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Highlights 
Cold-adapted vertebrate taxa under-
went different phases of evolution during 
the last 3 million years. The first is the 
early appearance of some of the genera 
in the Pliocene to Early Pleistocene. 
There followed the appearance of many 
of the cold-adapted species after the 
time that glaciations more than doubled 
in length during the Middle Pleistocene. 
Since then there has also been climate-
related species formation due to ende-
mism through isolation, and when plant 
The evolution of cold-adapted terrestrial species underwent two main phases. 
First, the genera of cold-adapted taxa appeared during the Late Pliocene to 
Early Pleistocene. The modern day and Late Pleistocene cold-adapted species 
then arose during and after the Middle Pleistocene Transition. These species 
evolved through one or more of the following processes: out of the temperate 
zone, evolving in situ, or through montane preadaptation. Palaeogenetic studies 
are greatly contributing to our understanding of the timings and modes of evolu-
tion of cold-adapted species as well as when their specialised traits evolved. The 
evolution of polar plant and beetle species is claimed to show greater stasis than 
that of vertebrates, but could instead reflect morphological conservatism that 
can be tested with palaeogenetics. 
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population range changes led to hybrid 
species. 

Three different modes have been pro-
posed for the evolution of cold-adapted 
taxa: the ‘out of the temperate zone’ hy-
pothesis, the ‘evolving in situ’ hypothesis, 
and the ‘montane preadaptation’ hy-
pothesis, all of which may have hap-
pened in different taxa at different times. 

Palaeogenetic evidence has improved 
the precision of the timing of species 
origination as well as when and how spe-
cies acquired their adaptations to the 
cold. 

The difference in the rates of evolution 
between vertebrates and other taxa 
(plants and beetles) may be overstated, 
and the absence of evidence may be 
masking similar evolutionary trends in 
rates  and  modes  of  evolution.
The cold as a novel environment 
The cold-adapted plant and animal species found in polar and subpolar regions of the northern 
and southern hemispheres are amongst the species most vulnerable to ongoing climatic warming 
[1–3]. If we are to best understand the vulnerabilities of these cold-adapted organisms it is impor-
tant to investigate their evolutionary origins and histories. 

Cold-adapted terrestrial plant and animal taxa can be considered as organisms that expand their 
distributions during cold episodes such as the glacial (see Glossary) phases of Milankovitch 
cycles [4]. These taxa, by contrast, contract into refugia during warm interglacials [5]. However, 
because species are individualistic, the different cold-adapted taxa cannot be described as hav-
ing identical adaptations, and some contract to higher latitudes and/or higher altitudes while 
others, the continental-adapted taxa, contract towards the centre of continents [4]. An alternative 
definition of cold-adapted taxa is based on their specific phenotypic traits. These include anatom-
ical, physiological, and behavioural characteristics related to the cold itself, such as increased fat 
storage, increased thermal insulation, and more efficient oxygen transport, or other factors re-
lated to features of cold environments such as white hair or plumage [6]. Apart from the extinct 
taxa whose remains have been found in the permafrost [7], until recently it was usually only the 
living cold-adapted species whose phenotypic traits could be considered in terms of their rela-
tionship to the cold. However, with the advent of palaeogenetics, which uses ancient DNA 
(aDNA) to examine functional pathways encoded in animal and plant genomes, it has become 
possible to consider the evolution of cold adaptations through time in living and extinct taxa [8,9]. 

However, cold-adapted animal and plant species are a relatively recent phenomenon during the 
Cenozoic. This suggests that these taxa are likely to have evolved from more warm-adapted or-
ganisms. The likely timing of this evolution is in part limited by the timing of the initiation of perma-
nent ice in the Arctic, which began in the late Miocene (ca. 10 million years ago, Ma) [10]. This 
process was reinforced during the Pleistocene when land ice became especially prevalent dur-
ing the cold glacials of the Quaternary [11]. 
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The terrestrial biomes that we associate today with cold climates are found towards the poles and 
at relatively high altitudes, namely the Tundra and the boreal Taiga forest. Some components of 
tundra are thought to have been present during the Pliocene [12], although the tundra biome 
was not yet in its present form [13].  During  the  Middle  to  Late  Pleistocene glaciations, these 
cold biomes expanded from the poles and together with the dry continental grasslands (steppe) 
that expanded towards the oceanic areas they formed a largely extinct biome: the Steppe Tundra 
(mammoth steppe) of the Palaearctic and Nearctic [14]. 

Herein we review and compare the palaeontological and palaeogenetic evidence for how and 
when cold-adapted terrestrial taxa evolved. This review concentrates on northern hemisphere 
terrestrial vertebrates (mammals and one bird genus) that constitute modern boreal and tundra 
species as well as two Steppe Tundra species of the Pleistocene glaciations. Finally, we compare 
the vertebrate record with records of plants and beetles, which are thought to have different 
tempos and modes of evolution to cold adaptation. 

The tempo of cold adaptation evolution in terrestrial vertebrates 
The evolution of cold-adapted vertebrate species appears to take place over a protracted period, 
possibly concentrated during two main phases (Table 1, Figure 1). First, the evolution of some of 
the earliest members of the genera that would evolve into cold-adapted species took place in the 
Late Pliocene to Early Pleistocene when the Milankovitch cycles caused significant ice sheet ex-
pansions during glacial phases [11]. This time period included the earliest species of mammalian 
genera – such as mammoths (Mammuthus [15]), woolly rhinoceros (Coelodonta [16]), reindeer 
(Rangifer [17]), wolverines (Gulo [18]), and true lemmings (Lemmus [19]) – that either are associ-
ated with the tundra and/or boreal forest biomes of today or are extinct taxa that were adapted to 
the Steppe Tundra of the Late Pleistocene. This timing might suggest that the tundra biome first 
appeared in the Early Pleistocene and was a prerequisite for some faunal components of the tun-
dra to become cold-adapted [15]. However, there is evidence that the tundra may not have been 
in its present form at this time [13]. Furthermore, the Steppe Tundra may have been in existence 
by the Early Pleistocene, although potentially at a more southerly latitude [20], and that the grass-
based ecosystems became dominant during the Middle Pleistocene [21].

Towards the end of the Early Pleistocene, the intensity and duration of glacials increased relative 
to interglacials during a period known as the Middle Pleistocene Transition (MPT), ~1.25 Ma to 
700 thousand years ago, ka (Figure 1)  [10,22,23]. The latter part of the MPT (~920–640 ka) 
was when many of the cold-adapted vertebrate species that comprised the Steppe Tundra 
fauna first appear in the fossil record (Figure 1, Table 1)  [15,17]. This might suggest a causal 
role for longer glacial cycles in the evolution of many cold-adapted species. We note that the ear-
liest fossil occurrence of cold-adapted vertebrate species is generally in the North and East of the 
Palaearctic, and that their occurrence in Europe is later in the Middle Pleistocene (Table 1). The 
MPT is also the time during which the precursor of the Steppe Tundra fauna is first seen [17], al-
though a recent claim for Early Pleistocene Steppe Tundra in China has been made [20]. 

The other general pattern is that if a direct ancestral species has been identified in the fossil record 
it is likely to have had a more ambiguous adaptation to the cold. This is especially manifested by 
taxa such as the mammoth occurring in both warm interglacial and cold glacial stages during the 
Middle  Pleistocene  of  Euro  pe [24]. Furthermore, the oldest members of some cold-adapted 
genera – such as the mammoth Mammuthus rumanus,  wolverine  Gulo sudorus, bear Ursus arctos, 
and ptarmigan Lagopus sp. – are found in the south during the Pliocene or Early Pleistocene 
(Table 1)  [15,18,25,26]. In other cases, it is the immediate ancestors to the cold-adapted genera 
that originated in the south, such as Plioctomys (ancestral to the true lemmings) and Praeovibos
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Glossary 
Ancient DNA (aDNA): DNA that is in a 
degraded state and recovered from 
ancient organic remains. 
Cenozoic: the current Era that includes 
the Palaeocene to the present day (66 to 
0  Ma)  .
Cryptic refugia: areas often 
determined by topography where 
organisms survived in a scattered 
distribution beyond their main range 
during adverse climatic conditions. 
Endemism: characterises a species 
that is found only in a solitary defined 
location, such as on an island or in a 
country. 
Glacials: episodes when the Earth had 
large ice sheets driven by the 
Milankovitch cycles. 
Interglacials: times without large ice 
sheets driven by the Milankovitch cycles. 
Milankovitch cycles: the long-term 
climatic cycles caused by a combination 
of the variations of the Earth’s orbit and 
position relative to the Sun. 
Nearctic: the biogeographic realm that 
includes Greenland and North America 
as far south as Mexico. 
Neogene: the Period that includes the 
Miocene and Pliocene that lasted from 
23 to 2.6 Ma. 
Palaearctic: the biogeographic realm 
that includes Europe, northern Africa, 
and Asia north of southeast Asia and the 
Indian subcontinent. 
Palaeogenetics: the scientific field of 
recovering, analysing, and interpreting 
ancient DNA data. 
Pleistocene: the major Epoch of the 
Quaternary characterised by glacial– 
interglacial cycles, and lasting from 
2.6 Ma until 11.7 ka. 
Pliocene: the last Epoch of the 
Neogene that lasted from 5.3 to 2.6 Ma. 
Quaternary: the current Period that 
includes the Pleistocene to the present 
day (2.6 to 0 Ma). 
Sedimentary ancient DNA 
(sedaDNA): ancient DNA that is 
recovered from sediments and other 
environmental contexts.
(ancestral to the muskox) [17,19,27]. In addition to their southern range, these precursors to cold-
adapted taxa are often found in deposits that include non-analogue associations with temperate 
and cold-adapted taxa [28]. However, this is not the case for the reindeer genus, which first 
appears in the Late Pliocene–Early Pleistocene and is associated with boreal ecological elements 
in the far north [13,17]. The collared lemming is similar, as its immediate precursor Predicrostonyx 
first appears in Alaska in the Early Pleistocene in what looks like a modern tundra [29]. The 
arctic fox precursor is hard to document with the fossil record due to difficulties in recognising its 
ancestors, although the earliest claimed ancestor, Vulpes qiuzhudingi, is from the Pliocene of Tibet 
(but see later) [30]. Finally, the woolly rhinoceros genus first appears in the Tibetan Plateau during 
the Pliocene which is at a relatively low latitude although at high altitude (Figure 1, Table 1)  [16]. 

Theories for the origin of cold-adapted species 
Three major hypotheses have been proposed for the evolution of cold-adapted species. These 
are not necessarily mutually exclusive and may be taking place simultaneously according to bio-
geographic circumstances and the nature of the taxa involved. Indeed, it is not always clear how 
distinct the hypotheses are (Table 2).

The ‘out of the temperate zone’ hypothesis 
This posits that temperate species, potentially with preadaptations, expanded northwards during 
an interglacial and that part of the expanded population became exposed to cold climates, lead-
ing to adaptation to the cold conditions [4]. The most often cited example of this process is the 
polar bear that split from the brown bear, its phylogenetic ancestor, during the Middle Pleistocene 
[31,32], and that this may have happened in a northern area, perhaps in refugia such as Beringia 
or in cryptic refugia, so that brown bears could be exposed to the cold, thereby providing a 
stepping-stone to cold adaptation [4,33]. Sher et al. [34] proposed a similar scenario for the 
woolly mammoth, whereby an allopatric population was isolated in the cold xeric grasslands of 
Beringia from where it spread to occupy its eventual total range, including North America and 
Europe. These species would have switched from expanding and contracting from the warm in 
the south to doing so from the cold in the north [35]. The adoption of a new refugium would there-
fore lead to allopatric speciation. 

The evolution of cold-adapted taxa from more temperate ones is similar to the idea that temperate 
organisms evolved from tropical ones, known as the ‘out of the tropics’ (OTT) hypothesis which is 
used to explain the latitudinal diversity gradient [36,37]. The diversity gradient also exists between 
the temperate and cold biotas today [38,39], so similar processes may have taken place. 

The ‘evolving in situ’ hypothesis 
Kahlke [17] made a strong case that the evolution of some modern circumpolar tundra belt 
mammals evolved in the arctic region in situ as the climate cooled, rather than after 
expanding into the cold environment. Species such as the reindeer, muskox, and arctic 
fox are thought to have evolved in the northern tundra. This hypothesis is consistent with re-
cords in north Greenland of cold taxa such as reindeer at the onset of the Late Pliocene– 
Quaternary cooling [13]. This could signify that these taxa evolved in situ as cold climates in-
creased in the Arctic region, in a manner similar to what has been suggested for many plants 
(see later) (e.g., [40]). 

The ‘montane preadaptation’ hypothesis 
This hypothesis suggests that organisms acquired cold adaptations in the high-altitude moun-
tainous areas to the south during the Cenozoic, and subsequently expanded to lower altitudes 
and then across long distances to northern latitudes when climates cooled. This hypothesis
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Table 1. First occurrence dates of fossils of cold-adapted terrestrial vertebrate species in Europe and globally, and the oldest global records of their 
genera 

Species Oldest occurrence of the species in 
Europe 

Oldest occurrence of the species 
globally 

Oldest occurrence of the genus 

Woolly mammoth 
(Mammuthus primigenius) 

M. primigenius; c. 190 ka; Europe [24] M. primigenius; c. 700 ka; 
Siberia [15] 

Early mammoth (M. rumanus); 3.5–2.5 Ma; first 
occurrence in Eurasia – Europe and China [15] 

Woolly rhinoceros 
(Coelodonta antiquitatis) 

C. antiquitatis praecursor; 
c. 270 ka; La Fage, France [96] 

C. antiquitatis praecursor; 
c. 270 ka; La Fage, France [96] 

Tibetan woolly rhinoceros (Coelodonta thibetana); 
c. 3.7 Ma; Tibetan Plateau [16] 

Reindeer 
(Rangifer tarandus) 

R. tarandus stadelmanni; c. 640–620 ka; 
Süssenborn, Germany [17] 

Rangifer ex gr. tarandus; 
1.2–0.6 Ma; Western Beringia [17] 

Early reindeer (Rangifer sp.); Cape Deceit, Alaska 
[17]; c. 1.5–1.4 Ma [8,17,97] 

Muskox 
(Ovibos moschatus) 

O. moschatus suessenbornensis; 
c. 640–620 ka; 
Süssenborn, Germany [17] 

O. moschatus 
suessenbornensis; 
c. 640–620 ka; Süssenborn [17] 

No ancestral species in Ovibos but closely related 
early muskox Praeovibos. 
P. priscus; 900–400 ka; Palaearctic incl. Beringia. 
P. beringensis; 1.2–0.8 Ma; Beringia [17] 

Polar bear 
(Ursus maritimus) 

U. maritimus; 130–110 ka; 
Svalbard [98] 

U. maritimus; 130–110 ka; 
Svalbard [98] 

Oldest brown bear Ursus arctos, sites such as 
Loc. 9 and 13 Zhoukoudian, 620 ka [99] 

Wolverine 
(Gulo gulo) 

Gulo gulo; 1.7–1.3 Ma; e.g., 
Zabia Cave, Poland [100] 

Gulo gulo; 1.7–1.3 Ma; e.g., 
Zabia Cave, Poland [100] 

Early wolverine (Gulo sudorus) the Gray Fossil Site, 
Tennessee, 4.9–4.5 Ma [18] 

Arctic fox 
(Vulpes lagopus) 

V. lagopus; 400 ka; 
Pan European [101] 

Vulpes aff. Alopex sp.; 700 ka; 
NE Siberia [17] 

Early fox (V. praeglacialis) (not thought ancestral); 
various European sites 1.2–0.4 Ma [17]; 
Vulpes qiuzhudingi; Tibet, 5.08–3.60 Ma [30] 

True lemmings 
(Lemmus spp.) 

L. lemmus; c. 100–32 ka 
identified using aDNA [50]; no early 
records of other Lemmus species 

No early records of other actual 
Lemmus species 

Early true lemming (L. sheri); Eurasia; 1.65 and 
0.45 Ma [19]. 
There are also records of unspecified Lemmus 
sp. from Cape Deceit at 1.5–1.4 Ma [8,97] 

Arctic collared lemming 
(Dicrostonyx torquatus) 

c. 250 ka; Ariendorf 1, Germany and 
Rybinsk, Russia [102] 

c. 250 ka; Ariendorf 1, Germany 
and Rybinsk, Russia [102] 

No ancestral species in Dicrostonyx but closely 
related ancestral collared lemming (Predicrostonyx). 
P. hopkinsi; Cape Deceit, Alaska; 1.5–1.4 Ma [8,97]. 
Dicrostonyx sp. Kärlich, Germany; c.  650  ka  
[103,104] 

Willow ptarmigan 
(Lagopus lagopus) 

c. 750 ka, Betfia 5, Romania and Kozi 
Grzbiet, Poland25 

c. 750 ka, Betfia 5, Romania and 
Kozi Grzbiet, Poland25 

Ptarmigan (Lagopus sp.), Węże, Poland and 
Csarnota 2, Hungary, 4.2–3.2 Ma [25]. 
L. atavus, Rebiolice Krolewskie, Poland and 
Beremend 5, Hungary, 3.2–2.5 Ma [25] 

Rock ptarmigan 
(Lagopus mutus) 

300–243 ka; La Fage, France [25] 300–243 ka; La Fage, France 
[25] 

Ptarmigan (Lagopus sp.), Węże, Poland and 
Csarnota 2, Hungary, 4.2–3.2 Ma [25]. 
L. atavus, Rebiolice Krolewskie, Poland and 
Beremend 5, Hungary, 3.2–2.5 Ma [25]
was first applied to the evolution of arctic plants, many of which are thought to have evolved from 
montane ancestors to the south during the Neogene [41–44].

More recently, the hypothesis has been applied to how animals evolved to be cold-adapted as 
the ‘third pole’ or ‘out of Tibet’ hypothesis. This states that species such as the arctic fox and 
woolly rhinoceros became adapted to cold environments at lower latitudes but higher altitudes, 
such as in the Himalayas or the Tibetan Plateau, and subsequently moved north [16,30,45]. 
Wang et al. [45] suggested that the woolly rhinoceros evolved in the Tibetan Plateau in the 
cold, high-altitude grasslands which acted as a ‘habituation ground’ (or stepping-stone), allowing 
preadaptation during the Pliocene to the ensuing cold of the Pleistocene. 

The molecular evidence in vertebrates 
Ancient DNA analysis has revolutionised mammalian palaeontology by providing taxonomic 
accuracy and precision that was not previously available [46]. Included in this have been the
4 Trends in Ecology & Evolution, Month 2025, Vol. xx, No. xx
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Figure 1. Timeline for the evolution of cold-adapted vertebrate and plant taxa. (A) The first occurrences of cold-adapted species and genera in the vertebrate fossil 
record. The first appearance range of the genus for seven species is older than 3.0 Ma (see also Table 1). (B) The availability of Early and Middle Pleistocene ancient DNA 
records (adapted with permission from [105], with data from [106,107]) that could be used to test the three hypotheses for the evolution of cold-adapted species. (C) Plant 
phylogenetic records document the maximum counts of arctic plant species arrival or in situ speciation events in 100 ka time bins (replotted from [80]). (D) Climatic cycles 
alternated between warm interglacials (IG, green shading) and cold glacials (G, blue shading) (adapted from [105] with LR04 oxygen isotope curve data from [108]). Purple 
shading denotes the timing of major climatic transitions associated with the evolution of cold adaptation. Animal silhouettes are from phylopic.org and represent taxa listed 
in the same order as Table 1 (from mammoth to rock ptarmigan) in panel A and deep-time mammalian palaeogenomes in panel B (see also [105] and references therein).
recognition of species that, in some cases, were entirely cryptic, such as the discovery of the 
Denisovan hominins in southern Siberia [47] and the Krestovka mammoth lineage in northeastern 
Siberia [8]. There has also been confirmation that morphologically disparate taxa may be more 
closely related than their anatomy might suggest, such as the ancestor of the muskox, 
Praeovibos, whose mitochondrial DNA sequences fall within the diversity of the modern Ovibos 
species [48]. In addition, this increased precision has led to the identification of subspecific pop-
ulations that were not visible in the morphology of fossils, some of which have been lost in the Late 
Pleistocene (e.g., muskox [49], true lemming [50], and collared lemming [51–53]). By contrast, the
Table 2. The dominant hypotheses for the evolution of cold-adapted species with possible examples of where they took place 

Hypothesis Description Examples Refs 

Out of the temperate zone Temperate species expand towards the pole in an interglacial, and the expanded 
population becomes exposed to cold climates and evolves cold adaptation 

Brown bear, 
Woolly mammoth 

[4,31–34] 

Evolving in situ Polar species evolved in the Arctic region in situ as global climates cooled after the 
Late Pliocene 

Reindeer, 
Various arctic plants 

[13,17,40] 

Montane preadaptation 
(also known as ‘third pole’ 
or ‘out of Tibet’) 

Cold adaptations are acquired by species in mountainous areas to the south of the 
polar region during the Cenozoic before expanding to lower altitudes and northwards 
as climates cooled 

Arctic plants, 
Woolly rhinoceros, 
Arctic fox 

[16,30,41–43,45]
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two European ptarmigan species exhibit continuity without loss [54]. This has led to revisions of 
accepted phylogeographic histories, including that of the brown bear, which represents one of 
the three paradigms of European postglacial colonisation patterns [55–57]. This increased preci-
sion also revealed a greater level of dynamism in past populations than was previously known, 
which appears to have been caused by climate-driven vegetation change [51]. 

One of the most important areas in which aDNA research has contributed is the confirmation of 
the ages of the most recent common ancestors of living and extinct species. The genetic diver-
gence between the woolly mammoth and the Asian elephant, the closest living relative, has 
been estimated at c. 2.5 Ma [58], although a 5 Ma date is more likely based on the fossil record 
[15,59], and the former date may reflect post-speciation gene flow between the two taxa after 
they both left Africa. Other taxa such as the woolly rhinoceros lineage tell a similar story, with 
the split from their extinct closest fossil sibling taxon, Stephanorhinus, occurring at 5.5 Ma 
based on whole-genome aDNA data [60]. A Middle Pleistocene divergence of the polar bear 
from its sibling species, the brown bear, is generally accepted [61] with an aDNA-based best es-
timate in the Middle Pleistocene [32], although much older and younger estimates have also been 
made [62,63]. The divergence between the brown bear and the polar bear is likely complicated by 
the apparent recurrent introgressive events between the two species driven by cyclical climate 
and range changes [64]. It is clear from genetic data [65] that the sibling taxa to the arctic fox 
are the swift fox (Vulpes velox) and kit fox (Vulpes macrotis) found south of the Arctic in North 
America. Although no molecular divergence estimate has been attempted, a similar sequence 
divergence, as observed in the aforementioned bears, might suggest a split during the Middle 
Pleistocene or slightly earlier [66]. This means that the hypercarnivorous nature of the arctic fox is 
a derived character that is likely a response to cold climates where a more omnivorous diet is 
less available. Therefore, the morphological similarity of the Pliocene V. qiuzhudingi from Tibet is 
probably convergent with the arctic fox rather than ancestral to it. The collared lemmings and 
true lemmings have both undergone species-level radiations as well as evolving cold adaptation 
(Box 1). Both genera have a number of species that appear to have arisen through a series of splits 
that are likely to have had allopatric origins in the Arctic due to climate-driven circumstances from 
the Middle Pleistocene onwards [53,67]. True lemmings are distinguished by having what may be 
the youngest speciation event of all during the last 100 ka, leading to the Norway lemming [50]. 

Recent whole nuclear genome analyses have been conducted on specimens dated to more than one 
million years old [8]. This includes a specimen on the woolly mammoth lineage and another divergent 
lineage that contributed to the hybrid North American Columbian mammoth (M. columbi). The woolly 
mammoth lineage was morphologically similar to its steppe mammoth ancestor (M. trogontherii)  and  
had already acquired most of the protein-coding changes thought to be associated with cold adap-
tation by 1 Ma [8]. The woolly mammoth lineage continued to evolve after 700 ka with changes to 
other traits such as those related to hair and skin, fat storage, metabolism, and decreased ear size [9]. 

Other taxonomic groups 
Many other groups either have a limited fossil record, such as soft-bodied organisms that 
are often not preserved over geological time, or do not have lineages of species documenting 
their evolution. For the latter category, it is important to examine the similarities and differences 
between vertebrates and such groups – with the best documented being plants and beetles – 
to better understand the ecological circumstances of the evolution of cold-adapted species. 

Plants 
Plants adapted to cold environments are an important precondition for arctic food webs. There 
are 2218 arctic vascular plant species [68,69], most of which are also found further south, with
6 Trends in Ecology & Evolution, Month 2025, Vol. xx, No. xx
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Box 1. Lemming radiations detected by ancient DNA 

Genetic data for the true lemmings suggest that modern species of Lemmus diverged c. 2.1 Ma, when the Palaearctic and 
Nearctic species were separated [67]. Within the Palaearctic Lemmus species, there were two phases of diversification, 
with the western and eastern Palaearctic clades splitting at c. 1 Ma and a second division occurring between Eastern 
Palaearctic clade of Siberian lemming (L. sibiricus) and Amur lemming (L. amurensis)  at  c. 680 ka. Meanwhile the split be-
tween the Norway lemming (L. lemmus ) (Figure I) and the western clade of L. sibiricus was thought to have taken place 
later, around 310 ka [67] or before the Last Glacial Maximum ~100–32 ka [50]. The latter would make the Norway lemming 
one of the youngest mammalian species alive today. 

Based on mitogenomic data, the estimated divergence timing of the basal split of the three modern collared lemming spe-
cies, with arctic collared lemming (Dicrostonyx torquatus) on the one hand and the North American lineages – northern col-
lared lemming (D. groenlandicus) and Ungava collared lemming (D. hudsonius) – on the other, dates to >200 ka [53]. The 
subsequent split between the North American collared lemmings was early in the last glacial (~110 ka). These divergences 
may have been caused by a high sea level in the Bering Sea causing the initial divergence and dense forest separating the 
two North American species lineages [53]. However, analysis of collared lemming nuclear genomes has uncovered alter-
native phylogenetic relationships between the three species, with the arctic and northern collared lemmings recovered as 
sibling lineages to the exclusion of the Ungava collared lemming [109]. Resolution of collared lemming evolutionary history 
is therefore an active area of research. 

TrendsTrends inin EcologyEcology & EvolutionEvolution 

Figure I. A Norway lemming 
(Lemmus lemmus), nicknamed 
Kurt, from Sarek National Park, 
Sweden. Photo by Love Dalén. 
only 5% endemism in the region. Thus, as for vertebrates, we are dealing with cold-adapted 
species that also thrive well in boreal, and for some also temperate and/or steppe, climates 
and represent a phylogenetically clustered and filtered subset of the northern hemisphere flora 
[70]. The arctic flora is characterised by high ploidy levels, large distribution ranges (50% having 
a circumpolar distribution), and a high degree of selfing and asexual reproduction [71,72]. It 
should be noted that there is not a single life-history trait that is specific for arctic plants [73]. 
Beringia and high-altitude regions at lower latitudes are assumed to be glacial refugia for the arctic 
flora [74], by contrast with the amphi-Atlantic region where repeated glaciation, long-distance dis-
persal, and in situ evolution occurred [40,75]. The arctic plants have their origins in the Cenozoic 
boreal forest, alpine flora of Asian and American mountains, and the Asian steppe [76]. 

The Late Pliocene–Early Pleistocene flora of the Arctic is poorly known because fossils are rare 
[13,77]. The longest record, Lake El´Gygytgyn in northeastern Siberia, dates back to 3.6 Ma, 
and fossil pollen shows a significant change from larch forest to treeless steppe and tundra c. 
2.6 Ma [78,79]. Macrofossils, pollen, and aDNA show a diverse mixture of arctic and boreal 
flora in northern Greenland around 2 Ma, with the aDNA revealing ancestors of current birches
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(Betula) and willows (Salix)  [13]. The taxonomic resolution of arctic plant palaeorecords are often 
low (genus level and above). Therefore, much of what we know about the evolution of the arctic 
flora is based on phylogenetic and biogeographic inference, and as with vertebrates, we find ex-
amples that support all three aforementioned hypotheses. 

The largest phylogenetic study of 548 arctic plant species belonging to 16 families shows that 
dispersal into the Arctic, and diversification within the Arctic, exhibit comparable temporal pat-
terns [80]. These trends began around 10–9 Ma, increased rapidly around 2.6 Ma, and reached 
their peak between 1.0 and 0.7 Ma (Figure 1). There were four times as many dispersal events 
than in situ diversifications. The mean age of arctic endemic species is 1.6 Ma, thus consider-
ably younger than the mean age of 2.66 Ma found for the total number of arctic species 
analysed. The likely source regions were the lowland and alpine areas south of the Arctic, 
which is concordant with studies based on biogeographical patterns [81] and an earlier review 
of phylogenies [82], but western North America stood out as the single most important source 
region [80]. Examples of a western North American origin include bog bilberry (Vaccinium 
uliginosum)  [83] and crowberry (Empetrum nigrum)  [84], whereas mountain sorrel (Oxyria 
digyna)  and  purple  saxifrage  (Saxifraga oppositifolia) originated in the Himalayas [85,86]. 
Furthermore, there are examples of Pleistocene in situ origins having developed mainly through 
divergent evolution or successive higher-level polyploidisations after hybridisation, as exempli-
fied by arctic poppies (Papaver), whitlow-grasses (Draba) and mouse-ear chickweeds 
(Cerastium)  [72,75,87]. 

There are no known arctic plant extinctions [68,69] during the Quaternary, which may be related 
to the lower taxonomic resolution of pollen and plant macrofossils. However, a recent study using 
sedimentary ancient DNA (sedaDNA) suggests that extinction has occurred for arctic plants, 
although extinction rates have been low [88]. Thus, arctic plants may be resilient to climate fluc-
tuations, possibly due to their high dispersal ability [89–91] and high ploidy levels carrying func-
tional traits of several ancestral genomes [72,76]. 

Beetles 
Quaternary fossil beetles are generally attributed to modern species, and this has been 
interpreted as signifying that they underwent minimal evolution during the Quaternary [92,93]. 
This means that there are few series of ancestor–descendants and suggests that living beetle 
species evolved during the Neogene (>2.6 Ma). Some evolution has been documented in, for ex-
ample, the ground beetle Asaphidion where an extinct species and later fossils may represent 
stages in the evolution of the modern species A. yukonense [94]. Other beetles with possible an-
cestor–descendant lineages include the precursor to the water scavenger beetle Helophorus 
tuberculatus, and stages in the loss of flight in both the rove beetle Tachinus apterus and the 
pill beetle Morychus viridis [94]. 

Generally, however, there appears to be a consensus that beetles have been stable taxonomi-
cally, ecologically, and physiologically since the Pliocene, and that they can therefore be used 
to reconstruct Early Pleistocene climate variables [95]. This is because there is no evidence for as-
semblages with thermally contradicting associations when the modern climate envelopes for the 
species are considered [95]. Although this appears to be contradicted by a sedaDNA study of the 
Kap København formation in northern Greenland, which suggests an ecosystem that has no 
modern analogue and implies a lack of agreement of the climate indicators across organisms 
[13]. We note that the results do, however, agree with Elias and Matthews [95] that the ecology 
at this high latitude site 2 Ma was that of a lower latitude boreal forest today, albeit with some arc-
tic elements [13].
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Outstanding questions 
Did different taxonomic groups evolve 
at different rates during the 
Quaternary? 

If there are differences in evolutionary 
rates between groups, is this reflected 
in deeper divergence between insect 
and plant sister sibling species 
compared with vertebrates? 

Do plant and insect species need 
smaller areas in which to originate 
than large vertebrates? 

If there is greater evolution than is 
visible in the morphology of plants 
and animals, where does this leave 
the use of these organisms as proxies 
for past environments? 

To what extent can rates of evolution in 
different groups be tested using aDNA 
and sedaDNA methodologies? 

Does the timing of taxonomic evolution 
for species identified from morphology 
coincide with adaptations to the 
environment identified in animal and 
plant genomes?
Concluding remarks 
Many cold-adapted vertebrates, unlike other groups, have a reasonable fossil time series 
documenting the evolution of species lineages through the late Cenozoic and especially the 
Pleistocene. These lineages have been based primarily on morphological comparative analysis 
of skeletal and dental remains, which show evolutionary changes that represent adaptations to 
the environments in which they lived. This signifies that their evolution is understood from the 
tangible physical adaptations of the organisms themselves. 

There appear to be different patterns in the mode and tempo of the evolution of the varied cold-
adapted terrestrial vertebrate species. The timings may have involved two broad phases, with an 
early phase during the Late Pliocene–Early Pleistocene when the first indications of cold-adapted 
taxa may have been established. There followed a phase after the MPT when many of the modern 
and Late Pleistocene cold-adapted species originated. Later species evolution has taken place 
during the last 100 ka and involves the various plant hybrid speciation events as well as the 
evolution of the isolated Norway lemming. 

The ways in which cold-adapted species evolved may have been taxon-specific. Some seem to 
have originated in situ, have longer histories in the northern latitudes, and evolved as climates 
cooled during the late Cenozoic. Others may have involved a stepping-stone whereby higher al-
titude or cryptic northern refugial populations acquired traits that favoured survival in cold condi-
tions. The latter would cause exposure to cold climes where the species eventually switched from 
expanding and contracting from the warmer south to doing so from the cold in the north [35]. The 
adoption of a new refugium would therefore lead to allopatric speciation. 

Evidence coming from palaeogenetics of tissue remains and sediments has confirmed some of 
what was concluded from traditional palaeontological methods, although unexpected results 
have also been revealed with the population-level studies showing us the likely underlying pro-
cesses taking place. The advent of functional analyses of palaeogenomes has started to reveal 
cold-adapted traits that were not visible before, which allows for the timing of such traits to be re-
lated to climate and environmental records. This research area is in its infancy but will likely revo-
lutionise our understanding of how the evolution to cold adaptation took place. 

It may be that the apparent differences between the evolution of terrestrial vertebrates on the one 
hand, and the apparent evolutionary stasis of plants and beetles during the Quaternary on the 
other, have been overstated due to reliance on fossil morphology. With palaeogenetics, direct 
measurement of plant and beetle evolutionary rates will allow for exploration of biogeographic his-
tories, divergence timings, and modes and timings of morphological and physiological trait acqui-
sitions. This will aid our understanding of the past ecologies of plants and beetles, and may have 
implications for their use in the reconstruction of past environments (see Outstanding questions). 

The earliest ecologies described in the far north seem to include many boreal elements, non-
analogue associations, and some extinct or ancestral taxa [13]. This would suggest that the 
modern arctic tundra ecology had not yet been assembled at between 2.6 and 1.8 Ma, and 
that relatively few tundra species were present. The differences are caused by inherent limitations 
of the study of the distinct taxonomic groups. This begs the question as to where the full range of 
modern arctic species came from, and the non-analogue nature of the ecosystem may signify 
that more evolution of the constituent species has taken place than has been generally accepted 
[28]. Although we here use examples from northern terrestrial ecosystems, comparable investiga-
tion of other biomes, such as the southern high-latitudes and the marine realm, will provide a 
more comprehensive understanding of the evolution of Earth’s cold-adapted biota. 
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