
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the 
article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Kozhabek and Chai Applied Network Science           (2025) 10:29 
https://doi.org/10.1007/s41109-025-00707-w

*Correspondence:
Assemgul Kozhabek
s5222345@bournemouth.ac.uk;  
a.kozhabek@hw.ac.uk
1Department of Computing 
and Informatics, Bournemouth 
University, Fern Barrow,  
Poole BH12 5BB, UK
2Theoretical and Empirical 
METaknowledge (TEMET) 
lab, School of Social Sciences, 
Heriot-Watt University, EH14 4AS, 
Edinburgh, UK

Robustness assessment of urban road networks 
in densely populated cities
Assemgul Kozhabek1,2*  and Wei Koong Chai1

Introduction
In the past thirty years, the global urban population has risen from 39 to 52% and is pro-
jected to reach approximately 66% of the total population by 2050 (Habitat, 2022). One 
critical infrastructure to sustain this trend in urban areas is the road networks which 
are vital in facilitating economic activities and growth by supporting efficient movement 
of people and goods. They are also important in enhancing the overall quality of life by 
connecting communities and fostering social interactions. It is then not surprising that 
huge impact and significant costs are incurred when these road networks do not func-
tion well. The various consequences of inadequate road infrastructure can range from 
minor delays due to increased traffic congestion to disruptions or reduced accessibility 
to essential and emergency services (e.g., ambulance, fire, police), causing both life and 

Applied Network Science

Abstract
This paper presents a robustness assessment in terms of inducing damage to the 
functioning of real-world urban road networks via a comparative analysis of the 
efficacy of various network perturbation strategies. Specifically, we assess the network 
robustness through an iterative node removal process considering five targeted 
(deterministic) and two random (stochastic) strategies. The targeted node removal 
strategies are based on different centrality measures. We study the robustness of 10 
road networks of densely populated cities using three different metrics: the size of 
the largest connected component, global efficiency, and local efficiency. Our findings 
suggest that targeted disruptions utilizing centrality measures are more effective in 
disrupting the network than random ones. However, some centrality measures have 
a strong correlation with each other and thus, requiring combinations of different 
removal orders to gain more comprehensive insights into the ability of the network 
to withstand perturbations. We find centrality measures considering shortest paths 
are more effective in degrading the robustness of the network as a whole while 
centrality measures that only consider directly connected neighbours are better 
in disrupting the local effectiveness of the network. Interestingly, we also find that 
removing nodes can counter-intuitively increase the local efficiency of the network.

Keywords  Network robustness, Urban road networks, Largest connected 
components, Global efficiency, Local efficiency

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s41109-025-00707-w
http://orcid.org/0009-0008-6762-640X
http://orcid.org/0000-0002-4847-5465
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-025-00707-w&domain=pdf&date_stamp=2025-7-9


Page 2 of 22Kozhabek and Chai Applied Network Science           (2025) 10:29 

economic losses (Ben 2019; Zhang and Cheng 2023). To illustrate, Transport for London 
(2022) reported that congestion costs the London economy £5.1bn a year (equivalent to 
£1,211 per driver). On average, drivers in India, one of the most populous countries in 
the world, waste 135 h per year in traffic congestion per year, costing USD$22bn involv-
ing fuel waste, high air pollution, and productivity loss (ESCAP UN 2021). The collapsed 
Zijin Bridge in Heyuan City in June 2019 led to significant direct and indirect eco-
nomic losses, limited mobility, and incalculable ecological imbalances (Tan et al. 2020). 
Another, more recent bridge collapse in Baltimore has led to severe consequences, 
greatly impacting commuters preparing for significantly longer travel times lasting three 
to four times as long as usual (Craig et al. 2024).

Road networks are, unfortunately, susceptible to various perturbations such as acci-
dents and road closures due to construction/maintenance work.1 There could also be 
more severe perturbations due to natural events/disasters (e.g., extreme weather con-
ditions– extreme heavy rainfall in Zhengzhou city (Stanway 2021) or human activities 
(e.g., a day-long urban mobility strike in Delhi (The Economic Times 2024)). Severe per-
turbations could incapacitate some parts of the road networks. Hence, it is important 
to understand the ability of the network to withstand failures (e.g., for transportation 
maintenance and planning endeavors). As such, the focus of our study here is on the 
robustness assessment of urban road networks. Specifically, we choose ten road net-
works from densely populated cities and subject them to different and increasing pertur-
bations. We then monitor how the network responds to such disturbances. These cities 
are often identified as second-tier (Brian and Peter 2014; Wong 2019) or emerging cit-
ies (Wood 2018) in their respective countries. Their rapid economic and infrastructure 
development has driven their rise as industrial and economic hubs, though they have 
yet to be globally recognized as top-tier cities like Beijing, Shanghai, Delhi, or Mumbai. 
They are critical for regional economies, often specializing in particular industries (e.g., 
Dongguan for electronics, Surat for textiles, Harbin for heavy industry, and Qingdao 
for shipping and trade). Geographically, they share the common trait of located in close 
proximity to water sources such as coastlines (e.g., Quanzhou, Fuzhou and Dalian are 
coastal cities with access to sea and major ports) or rivers (e.g., Surat, Ahmedabad, Har-
bin and Shenyang lies near to Tapti, Sabarmati, Songhua and Hun rivers respectively). 
Dongguan is in the Pearl River Delta, giving it access to a waterway network that con-
nects to the South China Sea.

In this paper, we adopt concepts from network science (Barabási 2013) in which the 
networks are first abstracted as graphs and we evaluate the network performance deg-
radation using robustness metrics based on graph theory that are commonly used in 
the literature (cf. Section 2 for the review of related work). We introduce the relevant 
concepts and our methodology in Sect. 3 in which we systematically introduce pertur-
bations to the network based on different network perturbation patterns representing 
scenarios including random incidents (e.g., road accidents) and strategic removals based 
by node importance. We discuss our results and analysis in Sect.  4, highlighting how 
the networks respond to different perturbation patterns. We see random disruptions are, 
in general, less effective than targeted disruptions and the different targeted disruption 

1 For the rest of the paper, we use the term “perturbation” to refer to any event, both planned and unplanned, that 
cause the non-functioning of the node or more specifically, the blockage/inaccessibility of the road). Further, we fol-
low the literature (e.g., Trajanovski et al. (2013); Buhl et al. (2006)) to use the term “node removal” as the method of 
which we use to represent such events.
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strategies could offer very different results. We find that removing nodes based on rank-
ing using path-based centrality measures (e.g., betweenness) offers the greatest impact 
to the network. We find that removing nodes based on ranking using immediate connec-
tivity (e.g., degree) can have high impact on local regions but not the network as a whole. 
We find that due to similarity/correlation of some centrality measures, there is a need to 
use a combination of disruption strategies to comprehensively study the robustness of 
road networks. Finally, we summarize our findings in Sect. 5.

Related work
Network robustness has been a staple topic of study in network science over the past 
decades and has been applied to various types of complex real-world networks. While 
the concept can be easily intuited, a formal standardized definition proved to be more 
elusive and highly dependent on the type of network or application of interest (Smith 
et al. 2011). Additionally, scholars have encountered challenges in reaching a consensus 
on the definition of robustness within the realm of networked systems. Various terms 
such as reliability, survivability, safety, and resilience have similar meanings to robust-
ness, further complicating consensus-building among researchers. In Immers et  al. 
(2004), robustness is described as “the extent to which a system can operate in line with 
its design specifications even during significant disruptions”. Meanwhile, Boccaletti et al. 
(2006) defined robustness as a network’s capacity to function despite damage to some of 
its components. Robustness in Schillo et al. (2001) appears as the capability to uphold 
“safety responsibilities”, while also linking it broadly to system performance. In the con-
text of road networks and for our study, we will adapt the definition by Mieghem et al. 
(2010), where robustness is the network’s ability to withstand perturbations under node 
disruptions.

Several studies have explored the evaluation of network robustness in various disas-
ter scenarios, aiming to enhance the robustness of urban road networks. In particular, 
researchers have introduced different methodologies and indices to analyze the robust-
ness of urban road networks under different conditions, with a focus on minimizing the 
isolation of districts during disruptive events. Sakakibara et al. (2004) introduced a topo-
logical index grounded on the concentration of links in a network to evaluate robust-
ness in disaster scenarios, with the goal of reducing the network breaking into multiple 
components during these events. Similarly, Scott et  al. (2006) defined and applied the 
network robustness index, for evaluating the critical importance of a link in three hypo-
thetical road networks. They measure robustness by calculating the change in travel time 
when a link is completely removed. Zhou et al. (2017) have introduced a framework for 
evaluating the robustness of urban road networks, consisting of two layers. The frame-
work includes variations for measuring robustness against random failures and inten-
tional disruptions and is validated using a real-world urban road network in Hong Kong.

Disruptive scenarios were studied through random or targeted disturbances. The ran-
dom strategy removes random network edges or nodes, whereas the targeted strategy 
removes network nodes based on a classification of their centrality values (Scardoni 
and Laudanna 2012; Casali and Heinimann 2020; Iyer et al. 2013; Bellingeri et al. 2020; 
Ma et al. 2020; Kumar and Singh 2020). In Buhl et al. 2006, the authors investigated the 
robustness of the road network by progressively removing nodes in a random way and 
by decreasing the order of node degree in 41 urban settlements. Another study by Albert 
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et al. (2000) utilizes metrics like variations in diameter, the size of the largest cluster, and 
the average size of isolated clusters to evaluate how networks respond to intentional or 
random disruptions. A study in Duan and Lu (2014) analyzing six city road networks 
globally found that the diversity in betweenness centrality distribution of the network 
plays a key role in its robustness, more than geographical features (e.g., rivers and moun-
tains) and inherent spatial attributes (e.g., road length and width). The authors of this 
work found that the studied cities exhibit similar robustness under disruptions due to 
shared topological structures and when different representation granularities (i.e., dif-
ferent network abstraction approaches) are used, the cities show different robustness. 
The authors considered three granularities– road segment granularity, stroke granular-
ity (i.e., a series of linearly connected road segments) and community granularity (i.e., a 
group of highly clustered road segments). These studies have contributed to the devel-
opment of a detailed analysis of how road network robustness properties may change 
under a broad range of alterations. Our work here follows the same line of approach but 
focuses on road networks in densely populated cities which have some specific but prev-
alent properties such as lack of degree diversity due to the physical spatial constraint in 
the construction of road infrastructure.

Robustness of road networks
For our robustness assessments of urban road networks, we utilize tools and met-
rics from network science. For this purpose, we abstract the road networks and rep-
resent them as an undirected graph, G(V, E) with V = v1, ..., vN  the set of nodes and 
E = e1, ..., eL the set of links where N = |V | and L = |E|. In the context of this paper, 
the nodes represent the road intersections/junctions while the links represent road 
segments connecting two nodes. G can be represented by A, the N × N  symmetric 
adjacency matrix, with ai,j = 1 if there exists a link between nodes vi and vj  and 0 oth-
erwise. In this work, we assume the input unperturbed network is connected (i.e., there 
is a path between any pair of nodes in the network) so that A is irreducible.

Robustness metrics

As mentioned in Sect. 2, we follow the definition of robustness as the ability of the net-
work to sustain adequate functionality under network perturbations. In this study, we 
focus on node removals. To measure robustness, we employ three real-valued metrics, 
namely the size of the largest connected component (LCC), SLCC , global efficiency, 
EGlob, and local efficiency, ELoc. We normalize them into range [0, 1] where a higher 
value indicates a higher functioning network (i.e., 1.0 indicates an unperturbed network 
implicitly assuming that the original input network has 100% functionality). We com-
pute and track the performance of these metrics over the increasing amount of pertur-
bations introduced to the network under study and gain insights into the behaviour of 
the network until the networks are fully dismantled.

Size of the largest connected component

The LCC is a fundamental and widely used metric for assessing network robustness. It is 
defined as the size of the biggest component of a network:

SLCC = max(Sj)� (1)
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where Sj  is the size (number of nodes) of the j-th component. SLCC  is simple to com-
pute and has been used in various works for assessing the global topological connected-
ness of the network (e.g., Bellingeri et al. 2020; Albert et al. 2000; Duan and Lu 2014; 
Kozhabek and Chai 2025; Diop et al. 2022).

Global efficiency

The global efficiency of a network, G, is the average of efficiency between all pairs of 
nodes whereby the efficiency between nodes i and j is simply the reciprocal of the short-
est path length between them. Following this definition, global efficiency of network G, 
EGlob, can be written as follows (Latora and Marchiori 2001):

EGlob(G) = 1
N(N − 1)

∑
i ̸=j∈V

1
Hi,j

� (2)

where Hij  denotes the shortest path distance between node (in hopcount) vi and vj . 
Generally, EGlob provides an indication of the effectiveness of traffic exchange within a 
network. In the context of our work, EGlob signifies the effectiveness with which desti-
nations are accessible across the entire network. It is a measure that assesses how well 
vehicles on the road flow through a network from one point to another. Specifically, it 
indicates how easily vehicles can travel between any two points in the road network. A 
higher value of EGlob signifies, on average, it is faster or requires fewer steps to get from 
one point to another across the network, as illustrated by Latora and Marchiori (2001). 
Similar to SLCC , EGlob has been commonly used in assessing network robustness (e.g., 
Latora and Marchiori 2001; Barabasi 2014; Koulakezian et al. 2015; Manzano et al. 2012).

Local efficiency

While EGlob takes the entire network as a whole into consideration, local efficiency 
instead focuses on the immediate neighborhood of each node. Specifically, the local effi-
ciency of node i is the average efficiency of the local subgraph consisting of all nodes 
adjacent to node i, but not the node itself. We can then compute the network’s local effi-
ciency by taking the average of the local efficiency of all nodes in the network as follows 
(Latora and Marchiori 2001):

ELoc(G) = 1
N

∑
i∈V

E(Gi)� (3)

where

E(Gi) = 1
ki(ki − 1)

∑
l ̸=m∈Gi

1
H ′

lm

.� (4)

Gi is the local subgraph of node i. If node i has ki neighbors, then Gi has ki nodes and 
at most ki(ki − 1)/2 edges. There, H ′

lm is the shortest distance between nodes l and m 
calculated on the graph Gi. As opposed to SLCC  and EGlob, to the best of our knowl-
edge, ELoc is not a commonly used metric in the literature. However, we find inter-
esting insights with regard to this metric (cf. Section 4). Having introduced the above, 
we would also like to note that the choice of robustness metrics is dependent on the 
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specific application domain and our study and approach here can naturally be extended 
to accommodate any other metrics.

Perturbation models

A common approach to assess the robustness of a network is by determining how the 
network responds to different kinds of disruptions. In this paper, we consider two types 
of perturbations: (1) random disruptions corresponding to random events such as acci-
dents and (2) targeted disruptions, aimed at stress-testing the network by removing 
nodes considered most critical based on some metrics. This approach seeks to maximize 
the damage or impact inflicted to the network.

Random disruptions

A road junction may be blocked due to various unplanned reasons (e.g., traffic accidents, 
fallen trees, landslides). For such events, the sites of occurrence are usually not predict-
able and they can be modeled as random events. For this, we consider two types of ran-
dom node removal strategies.

 	• Random Point (RP )– A node is selected at random from all remaining nodes in the 
network, with each node having an equal probability of being chosen. For this, a 
node can be removed at any part of the network at each iteration, reflecting well the 
randomness of events such as accidents.

 	• Random Area (RA)– Start by randomly removing a node in the network. In the next 
iteration, choose to remove a random neighbor of the last removed node. Repeat the 
process of removing random neighbors iteratively until the desired fraction of node 
removals is achieved. Such a process reflects a scenario where an area is impacted 
by events such as flooding or strike actions which usually start at one point in the 
network and gradually spread from the initial affected location. In real-world 
scenarios, the spreading may not be purely random and influenced by various factors 
but for the purpose of illustrating the potential impact, we follow the literature (Kirby 
1969; Dong et al. 2022; Wang et al. 2019) to simplify and model the spreading as a 
stochastic process.

Targeted disruptions

It is often important to understand how much disruptions a network can withstand (i.e., 
worst-case scenario). For such purpose, disruption must be introduced with the aim of 
maximizing damage to the network. The rationale is that a malicious attacker will logi-
cally attempt to target nodes which are deemed to be the most critical to the network 
first to cause the most disruption. To achieve this, 

1.	 We first rank all the nodes in the network based on their importance based on some 
centrality metrics (see below) in descending order (i.e., the most important node at 
the top of the list which should incur the most impact to the network if removed).

2.	 We then iteratively remove the node from the top of the list one at a time and compute 
the robustness metrics detailed in Sect. 3.1 after each removal to assess the impact 
after each removal.
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Note that we do not recalculate the centrality values after each removal; instead, the 
nodes are removed based solely on the initial centrality ranking list. This approach allows 
us to maintain a consistent evaluation framework throughout the disruption process.

To compute the node ranking, we consider different centrality measures, convention-
ally used in network robustness studies (Mieghem et al. 2010; Kumar and Singh 2020; 
Trajanovski et al. 2013; Chai et al. 2016).

 	• Degree centrality (cD) (Wasserman and Faust 1994)– Measures the number of direct 
neighbors each node has. In the context of road networks, it represents the number 
of road segments (link) meeting at an intersection (node). An intersection with many 
roads converging towards has a higher degree and has more influence on the local 
connectivity.

 	• Betweenness centrality (cB) (Wasserman and Faust 1994)– Measures the 
involvement of a node between all node pairs in the networks (i.e., lies in the 
shortest path, acting as a bridge between the two nodes). An intersection with high 
betweenness implies that the location lies on many shortest paths between other 
nodes and thus, is likely to see a high volume of traffic across this node.

 	• Closeness centrality (cC ) (Wasserman and Faust 1994)– Assesses how proximate a 
node is, on average, to all other nodes in the network. Applied to road networks, a 
node with high closeness centrality would mean that it can reach other nodes with 
fewer hops.

 	• Katz centrality (cK ) (Newman 2018)– Computes the centrality for a node based 
on the centrality of its neighbors. It assesses the impact of a node in a network by 
taking into account both its direct neighbors and all other nodes in the network that 
connect to the node under consideration through these immediate neighbors. In 
the realm of road networks, Katz centrality can pinpoint nodes with indirect ties to 
prominent nodes, shedding light on their secondary level of significance.

 	• Load centrality (cL) (Song et al. 2015)– Assumes that every node in a network sends 
an equal amount of a specified commodity to every other node in the network, 
without considering any capacity limits of edges or nodes. It measures the total 
amount of flow passing through a node in a network. As opposed to betweenness 
centrality which ranks node based on its position in the shortest paths between node 
pairs, load centrality looks at the total flow passing through a node assuming an 
equal distribution.

The definitions of the above-mentioned centrality measures are given in Table 1.

Table 1  Centrality measures used to rank nodes for targeted disruptions
Degree cD(vi) = di

N−1

Betweenness cB(vi) =
∑

vj ,vk∈V

σ(vj ,vk|vi)
σ(vj ,vk)

Closeness cC(vi) = N−1∑N−1
j=1

Hi,j

Katz cK(vi) = β(I − αA)−1

Load cL(vi) =
∑

vj ,vk∈V
1

σ(vj ,vk|vi)

di  is the degree of node vi ; σ(vj , vk) is the number of shortest paths between nodes vj  and vk ; σ(vj , vk|vi) is the 
number of those paths between vj  and vk  passing through node vi ; Hij  denotes the shortest path distance between 
node vi  and vj ; α is a constant (damping factor), usually α < 1/λmax  where λmax  is the largest eigenvalue of the 
adjacency matrix, A. When α ≥ λmax , the centrality tends to diverge; β is a bias constant (exogenous vector) used to 
avoid the zero centrality values; I is the identity matrix
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Network perturbation analysis

Our analysis involves the introduction of perturbations to the network under study. For 
this, we sequentially remove an increasing fraction of nodes from the network follow-
ing the perturbation models described in Sect. 3.2. For random disruptions (i.e., RP  and 
RA), since they are stochastic, we repeat the experiment for each network 100 times and 
present the mean value along with their 95% confidence interval using error bars.

We track the gradual degradation of the robustness metrics introduced in Sect.  3.1 
(i.e., the resulting SLCC , EGlob, and ELoc) after each node removal and recompute the 
LCC. We consider this new LCC for the next removal. Algorithm 1 presents the pseudo-
code for our node removal process.

Algorithm 1  Node disruption algorithm

Figure 1 provides an illustration of the removal process following node ranking based 
on betweenness centrality. For each step, the node with the highest cB( node in red 
color) is removed. Note that after four nodes were removed, the network disconnected 
into two components (see Fig. 1e). When this happens, following the literature (e.g., Tra-
janovski et al., 2013), we continue to consider only the new LCC and ignore the small 
component(s).
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Robustness assessment
Dataset

For this paper, we have chosen road networks from ten densely populated cities. There 
are two Indian cities (i.e., Surat and Ahmedabad), and eight Chinese cities (i.e., Quan-
zhou, Dongguan, Zhengzhou, Harbin, Fuzhou, Shenyang, Dalian, and Qingdao). These 
cities share a strategic geographical advantage (near water bodies like coastlines or riv-
ers) and are classified as second-tier (Brian and Peter 2014; Wong 2019) or emerging cit-
ies (Wood 2018), with fast-growing economies and infrastructure. This combination has 
fueled their development as industrial and economic centers, though they are not yet at 
the level of the most prominent global cities.

Our dataset, sourced from Karduni et al. (2016), incorporates the GIS Features 2 Edge-
list (GISF2E) tool, which was applied to the road networks of 80 major cities worldwide 
using data from OpenStreetMap. This tool converts shapefiles into network represen-
tations, generating a Comma-Separated Values (CSV) file containing all nodes and the 
corresponding edge list. The extracted data also includes the geospatial coordinates of 
nodes, the length of each road segment, and information on which each link within the 
network connects nodes. Table 2 provides a summary of some basic quantities for these 
networks.

Correlation and similarity of different targeted disruption strategies

Before we present our robustness assessment, we first offer some insights into the differ-
ent targeted disruptions (i.e., the node rankings based on different centrality measures). 
For this, we first investigate the extent to which different centrality measures result in 
the removal of similar nodes. We compute the Spearman coefficient as a full-rank corre-
lation proxy (see Fig. 2). We see a strong correlation between cB  and cL and between cD  
and cK , implying that one from each pair could be redundant in future analysis as they 
almost provide the same node removal sequences. At the other end of the spectrum, 
we find cD  and cC  to have the lowest correlation while others fall between these two 
extremes.

Fig. 1  Illustration of node removal process based on cB  for a sample 24-node road network where the node with 
the highest cB  for each LCC is indicated in red
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We further compute the pairwise similarity of the centrality measures to under-
stand how similar are the rankings when an increasing fraction of nodes are 
removed. To achieve this, we consider the following process. For two node rankings, 
Ca = [ca1 , ca2 , . . . , caN

] and Cb = [cb1 , cb2 , . . . , cbN
], UCa,Cb

(k) is the percentage of 
nodes in {ca1 , ca2 , . . . , ca⌊kN⌋} that also appear in {cb1 , cb2 , . . . , cb⌊kN⌋}. In this way, 
when k = 100%, complete overlap is achieved, resulting in UCa,Cb

(100%)=1. Essen-
tially, UCa,Cb

(k) indicates the proportion of shared nodes from the top k% of nodes in 
the rankings Ca and Cb. The results of UCa,Cb

(k) for studied road networks are given in 
Fig.  3. Five different centrality measures give us ten possible combinations of central-
ity pairs. From the figure, we observe that UBetweenness,Load(k) generally has the high-
est overlap across increasing k. This is expected, as both betweenness centrality and 
load centrality are closely related, with both metrics being based on shortest path val-
ues. It is followed by UDegree,Katz(k). The remaining eight pairs perform closely with 
UCloseness,Katz(k) and UDegree,Closeness showing the lowest values for all networks. 
Since UCa,Cb

(k) is low when Ca and Cb have few overlap (i.e., Ca and Cb consider node 
importance differently), then pairs of centrality measures with low UCa,Cb

(k) have 
distinct impacts to the road network. Considering this, with UCloseness,Katz(k) and 
UDegree,Closeness(k) showing relatively few overlaps between their node rankings, they 

Table 2  Statistics of road networks
Road networks N L Network 

Diameter
Average path 
length

Degree 
diversity, κ

Popula-
tion 
(million)

Surat 2593 7340 73 29 3.10 7.86
Quanzhou 5672 15234 125 43 3.09 1.83
Dongguan 8315 22256 135 46 3.05 7.52
Zhengzhou 9162 25730 114 42 3.13 5.74
Harbin 10727 29422 162 53 3.09 6.7
Fuzhou 12333 32338 128 46 3.01 3.86
Ahmedabad 12859 36406 129 49 3.11 8.5
Shenyang 13000 38052 117 41 3.23 7.57
Dalian 13605 35794 186 70 3.01 5.92
Qingdao 13894 38036 183 63 3.15 5.89

Fig. 2  Spearman correlation heatmap of the centralities (the targeted disruptions). The heatmap represents the 
average of all ten networks
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should be considered to gain insights into the impact to the network following different 
node disruption sequences.

Impact of perturbations on size of the largest connected component

We begin our assessment focusing on LCC and present in Fig. 4 the evolution of SLCC  
in our experiments. Not surprisingly, as we increase the number of perturbations, SLCC  
decreases monotonically for all networks. However, in general, random perturbations 
(i.e., RP  and RA) are less effective in disrupting the network (shown by the slower degra-
dation of SLCC ) compared to targeted perturbations based on centralities. Between RP  
and RA, our results suggest disruptions spreading around a neighbourhood region in the 
network, RA, incur a higher detrimental impact than disruptions occurring at random 

Fig. 4  The evolution of SLCC  curve (normalized) for different disruption strategies in the ten road networks

 

Fig. 3  Similarities of centrality rankings for road networks. Each plot shows the overlap of nodes (y-axis in %) from 
the first nodes (x-axis) ranked according to centrality ranking Ca and the first nodes ranked according to centrality 
ranking Cb for a given network
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locations in the network. This is likely due to the fact that RA removes nodes focusing in 
one area and thus manages to disconnect the network into components more effectively.

Proceeding to consider the targeted disruptions, we first observe that, for all networks, 
cK  is the least effective in disintegrating the network. This implies that for road net-
works, a node directly connected to or near important major junctions does not neces-
sarily inflate the importance of the node of interest and cK  is a poor choice to degrade 
SLCC .

This is followed by cD . While many real-world networks exhibit scale-free properties 
with power-law degree distributions (Barabási 2013) we found that urban road networks 
do not possess such degree distribution (Porta et  al. 2006; Barthelemy 2021). Rather, 
since they are spatial networks, they have a small deviation of average degree (between 
2.7 and 2.95 with an average standard deviation of 0.94 and average variance of 0.89). 
This observation has also been found by previous works (e.g., Kozhabek and Chai 2025; 
Reza et al. 2022; Lee and Jung 2018; Akbarzadeh et al. 2018) that urban road networks 
do not exhibit large variation in degrees due to planar constraints (Lämmer et al. 2006 
and Viana et  al. 2013). In our case, we see that the road networks have a majority of 
junctions (nodes) inter-connecting two or three roads. Hence, with many nodes having 
similar degrees, the cD  disruption strategy ultimately does not differentiate most of the 
nodes. Moreover, we observe clear knee points for the SLCC  curves in Fig. 4, indicating 
removal of some nodes with similar degrees has a small impact on SLCC .

At the other end of the spectrum, we found that disruption based cB  to be the most 
effective and this is consistent across all networks. This aligns with previous research in 
Albert et al. (2000) where it was also found that node removal based on cB  leads to the 
worst-case scenario for the robustness of complex networks. In the context of transpor-
tation, Duan and Lu (2014) found that cB-based disruption strategy is the most harmful. 
In Vaca-Ramírez (2019), only ≈10% of nodes removed based on cB  ranking is needed to 
incur significant deterioration of the road network of Quito city.

Meanwhile, the effectiveness of disruption strategies, cC  and cL, vary between differ-
ent networks but overall, cC  appears to be more disruptive for smaller networks while cL 
to be more effective for bigger ones. However, the differences are marginal. Based on the 
above discussion, we could broadly summarize the effectiveness of the different disrup-
tion strategies in the following order: cB ≻ cC ≈ cL ≻ cD ≻ cK ≻ RA ≻ RP .2

In Fig. 5, we present the percentage of nodes needed to be removed to achieve 25%, 
50% and 90% reduction of SLCC  for the considered road networks. From this figure, we 
can make several further observations. First of all, we can see that, overall, Shenyang 
appears to have the most robust road network when most disruption strategies are less 
effective on it than other networks. This could be due to the physical landscape and 
geographical features allowing better overall connectivity such that the closure of roads 
incurs less disruption to the network. Delving further into this, we found that Shenyang 
has the highest degree diversity among all the cities considered here, suggesting high 
degree diversity offers better robustness in terms of SLCC .3 City planner for this city 
may have strategically improved the network in terms of improving the number of 

2 To simplify discussion and presentation, we use X ≈ Y , X ≻ Y , and X ≺ Y  to indicate that X inflict similar, 
higher, and lower degradation to the network than Y respectively.

3 Degree diversity, κ =

∑N

i=1
d2

i∑N

i=1
di

.
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alternative routes and eliminating “dead-end” roads4 and thus, mitigating potential dis-
ruptions. Second, while cD-based disruption is generally more effective than random 
removal strategies, (i.e., RA and RP ), there are cities (i.e., Fuzhou, Ahmedabad, and 
Dalian) where a higher number of nodes are needed to be removed to achieve 90%SLCC  
reduction even though much lower number of nodes are needed to achieve 25% and 
50%SLCC  reduction. This indicates that disruption based on node degree has smaller 
impacts when the SLCC  is small. Third, cK  disruption strategy seems to need a simi-
lar number of nodes removed to achieve the three 25%, 50% and 90%SLCC  reduction; 
forming a more linear relationship between node removal and decrease of SLCC  at the 
end of the node removal process compared to other strategies. Finally, the least effective 
RA require ≈30–40% removal to achieve 90% SLCC  decrease.

Impact of perturbations on global efficiency

We present in Fig.  6 the evolution of EGlob with increasing perturbations for all the 
cities. Similar to SLCC  in Fig. 4, we can still set apart random and targeted disruption 
strategies where random ones are less effective in decreasing the EGlob with RA ≻ RP . 

4 ​h​t​t​p​s​:​​/​/​w​w​w​​.​s​h​e​n​y​​a​n​g​.​​g​o​v​.​c​​n​/​e​n​g​​l​i​s​h​/​a​​b​o​u​t​​s​h​e​n​y​​a​n​g​/​s​​h​e​n​y​a​n​​g​n​e​w​​s​/​2​0​2​​3​1​2​/​t​​2​0​2​3​1​2​​1​2​_​4​​5​7​1​8​0​2​.​h​t​m​l

Fig. 5  Reduction of SLCC  based on types of perturbation strategies to achieve 25%, 50%, and 90% decrease

 

https://www.shenyang.gov.cn/english/aboutshenyang/shenyangnews/202312/t20231212_4571802.html


Page 14 of 22Kozhabek and Chai Applied Network Science           (2025) 10:29 

Broadly, random node disruption leads to a more gradual deterioration until the network 
eventually collapses when ≈ 40% of nodes are removed. Our findings align with other 
studies (Trajanovski et  al. 2013), where similar percentage of nodes were removed 
to cause a collapse in the complex networks (i.e., industrial networks (Alrumaih and 
Alenazi 2023), metro networks (Zhao et  al. 2018), and power grid (Trajanovski et  al. 
2013)). However, we observe an exception for Qingdao when RA is actually more effec-
tive than cD . In fact, compared to SLCC , the curves for EGlob are closer, indicating the 
smaller differences in impact for the different strategies. Disruption based on cB  and cL 
appear to be the most effective ones with both performing similarly (cB ≈ cL). The rest 
are close and dependent on the city with cD  marginally worse than others.

We present in Fig. 7 the percentage of nodes needed to be removed to reduce EGlob 
by 25%, 50%, and 90%. From the figures, Surat and Quanzhou are generally the most 
robust against random failure RP  and RA for 25%, 50%, and against targeted disruption 
strategies. However, for RP  at 90% reduction of EGlob, Harbin is the most robust com-
pared to all studied road networks. Overall, Dalian appears to be the least robust to the 
RP  and RA based on EGlob.

We now focus on the initial phase of disruption where only small perturbations are 
introduced as this is the most important in assessing how a network may maintain it’s 
function. A fast deterioration at the initial phase would indicate that the network’s func-
tion can be severely disrupted with minimal perturbations. For this purpose, we look at 
the robustness metrics discussed so far.

We present the results in Fig. 8. In this figure, we compare the difference between the 
decrease of SLCC  and EGlob at 5%, 10% and 15% node removal. The shaded area indi-
cates the difference between the two metrics. In general, we see increasing differences 
between SLCC  and EGlob for RP , RA and cD  when N is increasing. However, the con-
verse is true for cB  and cC  where we see bigger differences for smaller networks and vice 
versa. For instance, we note that 15% removal of nodes with the highest cB  or cC  already 
incur almost 100% of SLCC  for smaller networks such as Surat and Quanzhou though 

Fig. 6  The evolution of EGlob curve (normalized) for different disruption strategies in the ten road networks
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EGlob appears to be affected less. Finally, the differences observed for cK  and cL remain 
stable across the 10 road networks.

Impact of perturbations on local efficiency

In this section, we focus on a less explored metric, i.e., local efficiency ELoc. Instead of 
viewing the efficiency of the entire network as a whole, ELoc focuses on the efficiency 
within the immediate neighborhood of each node. This is relevant to local traffic as 
many car trips in big cities have been found to be short or within small localities (i.e., 
a third of car trips in London are shorter than 1 km (Transport for London 2012); in 
2019, 17% of UK car journeys were between one and two miles (Carlton 2023); nearly 
25% of car trips were shorter than five minutes in Sydney (Sugiyama et  al. 2012); less 
than 5 km car trips made up more over 40% of all car trips in 2010 in Beijing (Ming et al. 
2014). There are various initiatives to discourage short car trips to reduce environmental 
impacts (e.g., replacement with micromobility modes (Fan and Harper 2022; Scotland 
2022; Lang and Herrmann 2022)).

Figure 9 shows the evolution of the average ELoc when the network is perturbed based 
on the seven different perturbation strategies. From the results, we can clearly see three 
groups of strategies. The first group consists of the random perturbation strategies, RP  

Fig. 7  Reduction of EGlob based on types of perturbation strategies to achieve 25%, 50%, and 90% decrease
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Fig. 9  The evolution of ELoc curve (normalized) for different disruption strategies in the ten road networks

 

Fig. 8  Comparing the decrease of SLCC  and EGlob with 5%, 10%, 15% of nodes removed
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and RA, showing smoother gradual degradation of ELoc. In the case of RA, it is rela-
tively steady until ≈ 20 − 30% of nodes are removed, followed by a rapid decline.

The most impactful disruption strategies, cK  and cD , form the second group where 
we see a steeper decline in ELoc. This is opposite to the SLCC  and EGlob metrics where 
cK  and cD  are the less disruptive ones. Networks collapse when ≈ 30% of nodes are 
removed based on cK  and ≈ 40 − 45% nodes based on cD . From these observations, we 
can deduce that cK  and cD  offer strong disruption to the local region but not the overall 
network where other centrality measures (e.g., cB) can incur greater damage to the net-
work as a whole.

The third group consisting of three removal strategies based on cB , cL, and cC  is per-
haps the most interesting one. In contrast with previous metrics, we observe an ini-
tial increase of ELoc for these removal strategies, implying an improvement of local 
efficiency after node removals. The increase continues until ≈ 33 − 45% of the nodes 
removed from the network (e.g., the ELoc increases for 0.05 in Fuzhou and 0.25 in Surat 
when removing nodes based on the highest ranked cL). However, when more than 
≈ 45% of the nodes are removed, the network begins to lose its structural integrity and 
ability to maintain efficient paths between nodes. We illustrate the possibility of such a 
counter-intuitive phenomenon in Fig. 10 with a small 12-node network. In this illustra-
tion, when node 1 is removed, we see the average ELoc is increased from 0.411 to 0.485. 
Specifically, we see the ELoc of node 0 is increased from 0.33 to 1.00 due to the removal 
of node 1 causing the resulting neighborhood of node 0 to consist only of nodes 2 and 6 
which are directly connected. Referring to the definitions of the cB , cL, and cC ( Table 1), 
perturbations based on these centralities decrease the number of shortest paths, which 
in turn, can lead to an increase in network connectivity within local subgraphs. Hence, 
we observe the initial increase pattern in our results. However, the ELoc eventually falls 
faster than the random perturbation strategies after the initial increase. In short, we find 
(cK , cD) ≻ (RP , RA) ≻ (cB , cL, cC).

Figure  11 shows the percentage of nodes needed to be removed to reduce ELoc by 
25%, 50%, and 90%. In general, more nodes are needed to be removed to achieve the 
equivalent level of reduction of ELoc than SLCC  and EGlob. The cK  node removal strat-
egy appears to be the fastest in disrupting the road networks, followed by cD .

Fig. 10  Illustration of a node removal increasing ELoc in a sample 12-node network. In this case, removing node 
1 increases ELoc from 0.411 to 0.485
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In order to provide a comprehensive comparison of the networks’ response to the 
considered robustness metrics to the different node removal strategies, we present the 
scatter plots of the normalized metrics in Fig. 12. In these figures, the red bisector line 
indicates a perfect correlation between the two robustness metrics (i.e., the network 
response is the same for both metrics). We see a relatively good correlation between 
SLCC  and EGlob with cD  and cC  mostly appearing above the bisector line indicating that 
there is a higher decrease of SLCC  than EGlob while the rest recorded the opposite (i.e., 
faster degradation of EGlob). We see that RP  and RA are the closest to the bisector line 
(Fig. 12 the first and the fourth columns), implying a higher correlation between SLCC  
with EGlob based random removals. On the other hand, the relationship between SLCC  
and ELoc showed a weak correlation with sharper SLCC  decrease (Fig. 12 the second 
and fifth columns). This is most apparent for cB , cL and cC  and mainly due to the initial 
increase of ELoc discussed above. Similarly, the comparison of EGlob vs ELoc pair indi-
cates a faster decline of EGlob( Fig. 12 the third and sixth columns).

Fig. 11  Reduction of ELoc based on types of perturbation strategies to achieve 25%, 50%, and 90% decrease
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Conclusion
In this paper, we investigate the robustness of urban road networks in densely populated 
cities. We use real-world data of these networks and conduct the robustness assessment 
via an iterative node removal process, monitoring the degradation of the network in 
terms of the size of the largest connected component, global efficiency, and local effi-
ciency. We considered seven node removal strategies; two of which are stochastic in 
nature based on random selection and five are deterministic where nodes are ranked 
based on different centrality measures, namely degree, betweenness, closeness, Katz, 
and load centrality. Our results show that the introduction of an increasing amount of 
perturbations degrades the considered robustness metrics but in different magnitudes. 
For the size of the largest connected component and global efficiency, random disrup-
tion strategies are almost always the least damaging compared to targeted disruption 
strategies based on centrality measures. We found that random area disruption (where 
a random neighborhood of the network is gradually disrupted) inflicts higher degrada-
tion of SLCC  and EGlob. Among the different targeted disruption strategies, we found 
cB  to be the most disruptive, closely followed by cL due to the fact that both of them 
rely mainly on the same measure (i.e., the length of shortest paths). While they generally 
provide very similar node rankings, they are not equivalent and in some cases (e.g., for 
Quanzhou, Zhengzhou and Harbin in SLCC  curve), cC  is found to be second most dis-
ruptive in place of cL. Meanwhile, cK  was the least disruptive, though the difference in 
effectiveness was smaller for EGlob than for SLCC .

While the centrality-based disruption strategies are more effective, they impact the 
network differently for different robustness metrics. From our analysis, removing nodes 
with the highest betweenness centrality appears to be the most damaging while cD  
and cK  are the least effective according to SLCC  and EGlob. Meanwhile, based on our 

Fig. 12  Networks functioning comparison. The bisector line indicates the perfect correlation between the pair of 
two metrics
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similarity analysis, some disruption strategies correlate with each other. As such, we sug-
gest the combination of cC  with cK , and cD  with cC  strike a good balance between dif-
ferences in disruption sequences. The degradation of local efficiency offers a different 
picture where we find interestingly an initial increase after perturbations for removal 
strategies based on cB , cC , and cL. From our results, cK , and cD  inflict greater degrada-
tion to local efficiency than other targeted disruption strategies while stochastic removal 
strategies (i.e., RP  and RA) lie in between. Synthesizing the results, for assessing the 
robustness of road networks, we recommend using cB  as the first choice for studying 
the worst-case scenario, RP  and RA to gain insights into average robustness degrada-
tion behavior on random events (e.g., accidents) and finally, using cD  and cK  for finding 
the impact of the localized impact of perturbations. Considering the entire network as a 
complex system, removal strategies based on centrality that take into account paths are 
more disruptive.

As future work, we would like to use the insights gained from this study and develop 
strategies on how to protect the road network to minimize disruptions in the face of 
perturbations (e.g., targeting critical nodes that can incur the greatest damage based on 
our results). Furthermore, another research direction we would like to explore is on how 
urban road networks can recover and adapt after perturbations. This should provide 
useful insights for city planners when attempting to recover from unplanned events.
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