removing the original data points is that the injury occurring on a specific day is caused 

by the training loads of the previous days. As a result, our seven-day injury prediction model 

is based on a revised dataset containing 10,520 data points, of which there are 10,142 non-



 73 

injury data points and 378 injury data points, giving an imbalance ratio of 0.037. Figure 1 

presents the injury and non-injury distribution in the original and seven-day injury prediction 

dataset (denoted D) respectively. In the seven-day injury prediction dataset (D) the injury and 

non-injury data points overlap. Imbalanced and overlapping data classification represent a 

challenge for traditional machine learning models, which often fail to recognize patterns in 

such data (Shahee and Ananthakumar, 2021; Kiesow et al., 2021). 

Figure 1 The Relationship Between Graphical Representation of Injury and Non-Injury 

Distribution in the Original and Seven-Day Injury Prediction Dataset using two training load 

variables. 
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Note. Top panel: Injury and non-injury distribution in the original dataset. Bottom panel: Injury and non-injury 

distribution in the seven-day injury prediction dataset. To present the injury and non-injury distribution in both 

the datasets, total duration and total Distance (m) were used.  

In addition, for a better depiction of the classification problem and how our high-dimensional 

injury and non-injury datapoints appear in a two-dimensional plane we performed Principal 

Component Analysis. Below Figure 2 demonstrates that the injury and non-injury data points 

are overlapping (Tang et al., 2010; Sáez et al., 2019; Gupta and Gupta, 2018; Shahee and 

Ananthakumar, 2021; Kiesow et al., 2021). This is illustrated by many instances where similar 

training programs resulted in different outcomes, which is likely an indication that the features 

which would clearly separate the two classes are not being currently collected.  
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Figure 2 Principal Component Analysis of the Seven-Day Injury Prediction Dataset 

 

Note: Principal component analysis on dataset D (the seven-day injury prediction) with 106 features. Red dots 

represent non-injury data points; black dots represent injury data points. 

We should also note that, while calculating ACWR, MSWR and EWMA for each player, we 

used the training sessions which fell in the past seven days before each training session or 

match-day. The past seven days may be different from the past seven training sessions as the 

past seven training sessions might not fall into the past seven days.  

3.2.3 Model construction  

For model building, validation, and testing, we used the Python programming language. We 

used various machine learning algorithms—logistic regression, k-nearest neighbors, decision 

tree, and random forest resulted in poor model performance, failing to predict most of the actual 

injuries—with XGBoost (Chen and Guestrin, 2016) and Artificial Neural Network (ANN) 
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(Mehlig, 2019) providing the best results. In this paper, we thus focus from this point onwards 

on the use of and results from the XGBoost and ANN algorithms. We used various pre-

processing techniques, such as oversampling the minority data points (i.e., the injury data), 

feature scaling (i.e., scaling each training load), and setting different hyperparameters. 

We first split the entire dataset into two parts—the training data (DTrain), containing the first 

four and half seasons’ data, and the test data (DTest), containing the remaining half season. 

DTrain contained 9548 non-injury data points and 341 injury data points and DTest contained 

493 non-injury data points and 37 injury data points. The test set was further divided into three 

labelled months: Month 1 contained 161 non-injury data points and 14 injury data points; 

Month 2 contained 162 non-injury data points and 14 injury data points; and Month 3 contained 

170 non-injury data points and 9 injury data points. Months 4 and 5 did not contain any injury 

data points.  

We first trained XGBoost and ANN on DTrain. During this model training we performed 10-

fold cross-validation to check how well the model performed on different validation subsets of 

the data. Hyperparameter optimization techniques, including grid-search and Bayesian 

optimization, were implemented to refine the model's configuration. The overarching goal of 

hyperparameter tuning was to identify settings that would yield optimal outcomes when tested 

on the independent test dataset. To achieve this, the Bayesian optimization process yielded a 

set of hyperparameters that notably improved the prediction of instances associated with non-

injuries. Complementary to this, grid-search contributed partially to the refinement of 

hyperparameters by predicting both injuries and non-injuries in a balanced way. These 

endeavors collectively provided preliminary estimates of hyperparameter values. It is 

noteworthy that the precise values obtained from the Bayesian optimization and grid-search 

hyperparameter optimization techniques were not adopted verbatim. Subsequent to the initial 

hyperparameter optimization, a further iterative phase ensued wherein the hyperparameters of 
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both models were subject to adjustments. This iterative refinement process involved multiple 

iterations of cross-validation procedures to iteratively enhance the model configurations. We 

also performed feature selection techniques, such as Recursive Feature Elimination, Variance 

Threshold (i.e., removing low variance features) techniques to reduce the dimensionality of the 

feature space and risk of overfitting. The best results were obtained by simultaneously using 

all features (i.e., all the training load types).  

Data imbalance in the training data was a concern, which, if left untreated, would heavily bias 

the outcomes towards non-injuries. To combat this data imbalance, while applying XGBoost, 

we (a) implemented the Synthetic Minority Oversampling Technique (i.e., SMOTE: Chawla 

et al., 2002) to create “synthetic” injury instances, and (b) set the weighting for injury at nine 

times higher than the non-injury weighting. On the other hand, while applying ANN, we (a) 

scaled the data, (b) implemented SMOTE, and (c) set the weighting for injury at 11 times higher 

than the non-injury weighting. The weight parameters were identified empirically, by meaning 

that we adjusted the weights for both the models by running them several times through cross-

validation and noticed how they perform on the test data.  

Following best practice, the test dataset was not included for any of the data balancing, training, 

and validation phases of the model development. Missing values in the test dataset were 

imputed by using the corresponding imputation values from the training data. Table 5 (in the 

3.3 Results Section) provides a summary of the results, describing the machine learning 

algorithms employed, the pre-processing techniques for each employed algorithm, along with 

evaluation metrics. The two machine learning models were compared with two baseline 

models: Baseline 1 predicted the most frequent class (i.e., the non-injury datapoints); Baseline 

2 randomly predicted the class (i.e., injury or non-injury) by respecting the distribution of the 

classes. Below Table 6 details the different hyperparameter settings and working architectures 

for both (XGBoost and ANN) algorithms. 
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Table 5 Training Algorithm Hyperparameter Settings and Architecture 
 

Machine Learning Algorithm Hyperparameter setting and architecture 

 XGBoost Objective: binary (logistic) 

colsample_bytree: 0.9 

learning rate: 0.09 

 maximum depth: 3  

alpha: 5  

gamma: 5  

evaluation metric: error  
Artificial Neural Network Input layer: 106, 

Hidden layer 1: 200, 

Dropout: 0.5, 

Hidden layer 2: 100, 

Dropout: 0.5, 

Output layer: 1 

Activation function for hidden layer 1, 2: Rectified Linear Unit (RELU) 

Activation function for output layer: Sigmoid 

Kernel initializer for input layer: Glorot Uniform 

Optimizer: ADAM  

Loss function: Binary crossentropy 

Learning rate: initial learning rate 0.0001 with an exponential decay rate 

0.96 

Epochs: 100 

Batch size: 128 

 
Note. Above, the hyperparameters that used in our chapter for each used algorithm is presented. In Section 2.3, 

we described how we came up with these specific hyperparameters for both the algorithms. These 

hyperparameters are not absolute and may vary according to data used in other studies.  

3.3  Results 

A model with XGBoost correctly predicted 13 of 14 injuries in Month 1, as well as 8 of 9 

injuries in Month 3, but predicted just 5 of 14 injuries in Month 2. A model with ANN correctly 

predicted 11 of 14 injuries in Month 1, as well as 8 of 9 injuries in Month 3, but also predicted 

9 of 14 injuries in Month 2. The latter model with ANN improved the precision and recall for 

injuries and non-injuries during cross-validation as across a combined value for Month 1, 

Month 2, and Month 3. The baseline models (i.e., Baseline 1 and 2) demonstrated AUC of 0.50, 

which demonstrates that they are in effect random models. The baseline models failed to 

predict injury. Thus, the results provided by both XGBoost and ANN represent a significant 

improvement when compared with the baseline models. 
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Table 6 Model Fit for the Best-Fitting Model from each Analysis 

Machine learning 

algorithms, pre-

processing 

technique(s) 

Model 

evaluation 

Non-injury 

and injury 

Precision 

(%) 

Recall 

(%) 

AUC Confusion 

matrix 

TN FP 

FN TP 

Algorithm 1: 

XGBoost 

 

Pre-processing: 

Oversample: SMOTE 

 

Class weight:  

{non injury: 1, injury: 

9} 

Cross-

validation 

(Training 

data) 

Non-injury 0.99±0.00 0.72±0.02 0.74±0.04 N/A 

Injury 0.09±0.01 0.76±0.08 

Month 1 

 

Non-injury 0.99 0.54 0.73 87  74  

Injury 0.15 0.93 1  13  

Month 2 Non-injury 0.92 0.61 0.48 99  63  

Injury 0.07 0.36 9  5  

Month 3 Non-injury 0.99 0.55 0.72 93  77  

Injury 0.09 0.89 1 8  

Month 1 + 

Month 2 + 

Month 3 

Non-injury 0.97 0.57 0.64 279 214 

Injury 0.10 0.73 11 26 

Algorithm 2: 

Artificial Neural 

Network 

 

Pre-processing: 

Feature scaling: Min 

max scaler with 

feature range (0.01, 

0.99)  

Oversample: SMOTE 

Class weight:  

{non injury: 1, injury: 

11} 

 

Cross-

validation 

(Training 

data) 

Non-injury 0.99±0.00 0.74±0.03 0.80±0.02 N/A 

Injury 0.10±0.01 0.86±0.04 

Month 1 

 

Non-injury 0.97 0.58 0.69 96  65  

Injury 0.14 0.79 3 11 

Month 2 Non-injury 0.95 0.60 0.62 98 64 

Injury 0.12 0.64 5 9 

Month 3 Non-injury 0.99 0.64 0.77 99 64 

Injury 0.12 0.89 1 8 

Month 1 + 

Month 2 + 

Month 3 

Non-injury 0.97 0.61 0.69 300 193 

Injury 0.13 0.77 9 28 

Baseline 1 (most 

frequent) * 

Cross-

validation 

(Training 

data) 

Non-injury .97 1.00 0.50 N/A 

Injury 0.00 0.00 

Baseline 2 (stratified) 

* 

Cross-

validation 

(Training 

data) 

Non-injury 0.97 0.97 0.50 N/A 

Injury 0.03 0.03 
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Note. Each model was run 1000 times during cross-validation with stratified sampling to check model stability. 

* We have not provided evaluation metrics for these two baseline models in month 1, 2, and 3, because they 

correctly predicted non-injuries only (i.e., they failed to predict any injuries). 

 

 

To interpret and visualize the output of each model and the contribution of each feature (i.e., 

training load) towards the model we used the Shaply Additive Explanations (SHAP) approach 

(Lundberg and Lee, 2017)—see Figure 3 and Figure 4. Higher SHAP values denote a higher 

contribution for that training load towards the model’s prediction. Given the relatively 

improved model, when using ANN over XGBoost, the following SHAP explanations relate to 

the model with ANN. With this in mind, the five most important features for injury risk in the 

train and validation data appear to be as follows: last injury area; exponential weighted moving 

average of meta energy; weight; meta energy; and age. We also used SHAP to examine the key 

features for injury risk at Months 1, 2, and 3 predicted by our trained ANN model (see Figures 

5-7). The two most important features that appeared in all models were last injury area and 

weight. 
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Figure 3 Top 20 Features According to SHAP Values in The Training and Validation Data 

 

Note: The variables in the model are listed from relatively the most important (left) to the least (right) important 

by their average global impact on the model. Each bar shows the mean absolute SHAP value for each variable, 

the higher the value, the higher the importance on the classification model (i.e., a higher probability of a positive 

prediction which is injury). The same applies for the Fig. 4, 5 and 6 as well. 
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Figure 4 Distribution of SHAP values for top features in The Training and Validation Data 

Note: The variables in the model are listed from relatively the most important (top) to the least (bottom) important 

by their average global impact on the model. Each dot represents the SHAP value of an individual sample in the 

dataset which is plotted horizontally next to the feature name. We get an estimation of the distribution of the 

SHAP values per variable, saying that the higher the absolute value the higher the importance on the model 

prediction also, positive SHAP values represent a higher probability of a positive prediction (i.e., Injury).  
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Figure 5 Top 20 Features According to SHAP Values for Month 1 
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Figure 6 Top 20 Features According to SHAP Values for Month 2 
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Figure 7 The Top 20 Features According to SHAP Values for Month 3 
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3.4  Discussion 

The purpose of this chapter was to use machine learning to examine the relationship between 

training load and soccer injury with a multi-season dataset from one English Premier League 

club. Our results demonstrated that two algorithms (XGBoost and ANN) provided the best 

results. Correctly predicting 26 of 37 injuries, XGBoost produced a precision value of 10% and 

recall of 73%; correctly predicting 28 of 37 injuries, ANN produced a precision value of 13% 

and recall of 77%. For the latter relatively better model using ANN, the most important features 

contributing to injury were “last injury area” and “weight”. Thus, although precision (i.e., the 

ratio of correctly predicted injuries to the total number of correctly and incorrectly predicted 

injuries) was relatively low (meaning that many of the model’s predicted injuries were not in 

fact injuries), values for recall (the ratio of correctly predicted injuries to the total observed 

injuries) were relatively high, suggesting precision suffered at the expense of being able to 

accurately predict most of the actual injury cases. If this model were used in an applied setting, 

the “false alarms” (those non-injuries that were predicted as injuries) might lead to some 

players being unnecessarily rested from training; at the same time, however, the model’s 

correctly predicted injuries would lead to most genuinely at-risk players rightfully being rested, 

and thereby saving players from injury and the club from losing players to injury, with the 

concomitant selection problems, rehabilitation time, and financial impact. Finally, the ANN 

model produced low false negatives, suggesting that if the model predicts that a player will not 

be injured, this is likely to be the case. 

Injury prediction perspectives. Our chapter used a very high dimensional and highly 

imbalanced, overlapped dataset. Although ANN has been successfully employed to deal with 

such high dimensional, overlapped datasets in other fields of artificial intelligence (such as in 

object detection, image recognition, speech recognition, text processing, recommendation 

systems, and time series model building: Bohr and Memarzadeh, 2020; Emmert-Streib et al., 
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2020; Johnson and Khoshgoftaar, 2019), it has never been used for soccer injury prediction. In 

the present chapter, ANN out-performed “state-of-the-art” XGBoost, with better recall and 

precision values. In attempting to counter class imbalance in the present chapter’s dataset, data 

oversampling (i.e., Smote), in combination with setting the weights for injury at nine (for 

XGBoost) and eleven (for ANN) times higher than for non-injury (termed a cost-sensitive 

classification), we were able to maximize the accurate prediction of injuries.  

Injury prediction is based on analysis of longitudinal data, with the goal of being able to 

accurately predict injuries in some pre-defined upcoming period of days. Thus, in order to 

ensure the independence of test and train data, in addition to the usual cross-validation, we also 

evaluated our models on unseen future (test) data. In terms of data pre-processing, differently 

from Lopez-Valenciano et al. (2018) and Ayala et al. (2019) who imputed missing values using 

the mean, we used different imputation techniques for different types of training loads. For 

example, some physical training load variables (such as weight and body fat percentage) are 

not measured on a daily basis, even though they naturally increase or decrease gradually over 

time. Imputing the missing values of these features by using the mean or the most frequent 

values may not reflect well the actual values over time. To combat this potential inaccuracy, 

we used interpolation for imputing the missing values of those time-dependent features. In a 

similar way, to better replicate the most practical and reasonable values with our GPS 

measures, ACWR, MSWR, and EWMA, we imputed missing values using k-nearest neighbor 

or weekly mean values. 

Explainability. Compared with white-box machine learning models, “black-box” models, like 

those examined in the present research (i.e., XGBoost and ANN), can provide better predictive 

performance, but at the expense of being difficult to interpret and understand. With black-box 

models, then, additional post hoc methods are needed to interpret and understand results 

(Loyola-Gonzalez, 2019). Thus, in terms of the explainability of our model, we present (based 
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on SHAP explanations) the important features (i.e., training loads) in Figures 3-6. Last injury 

area was a key feature in the ANN model—37% of injured players had a previous record of 

thigh injury, 30% had a previous record of knee injury, 16% had a previous record of lower leg 

injury, and 17% did not have any previous record of injury. Further, 84% of injuries occurred 

in those with body weights between 73kg and 85kg. It is worthy of note that, despite the power 

of SHAP explanations, the output from such global explanations can sometimes be misleading. 

For example, in our main dataset 122 of 133 injuries, and in our dataset D 334 out of 378 

injuries, occurred when the exponential weighted moving average (EWMA) of Meta Energy 

exceeded a value of 6.14. On the contrary, with our test data (i.e., those data not included in 

the training and validation dataset), of 530 data points, there were no data points for which 

EWMA of Meta Energy exceeded a value of 6.14. Thus, although (see Figure 3) EWMA of 

Meta Energy was one of the top three features in the training and validation data, it failed to 

emerge as an important feature in Months 1-3 (as can be seen in Figures 4-6). What this means 

is that, despite its apparent importance during training and validation, EWMA of Meta Energy 

plays no major role in terms of explainability of the test data. Building from the above, if we 

had divided our entire dataset on a 10% train-test split basis (rather than using our process of 

testing on later data), we would have likely concluded that EWMA of Meta Energy plays a 

more prominent role in terms of explainability than it actually does in real life. Finally, it is 

also worth noting that in our data, values for the ACWR (the most well-researched model of 

injury monitoring in soccer) appeared to differ from those noted in the existing literature. Thus, 

in contrast with research demonstrating, for example, that values in excess of 2 (Bowen et al., 

2019) or less than 1 (Rossi et al., 2018) might lead to greater injury risk, the majority of injuries 

in our data occurred when ACWR values were between 0.5 and 1.5. 

Practical applications. The models developed in this chapter could be used by clubs and 

practitioners to calculate the probability of a player getting injured in the next seven days. With 
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the use of explainability (via SHAP), practitioners would also be well-positioned to have an 

essence of the cause of injuries predicted by the models. The results from the present chapter 

cannot be directly compared with other studies into soccer injury, because, unlike those studies, 

we used a multi-season dataset with a very high imbalance ratio. However, in seeking to make 

comparisons, we reproduced as closely as possible, with our data, the analysis strategy from 

two other well-regarded soccer injury studies—the work of Rossi et al. (2018) and Vallance et 

al. (2020). In attempting to predict injuries in the next day and in the next seven-day window, 

we used all the possible similar features (i.e., the training load variables) from Rossi et al. 

(2018) and Vallance et al. (2020) that were also available in our data, and followed their 

methods with regard to data pre-processing, feature selection, feature extraction, balancing 

techniques, model training, hyperparameter optimization, along with the model evaluation and 

validation techniques, where specified. In reproducing the work of Rossi et al. (2018), we used 

the Recursive Feature Elimination (Guyon et al., 2002) as the feature selection technique which 

yielded just one feature in our data, and the prediction based on that one feature was not as 

high as the results reported by Rossi at el. (2018). In reproducing the work of Vallance et al. 

(2020), we used the Bayesian optimization hyperparameter technique with our data, which 

predicted most of the non-injuries. Rossi et al. (2018) reported as their best algorithm Decision 

Tree, and Vallance et al. (2020) reported as their best algorithms k-nearest neighbors, random 

forest, decision tree, and XGBoost—conversely, only XGBoost performed well with our data. 

It is important to note that the differences we noted in our data are completely normal, and 

should be expected. All clubs have different philosophies and unique ways of handling their 

training load data. As a result, the number of training loads used and the training programs 

employed at clubs are frequently quite different. And thus, the choice of the best performing 

machine learning algorithm for each dataset is likely dependent on the context and the quality 

of those data. 
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Strengths and limitations. The present research had some notable strengths. First, to the best 

of our knowledge this is the first chapter that has considered multi-season data with elite male 

soccer players from the English Premier League. Second, we included many types of training 

loads, including GPS measures, physical and psychological loads, personal information, as 

well as ACWR, MSWR, and EWMA of certain training load variables (See Table 4). Third, 

we also created features—such as last injury area and days since the last injury—which 

appeared to enhance the predictive utility of our machine learning model and were among the 

most important injury predictors. Fourth, the proposed seven-day injury prediction window is 

unique to our chapter—and aligned well with the notion that English Premier League are 

generally played every seven days. Fifth, our use of ANN was a novel addition, which appeared 

marginally more effective than the state-of-the-art XGBoost in predicting injuries. All the 

above led us to conclude that the most important features in our chapter were “last injury area” 

and “weight”, which are very general—these two features are monitored in almost every 

sporting organization to evaluate injury risk among players, and thus in practical terms the 

present research has genuinely real-world application. Against the backdrop of these many 

strengths, a major limitation for the process used in the present research (as is true for many 

machine learning processes) is that when new data are available, the model would have to be 

retrained, and thus the predictions may then vary. That said, given that we were able to 

demonstrate that machine learning models trained on a highly multi-dimensional and 

imbalanced dataset can indeed predict and explain injuries to address the needs of a 

professional soccer club, different clubs and organizations could use our approach with 

amendments to the feature set as required. 

Future Research. As noted above, a limitation of the present research is the need to retrain 

the models when new data become available. Thus, a future research avenue could be to 

develop automation of the model training process with continuously incoming injury data, so 
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that the models adapt to this new information. This would seem particularly important in 

soccer, wherein changes in training processes, team members, and injuries mean that the 

underlying distribution of the data does not remain constant across seasons. We believe that 

this limitation could be addressed by using adaptive streaming predictive methods (Yang, 

Manias and Shami, 2021), and we encourage future research to examine this further.  

3.5  Conclusions 

Using a highly imbalanced and high dimensional, overlapped, multi-season dataset from an 

English Premier League soccer club, we were able to predict soccer injuries with high recall. 

Our novel use of ANN in combination with explainable artificial intelligence also demonstrated 

its potential to unearth effective insights into the workload-injury relationship. Our data pre-

processing techniques such as unique missing value imputation techniques, new features 

creation, handling of the high imbalance in non-injuries and injuries, train-validation process 

alongside testing of models on real-life in-coming data, and improving recall and precision 

techniques all have potential to lay the foundation for future research to employ machine 

learning in a more practical way to predict injuries. 
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Data 

Collection 

1. Technical data (External 

Load) 

2. Physical data (Internal 

Load) 

3. Psychological data 

(Internal Load) 

4. Personal Information 

Key points:  

 

For every input data there is an output 

label. Thus, every row in the dataset is 

a sample for each player’s training 

information and every column is a 

feature which describes the sample. 

 

1. Data cleaning (Missing 

value imputation, 

handling outliers, 

anomaly detection) 

2. Feature engineering 

(removal of noisy 

correlated features and 

duplicate rows) 

3. Feature selection (subset 

of the original data used 

for modelling) 

4. Feature extraction (new 

features are created 

depending on the existing 

ones). 

Data Pre-

processing 

Key points: 

1. Deletion of features with 

more than 50% missing 

values and different missing 

value imputation techniques 

for different training loads. 

2. Calculation of ACWR, 

MSWR, EWMA. 

3. New features creation such as 

“days since last injury”, “last 

injury area” and through 

discretization if needed. 

 

Each row of the dataset encapsulates injury-related data pertinent to a specific day. Instances where a player 
sustains an injury subsequent to a training or match day are encoded with a label of 1. However, when 
subjecting this dataset to machine learning algorithms, prognostications regarding player injuries on the same 
day, hold limited practical utility, given that the training regimen has already transpired. The principal objective 
resides in the anticipation of injuries prior to their occurrence.  
Key points: 1. Directing efforts towards the anticipation of injuries within a subsequent seven-day temporal 
window, instances spanning the preceding seven-day interval are equivalently designated with a label of 1 (i.e., 
Injury). 2. instances denoting injury occurrences on a given day are systematically excluded from the dataset to 
preclude the emergence of circular dependencies. 

 1. Data splitting (Training, 

validation, and testing 

data). 

2. Data balancing of training 

data and sampling. 

3. Data standardization or 

normalization 

4. Hyperparameter 

optimization 

(optimization of model 

hyperparameters). 

 

Key points: 

1. Different balancing 

techniques can be 

experimented to enhance the 

performance of the machine 

learning model. 

2. Data standardization or 

normalization are subjected to 

the requirements of machine 

learning algorithms. 

3. Model training and validation 

include training and 

validation data only. 

4. Model parameters are tuned 

until desired results are 

achieved. 

Machine 

learning 

model 

training and 

validation 

Machine 

learning 

model 

evaluation 

1. Precision, recall, F1-

score for injury class and 

construction of confusion 

matrix. 

2. Testing the model on 

new test data. 

Key points: 

1. Overall metric can be 

misleading. 

2. Model training, validation 

and testing is a cyclic 

process. 
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Chapter 4 

4. Abstract 

This chapter aimed to enhance soccer injury prediction by employing adaptive machine 

learning methodologies, including online continual learning and drift detection, applied to a 

multi-season dataset of Elite Premier League players. The dataset comprised 35 male 

professional soccer players (aged 25.79±3.75 years, range 18–37 years; height 1.80±0.07 m, 

range 1.63–1.95 m; weight 80.70±6.78 kg, range 66.03–93.70 kg) over five seasons (2014–

2019). Data included 106 training load variables, spanning GPS metrics, personal information, 

physical and psychological data, and derived workload ratios (ACWR, MSWR, and EWMA), 

analysed in relation to 133 non-contact injuries (imbalance ratio: 0.013). Logistic Regression, 

AdaBoost, and Artificial Neural Networks were implemented across static, continual, and 

adaptive learning contexts. Techniques such as Synthetic Minority Oversampling Technique 

(SMOTE) addressed data imbalance. Performance was evaluated using precision, recall, ROC-

AUC, Cohen’s kappa, and confusion matrices. Adaptive learning models with drift detection 

consistently outperformed static and continual learning approaches, particularly in injury 

prediction for minority classes. Sliding window retraining, focusing on recent data, achieved 

the best overall performance, with high ROC-AUC and Cohen’s kappa scores. Cumulative 

training, integrating multi-season data, further enhanced the models' adaptability and predictive 

accuracy across all classifiers. Neural networks demonstrated superior performance compared 

to traditional algorithms, especially in dynamic scenarios. This chapter highlights the 

superiority of adaptive machine learning methodologies, particularly drift detection and sliding 

window retraining, in addressing the dynamic and evolving nature of injury prediction. 

Cumulative training emerged as a critical factor in improving model performance. These 

findings offer practical applications for injury prevention and player well-being management 
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in professional soccer. Future research should focus on integrating real-time data from 

wearable devices and exploring advanced adaptive learning frameworks for enhanced 

predictive capabilities. 
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4.1  Introduction 

The contemporary landscape of sports science highlights the critical importance of monitoring 

athletes' training and competition loads, a field that has garnered significant attention in recent 

years (Kalkhoven et al., 2021). Recognizing the pivotal role of load monitoring, professional 

sports organizations allocate substantial resources to optimize training adaptations, assess 

fatigue and recovery dynamics, and mitigate the risks of injury and illness (Kalkhoven et al., 

2021; Halson, 2014). Soccer, as the world's most popular sport, involves an extensive player 

base of 200,000 professionals and 240 million amateurs (Rahnama, 2011; Owoeye et al., 2020; 

Jones et al., 2019). However, this widespread participation is accompanied by a notably high 

incidence of injuries compared to other sports (Rahnama, 2011; Owoeye et al., 2020; Jones et 

al., 2019). Consequently, soccer has become a focal point for research on load monitoring and 

injury prevention. Soccer-related injuries can result in prolonged player absences, negatively 

impacting team performance and incurring significant financial costs. For instance, injuries in 

the English Premier League (EPL) led to an estimated expenditure of approximately £45 

million per season between 2012-2013 and 2016-2017 (Eliakim et al., 2020). 

To better understand the intricate relationship between training loads and soccer injuries, recent 

research has increasingly adopted machine learning (ML) techniques (Majumdar et al., 2022). 

These methods provide a novel analytical framework, enriching the understanding of the 

complex interplay between training loads and injury risk. Historically, soccer injury analysis 

has heavily relied on the Acute: Chronic Workload Ratio (ACWR) (Majumdar et al., 2024), a 

widely used metric that has faced methodological critiques and inconsistent results. Machine 

learning approaches offer a more nuanced perspective by incorporating a broader range of 

explanatory variables, including external load metrics (e.g., GPS-derived features), physical 
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and psychological factors, and personal player information (Hulin et al., 2013; Impellizzeri et 

al., 2020). 

Recent ML studies have sought to overcome the limitations of traditional models by leveraging 

multiple explanatory variables and comprehensive datasets (Bowen et al., 2019; Rossi et al., 

2018; Vallance et al., 2020; Naglah et al., 2018; López-Valenciano et al., 2018; Ayala et al., 

2019; Rommers et al., 2020; Oliver et al., 2020; Venturelli et al., 2011; Hecksteden et al., 2022; 

Piłka et al., 2023). Although promising, existing ML research in soccer injury prediction often 

lacks clarity in evaluation metrics (e.g., per-class versus averaged metrics), effective pre-

processing techniques, and longitudinal testing frameworks (Majumdar et al., 2022). These 

gaps have been addressed in prior research by Majumdar et al. (2024) but significant challenges 

remain. One such challenge is the high prevalence of false positives, where non-injuries are 

incorrectly classified as injuries, leading to unnecessary interruptions in training and 

unwarranted player rest periods (Majumdar et al., 2024). 

The root of this issue lies in two key factors: (1) the pronounced class imbalance in injury 

prediction datasets and (2) the continuous evolution of the data’s statistical properties over 

time, a phenomenon referred to as "concept drift" (Robles-Palazón et al., 2023). While data 

balancing techniques such as the Synthetic Minority Oversampling Technique (SMOTE) can 

address class imbalance, traditional ML models that rely on static historical data often struggle 

to adapt to dynamic shifts in data distribution. Consequently, these models fail to capture the 

evolving nature of soccer, characterized by changes in coaching strategies, player rosters, and 

training regimens, which can lead to week-to-week and season-to-season variability in data 

quality and distribution (Majumdar et al., 2022). 

Concept drift, defined as the temporal alteration of the underlying data distribution, poses a 

critical challenge in the deployment of predictive models. It undermines the foundational 

assumption of static data, rendering pre-trained models obsolete or suboptimal as data evolves 
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(Janardan and Mehta, 2017; Lu et al., 2018; Webb et al., 2017). This phenomenon necessitates 

continuous model updates to maintain performance over time (Goel and Batra, 2021; Hussain 

et al., 2021; Wang et al., 2013; Disabato and Roveri, 2022; Zenisek et al., 2019). Addressing 

concept drift has led to the development of various strategies, including ensemble methods, 

online learning algorithms, adaptive modeling techniques, and advanced data pre-processing 

approaches (Janardan and Mehta, 2017; Lu et al., 2018; Webb et al., 2017; Goel and Batra, 

2021; Hussain et al., 2021; Wang et al., 2013; Disabato and Roveri, 2022; Zenisek et al., 2019). 

Despite these advancements, a key limitation in current injury prediction systems is the need 

for frequent manual retraining. Automating model adaptation to incorporate new injury data 

remains an essential objective, particularly in soccer, where dynamic factors such as changing 

training practices and team compositions further exacerbate concept drift. 

Continual learning, also known as lifelong or incremental learning, offers a promising solution 

to these challenges. This paradigm enables models to acquire and retain knowledge over time, 

adapting to evolving tasks and data distributions (Gomes et al., 2019; Lee and Lee, 2020; Gao 

and Lei, 2017; Sudharsan et al., 2021; Wang and Wang, 2023; Zenisek et al., 2019; Krawczyk 

et al., 2017). Unlike traditional machine learning, which typically addresses static, isolated 

tasks, continual learning is designed to operate in dynamic environments. Applications of this 

approach extend across various domains, including robotics, natural language processing, 

recommendation systems, and medical diagnostics (Lee and Lee, 2020). Continual learning 

frameworks emphasize adaptability, efficiency, and the ability to mitigate catastrophic 

forgetting, ensuring that new information is integrated without compromising previously 

learned knowledge. By incrementally updating models, continual learning reduces 

computational costs and improves resource efficiency, making it a vital component of modern 

AI systems. 
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In this chapter, we present two distinct paradigms for injury prediction: one utilizing traditional 

machine learning algorithms, such as Logistic Regression and AdaBoost, and the other 

leveraging neural network-based approaches. The traditional machine learning paradigm 

focuses on simplicity and interpretability, offering a reliable framework for identifying injury 

risks using structured data. In contrast, the neural network-based paradigm emphasizes 

adaptability and scalability, enabling the model to capture complex, nonlinear relationships 

within the data. 

The first paradigm involves three distinct learning scenarios: Static learning, Continual 

learning, and Drift Retraining Adaptive learning. These scenarios are further evaluated through 

non-cumulative and cumulative perspectives to assess their effectiveness in handling evolving 

data. The second paradigm, based on neural networks, mirrors these methodologies but 

incorporates backpropagation for immediate updates, sliding window retraining, and adaptive 

mechanisms for drift detection. 

By integrating these paradigms, this chapter aims to evaluate their comparative effectiveness 

in addressing the challenges posed by concept drift and dynamic injury data. We leverage a 

unique multi-season dataset encompassing five seasons of training and injury data from Elite 

Premier League players. The primary utility of these models lies in their ability to evaluate 

injury risk within a seven-day period, aligning with the regular match schedules of the EPL. 

To date, the application of online learning in soccer injury prediction remains underexplored. 

By addressing this gap, our chapter seeks to develop a comprehensive, multidimensional online 

continual predictive model that advances both academic research and practical applications in 

sports science. 
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4.2  Materials and Methods 

4.2.1 Participants 

This investigation included a cohort of 35 professional male soccer players with an average 

age of 25.79 years (±3.75), spanning a range from 18 to 37 years. On average, participants were 

1.80 meters tall (±0.07) with a height range of 1.63 to 1.95 meters, and weighed 80.70 

kilograms (±6.78), ranging from 66.03 to 93.70 kilograms. These athletes were part of a team 

competing in the English Premier League, and data collection occurred across five consecutive 

seasons, from 2014-2015 through 2018-2019. Players were categorized by their field positions, 

including 8 full-backs, 9 centre-backs, 7 central midfielders, 8 wing-forwards, and 3 strikers. 

The dataset contained a total of 343 injury records, focusing specifically on 133 non-contact 

injuries. Injury types were distributed as follows: 43 injuries involved the thigh, 29 affected 

the knee, 24 targeted the hip, 19 were ankle-related, and 18 involved the lower leg. The 

frequency of injuries varied among players: 8 players experienced a single injury, 9 sustained 

two injuries, 4 encountered three injuries, 2 had four injuries, 4 endured five injuries, 2 faced 

six injuries, 4 incurred seven injuries, 1 experienced eleven injuries, and 1 player suffered 

sixteen injuries. 

The seasonal distribution of injuries showed variability, with 11 injuries recorded during the 

2014-2015 season, 6 injuries in the 2015-2016 season (the team's debut in the Premier League), 

28 injuries in 2016-2017, 41 in 2017-2018, and 47 in 2018-2019. 

4.2.2 Data collection and Feature creation 

The dataset utilized in this chapter was obtained from the first-team sports science department 

of the club and was collected as part of their routine data monitoring procedures, with all 

necessary permissions secured. The focus of this research was on 133 non-contact injuries 
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documented within the dataset. Notably, absences from training sessions that resulted in 

unavailable training load data were not classified as missing data. 

The dataset comprised various categories of information, including Global Positioning System 

(GPS) metrics, physical measurements (e.g., skinfold thickness and body fat percentage), 

psychological parameters (e.g., Rating of Perceived Exertion, RPE), and demographic data. 

During feature selection, attributes with more than 60% missing values were excluded. 

Importantly, instances of training absences were not explicitly marked as missing data and 

were therefore not treated as such. To handle incomplete data, appropriate imputation 

techniques were employed. Additionally, two novel features were generated: "last injury area" 

and "days since last injury." Table 4 (In Chapter 3) outlines the training load variables included 

in the analysis, providing detailed descriptions, data sources, collection methods, collection 

frequencies (e.g., daily for GPS and psychological data, bi-weekly for physical data), and the 

imputation strategies used for addressing missing values. 

4.2.3 Dataset construction 

This chapter develops a multi-dimensional injury prediction framework to estimate the 

likelihood of injuries within a seven-day period, aligned with the English Premier League’s 

weekly schedule. This timeframe is consistent with previous methodologies, such as those by 

Vallance et al. (2020). Players typically undergo three to four training sessions per week, with 

intensity peaking later in the week. 

The master dataset consists of 106 variables (See Table 4), including 40 GPS-derived metrics, 

6 personal details, 14 physical, 4 psychological, and 42 workload-related variables (e.g., 

ACWR, MSWR, EWMA). An injury label (1 for injury, 0 for non-injury) was assigned, 

forming a dataset of 10,653 data points. Of these, 10,520 represented non-injury cases, and 133 

indicated injuries, creating a class imbalance (ratio: 0.013). 
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To address this, injury labels were redefined to mark data points from the seven days preceding 

an injury as at-risk (label 1), excluding the original injury points. This adjustment produced a 

refined dataset with 10,142 non-injury cases and 378 at-risk cases, reducing the imbalance ratio 

to 0.037. 

Spanning five seasons, the dataset provides season-wise distributions: Season 1—1448 non-

injury, 25 injury; Season 2—1980 non-injury, 17 injury; Season 3—2376 non-injury, 79 injury; 

Season 4—2242 non-injury, 123 injury; and Season 5—2096 non-injury, 134 injury. These 

distributions enable detailed multi-season analysis of injury prediction. 

4.2.4 Data Drift Analysis 

In data-driven systems, maintaining the consistency and reliability of the data distribution over 

time is crucial for achieving accurate and robust predictive outcomes. However, data drift—a 

change in the statistical properties of data over time—can compromise these objectives. In this 

chapter, we investigated data drift across five consecutive seasons using three complementary 

methodologies: the Kolmogorov-Smirnov (KS) statistic, Principal Component Analysis 

(PCA), and t-distributed Stochastic Neighbor Embedding (t-SNE). These methods allowed us 

to quantify, visualize, and interpret the occurrence of data drifts in training load metrics and 

their potential association with injuries. 

Among the numerous features analyzed, we focused on Meterage Per Minute (MPM), which 

measures the distance covered per minute during activity. This metric is fundamental to 

training programs as it directly reflects an athlete's intensity and workload efficiency. From a 

sports science perspective, MPM serves as a critical indicator of an athlete's cardiovascular and 

muscular endurance. Its variations over time can reveal shifts in fitness levels, recovery states, 

and adaptation to training loads, making it a key parameter for injury prevention and 

performance optimization. 
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4.2.4.1 Week-to-Week Drift Analysis Using KS Statistic 

The KS test is a non-parametric method that evaluates the maximum difference between two 

cumulative distribution functions, allowing us to compare the distributions of a given feature 

between consecutive weeks. For each feature and season, we calculated the KS statistic and its 

corresponding p-value to determine whether a significant drift occurred. A p-value below 0.05 

was considered indicative of significant drift. Week-to-week KS statistics were plotted for each 

season, highlighting drifted weeks in red. Additionally, the number of drifted and non-drifted 

weeks was annotated on each plot (See Figure 8). 

Figure 8 Week to Week Drift Visualisation 

 

The Kolmogorov-Smirnov (KS) statistic plots across all five seasons indicated multiple 

instances of significant drift, with the number of drifted weeks varying each season. In Season 
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1, 25 weeks exhibited drift, while 18 weeks remained stable. Similarly, Season 2 had 25 drifted 

weeks and 20 non-drifted weeks. The frequency of drift increased in Season 3, with 32 drifted 

weeks and only 13 stable weeks. This trend continued in Season 4, where 33 weeks 

experienced drift, leaving just 11 weeks unaffected. The highest occurrence of drift was 

observed in Season 5, with 36 drifted weeks and only 8 weeks showing no drift. The drifts 

appeared more frequently in certain periods, potentially aligning with changes in training 

intensity or match schedules. 

4.2.4.2 PCA and t-SNE for Multivariate Drift Visualisation 

Figure 9 PCA and t-SNE for Multivariate Drift Visualisation 
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PCA scatter plots showed distinct clustering of data points within each season, with noticeable 

variations in the spread and orientation of clusters over time. These changes reflected shifts in 

the multivariate structure of training loads, suggesting the presence of systemic data drifts. (See 

Figure 9: Top Part) 

The t-SNE visualizations provided a more nuanced view of the data, revealing localized 

clusters and overlaps between injury and non-injury data points. The distribution of injuries 

within these clusters varied across seasons, highlighting potential correlations between changes 

in training load patterns and injury occurrence. (See Figure 9: Bottom Part) 
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The combination of KS statistic, PCA, and t-SNE provided a comprehensive framework for 

detecting and visualizing data drift. The KS statistic allowed for precise identification of drifted 

weeks, while PCA and t-SNE offered insights into the multivariate and nonlinear patterns of 

drift, respectively. These findings underscore the importance of monitoring data drift in sports 

analytics, as it can influence model performance and injury prediction. 

4.3  Model construction  

4.3.1 Learning scenarios with Traditional Machine Learning Algorithms 

This chapter investigates three distinct learning scenarios: Static learning, Continual learning, 

and Drift Retraining Adaptive learning (DDM-based non-static learning). Each scenario is 

further examined through two perspectives: non-cumulative and cumulative learning. 

4.3.1.1 Learning Scenarios 

Static Learning  

In static learning, the machine learning model was trained on the designated training dataset 

and then used to predict outcomes on the entire test dataset without further updates or 

modifications. 

Continual Learning  

Continual learning involved iterative predictions on each data point in the test set. After each 

prediction, the predicted data point was appended to the training dataset, and the model was 

retrained before proceeding to the next prediction. This iterative approach allowed the model 

to gradually adapt as it processed new data points. 

Drift Retraining Adaptive Learning (DDM)  

Drift Retraining Adaptive learning followed a similar iterative prediction and retraining 

process as continual learning but incorporated the Drift Detection Method (DDM). DDM 
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monitored the predictions to identify potential data drifts, triggering model retraining when 

significant drift was detected. This adaptation aimed to enhance model evaluation and 

performance by addressing evolving data distributions. 

4.3.1.2 Learning Perspectives 

Non-Cumulative Learning  

Non-cumulative learning involved training the model on individual seasons and testing it on 

the subsequent season. For example, training on season 1 and testing on season 2, training on 

season 2 and testing on season 3, and so on, up to season 5. 

Cumulative Learning  

Cumulative learning expanded the training dataset by incorporating data from multiple seasons 

before testing on the next season. For example, training on seasons 1 and 2 and testing on 

season 3, training on seasons 1, 2, and 3 and testing on season 4, and continuing this pattern up 

to season 5. 

4.3.1.3 Machine Learning Algorithms 

To achieve the research objectives, two machine learning algorithms were utilized: 

Logistic Regression:  

This well-established algorithm is widely used in binary classification tasks due to its 

simplicity and interpretability. Logistic Regression served as the baseline model for 

comparison. 

AdaBoost:  

This ensemble learning algorithm combines multiple weak learners to create a stronger 

predictive model. AdaBoost was employed to evaluate the benefits of an ensemble-based 

approach in comparison to a single-model technique. 
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By employing these two algorithms, the chapter conducted a comparative analysis to assess 

the effectiveness of both conventional and ensemble-based methods across the different 

learning scenarios and perspectives. This comprehensive evaluation facilitated a deeper 

understanding of the strengths and limitations of each learning strategy in the context of injury 

prediction in professional soccer. 

By combining the three distinct learning scenarios—Static Learning, Continual Learning, and 

Drift Retraining Adaptive Learning—with the two perspectives of non-cumulative and 

cumulative learning, we establish six comprehensive scenarios for evaluation with each 

machine learning algorithm. These scenarios are as follows: 

Static Non-Cumulative: The model is trained on a specific season and evaluated on the 

subsequent season without incorporating additional data or updates. 

Continual Non-Cumulative: The model is iteratively updated with each prediction by adding 

the predicted data point to the training set, retraining the model before the next prediction, 

while maintaining season-specific independence. 

Drift Retraining Adaptive Non-Cumulative: Similar to Continual Non-Cumulative, this 

scenario incorporates Drift Detection Method (DDM) to trigger retraining only when 

significant data drift is identified, offering a more adaptive approach to evolving data 

distributions. 

Static Cumulative: The model is trained on an aggregated dataset comprising multiple seasons 

and tested on the subsequent season without further updates. 

Continual Cumulative: Extending the Continual Learning approach, this scenario iteratively 

retrains the model with predictions while using a cumulative dataset that expands to include 

data from prior seasons. 
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Drift Retraining Adaptive Cumulative: This scenario builds upon Drift Retraining Adaptive 

Learning by incorporating cumulative data, retraining the model when data drift is detected, 

ensuring the most adaptable approach to data evolution. 

These six scenarios provide a robust framework for evaluating the performance of each 

algorithm across varying levels of static and adaptive learning, as well as data inclusion 

strategies. By systematically analyzing these scenarios, we aim to elucidate the nuances of 

different learning strategies and their efficacy in addressing the challenges of injury prediction 

in professional soccer. 

4.3.2 Learning scenarios with Neural Network-Based Approaches 

In addition to traditional machine learning methods, a neural network-based framework was 

explored. The neural network model implemented the same three learning methodologies: 

Immediate Neural Updates 

Similar to the basic online learning framework, the neural network’s weights were updated 

after processing each data point using backpropagation. While highly adaptive, the absence of 

drift detection made this approach prone to instability in dynamic environments. 

Drift Detection with Batch Retraining for Neural Networks 

Neural network performance was monitored using a sliding window of recent loss values. 

When a performance drop was detected, the network was retrained on a combined dataset of 

previous and recent data points. This ensured adaptability while retaining historical patterns, 

though computational costs were higher. 

 

 

 



 109 

Sliding Window Retraining for Neural Networks 

Drift detection triggered retraining using only the most recent data points within a sliding 

window. This minimized computational overhead and improved responsiveness to current 

trends, making it suitable for environments with rapid data evolution. 

By employing both traditional and neural network-based approaches, this chapter provides a 

robust evaluation of online learning methodologies for injury prediction. The comparative 

analysis highlights the trade-offs between flexibility, computational efficiency, and stability, 

offering valuable insights for real-world applications in professional soccer. 

The three neural network-based approaches—Immediate Neural Updates, Drift Detection with 

Batch Retraining, and Sliding Window Retraining—were evaluated under both non-

cumulative and cumulative learning scenarios, mirroring the framework used for traditional 

machine learning methods. This dual perspective allowed for a comprehensive assessment of 

the interplay between data inclusion strategies and adaptive methodologies. By systematically 

comparing these six scenarios, this chapter elucidates the trade-offs in performance, 

computational efficiency, and stability across traditional and neural network-based approaches 

for injury prediction in professional soccer. 
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4.4  Results 

4.4.1 Results from Traditional Machine Learning Algorithms 

Table 7 Model Fit Evaluation for the Optimal Models Derived from Each Analytical Approach 

with Logistic Regression 
 

Learning 

scenarios 

Data 

Points 

                          Evaluation metrics 

Algorithms Non-

injury 

and 

Injury 

Precision Recall Cohen’s  

kappa 

RMSE  Brier 

Score 

ROC 

AUC  

Score 

Confusion 

matrix 

TN FP 

FN TP 

Static non-

cumulative 

Non-

injury 

0.96 0.76  

 

0.0045 

 

0.5065 

 

 

0.176 

 

 

0.501 

 

6637 

 

2057 

 

Injury 0.04 

 

0.25 

 

264 

 

89 

 

Continual 

non-

cumulative 

Non-

injury 

0.98 

 

0.98 

 

0.541 

 

0.1854 

 

0.034 

 

0.770 

 

8539 

 

155 

 

Injury 0.56 

 

0.56 

 

156 

 

197 

 

Drift 

Retraining 

Adaptive 

Non-

Cumulative 

Non-

injury 

0.98 

 

0.98 

 

0.571 

 

0.18 

 

0.032 

 

0.781 

 

8545 

 

149 

 

Injury 0.58 

 

0.59 

 

144 

 

209 

 

Static 

Cumulative 

Non-

injury 

0.96 

 

0.70 

 

0.0111 

 

0.5614 

 

0.198 

 

0.523 

 

6073 

 

2621 

 

Injury 0.04 

 

0.35 

 

230 

 

123 

 

Continual 

Cumulative 

Non-

injury 

0.98  

 

0.98 

 

0.5502 

 

0.1839 

 

0.034 

 

0.779 

 

8540 

 

154 

 

Injury 0.57 

 

0.57 

 

152 

 

201 

 

Drift 

Retraining 

Adaptive 

Cumulative 

Non-

injury 

0.98  

 

0.98 

 

0.5828 

 

0.1775 

 

0.032 

 

0.793 

 

8549 

 

145 

 

Injury 0.59 

 

0.60 

 

140 

 

213 
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Table 8 Model Fit Evaluation for the Optimal Models Derived from Each Analytical Approach 

with AdaBoost 
 

Learning 

scenarios 

Data 

Points 

                          Evaluation metrics 

Algorithms Non-

injury 

and 

Injury 

Precision Recall Cohen’s  

kappa 

RMSE  Brier 

Score 

ROC 

AUC  

Score 

Confusion 

matrix 

TN FP 

FN TP 

Static non-

cumulative 

Non-

injury 

0.97 

 

0.67  

  

 

0.0157 

 

 

0.5814 

 

 

 

0.338 

 

 

 

0.536 

 

 

5848 

 

2846 

 

Injury 0.05  

 

 

0.40 

 

 

212 

 

141 

 

Continual 

non-

cumulative 

Non-

injury 

0.98 

 

0.98 

 

0.5952 

 

 

0.1762 

 

0.032 

 

 

0.805 

 

 

8545 

 

149 

 

Injury 0.60 

 

0.63 

 

132 

 

221 

 

Drift 

Retraining 

Adaptive 

Non-

Cumulative 

Non-

injury 

0.99 

 

0.98 

 

0.6182 

 

 

0.1711 

 

 

0.03 

 

0.816 

 

 

8553 

 

141 

 

Injury 0.62 

 

0.65 

 

124 

 

229 

 

Static 

Cumulative 

Non-

injury 

0.96 

 

0.73 

 

-0.0033 

 

 

0.54 

 

 

0.225 

 

 

0.494 

 

 

6317 

 

2377 

 

Injury 0.04 

 

0.26 

 

261 

 

92 

 

Continual 

Cumulative 

Non-

injury 

0.99  

 

0.98 

 

0.6212 

 

 

0.1708 

 

0.03 

 

0.819 

 

 

8552 

 

142 

 

Injury 0.62 

 

0.65 

 

122 

 

231 

 

Drift 

Retraining 

Adaptive 

Cumulative 

Non-

injury 

0.99  

 

0.98 

 

0.6074 

 

 

0.1728 

 

0.029 

 

0.808 

 

 

8554 

 

140 

 

Injury 0.61 

 

0.63 

 

130 

 

223 

 

 

Static Learning: Both Logistic Regression and AdaBoost struggled with injury predictions in 

static scenarios, as evidenced by low precision, recall, and Cohen’s kappa values. The inability 

to adapt to evolving data distributions highlights the limitations of static learning. 

Continual Learning: Iterative updates significantly improved injury-class performance for 

both algorithms. Logistic Regression achieved moderate gains, while AdaBoost demonstrated 
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robust adaptability with higher recall (up to 0.63) and ROC AUC (up to 0.819), underscoring 

the benefits of incremental learning. 

Drift Retraining Adaptive Learning: Drift detection further enhanced model performance, 

particularly in non-cumulative scenarios. Logistic Regression achieved its highest metrics with 

an ROC AUC of 0.793 and recall of 0.60 in cumulative settings. AdaBoost showed the best 

overall performance, achieving an ROC AUC of 0.816 and recall of 0.65, validating its strength 

in dynamic environments. 
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4.4.2 Results from the Learning scenario with Neural Network-Based Approaches  

 

Table 9 Model Fit Evaluation for the Optimal Models Derived from Each Analytical Approach 

with Artificial Neural Network 

Learning 

scenarios 

Data 

Points 

                          Evaluation metrics 

Algorithms Non-

injury 

and 

Injury 

Precision Recall Cohen’s  

kappa 

RMSE  Brier 

Score 

ROC 

AUC  

Score 

Confusion 

matrix 

TN FP 

FN TP 

Continual 

non-

cumulative 

Non-

injury 

0.97  0.99 

  

 

0.353 

 

 

0.1878 

 

 

 

0.031 

 

 

 

0.62 

 

 

8635 59 

Injury  0.61 

 

 

0.26 

 

260 93 

Continual 

Retraining 

Non-

cumulative 

Non-

injury 

0.98 

 

0.99 

 

0.473 

 

0.1866 

 

0.028 

 

0.71 

 

8580 114 

Injury 0.57 

 

0.43 201 152 

Continual 

Retraining 

Non-

cumulative 

(Recent data)  

Non-

injury 

0.98 

 

0.99 0.519 

 

0.1762 

 

 

0.025 

 

0.72 

 

8604 90 

Injury 0.64 

 

0.46 

 

191 162 

Continual 

cumulative 

Non-

injury 

0.97 1.00 0.31 

 

 

0.1875 

 

 

0.031 

 

 

0.61 

 

8653 41 

Injury 0.65 

 

0.22 277 76 

Continual 

Retraining 

cumulative 

Non-

injury 

 0.98 

 

0.99 0.51 

 

0.1766 

 

0.025 

 

0.71 

 

8610 84 

Injury 0.65 0.44 198 155 

Continual 

Retraining 

cumulative 

(Recent data) 

Non-

injury 

0.98 0.99  

0.55 

 

0.1721 

 

0.024 0.74 

 

 

8605 89 

Injury 0.66 

 

0.49 179 174 

 

The evaluation of neural network-based approaches under six scenarios revealed key 

differences in performance across Immediate Neural Updates, Drift Detection with Batch 

Retraining, and Sliding Window Retraining methods: 
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Immediate Neural Updates: 

High precision (0.97–0.98) and recall (0.99) for non-injury predictions, but poor recall for 

injury predictions (0.22–0.26). Cohen’s kappa values (0.31–0.353) and ROC AUC (0.61–0.62) 

were low, indicating poor overall balance and stability. 

Drift Detection with Batch Retraining: 

Non-cumulative scenarios showed improved performance, with injury recall increasing to 0.43 

and ROC AUC reaching 0.71. Cumulative learning enhanced injury recall to 0.44, but the gains 

were marginal, indicating potential inefficiencies in incorporating extensive historical data. 

Sliding Window Retraining: 

Non-cumulative settings achieved higher injury recall (0.46) and improved Cohen’s kappa 

(0.519), with an ROC AUC of 0.72. Cumulative sliding window retraining yielded the best 

results, with a Cohen’s kappa of 0.55, injury recall of 0.49, and ROC AUC of 0.74, 

demonstrating its effectiveness in balancing adaptability, efficiency, and stability. 

Across all scenarios, sliding window retraining consistently outperformed other approaches in 

terms of injury prediction, while drift detection proved essential for stability and adaptability. 

However, injury prediction remained a challenging task due to class imbalance. 

4.5  Discussion 

This chapter evaluated the performance of traditional machine learning algorithms (Logistic 

Regression and AdaBoost) and neural network-based approaches across six distinct learning 

scenarios, combining static, continual, and adaptive methodologies with non-cumulative and 

cumulative perspectives. By systematically comparing these approaches, the research provides 

valuable insights into the trade-offs between adaptability, stability, and computational 

efficiency in the context of injury prediction in professional soccer. The findings highlight the 
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critical role of adaptive strategies, particularly drift detection and sliding window retraining, in 

addressing the challenges posed by evolving data distributions and class imbalances. 

Injury prediction perspectives.  

Traditional machine learning approaches:  

Figure 10 Running ROC AUC Over Predictions by Scenario with Logistic Regression 

 

This figure illustrates the running ROC AUC across six learning scenarios (Static Non-

Cumulative, Static Cumulative, Continual Non-Cumulative, Continual Cumulative, Drift 

Retraining Adaptive Non-Cumulative, and Drift Retraining Adaptive Cumulative) for the 

Logistic Regression model. It highlights the model's adaptability and performance in evolving 

data distributions. 
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Figure 11 Running ROC AUC Over Predictions by Scenario with AdaBoost 

 

This figure presents the running ROC AUC across six learning scenarios for the AdaBoost 

model, demonstrating its ensemble learning capabilities and its ability to handle drift detection 

and cumulative retraining effectively. 

The evaluation of traditional machine learning algorithms, Logistic Regression and AdaBoost, 

across six distinct learning scenarios provides important insights into their utility in predicting 

injuries in professional soccer. From a sports science perspective, the dynamic and high-

intensity nature of football presents unique challenges for injury prediction, as player 

workloads, match conditions, and external factors such as training regimens and recovery 

cycles contribute to rapidly evolving data distributions. Static learning approaches, which lack 

adaptability, were unable to capture these dynamics effectively. Logistic Regression, in 
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particular, exhibited poor performance, with injury recall as low as 0.25 and minimal 

agreement metrics in non-cumulative settings. AdaBoost demonstrated marginally better 

results in static scenarios, with an injury recall of 0.40, yet both algorithms struggled to address 

the temporal and contextual variability inherent in football injury data. 

Continual learning offered a notable improvement by iteratively updating models with each 

new data point, aligning more closely with real-world football scenarios where injury risks 

evolve over time. This adaptive approach allowed for significant increases in injury recall, 

reaching 0.56 for Logistic Regression and 0.63 for AdaBoost in non-cumulative settings. These 

results highlight the potential of continual learning to integrate updated information about 

players’ physiological states, training loads, and match exposures, which are critical in football 

injury prevention strategies. Cumulative learning, while adding historical context, produced 

diminishing returns, as excessive reliance on past data diluted the relevance of recent trends. 

Nonetheless, AdaBoost excelled in this scenario, achieving a recall of 0.65 and demonstrating 

its capability to balance historical and current injury predictors. 

Drift Retraining Adaptive Learning emerged as the most effective methodology, particularly 

for managing the complex, non-linear nature of injury prediction in football. With the inclusion 

of drift detection, models were able to identify significant shifts in data distributions, such as 

those caused by mid-season workload spikes or changes in player form. This dynamic 

adjustment was especially beneficial for AdaBoost, which achieved an injury recall of 0.65 and 

a Cohen’s kappa of 0.6182 in non-cumulative settings, while maintaining strong performance 

in cumulative learning with an ROC AUC of 0.808. Logistic Regression also saw its best 

performance in adaptive scenarios, with an injury recall of 0.60 and a kappa of 0.5828, 

underscoring the importance of retraining strategies in maintaining model relevance. 

From a football sports science perspective, these findings highlight the necessity of 

incorporating adaptive learning strategies that align with the fluid nature of player health and 
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performance data. Drift detection, in particular, mirrors the proactive injury prevention 

approaches employed by sports scientists, such as monitoring player fatigue or recovery 

metrics to adjust training loads in real time. Moreover, the superior performance of AdaBoost 

reflects its ability to capture the interplay of multiple risk factors, akin to how sports scientists 

consider a holistic view of a player's physical, tactical, and psychological state. 

Overall, these results emphasize that static approaches are ill-suited for dynamic environments 

like football, where injury risks are constantly evolving. The integration of continual learning 

and drift detection offers a pathway to more accurate and context-aware injury predictions, 

enabling sports science teams to make data-driven decisions in load management, injury 

prevention, and player recovery. This synergy between machine learning methodologies and 

sports science practices could pave the way for enhanced injury prediction systems, ultimately 

contributing to better player welfare and team performance. 
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Neural Network based approaches:  

Figure 12 Running ROC AUC Over Predictions by Scenario with Artificial Neural Network 

 

This figure shows the running ROC AUC for six learning scenarios with Artificial Neural 

Networks, comparing the effectiveness of continual learning, retraining, and sliding window 

approaches. The trends underscore the neural network’s dynamic adaptability to changing data 

conditions. 

The evaluation of neural network-based approaches for injury prediction, tested across six 

distinct learning scenarios, reveals nuanced insights into their adaptability and performance. 

These scenarios included Continual Non-Cumulative, Continual Retraining Non-Cumulative, 

Continual Retraining Non-Cumulative with Recent Data, Continual Cumulative, Continual 

Retraining Cumulative, and Continual Retraining Cumulative with Recent Data. Neural 
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networks leveraged their capability to iteratively adapt to new data while balancing 

computational efficiency and model stability, making them well-suited for dynamic injury 

prediction tasks. 

In the Continual Non-Cumulative scenario, neural networks demonstrated strong non-injury 

prediction metrics with a precision of 0.97 and recall of 0.99. However, injury-class 

performance remained limited, with a recall of 0.26 and a Cohen’s kappa of 0.353. This 

suggests that, while immediate updates can help the model adapt, the absence of drift detection 

or retraining hinders its ability to handle minority-class dynamics effectively. Similarly, 

the Continual Cumulative scenario, which incorporated historical data without explicit 

retraining mechanisms, showed a slight drop in injury-class recall to 0.22, indicating potential 

overfitting or an inability to focus on recent trends. 

Incorporating retraining strategies significantly improved the model's performance. 

The Continual Retraining Non-Cumulative approach enhanced injury recall to 0.43 and 

improved Cohen’s kappa to 0.473. These results highlight the benefits of retraining, which 

allows the model to recalibrate its parameters and respond to distributional shifts in the data. 

Notably, Continual Retraining Non-Cumulative with Recent Data further boosted 

performance, achieving an injury recall of 0.46, a Cohen’s kappa of 0.519, and an ROC AUC 

of 0.72. By focusing retraining on recent data points within a sliding window, this approach 

optimized computational efficiency while maintaining adaptability to current trends. 

Cumulative retraining approaches demonstrated similar trends, with Continual Retraining 

Cumulative improving injury recall to 0.44 and Cohen’s kappa to 0.51. However, the inclusion 

of extensive historical data diluted the model’s focus on recent patterns, particularly for the 

injury class. The Continual Retraining Cumulative with Recent Data approach addressed this 

limitation by leveraging a sliding window to prioritize recent information. This scenario 

achieved the highest overall performance, with an injury recall of 0.49, a Cohen’s kappa of 
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0.55, and an ROC AUC of 0.74. These results underscore the effectiveness of sliding window 

retraining in balancing computational cost and adaptability to evolving data. 

From a sports science perspective, the ability to dynamically adapt to changing player 

workloads, match conditions, and recovery profiles is critical in injury prediction. Neural 

networks equipped with retraining strategies, particularly sliding window retraining, align well 

with these requirements. The superior performance observed in these scenarios reflects their 

capacity to capture complex, non-linear relationships between injury risk factors, such as 

training load, player fatigue, and match intensity. Moreover, the emphasis on recent data 

mirrors the practices of sports scientists, who prioritize current player metrics when making 

load management decisions. 

Overall, these results highlight the limitations of immediate updates and static cumulative 

approaches, emphasizing the need for adaptive strategies to address the challenges of evolving 

injury risks in football. Sliding window retraining emerged as the most effective methodology, 

offering a robust balance between stability, computational efficiency, and responsiveness to 

recent trends. These findings pave the way for more sophisticated injury prediction systems 

that integrate machine learning with sports science insights to enhance player welfare and 

performance optimization. 

Practical applications. 

The practical applications of our findings extend to multiple stakeholders in soccer injury 

prevention and management, providing actionable insights to enhance player well-being and 

optimize performance. Soccer clubs and medical staff can utilize the adaptive learning models 

developed in this chapter as a proactive tool to assess injury risks on a regular basis. By 

continuously monitoring players’ well-being and identifying potential vulnerabilities, these 
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models enable timely interventions and the design of tailored training programs to mitigate 

injury risks effectively. 

The cumulative training approach adds a valuable dimension to these applications. By 

integrating data across multiple seasons, teams can gain a more comprehensive understanding 

of injury patterns unique to their players. This longitudinal perspective allows for the creation 

of personalized injury prevention strategies that account for the individual risks, playing styles, 

and physiological characteristics of each player, ensuring a more targeted and effective 

approach to injury management. 

Integrating adaptive learning models into injury prediction frameworks also aligns seamlessly 

with the broader movement toward data-driven decision-making in sports management. By 

incorporating predictive analytics into a holistic sports science approach, teams can combine 

physiological, performance, and contextual data to optimize player health and performance. 

Such frameworks not only enhance the precision of injury risk assessments but also support 

informed decision-making around player workload, recovery, and rotation strategies. 

In a broader context, this research contributes to the growing intersection of machine learning, 

sports science, and medicine. The adaptive learning models presented in this chapter exemplify 

the potential of artificial intelligence to revolutionize injury prediction in dynamic and high-

performance environments. As the field continues to evolve, the integration of these models 

offers immense promise for transforming injury management strategies and ensuring the long-

term well-being of athletes in soccer and other sports. By bridging the gap between data science 

and practical sports applications, this work sets the stage for innovative approaches to athlete 

care and performance optimization. 
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Strengths and limitations. 

Our chapter introduces several strengths that advance the field of soccer injury prediction while 

also acknowledging limitations that provide important considerations for future research. 

Strengths. 

Innovative Methodology  

This research integrates online continual and adaptive learning methodologies into soccer 

injury prediction, offering a dynamic approach to capture evolving injury patterns. The use of 

multi-seasonal data sets our chapter apart from previous static or single-season analyses, 

providing novel insights into the interplay between training loads, player characteristics, and 

injury risks over time. 

Comprehensive Multi-Season Dataset 

Utilizing a rich dataset of Elite Premier League soccer players enhances the generalizability 

and applicability of our findings. This dataset, encompassing detailed information on training 

load, injury occurrences, and player performance metrics, enables a thorough examination of 

the multifactorial nature of soccer injuries. 

Robust Performance Evaluation Metrics   

Employing rigorous metrics such as ROC-AUC, Cohen’s kappa, and Brier scores provides a 

robust quantitative framework to evaluate model performance across various scenarios. These 

metrics allow for detailed comparisons of different learning methodologies and configurations, 

ensuring a reliable foundation for model selection. 

Adaptive Weekly Prediction Framework 

The development of machine learning models tailored to a weekly prediction framework aligns 

with the practical scheduling of soccer matches. This real-time adaptability allows the models 
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to reflect the dynamic nature of player performance and workload variations, ensuring timely 

and actionable injury predictions throughout the season. 

Integration of Drift Detection 

The incorporation of Drift Detection Method (DDM) enhances the models’ ability to handle 

concept drifts in the data, such as changes in player workload or training regimens. This 

adaptive capability aligns with real-world scenarios where injury risks evolve dynamically. 

Limitations. 

Data Imbalance 

Injury prediction inherently suffers from an imbalance between injury and non-injury data 

points. Although techniques such as Synthetic Minority Oversampling Technique (SMOTE) 

were applied, residual biases may persist, particularly in scenarios with limited injury 

instances. This imbalance can challenge the models' ability to generalize effectively for 

minority classes. 

Feature Selection Complexity 

While the inclusion of a wide range of features provides a holistic view of injury predictors, it 

introduces dimensionality and potential overfitting risks. Although methods like Recursive 

Feature Elimination and Variance Threshold were employed, further refinement of feature 

selection and interpretability remains an area for improvement. 

Sensitivity of Drift Detection 

The effectiveness of DDM is influenced by parameter tuning and the nature of the detected 

drift. Variations in drift patterns or poorly calibrated parameters may limit the models' 

adaptability in highly dynamic scenarios. Exploring alternative drift detection methods or 

parameter-agnostic techniques could enhance robustness. 
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External Validity 

The chapter’s findings, while highly relevant to Elite Premier League soccer, may not 

generalize directly to other leagues or sports. Variations in playing styles, training methods, 

and injury management strategies across different contexts necessitate cautious interpretation 

of the results when applied outside this setting. 

Continuous Data Integration Challenges   

The continuous evolution of soccer player data, influenced by matches and training sessions, 

poses challenges for real-time data integration and model adaptability. The absence of a 

streamlined software management system could hinder the model's ability to incorporate new 

data effectively, potentially impacting prediction accuracy. Developing automated pipelines 

for data preprocessing, integration, and evaluation would address this limitation. 

Computational Overhead 

Adaptive learning models, particularly those using cumulative and sliding window retraining, 

introduce significant computational demands. While effective, these approaches require careful 

resource management to ensure scalability for real-time applications. 

Additional Considerations 

Interpretability of Models 

While neural network-based approaches demonstrated superior performance, their inherent 

complexity poses challenges for interpretability compared to traditional machine learning 

methods. Future work should explore methods to enhance explainability, enabling medical 

teams and coaching staff to better understand the drivers of injury predictions. 
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Integration with Wearable Technology  

Incorporating real-time data from wearable devices (e.g., GPS trackers, heart rate monitors) 

could further improve the granularity and predictive power of the models by capturing nuanced 

workload and fatigue metrics. 

This chapter’s strengths lie in its innovative adaptive learning methodology, comprehensive 

dataset, rigorous evaluation metrics, and practical alignment with weekly soccer schedules. 

However, challenges such as data imbalance, feature selection complexity, drift detection 

sensitivity, external validity, and continuous data integration highlight areas for further 

exploration. Addressing these limitations will enhance the reliability and applicability of 

machine learning models in injury prediction, paving the way for more effective, data-driven 

player management strategies in soccer and beyond. 

4.6  Future Research 

While this chapter has established a strong foundation for adaptive machine learning 

approaches in soccer injury prediction, there are several avenues for future research that could 

further enhance the applicability, scalability, and effectiveness of these models. One key area 

involves addressing the persistent challenge of data imbalance, particularly between injury and 

non-injury data points. While techniques such as SMOTE were effective to some extent, future 

work could explore advanced methods like cost-sensitive learning or generative data 

augmentation to mitigate biases and improve model performance for minority classes. 

Another critical direction involves improving the robustness of drift detection. Although the 

Drift Detection Method (DDM) was effective in handling concept drifts, exploring alternative 

techniques such as Adaptive Windowing (ADWIN), Kullback-Leibler Divergence, or 

ensemble-based drift detection methods could provide better adaptability to subtle and non-
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linear shifts in player data. Such advancements could ensure that the models remain highly 

responsive to dynamic changes in injury risk factors. 

The integration of wearable and tracking data is another promising avenue. Incorporating real-

time data streams from GPS trackers, accelerometers, and heart rate monitors could enhance 

the granularity and timeliness of injury risk assessments. Future models should focus on 

seamless integration of these data sources to enable real-time predictions that accurately reflect 

player workload, fatigue, and recovery. This aligns with the growing emphasis in sports science 

on utilizing technology to monitor player well-being in real time. 

Future research should also aim to improve the interpretability of neural network-based 

approaches. While these models demonstrated superior performance, their complexity poses 

challenges for practical implementation. Integrating explainable AI techniques, such as SHAP 

or LIME, could bridge this gap, providing actionable insights for medical teams and coaching 

staff to better understand the factors contributing to injury risks. This would help foster trust 

and usability of machine learning models in real-world sports environments. 

The generalizability of these findings to other leagues, levels of competition, and sports 

domains is another area requiring further exploration. While this chapter focused on Elite 

Premier League players, extending the analysis to different settings could test the adaptability 

of the models and account for variations in playing styles, training regimens, and injury 

management strategies. Such efforts would broaden the impact of machine learning in sports 

science and provide valuable insights across diverse athletic contexts. 

Additionally, future work should address the challenges of continuous data integration by 

developing automated pipelines for data preprocessing, integration, and evaluation. As player 

data evolves with each match and training session, robust systems are essential to ensure that 

models remain up-to-date and predictions remain accurate. Automating these processes would 
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reduce manual intervention and enable the scalability of machine learning applications in injury 

prediction. 

Moreover, exploring the fusion of multimodal data sources, such as biomechanical data, 

medical imaging, psychological metrics, and environmental factors, could provide a more 

holistic view of injury risks. This comprehensive approach could enhance model accuracy and 

offer deeper insights into the multifactorial nature of injuries. At the same time, future research 

should consider the ethical implications of deploying AI-based models in sports, including 

issues related to player data privacy, transparency, and equitable access to technology. 

Lastly, future models could extend their scope beyond short-term injury prediction to include 

long-term health outcomes, such as chronic injury risk or career longevity. Customizing models 

to account for specific roles and positions on the field could also improve accuracy, as differing 

physical demands influence injury risks. These advancements would provide tailored 

recommendations for injury prevention and management, aligning with the ultimate goal of 

safeguarding player health and optimizing performance. 

By addressing these research directions, future studies can build on the adaptive learning 

framework presented in this chapter, contributing to more effective, scalable, and ethically 

sound injury prediction systems. Such advancements will not only enhance player management 

strategies but also support the broader integration of machine learning into sports science, 

ensuring the long-term well-being of athletes across diverse contexts. 

4.7  Conclusions 

This chapter provides a comprehensive framework for soccer injury prediction by integrating 

adaptive machine learning approaches, including online continual learning, drift detection, and 

sliding window retraining, across both traditional algorithms and neural networks. By 

evaluating these methodologies under non-cumulative and cumulative scenarios, the findings 
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highlight the critical importance of adaptability in managing the dynamic and evolving nature 

of injury risks in professional soccer. 

The results underscore the limitations of static learning approaches, which fail to capture the 

temporal complexity of injury patterns, and emphasize the superior performance of adaptive 

strategies, particularly drift detection and sliding window retraining. These methods 

demonstrated their ability to balance stability, computational efficiency, and responsiveness to 

changing data distributions, making them practical tools for injury management in high-

performance sports environments. 

From a sports science perspective, the integration of these machine learning models into injury 

prediction frameworks has significant potential to enhance player health and performance. By 

leveraging multi-seasonal datasets and aligning predictive models with weekly match 

schedules, teams can proactively assess risks, design personalized training regimens, and 

optimize player workloads. Moreover, the application of robust evaluation metrics, such as 

ROC-AUC and Cohen’s kappa, ensures the reliability of these predictions, supporting 

informed decision-making for medical teams and coaching staff. 

While this chapter advances the state of the art in soccer injury prediction, it also highlights 

key challenges, including data imbalance, feature selection complexity, and the need for real-

time integration of player data. Addressing these challenges through future research will further 

enhance the scalability, generalizability, and ethical deployment of machine learning models 

in sports. Ultimately, this work lays the foundation for more effective, data-driven injury 

management strategies, contributing to the long-term welfare of athletes and the broader 

adoption of artificial intelligence in sports science. 

In conclusion, our research marks a significant step forward in the field of soccer injury 

prediction, showcasing the effectiveness of online continual and adaptive learning approaches. 
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As we navigate the intersection of sports science and machine learning, the foundations laid in 

this chapter pave the way for continued advancements, ultimately supporting the health, 

performance, and longevity of soccer players in elite competitions. 
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Chapter 5  

5. Thesis Overview 

This thesis explored the relationship between training load and injury prediction in professional 

soccer through machine learning. It presented a transition from traditional static models, which 

rely on fixed statistical relationships, to adaptive learning approaches that dynamically update 

based on evolving data trends. By integrating multi-season datasets and high-dimensional 

workload metrics, this research provided a more comprehensive and data-driven approach to 

understanding injury risk in elite-level soccer. 

A key focus of this thesis was to address limitations in existing injury prediction methodologies 

by integrating machine learning insights with a structured, multi-season injury prediction 

framework. The research initially explored conventional injury prediction models, identifying 

key risk factors and assessing their predictive capabilities using machine learning techniques. 

Building on this foundation, the chapter advanced towards a more adaptive approach by 

incorporating continual learning and drift detection techniques, ensuring that predictive models 

remained relevant as training practices, match intensities, and player workload patterns 

evolved. Unlike previous studies that applied machine learning in a static manner, this research 

developed a real-time injury risk framework, capable of dynamically adjusting to changing 

data distributions and capturing subtle variations in injury risk factors over time. 

Furthermore, this thesis examined the interplay between physiological, psychological, and 

biomechanical factors in injury prediction, offering a multi-faceted perspective on player 

health management. By leveraging advanced artificial intelligence models, including Artificial 

Neural Networks (ANNs) and ensemble-based approaches, the chapter demonstrated the 
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superiority of adaptive learning over conventional statistical models in predicting injuries with 

higher accuracy and robustness. 

This final chapter synthesizes the key findings from the research, evaluates their impact on 

both sports science and machine learning communities, and outlines future directions for 

further refining injury prediction systems. The insights gained from this work contribute to the 

broader goal of enhancing player safety, optimizing workload management, and improving 

long-term athletic performance through data-driven decision-making. 

5.1  Summary of Key Findings 

5.1.1 Literature Review and Identification of Gaps (Chapter 2) 

Existing research on soccer injury prediction lacks a standardized and unified methodology, 

leading to inconsistencies in predictive accuracy and model reliability across different studies 

(Van Eetvelde et al., 2021; Rossi et al., 2022). While various machine learning and statistical 

models have been employed to assess injury risk, the absence of a cohesive framework limits 

the comparability and applicability of these findings across diverse sporting contexts. 

Furthermore, many prior studies have relied on single-season datasets, which restricts the 

generalizability of models when applied to subsequent seasons. The dynamic nature of soccer, 

influenced by evolving training regimens, player workloads, and match intensities, necessitates 

models that can adapt over time, yet most existing approaches fail to incorporate such 

adaptability (Bowen et al., 2019; López-Valenciano et al., 2018). 

Another persistent issue in the field is the significant imbalance in injury data, where the 

number of injury instances is disproportionately small compared to non-injury cases. This data 

imbalance poses challenges for machine learning models, which often become biased towards 

predicting non-injury outcomes due to the overwhelming presence of negative cases in the 

dataset. Strategies such as oversampling and cost-sensitive learning have been proposed to 
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address this issue, yet the problem persists, impacting the reliability of predictions (Rommers 

et al., 2020; Ayala et al., 2019).  

A significant gap in existing research is the lack of consideration for concept drift—the 

phenomenon where injury patterns evolve over time due to factors such as changes in coaching 

strategies, medical interventions, and player conditioning. Most static models fail to adapt to 

these evolving trends, leading to reduced predictive performance as datasets become outdated 

(Venturelli et al., 2011; Naglah et al., 2018). This limitation highlights the need for adaptive 

learning methodologies capable of continuously updating predictive models, addressing data 

imbalance effectively, and incorporating drift detection mechanisms to maintain long-term 

model relevance in real-world applications.  

5.1.2 Machine Learning for Multi-Season Injury Prediction (Chapter 3) 

This chapter I applied Artificial Neural Networks (ANNs) to multi-season soccer injury 

prediction, marking a significant departure from traditional statistical and single-season 

machine learning models (Chen & Guestrin, 2016; Mehlig, 2019). The findings demonstrated 

that ANNs outperformed conventional machine learning algorithms, such as Logistic 

Regression and XGBoost, in capturing complex relationships between training load variables 

and injury occurrence (Rossi et al., 2018; Vallance et al., 2020). Through the integration of 

multi-season data, the model accounted for variations in training intensities, match demands, 

and evolving injury patterns, providing a more robust and generalizable framework for 

predicting injuries across different seasons. 

The chapter identified key predictors influencing injury risk, including last injury area, player 

weight, and meta energy, reinforcing the importance of both historical injury records and 

physiological factors in determining susceptibility to future injuries (Oliver et al., 2020; 

Kampakis, 2016). Despite achieving a high recall rate of 77%—indicating the model's ability 

to correctly identify injury cases—the chapter observed lower precision due to an increased 
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number of false positives, a challenge inherent in injury prediction due to the rarity of injury 

events compared to non-injury instances (Hastie et al., 2009; Ruddy et al., 2019). The 

imbalance between injury and non-injury cases often skews predictions toward the majority 

class, necessitating further advancements in data handling techniques and model optimization 

to enhance specificity. 

One of the primary limitations of static models in injury prediction is their vulnerability to 

concept drift, where shifts in data distribution over time degrade model performance. Static 

models, which are trained on historical datasets, struggle to adapt to changes in player 

conditioning, tactical adjustments, and evolving risk factors that influence injury likelihood. 

This chapter addressed these challenges by advocating for adaptive learning approaches 

capable of recognizing and adjusting to data drift dynamically, thereby maintaining predictive 

accuracy over multiple seasons (Impellizzeri et al., 2020; Claudino et al., 2019). The research 

findings highlight the potential for ANN-based models to provide sports practitioners with a 

proactive tool for managing player workload and injury prevention strategies, reinforcing the 

necessity for further advancements in machine learning methodologies tailored to dynamic 

sports environments. 

5.1.3 Continual and Adaptive Learning for Injury Prediction (Chapter 4) 

This chapter introduced adaptive machine learning methodologies to address concept drift, a 

key challenge in sports injury prediction, ensuring that models remain relevant as player 

workload patterns and injury risk factors evolve over time (Janardan & Mehta, 2017; Webb et 

al., 2017). Traditional machine learning models often become outdated due to their reliance on 

static datasets, making them ineffective in the ever-changing environment of professional 

soccer. By incorporating continual learning techniques, this research allowed predictive 

models to update dynamically as new data arrives, thereby maintaining their predictive efficacy 

(Goel & Batra, 2021; Hussain et al., 2021). 
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A major advancement in this chapter was the implementation of drift detection mechanisms, 

which trigger retraining only when significant changes in data distribution occur, reducing 

unnecessary computational overhead while improving model adaptability (Wang et al., 2013; 

Disabato & Roveri, 2022). Unlike traditional retraining methods that require extensive 

historical datasets, this research employed sliding window retraining, which prioritizes recent 

data over outdated information. This approach enhances responsiveness to current injury risk 

trends while minimizing computational demands, ensuring models remain both efficient and 

effective (Zenisek et al., 2019; Krawczyk et al., 2017). 

The findings of this chapter demonstrate that adaptive learning methodologies, particularly the 

combination of drift detection and sliding window retraining, yield superior predictive 

accuracy compared to static models. The use of Artificial Neural Networks (ANNs) further 

solidified this advantage, as they outperformed traditional machine learning approaches by 

exhibiting greater flexibility in identifying evolving injury patterns (Gomes et al., 2019; Lee & 

Lee, 2020). This research also validated the practicality of using a 7-day prediction window, 

aligning with the competitive schedules of the English Premier League and allowing coaching 

staff and medical professionals to make timely interventions in player workload management 

(Wang & Wang, 2023). These advancements position adaptive learning as a critical tool for 

enhancing injury prediction and prevention strategies in professional soccer, paving the way 

for future innovations in the intersection of sports science and machine learning. 

5.2  Novel Contributions in Injury Risk Research 

This thesis significantly advances the field of injury risk assessment by addressing limitations 

inherent in traditional models and offering a more nuanced, data-driven approach through 

machine learning. Traditional models for injury prediction have predominantly relied on 

predefined statistical relationships that fail to capture the dynamic and evolving nature of injury 
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risk in professional soccer. These models often suffer from rigidity, assuming a static 

relationship between workload metrics and injury occurrence without accounting for 

contextual factors such as variations in training regimens, player conditioning levels, and 

tactical strategies. 

By leveraging multi-season datasets, this thesis provides a broader and more generalizable 

framework for injury prediction, overcoming the constraints of single-season studies that lack 

long-term applicability. The integration of high-dimensional workload metrics, encompassing 

GPS-derived data, physiological markers, and psychological indicators, ensures a holistic 

understanding of injury risk. This multi-faceted approach recognizes that injuries are rarely the 

result of a single factor but rather the cumulative outcome of multiple interacting variables, a 

limitation often overlooked in previous research. 

A key innovation in this thesis is the application of adaptive learning techniques, particularly 

continual and drift-aware machine learning models, which address the challenge of concept 

drift—where the statistical properties of input data change over time, leading to reduced 

predictive performance in static models. By implementing drift detection and sliding window 

retraining, this research ensures that predictive models remain relevant and effective even as 

training methodologies and match demands evolve. Furthermore, the integration of artificial 

neural networks (ANNs) enhances the capacity to model complex, nonlinear relationships 

within the dataset, outperforming traditional machine learning approaches in both accuracy and 

robustness. 

The practical implications of this research extend beyond theoretical advancements, offering 

actionable insights for sports scientists, coaches, and medical staff in professional soccer. The 

development of a 7-day injury prediction framework aligns with the competitive schedules of 

elite teams, providing timely risk assessments that facilitate informed decision-making 

regarding player workload management and recovery strategies. This predictive model 
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empowers teams to implement preventative measures, potentially reducing injury incidence 

and improving overall team performance. 

By bridging the gap between sports science and artificial intelligence, this thesis establishes a 

new paradigm for injury risk modeling, demonstrating the efficacy of adaptive machine 

learning in a real-world sports setting. The findings underscore the necessity of continuously 

evolving predictive frameworks to maintain their applicability in dynamic environments, 

setting the stage for future innovations in injury prevention and athlete performance 

optimization. 

5.2.1 Addressing Limitations in Traditional Injury Risk Models 

Historically, injury risk research in sports science has relied on heuristic-based models such as 

the Acute Chronic Workload Ratio (ACWR), Monotony and Strain Models, and Physiological 

Thresholds (Hulin et al., 2013; Impellizzeri et al., 2020). While these models have provided 

valuable insights into training load management, they suffer from several critical limitations 

that reduce their effectiveness in practical applications. One major drawback is their reliance 

on static and rigid assumptions, where fixed threshold values determine workload-related 

injury risks without considering individual adaptation responses. This oversimplification 

disregards the dynamic nature of player conditioning and recovery, leading to inaccurate 

assessments of injury susceptibility (Windt & Gabbett, 2017; Drew et al., 2016). Furthermore, 

these traditional models often employ binary injury classification, categorizing athletes as 

either at risk or not at risk without accounting for the continuum of risk levels. This 

dichotomous approach overlooks the progressive accumulation of stress and fatigue, which can 

predispose players to injury over time rather than at a singular threshold (Soligard et al., 2016; 

Gabbett, 2016). 

Another key limitation of traditional injury risk models is their failure to incorporate the 

complex interdependencies between multiple workload variables. These models typically 
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analyse one or two factors in isolation, such as training volume or intensity, without 

considering the intricate relationships between biomechanical, physiological, and 

psychological stressors. By failing to integrate a broader range of contributing variables, these 

models do not provide a holistic assessment of injury risk (Bourdon et al., 2017; Bowen et al., 

2019). Additionally, the lack of adaptability in traditional models means they cannot account 

for evolving injury patterns, changing training methodologies, or fluctuations in match 

demands over multiple seasons. As a result, their predictive utility diminishes over time, 

necessitating the development of more sophisticated, data-driven approaches that can 

dynamically adjust to changing conditions. Addressing these shortcomings, this chapter 

presents an advanced machine learning framework that incorporates multi-season data, 

adaptive learning techniques, and real-time workload monitoring to offer a more accurate, 

individualized, and comprehensive approach to injury risk prediction in professional soccer. 

5.2.2 Advancing Injury Risk Prediction through Machine Learning 

This research introduces a novel machine learning-driven framework that overcomes the 

limitations of traditional injury risk models by shifting from static, rule-based approaches to 

adaptive, data-driven systems (Chen & Guestrin, 2016; Mehlig, 2019). Traditional models rely 

on fixed relationships between workload metrics and injury likelihood, often failing to account 

for the evolving nature of player conditioning, match intensity, and external stressors. This 

chapter builds upon these challenges by leveraging multi-season data to capture the temporal 

evolution of injury risk factors, a key step in enhancing predictive accuracy and generalizability 

across different competitive environments (Rossi et al., 2018; Vallance et al., 2020). By 

incorporating a high-dimensional dataset that integrates GPS-tracked workload metrics, 

physiological responses, and psychological markers, the proposed framework ensures a more 

holistic understanding of the factors contributing to injury risk (Oliver et al., 2020; Kampakis, 

2016). 
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A central innovation in this thesis is the introduction of a 7-day forecasting window, which 

allows for short-term injury prediction that aligns with real-world match schedules and 

workload management strategies (Janardan & Mehta, 2017; Webb et al., 2017). This approach 

provides actionable insights that enable coaching and medical staff to proactively adjust 

training intensities, implement recovery protocols, and optimize player rotation strategies to 

mitigate injury risks. Unlike static models that become obsolete as injury patterns shift, the 

machine learning-based system adapts dynamically, ensuring that predictions remain relevant 

as new data becomes available. 

Furthermore, by integrating artificial neural networks (ANNs) and advanced machine learning 

techniques, this thesis demonstrates significant improvements in predictive robustness and 

precision. The use of drift detection and continual learning mechanisms ensures that the model 

remains responsive to changes in player workload patterns and emerging risk factors, a key 

advantage over traditional methodologies. These advancements position the current chapter at 

the forefront of modern injury risk modeling, bridging the gap between sports science and 

artificial intelligence while ensuring higher predictive accuracy, robustness, and real-world 

applicability in elite football settings. The findings underscore the transformative potential of 

machine learning in enhancing injury prevention strategies, ultimately contributing to 

improved athlete performance, reduced injury incidence, and more efficient player 

management. 

5.3  Future Research Directions 

Future research should focus on expanding the application of machine learning methodologies 

in injury risk prediction by integrating real-time data from wearable technology, addressing 

data imbalance issues, and generalizing predictive models across different leagues and sports. 

The integration of wearable technology, such as GPS trackers, accelerometers, and heart rate 
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monitors, offers the potential to enhance the precision of injury prediction models. These 

devices continuously capture an athlete’s physiological and biomechanical data, providing 

real-time insights into workload fluctuations and fatigue levels (Halson, 2014; Gabbett, 2016). 

By incorporating these dynamic data sources, future models can refine their predictive 

accuracy, allowing for more personalized and immediate interventions to prevent injuries. 

Handling data imbalance remains a persistent challenge in injury prediction research. Injuries 

are relatively rare events compared to the number of non-injury instances, leading to biased 

models that favor the majority class. Existing solutions such as oversampling, undersampling, 

and cost-sensitive learning techniques have demonstrated moderate success, but further 

advancements are needed to improve model performance without distorting the underlying data 

distribution (Krawczyk, 2016; Leevy et al., 2018). Future studies should explore novel 

synthetic data generation techniques, such as generative adversarial networks (GANs), which 

could create more realistic injury cases to balance datasets. Additionally, transfer learning 

approaches that leverage knowledge from related datasets may enhance injury prediction in 

environments where limited injury data are available. 

Another critical area for future research is the generalization of predictive models to different 

leagues and sports. While the current chapter focuses on professional soccer, injury risk factors 

vary significantly across different sports due to variations in gameplay intensity, biomechanics, 

and training methodologies. To enhance the applicability of machine learning models, future 

research should assess their performance across multiple leagues, age groups, and competitive 

levels (Kamiri & Mariga, 2021; Gibert et al., 2016). Cross-sport validation will provide insights 

into whether injury risk predictors remain consistent or if sport-specific adaptations are 

necessary. Expanding model applicability beyond soccer will contribute to the broader field of 

sports science, improving injury prevention strategies for athletes across various disciplines. 
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Ultimately, these research directions will ensure the continued advancement of machine 

learning applications in sports science, fostering innovations that lead to more effective injury 

prevention, better athlete performance management, and optimized training regimens tailored 

to individual needs. 

5.4  Final Conclusion 

This thesis marks a significant step forward in the application of machine learning to sports 

science, particularly in the domain of soccer injury prediction. By introducing adaptive learning 

methodologies, it effectively addresses longstanding challenges in prior research, such as 

concept drift and data imbalance, which have historically limited the reliability and 

generalizability of injury prediction models (Ribeiro et al., 2016; Goldstein et al., 2014). The 

integration of continual learning and drift detection techniques ensures that predictive models 

remain dynamic and adaptable, allowing them to respond to evolving player workload patterns, 

tactical variations, and medical advancements in injury prevention strategies. These 

innovations collectively contribute to a more robust and practical framework for monitoring 

injury risk in elite-level athletes. 

The findings of this thesis hold substantial practical implications for stakeholders in 

professional soccer, including clubs, coaches, and medical staff. By leveraging data-driven 

insights, teams can make informed decisions regarding training loads, recovery protocols, and 

player rotation strategies, ultimately reducing the likelihood of injuries and optimizing player 

performance (Friedman, 2001; Hastie et al., 2009). Moreover, the ability to predict injuries 

within a seven-day timeframe aligns with real-world match scheduling, providing an actionable 

tool for medical professionals to implement targeted interventions before injuries occur. 

Beyond its immediate applications in soccer, this research sets a precedent for the broader 

integration of machine learning in sports science. The methodologies developed in this chapter 
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can be extended to other high-intensity sports where injury prevention and workload 

optimization are critical concerns. By bridging the gap between artificial intelligence and 

applied sports science, this work paves the way for future advancements aimed at protecting 

athlete health, enhancing performance longevity, and refining training methodologies in 

professional sports. As machine learning continues to evolve, the insights gained from this 

research will contribute to the development of increasingly sophisticated models capable of 

revolutionizing injury prevention strategies across multiple sporting disciplines. 
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