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 A B S T R A C T

The effective surveillance of the distribution of live fish between aquaculture farms is crucial for maintaining 
food security and preventing disease outbreaks. However, existing conventional models often assume the 
network is static and do not incorporate other factors that contribute to movement between farms, lacking the 
ability to accurately predict future movements, especially given the dynamic interactions within aquaculture 
networks. This study addresses this gap by developing the Edge-Weighted Katz Index (EWKI), an extension 
of the traditional Katz index that integrates spatial information to improve the accuracy of predicting fish 
distribution between farms. Using a comprehensive dataset on the distribution of live fish between farms in 
England and Wales from the year 2010 and 2023, the study evaluates the performance of the EWKI model 
in comparison to other similarity-based link prediction methods. The results indicate that the EWKI model 
significantly outperforms other methods, achieving a precision of 92.89%, a recall of 81.09%, and an F1-score 
of 86.59%, alongside an AUPR of 93.44% and an AUROC of 99.97%. This research has practical implications, 
as the developed method can accurately predict the distribution of fish between farms, supporting predictions 
of disease spread and facilitating targeted interventions. Furthermore, the integration of spatial information 
into the network analysis has broader applications across various fields where understanding and predicting 
spatially influenced network dynamics are crucial, including transportation networks.
1. Introduction

Network science, an interdisciplinary field that studies the structure 
of various interconnected systems such as biological [1], social [2], 
computer [3], transport [4], and climate [5] is commonly used to 
represent and understand how these complex systems function. The 
systems can be represented as a network. This network is made up 
of nodes, which symbolise the various entities involved. These nodes 
are connected by links, representing the relationships and interac-
tions between the entities. Network modelling permits the analysis of 
underlying structures in the system and provides insights into their in-
herent dynamics. In the early 20th century, sociologists Jacob Moreno 
and Helen Jennings began using sociograms, visual representations 
of social relationships, as a tool to analyse and map human inter-
actions [6]. Despite the visual nature of these sociograms, questions 
about missing links and potential future connections within these net-
works were raised. Kleinberg’s work on decentralised search algorithms 
within complex networks, particularly this exploration of ’small-world’ 
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phenomena, significantly advanced our understanding of network navi-
gation and information flow [7–9]. This has had profound implications 
for fields from computer science to sociology, influencing the design of 
link prediction algorithms and providing insights into social network 
dynamics.

Link prediction, which estimates the likelihood of a connection 
forming between two nodes based on existing links and node at-
tributes [10], has become a cornerstone of network science. Its ap-
plications span numerous domains, including social network friend 
recommendation [11,12], protein–protein interaction (PPI) [13–15], 
transport planning [16], and e-commerce recommendation [12,16]. 
This study focuses on the application of network analysis in aquacul-
ture. Network analysis has recently found increasing relevance in aqua-
culture, particularly in analysing distribution of live fish between farms, 
representing their movement and disease transmission. Aquaculture is 
recognised as an important contributor to world food production [17] 
and also supports the supply of fish for purposes such as restocking 
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water bodies for recreational fishing and enhancing the aesthetic value 
of certain environments [18]. Effective surveillance in aquaculture is a 
key biosecurity measure supporting food security [19]. By representing 
fish farms and processing facilities as nodes and the movement of 
live fish as links, stakeholders can better understand the dynamics of 
fish distribution and identify potential bottlenecks or inefficiencies in 
the supply chain [20]. For instance, network analysis can reveal the 
central hubs in fish distribution networks, where interventions might 
be most effective in mitigating the spread of diseases. Studies by Green 
et al. [21], Tidbury et al. [22] and Murray et al. [23] have explained 
the structure of fish distributions and their complex interactions. These 
studies have contributed to the development of epidemiological and 
management models applied to aquaculture networks [24,25]. How-
ever, current models used in aquaculture lack predictive power because 
they are static models, which limits their ability to respond to the 
dynamic nature of the distribution of live fish. Although link prediction 
models are widely applied in other fields, their adoption in aquaculture 
remains limited.

Several studies have addressed gaps in link prediction models by 
developing novel algorithms. Benhidour et al. [26] proposed a method 
combining similarity-popularity and path patterns to improve link pre-
diction in directed networks, while Xu et al. [27] introduced new link 
prediction method based on local random walks and Jensen–Shannon 
divergence for hyperlink prediction. Furthermore, Chen et al. [28] de-
veloped an enhanced local path index to address limitations in existing 
local path-based methods, and Li et al. [29] proposed new metrics 
incorporating community detection information for improved accuracy. 
While these advancements have proven effective in various domains, 
they often fall short in capturing the specific spatio-dynamics critical 
in applications in fields like aquaculture.

To address this gap, our study extends existing similarity-based link 
prediction algorithms – which are relatively more interpretable, compu-
tationally efficient, and suitable for sparse networks – by incorporating 
a spatial weight factor, aiming to provide a more agile tool that can 
adapt to the changing dynamics between fish farms during the distri-
bution of live fish. For example, following an exotic disease incursion, 
which would result in affected farms being placed under movement 
restrictions by official services [30]. Among the various link predic-
tion models, similarity-based models have the potential to enhance 
predictive capacities by using records on the distribution of live fish 
between farms. These models are founded by the concept of homophily, 
which suggests a tendency for connections to form between entities 
that share similar characteristics or relationships [31,32]. This principle 
is widely observed in real-world networks, where individuals with 
shared attributes are more likely to interact [33–35]. In the context 
of aquaculture, homophily suggests that farms with similar charac-
teristics (e.g., species farmed, biosecurity measures, or proximity) are 
more likely to trade in the distribution of live fish. Similarity-based 
models are categorised into local, global, and quasi-local indices, each 
providing unique insights into network dynamics. Local indices, such 
as common neighbours [36] and Jaccard’s coefficient [37], focus on 
the immediate neighbourhood of nodes. While these approaches offer 
insights based on direct connections between nodes, they may overlook 
the broader network dynamics and, as a result, limit the understanding 
of the overall interactions in the network. In contrast, global indices like 
the Katz index [38] consider the entire network structure, including 
both direct and indirect connections. However, this comprehensive 
approach comes with the drawback of higher computational demands. 
Quasi-local indices, like the local random walk [39], offer a compro-
mise between the strictly local and fully global approaches. Despite 
their balanced approach, quasi-global models can sometimes inherit the 
limitations of both local and global indices. These limitations include 
reduced accuracy in extremely sparse networks or higher computa-
tional requirements than purely local models [40]. Additionally, tuning 
these models to optimally balance local and global information can be 
challenging and often requires extensive empirical testing [31,41].
2 
The Katz index has been proven effective in many fields [31,32,
42] but its application in aquaculture (and more widely in terrestrial 
livestock production) remains limited. However, the conventional Katz 
index does not consider the spatial characteristics within a network 
and relies solely on walks within the network, biasing predictions. 
Specifically, in aquaculture, farms that are geographically closer are 
more likely to have frequent movements between them, increasing 
the potential for disease spread [43,44]. This study acknowledges the 
complexity involved in the distribution of live fish between farms 
and the limitations of current models in predicting future movement 
considering the proximity factor between farms. It builds upon previous 
studies by Tidbury et al. [22] and Guilder et al. [25], and utilising data 
on the distribution of live fish between farms collected by the Cefas Fish 
Health Inspectorate for England and Wales.

The paper introduces the Edge weighted Katz index (EWKI) link 
prediction model, an enhancement of the traditional Katz index which 
integrates spatial information to account for geographical proximity, 
providing a more accurate prediction of the distribution of live fish 
between aquaculture farms. By incorporating both spatial and temporal 
features of the aquaculture network, the study addresses the dynamic 
nature of distribution between farm, which static models cannot cap-
ture. In addition, the study performs a comparative analysis of the novel 
model with other similarity-based models to assess the performance of 
the models. While focused on aquaculture, the EWKI’s framework is 
adaptable to other domains, such as epidemiology and transportation, 
where understanding spatially influenced network dynamics is essen-
tial. The remainder of this paper is structured as follows: Section 2 
describes the data, the prediction model, and the evaluation metrics. 
Section 3 discusses the results, including a comparative analysis of 
similarity-based methods and the implications of incorporating spatial 
dynamics into aquaculture networks. Finally, Section 4 concludes by 
summarising key findings and their broader relevance.

2. Method

2.1. Data

In this study, two datasets were utilised to evaluate the performance 
of the proposed approach: the live fish distribution network and the 
road network of the city of Peterborough [45], United Kingdom. The 
live fish distribution dataset comprises of 2,480 unique nodes (fish 
farms) and 4,696 directed edges (fish distributions) across England and 
Wales from the year 2010 to 2023. Each record includes the source 
and destination farm identifiers, geographical coordinates (longitude 
and latitude), the species distributed, and the year of movement. The 
distance between farms is calculated using the vincenty inverse method 
which accounts for the accurate earth model (ellipsoidal), particu-
larly for long distances. This inherently represents the spatio-temporal 
dynamics of fish farm interactions.

The road network dataset is a spatially embedded, distance
weighted directed network with 7,188 nodes (representing intersec-
tions or endpoints of roads) and 14,763 edges (road segments). This 
dataset was added to the experiment to evaluate the generalisability 
and robustness of the proposed link prediction method across networks 
with varying topological and spatial characteristics. Unlike the live fish 
distribution network, which incorporates temporal dynamics, the road 
network has a static structure that allows for the assessment of the 
EWKI’s adaptability to networks where spatial relationships are the 
primary influencing factor. Table  1 summarises the basic topological 
properties of both datasets, highlighting their structural differences and 
the variety of network dynamics captured.
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Table 1
Topological properties of dataset.
 Property Live fish distribution 

network
Peterborough 
road network

 

 Degree 6.0 4.0  
 Average In-Degree 3.0 2.0  
 Average Out-Degree 3.0 2.0  
 Max diameter 7 102  
 Density 0.0042 0.0003  
 Average clustering coefficient 0.3565 0.04  
 Overall eigenvector centrality 0.0276 0.0011  
 Assortativity −0.16 −0.0944  

2.2. Experiment setup

The live fish movement network was modelled as a directed graph 
𝐺 = (𝑉 ,𝐸,𝑤) where 𝑉  represents the set of nodes, with each node 
corresponding to a fish farm and 𝐸 represents the set of directed 
connections between these farms, indicating the distribution of fish. 
Each edge, denoted as (𝑢, 𝑣, 𝑡) ∈ 𝐸, captures the distribution of live 
fish from farm 𝑢 to farm 𝑣 at a specific time 𝑡. To capture temporal 
dynamics, the live fish movement network was partitioned into a series 
of time-based snapshots, each representing the state of the network 
within a specific year. This approach models the network as a sequence 
of temporal graphs, 𝐺 = 𝐺2010, 𝐺2011, 𝐺2012,… , 𝐺2023, where each 𝐺𝑡
corresponds to the network at year 𝑡. Such a representation enables the 
analysis of the network’s evolution over time and facilitates dynamic 
link prediction by capturing changes in fish distribution patterns across 
different periods. In this study, the snapshots were divided into three 
temporal intervals: a training set (𝐺𝑡𝑟𝑎𝑖𝑛 = 𝐺[2010, 2021]), validation set 
(𝐺𝑣𝑎𝑙 = 𝐺[2022, 2022]), and a test set (𝐺𝑡𝑒𝑠𝑡 = 𝐺[2010, 2021]) as repre-
sented in Fig.  1. This temporal snapshot partitioning ensures that the 
model is trained on 𝐺𝑡𝑟𝑎𝑖𝑛, validated on 𝐺𝑣𝑎𝑙d to monitor for over-fitting 
and assist with hyperparameter tuning, and tested on 𝐺𝑡𝑒𝑠𝑡 to evaluate 
its generalisation ability. 𝐺𝑡𝑒𝑠𝑡, leverages historical data to evaluate the 
model’s ability to predict future connections. This partitioning, aligned 
with the methodology outlined by Liben-Nowell and Kleinberg [32], 
facilitates a robust evaluation of the model’s ability to generalise across 
different temporal subsets, ensuring it performs well on unseen data. 
Specifically, for times 𝑡𝑖 ≤ 𝑡𝑗 , the subgraph 𝐺[𝑡𝑖, 𝑡𝑗 ] contains only edges 
with timestamps from 𝑡𝑖 to 𝑡𝑗 .

For the road network, which lacks temporal features, K-fold cross-
validation was employed to divide the dataset into training, validation, 
and test sets. The network was split into 𝐾 equally sized folds, with 
each fold iteratively used as a test set while the remaining 𝐾 − 1
folds were further divided into training and validation subsets. Given 
the larger size of this network compared to the live fish distribution 
network, 10-fold cross-validation was chosen as it offers an optimal 
trade-off between computational cost and model performance [46]. 
This approach ensures that all parts of the network are systematically 
used for training, validation, and testing, mitigating potential biases, 
and reducing variance. Compared to random sampling validation, this 
method provides a more rigorous and consistent evaluation of model 
performance, especially for the larger and more complex road network.

2.3. Similarity-based methods and scoring

Within the network, each pair of nodes, 𝑢 and 𝑣, is evaluated for 
its potential to establish a connection. This evaluation is based on a 
similarity score derived from various indices, reflecting the likelihood 
of a link forming between them. In most link prediction techniques [32,
47,48], the task is treated as a ranking problem where node pairs are 
ordered based on their similarity scores. A threshold is established to 
classify pairs into positive or negative instances. Node pairs with scores 
above the threshold are predicted to form links (positive instances), 
while those below the threshold are not (negative instances). In this 
3 
study, we used the precision–recall (PR) curve [49,50] to determine 
the optimal threshold value by evaluating the index on 𝐺𝑣𝑎𝑙. The PR 
curve plots the precision (the proportion of true positive predictions 
among all positive predictions) against the recall (the proportion of true 
positive predictions among all actual positives) for different threshold 
values. By analysing this curve, we can select a threshold that max-
imised the F1-score, a harmonic mean of precision and recall. This 
threshold was subsequently used to classify predictions in 𝐺𝑡𝑒𝑠𝑡 by 
comparing predicted edges to actual links. Five similarity-based link 
prediction methods are analysed in this study:

1. The common neighbours (CN) index is a fundamental measure 
in link prediction that evaluates the likelihood of a link form-
ing between two nodes, 𝑢 and 𝑣, by counting their mutual 
neighbours [36]. The rationale behind this index is based on 
the principle that the presence of a greater number of shared 
neighbours between two nodes increases the likelihood of a 
direct link forming between them. This concept is based on 
the idea that common associations foster connectivity within 
the network, making it a commonly used metric for predicting 
future links in different network structures. It is mathematically 
represented as: 
CN(𝑢,𝑣) = |𝛤 (𝑢) ∩ 𝛤 (𝑣)| (1)

where 𝛤 (𝑢) and 𝛤 (𝑣) denote the sets of neighbours of node 𝑢 and 
𝑣.

2. Adamic-Adar Index (AAI) [12]: This index assigns weights to 
common neighbours based on their connectivity. Neighbours 
with fewer connections have a higher contribution to the score, 
as it is assumed that having a less common neighbour indicates 
a stronger bond. Mathematically, the AAI is expressed as: 

AAI(𝑢,𝑣) =
∑

𝑧∈𝛤 (𝑢)∩𝛤 (𝑣)

1
log 𝑘𝑧

(2)

where 𝑧 is the node that is a common neighbour of both 𝑢 and 
𝑣. 𝑘𝑧 is the degree of node 𝑧.

3. Local path index (LPI) measures the similarity between two 
nodes by considering the local paths – direct connections and 
indirect connections via a common neighbour – that exist be-
tween them. This index balances computational efficiency and 
accuracy [41]. 
LPI(𝑢,𝑣) = 𝐴2

(𝑢,𝑣) + 𝜀𝐴3
(𝑢,𝑣) (3)

where 𝜀 represents a free parameter, 𝐴2
(𝑢,𝑣) indicates the num-

ber of paths of length 2 between nodes 𝑢 and 𝑣, and 𝐴3
(𝑢,𝑣)

corresponds to the number of paths of length 3.
4. The Katz index (KI) [38] is a walk-dependent index, focusing on 
both direct and indirect walks between nodes. The KI calculates 
the sum of all unweighted walks between two nodes within a 
network, applying an exponential damping factor to prioritise 
shorter walks. The KI is expressed as:

KI(𝑢,𝑣) =
∞
∑

𝑙=1
𝛽𝑙|walks⟨𝑙⟩(𝑢,𝑣)| (4)

=
∞
∑

𝑙=1
𝛽𝑙(𝐴𝑙)(𝑢,𝑣) (5)

= 𝛽𝐴(𝑢,𝑣) + 𝛽2(𝐴2)(𝑢,𝑣) + 𝛽3(𝐴3)(𝑢,𝑣) +⋯ (6)

where |𝑤𝑎𝑙𝑘𝑠⟨𝑙⟩(𝑢,𝑣)| represents the total number of walks with 
length 𝑙 between nodes 𝑢 and 𝑣, 𝐴𝑙 is the adjacency matrix 
of the network raised to the power of 𝑙, the damping factor 𝛽
controls the influence of walk length. A lower 𝛽 value reduces 
the contribution of longer walks to the Katz index score, while 
a higher value increases their contribution. To ensure the Katz 
index converges, 𝛽 must be assigned a value smaller than the 
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Fig. 1. Temporal snapshots of live fish movements network over time. The nodes represent individual fish farms. Solid lines indicate observed movements of fish between farms 
within the time interval (𝑡𝑖 to 𝑡𝑗 ) and dotted lines denote the predicted future movements for the interval. The horizontal axis represents the timestamps, showing the evolution 
of the network: training (𝐺𝑡𝑟𝑎𝑖𝑛), validation (𝐺𝑣𝑎𝑙), and test (𝐺𝑡𝑒𝑠𝑡) sets.
inverse of the largest eigenvalue 𝑙𝑎𝑚𝑏𝑑𝑎 of the adjacency matrix 
𝐴. 
𝛽 < 1

𝜆𝑚𝑎𝑥
(7)

This condition guarantees the convergence of the infinite series 
that defines the Katz index. In this study, we use the upper 
bound value of 𝛽, calculated directly from Eq.  (7), to ensure both 
mathematical stability and optimal utilisation of the model’s 
expressive capacity without risking divergence.

5. The weighted Katz index (WKI) replaces the adjacency matrix 
in the original Katz index formula with the distance values 
between fish farms. This allows the model to account for the 
varying degrees of actual distance interaction or influence in the 
network. The distances are summed with a damping factor ap-
plied to longer walks, ensuring that shorter walks retain higher 
significance in the prediction model. The model reads:

WKI(𝑢,𝑣) =
∞
∑

𝑙=1
𝛽𝑙(𝐴𝑙

𝑤)(𝑢,𝑣) (8)

= 𝛽(𝐴𝑤)(𝑢,𝑣) + 𝛽2(𝐴2
𝑤)(𝑢,𝑣) + 𝛽3(𝐴3

𝑤)(𝑢,𝑣) +⋯ , (9)

where 𝐴𝑤 is the weighted adjacency matrix of the network 
which details the distance between farms.

6. In this study, we developed the edge-weighted Katz index
(EWKI), a novel extension of the traditional Katz index de-
signed to incorporate temporal dynamics into link prediction 
for spatially embedded networks. The spatial component is 
represented by the weight 𝜔, defined as an exponential func-
tion of the distance 𝑑(𝑢,𝑣) between nodes, ensuring that geo-
graphically closer nodes are given higher priority. This reflects 
real-world patterns observed in aquaculture networks, where 
proximity strongly influences the movement of live fish. The 
decay factor 𝛾 controls the influence of distance in this weighting 
scheme. To identify an appropriate value for 𝛾, we used a 
grid search approach [51,52], testing a predefined range of 
values (𝛾 ∈ 0.0015, 0.001, 0.015, 0.01, 0.15, 0.1). Each candidate 
value was evaluated on the validation snapshot by computing 
the corresponding F1-score, and the threshold that yielded the 
highest F1-score was selected for the final model. This proce-
dure ensured that the chosen 𝛾 optimally balanced the model’s 
precision and recall in predicting links. The temporal dynamics 
described in Section 2.2 are embedded in the framework by 
4 
modelling the network as a sequence of evolving graphs, with 
each snapshot capturing node interactions over time. This tem-
poral segmentation allows the EWKI to account for changes in 
network structure and interaction patterns, moving beyond static 
configurations. The model reads: 

EWKI(𝑢,𝑣) = 𝜔(𝑢,𝑣) ⋅
∞
∑

𝑙=1
𝛽𝑙|walks⟨𝑙⟩(𝑢,𝑣)| (10)

𝜔(𝑢,𝑣) = 𝑒−𝛾×𝑑(𝑢,𝑣) (11)

2.4. Combination of link prediction methods

The combination of link prediction methods in this study seeks to 
enhance predictive accuracy by leveraging the strengths of multiple 
indices that capture network properties, as each similarity index fo-
cuses on specific aspects of the network. This approach of combining 
predictions from multiple models is grounded in the principles of 
ensemble learning [53,54]. Ensemble methods, widely used in machine 
learning, have been shown to improve predictive performance and 
generalisability by reducing variance and bias [55]. In the context 
of link prediction, combining different methods can lead to a more 
accurate model by capturing diverse aspects of network structure and 
dynamics, particularly in sparse or complex networks where some sin-
gle metrics often underperform [31,32,48]. While various sophisticated 
ensemble techniques exist, the adoption of an averaging approach is 
motivated by its simplicity, computational efficiency, and demonstrated 
effectiveness in prior studies. Averaging provides a straightforward 
method to integrate the outputs of multiple models without requiring 
additional hyperparameter tuning, making it well-suited for scenarios 
where computational resources or dataset size are limiting factors [54,
55]. Moreover, it avoids over-fitting, a risk in more complex ensemble 
techniques, and ensures that the combined score is interpretable, a key 
requirement for practical applications in aquaculture networks.

The averaged score for each potential edge (u, v) will be calculated 
as: 

C =
𝑆1
(𝑢,𝑣) + 𝑆2

(𝑢,𝑣)

2
(12)

where 𝐶 represents the composite score, 𝑆1
(𝑢,𝑣) and 𝑆2

(𝑢,𝑣) are the scores 
from the first and second similarity  index, respectively.
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Fig. 2. Sample plots illustrating (a) Receiver Operating Characteristic curve (b) Precision–recall curve.
2.5. Evaluation metrics

Choosing the right evaluation metrics is essential for comparing the 
performance of the models, particularly in scenarios like ours where the 
dataset exhibits sparsity and class imbalance between existing and non-
existing links. This study uses precision, recall, F1-score, area under 
the receiver operating characteristic curve (AUROC) and area under 
the precision–recall curve (AUPR) value to evaluate the performance 
of the model.

1. Precision: measures the fraction of correctly predicted positive 
links (i.e., actual distribution between farms) to all predicted 
positive links. In the context of our study, a high precision in-
dicates that the model’s predictions are predominantly accurate.

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(13)

where TP = true positive, FP = false positive
2. Recall: measures the fraction of actual positive links that the 
model correctly identifies. A high recall in our study suggests 
that the model captures most genuine fish movements. 

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(14)

where FN = false negative
3. F1-score: is the harmonic mean of precision and recall, which 
means it gives a balanced measure of the two metrics. An F1-
score close to 1 indicates both good recall and good precision, 
while an F1-score close to 0 indicates poor performance on both 
metrics. 
F1-score = 2 × Precision × Recall

Precision + Recall (15)

4. AUROC: is a graphical representation of the trade-off between 
the true positive rate and the false positive rate at various 
threshold settings. The AUC value, which is the area under this 
curve, provides a single measure to summarise the ROC curve. 
It is useful for comparing the overall ranking performance of 
different models, irrespective of threshold choice. Fig.  2(a) is 
provided as a generic illustrative example to explain how the 
AUROC is computed and interpreted.

5. AUPR: is derived from the precision–recall curve and is es-
pecially informative for tasks like link prediction where class 
imbalance is significant. Unlike AUROC, AUPR focuses on the 
positive class, making it more relevant for evaluating perfor-
mance in imbalanced datasets. Fig.  2(b) similarly serves as 
an illustrative sample and does not correspond to any specific 
model output in this study.
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2.5.1. Optimal threshold
In the evaluation of models for link prediction, converting calcu-

lated scores into binary classification decisions is important for dis-
tinguishing between true and false links. This is usually done through 
thresholding and is challenging due to the high class imbalance often 
present in such networks [47,56,57]. In cases where predetermined 
classification thresholds are unavailable, it is common to use threshold 
curves like ROC (receiver operating characteristic) and PR (precision–
recall) to determine the optimal threshold and assess model perfor-
mance. However, when dealing with imbalanced datasets, the use of 
the ROC curve can result in overly optimistic results, since it may not 
effectively identify rare positive instances effectively. Conversely, the 
AUPR curve is better suited for imbalanced datasets, as it emphasises 
the precision–recall trade-off. For each method, F1-scores were calcu-
lated at various threshold levels. The F1-score offered a balanced metric 
suitable for datasets with significant class imbalances. The threshold 
yielding the highest F1-score was identified as the optimal threshold 
for each feature. By applying these optimal thresholds in the model, 
predicted links and non-links could be distinguished. This approach 
not only allowed for establishing thresholds that optimise model per-
formance but also facilitated a detailed comparison among different 
Katz-based models.

3. Results & discussion

The performance of similarity-based link prediction methods was 
evaluated on both live fish distribution network and the road network. 
A baseline comparison with a random link predictor (RLP) provided 
a benchmark for evaluating the added value of incorporating network 
structure and spatial features. Tables  2 and 3 and Figs.  3 and 4 illustrate 
the results.

3.1. Comparative performance of the live fish distribution network

The RLP method performed the worst among all methods, with 
a precision of 0.3% and recall of 37.1%, resulting in an F1-score of 
0.6%. Its AUPR of 0.1% and AUROC of 54.1% further highlighted 
its limitations. Despite a recall of 37.1% the high number of false 
positives (FP = 88,656) and false negatives (FN = 426) rendered the 
method ineffective. The CN method, with a precision of 22.6% and a 
recall of 2.1%, performed better than the RLP but still demonstrated 
limitations in predicting distributions between farms. The F1-score 
of 3.8% and AUPR of 1.1% reflect the limited effectiveness of the 
method in this context. The low recall indicates that CN fails to capture 
an important number of TPs, leading to a high number of FNs (FN 
= 663). Although the AUROC for CN is 54.1%, this value alone is 
misleading. The huge difference between AUPR and AUROC shows 
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that while CN may perform decently in distinguishing between positive 
and negative cases overall, it struggles with predicting TPs in this 
imbalanced dataset. This is evident from the low precision and recall. 
The performance of the method is also hindered by the sparse nature of 
the fish movement network, where direct neighbours are not sufficient 
to predict potential links accurately. Previous studies have similarly 
reported CN’s limitations in sparse networks, where the lack of dense 
connectivity reduces the reliability of shared neighbours as predictors 
of new links [32,47,48,58].

The AAI, similar to CN, also demonstrated limited effectiveness in 
predicting the distribution of live fish between farms. Its precision of 
31.8% was slightly higher than CN, but its recall was even lower at 
1.0%. The F1-score of 2.0% and AUPR of 1.0% suggest that although 
AAI had slightly better precision than CN, it still struggled with recall, 
capturing very few TPs (TP = 7). This indicates that AAI, which is 
designed to enhance the predictive power of CN by giving more weight 
to less connected nodes, did not significantly improve link prediction in 
this specific network. The low AUPR and AUROC values further confirm 
shortcomings from AAI. The poor performance of AAI can be attributed 
to the same factors affecting CN, namely the sparsity of the network.

The LPI method, which considers both direct and indirect con-
nections up to a path length of 3, demonstrated better performance 
compared to CN and AAI. While its recall was 16.2%, its precision was 
significantly lower at 6.5%. This suggests that LPI was more capable 
of identifying TP links but at the cost of generating a higher number 
of FPs (FP = 1,584). The improvement in recall compared to CN 
and AAI suggests that LPI, which considers both direct and indirect 
paths, is better suited for networks where indirect connections play 
a significant role. However, the low precision indicates that LPI may 
struggle with distinguishing between actual and potential links, leading 
to an increased number of FPs. This is consistent with findings in 
network theory, where local path-based methods are known to balance 
accuracy and computational efficiency [48].

The KI showed improvement compared to CN, AAI, and LPI. With 
a 𝛽 value of 0.37, Its recall of 30.43% was the highest among the 
methods without spatial weights, indicating its ability to capture a 
greater proportion of TP links (206). Although its precision of 15.1% 
was low, the increase in recall resulted in a higher F1-score of 20.2%. 
The high AUROC value of 98.6% further supported KI’s performance in 
distinguishing between positive and negative links. However, the AUPR 
of 12.8% revealed that KI still faced challenges in achieving better 
performance, particularly for the positive class. This was attributed to 
the class imbalance issue, emphasising the importance of considering 
both AUROC and AUPR when evaluating models in such scenarios.

With a 𝛽 value of 0.37, the WKI achieved a precision of 18.2% and 
a recall of 8.4%, resulting in an F1-score of 11.5%. The AUPR of 12.7% 
was the same as the KI. This suggested that while the introduction 
of spatial weighting added some value in accounting for geographical 
proximity, it did not significantly improve the model’s ability to predict 
TPs correctly. The AUROC for WKI was 98.8%, which, like KI, was 
very high but still struggled to accurately identify the minority class 
in an imbalanced dataset. The results of WKI indicated that simple 
distance-based weighting may not fully capture the complex relation-
ship between distance and the distribution of live fish between farms.

The EWKI, a novel modification of the Katz index, outperformed 
all other methods, including the RLP. With a beta value of 0.37 and 
a gamma value of 0.01 (selected from the grid search), it achieved a 
precision of 92.9% and recall of 81.1%, resulting in the highest F1-score 
of 86.6%. The AUPR of 93.4% and AUROC of 99.9% further demon-
strated its ability to accurately predict links while minimising false 
positives. However, it is important to interpret AUROC result within 
the specific characteristics of the dataset and the evaluation context. 
First, the live fish distribution network used in this study is highly 
imbalanced, with a vast majority of potential links representing non-
movements (negative class) compared to actual live fish movements 
(positive class). In such settings, a high AUROC can arise because true 
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negatives dominate the classification outcomes, thereby inflating the 
model’s specificity and overall AUROC score [49]. High AUROC values 
in imbalanced datasets do not necessarily reflect strong performance in 
predicting the minority class (i.e., actual fish movements). Recognising 
this limitation, we complemented AUROC with more informative eval-
uation metrics for imbalanced datasets, including precision, recall, and 
F1-score. These metrics directly evaluate the model’s ability to correctly 
identify positive links (true fish movements), providing a clearer view 
of performance beyond the majority class. This scenario aligns with 
established recommendations in the literature, where it has been shown 
that precision–recall metrics are often more informative than AUROC 
in highly imbalanced scenarios [29,31,49,50,58].

To understand the performance of EWKI, it is crucial to examine 
its key differences from the standard KI and the WKI. While the KI 
considers all paths between nodes, it lacks spatial awareness. The WKI 
addresses this by incorporating distance-based weights, but its linear 
weighting scheme does not fully capture the nuances of spatial inter-
action in aquaculture. In contrast, the EWKI employs an exponentially 
decaying weight function, prioritising local interactions while account-
ing for long-range connections. This approach aligns with observed 
network dynamics, where geographically closer farms are more likely 
to engage in fish distributions due to logistical and cost considerations.

3.2. Comparative performance on the road network

The performance of the similarity-based methods on the road net-
work dataset (Table  3 and Fig.  4) reveals different trends compared to 
the live fish distribution network. The RLP exhibited minimal predictive 
capability, achieving a precision of 0.03%, recall of 11.8%, and an 
F1-score of 0.06%. Methods such as CN, AAI, and LPI demonstrated 
similarly limited effectiveness. Each of these methods identified only 
two true positive (TP = 2) while generating a significant number of 
false positives (FP ≥ 200) and false negatives (FN = 1,472). These 
results highlight the limitations of local and quasi-local methods in 
capturing the broader structural and spatial properties of the road 
network, where direct neighbour information is insufficient for accurate 
link prediction.

The KI method, using a decay parameter of 𝛽 = 0.7, showed an 
improvement, achieving a precision of 66.67%, recall of 0.54%, and 
an F1-score of 1.08%. Its high AUPR of 88.5% and perfect AUROC 
of 99.99% reflect its ability to rank links effectively. However, while 
the ranking metrics suggest good discrimination between positive and 
negative links, the F1-score remained low due to a limited number of 
true positives (TP = 8) and a substantial number of false negatives (FN 
= 1,466).

The WKI method, with a decay parameter of 𝛽 = 0.002, achieved 
perfect precision (100%), indicating that all predicted links were true 
positives, but its recall of 2.37% and F1-score of 4.64% also reveal the 
limitation experienced in other methods, that is, the method identified 
35 true positive while failing to capture most actual links (FN = 
1,439). The perfect AUROC and AUPR (98.2%) reflect the model’s 
ability to rank links effectively, but these metrics are not indicative 
of practical utility when the F1-score is so low. This result highlights 
the importance of examining every metric alongside the raw counts to 
ensure a comprehensive understanding of model performance.

As seen in the performance of EWKI in the live fish distribution 
network, the EWKI method outperformed all other models. With 𝛽 = 0.7 
and 𝛾 = 0.01 achieving a prefect precision of 100%, recall of 72.80%, 
and an F1-score of 84.26%. Its high recall indicates that it captured 
nearly all actual links in the. Its perfect AUROC and AUPR of 99.1% 
further affirm its strong performance across both ranking and classi-
fication tasks. EWKI’s superior performance can be attributed to its 
exponential weighting scheme, which integrates spatial proximity into 
the prediction process, enabling the model to prioritise geographically 
relevant links effectively.
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Table 2
Performance of various link prediction methods on the live fish distribution network.
 Method Precision (%) Recall (%) F1-score (%) TP FP TN FN  
 RLP 0.3 37.1 0.6 251 88,656 156,187 426 
 CN 22.6 2.1 3.8 14 48 244,795 663 
 AAI 31.8 1.0 2.0 7 15 244,828 670 
 LPI 6.5 16.2 9.3 110 1,584 243,259 567 
 KI (𝛽 = 0.37) 15.1 30.4 20.2 206 1,157 243,686 471 
 WKI (𝛽 = 0.003) 18.2 8.4 11.5 57 257 244,586 620 
 EWKI (𝛽 = 0.37, 𝛾 = 0.01) 92.9 81.1 86.6 549 42 244,801 128 
Fig. 3. Performance of ranking metrics (AUPR and AUROC) of the various link prediction methods on the live fish distribution network. Precision–recall curves (solid blue line) 

and receiver operating characteristic curves (dashed red line) are shown for each method, along with their respective values.
Table 3
Performance of various link prediction methods on the road network.
 Method Precision (%) Recall (%) F1-score (%) TP FP TN FN  
 RS 0.03 11.80 0.06 174 583,899 5,244,437 1,300 
 CN 0.99 0.14 0.24 2 200 5,828,136 1,472 
 AAI 0.99 0.14 0.24 2 200 5,828,136 1,472 
 LPI 0.89 0.14 0.24 2 223 5,828,113 1,472 
 KI (𝛽 = 0.7) 66.67 0.54 1.08 8 4 5,828,332 1,466 
 WKI (𝛽 = 0.002) 100.00 2.37 4.64 35 0 5,828,336 1,439 
 EWKI (𝛽 = 0.7, 𝛾 = 0.01) 100.00 72.80 84.26 1,073 0 5,828,336 401  
3.3. Comparative performance of combined indices

The combination of various similarity-based link prediction meth-
ods was conducted on the live fish distribution network to evaluate 
whether combining indices, particularly EWKI, with other methods 
could enhance link prediction performance. This approach aimed to 
determine if model averaging could leverage the strengths of individual 
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indices to achieve improved predictive accuracy. Table  4 and Fig.  5 
summarise the performance metrics.

3.3.1. Combination with CN
The combination of CN with other indices resulted in slight im-

provements in predictive performance compared to CN alone, but the 
overall gains were minimal. For instance, when combined with AAI, 
CN achieved a precision of 24.4% and a recall of 3.2%, resulting in 
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Fig. 4. Performance of ranking metrics (AUPR and AUROC) of the various link prediction methods on the road network. Precision–recall curves (solid blue line) and receiver 

operating characteristic curves (dashed red line) are shown for each method, along with their respective values.
Table 4
Performance of various combined link prediction methods on the live fish distribution network.
 Method Precision (%) Recall (%) F1-score (%) TP FP TN FN  
 CN*AAI 24.4 3.2 5.7 22 68 244,775 655 
 CN*LPI 27.7 3.8 6.7 26 68 244,775 651 
 CN*KI 22.2 2.1 3.8 14 49 244,794 663 
 CN*WKI 22.6 2.1 3.8 14 48 244,795 663 
 CN*EWKI 23.7 4.6 7.7 31 100 244,743 646 
 AAI*LPI 20.9 5.8 9.0 39 148 244,695 638 
 AAI*KI 34.8 1.2 2.3 8 15 244,828 669 
 AAI*WKI 34.8 1.2 2.3 8 15 244,828 669 
 AAI*EWKI 40.0 1.5 2.8 10 15 244,828 667 
 LPI*KI 8.4 13.1 10.3 89 966 243,877 588 
 LPI*WKI 7.7 14.5 10.0 98 1,177 243,666 579 
 LPI*EWKI 6.5 16.2 9.3 110 1,584 243,259 567 
 KI*WKI 15.2 21.3 17.7 144 806 244,037 533 
 KI*EWKI 69.3 80.4 74.4 544 241 244,602 133 
 WKI*EWKI 67.3 94.1 78.5 637 309 244,534 40  
an F1-score of 5.7%. This marginal improvement was due to AAI’s 
focus on less connected nodes, which complemented CN’s reliance on 
local neighbourhoods. However, the sparse nature of the aquaculture 
network limited the overall effectiveness of both methods, as reflected 
in the low AUPR of 2%. Combining CN with LPI further improved the 
recall to 3.8% and the F1-score to 6.7%, highlighting the advantage of 
LPI’s ability to capture indirect connections. The CN*LPI combination 
achieved an AUPR of 8% and an AUROC of 78%, indicating a better bal-
ance between precision and recall. However, despite this improvement, 
the high number of false negatives (FN = 651) showed that CN*LPI 
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still struggled to identify true links accurately. The combination of CN 
with KI and WKI maintained precision similar to CN alone but slightly 
improved the AUPR to 13%, reflecting the added value of global 
structural information from KI and the incorporation of spatial factors 
in WKI. However, these combinations still exhibited low recall and F1-
scores, indicating their limited effectiveness in the highly imbalanced 
dataset.

The most notable improvement came from combining CN with 
EWKI. This combination achieved a precision of 23.7%, recall of 4.6%, 
and an F1-score of 7.7%. The AUPR of 49% and AUROC of 99.99% 
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Fig. 5. Performance of ranking metrics (AUPR and AUROC) of the various combined link prediction methods on the live fish distribution network. Precision–recall curves (solid 
blue line) and receiver operating characteristic curves (dashed red line) are shown for each method, along with their respective values.
demonstrated that EWKI significantly enhanced CN’s predictive per-
formance. This improvement was attributed to EWKI’s ability to cap-
ture spatially embedded relationships through its exponential decay 
weighting scheme, which prioritised geographically relevant links. By 
complementing CN’s local information with EWKI’s spatially aware 
structure, the model effectively addressed the limitations of CN alone 
in the aquaculture network, improving its capacity to predict links 
in a sparse and imbalanced setting. These findings demonstrate the 
general poor performance of CN in networks with sparse connectivity, 
as it relies solely on shared neighbours, which are often insufficient for 
predicting links in such datasets.

3.3.2. Combination with AAI
Similar to the CN combinations, the models averaging AAI with 

other indices also showed limited improvements. This generally poor 
performance can be attributed to AAI’s design, which, while aiming 
to improve upon CN, still primarily focuses on local neighbourhood 
information. AAI assigns higher weights to links connecting nodes with 
fewer neighbours, attempting to address the bias of CN towards highly 
connected nodes. However, in sparse networks like the aquaculture 
network under study, this adjustment often proves insufficient. Many 
nodes have few or no common neighbours, and AAI struggles to identify 
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potential links in these situations, leading to low recall and a high 
number of false negatives.

Despite the overall limited improvement, combining AAI with EWKI 
yielded a noticeable increase in performance, particularly in precision. 
The AAI*EWKI combination achieved a precision of 40%, surpassing 
all other AAI combinations. This improvement highlights the benefit 
of integrating AAI’s local focus with EWKI’s spatial awareness. By 
incorporating distance-based weights, EWKI helps AAI identify poten-
tial links that would otherwise be missed due to the sparsity of the 
network. For instance, two farms with no common neighbours but 
located in close proximity are more likely to interact. EWKI captures 
this spatial relationship, complementing AAI’s local perspective and 
leading to more accurate predictions. However, even with the improved 
precision, the recall of the AAI*EWKI combination remained low at 
1.5%. This indicates that while the combination benefits from EWKI’s 
spatial information, it still struggles to capture the full range of true 
positive links. This limitation suggests that further refinements or al-
ternative combination strategies might be necessary to fully leverage 
the strengths of both AAI and EWKI in sparse networks.

3.3.3. Combination with LPI
The combinations of LPI with LPI*KI, LPI*WKI, and LPI*EWKI 

demonstrated varying degrees of improvement, reflecting the comple-
mentary strengths of the paired models. The LP*KI model achieved 
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a precision of 8.4% and a recall of 13.1%, resulting in an F1-score 
of 10.3%. The AUPR for LPI*KI was slightly higher than LPI alone, 
indicating that KI’s global structural information refined predictions by 
improving the model’s ability to distinguish true links from false ones. 
However, the performance gains were modest, as the recall decreased 
slightly due to fewer true positives (TP = 89). The LPI*WKI benefited 
from the spatial weighting introduced by WKI, resulting in a precision 
of 7.7% and a recall of 14.5%, yielding an F1-score of 10.0%. However, 
the gains in precision and recall were limited, as the number of false 
positives (FP = 1,177) remained high, reflecting the challenges of 
balancing accuracy across metrics in sparse networks. The most no-
table improvement was observed in the LPI*EWKI combination, which 
achieved an AUPR 21.7% higher than the standalone LPI model and 
outperformed the other LPI combinations. This significant improvement 
occurred because EWKI’s exponential spatial weighting complemented 
LPI’s reliance on path-based connectivity by prioritising geographically 
relevant links. The combination effectively reduced the influence of 
long, less relevant paths while preserving the strengths of both methods 
in capturing true positives.

3.3.4. Combination with KI, WKI and EWKI
The combinations involving KI, WKI, and EWKI demonstrated sig-

nificant improvements in predictive performance among all the com-
binations explored. This observation highlights the importance of in-
corporating both global network information and spatial awareness 
in predicting live fish movements. The combination of KI with EWKI 
yielded one of the best performances overall, with a recall of 80.3% 
and an F1-score of 74.4%. It also had a high AUPR of 79.7% and 
an AUROC of 99.9%. This suggests that EWKI’s ability to incorporate 
spatial weighting enhances KI, making the combination highly effective 
in predicting links in the aquaculture network. The high recall indicates 
that this combination captures most TPs, while the high precision and 
AUPR reflect the model’s ability to minimise FPs and provide accurate 
predictions. KI, by considering all paths in the network, captures the 
global connectivity patterns, while EWKI refines this information by 
prioritising links between geographically close farms. This synergy 
allows the KI*EWKI combination to effectively identify potential fish 
movements that are both structurally and spatially likely.

Similarly, WKI*EWKI also demonstrated strong performance with 
an F1-score of 78.5% and an AUPR of 88.1%. This further supports 
the assessment that combining spatially informed methods can be 
highly effective in predicting distribution between farms. Both WKI 
and EWKI incorporate spatial information, but their weighting schemes 
differ. WKI uses a simple linear weighting, while EWKI employs an 
exponential decay function. Combining these two approaches allows 
the model to capture a wider range of spatial interactions, leading to 
improved performance. In contrast, the KI*WKI combination showed a 
more moderate improvement with an F1-score of 17.7%. This indicates 
that while both methods capture network connectivity, their combina-
tion might not fully leverage their individual strengths. Consequently, 
the KI*WKI combination, while showing some improvement over the 
individual indices, does not achieve the same level of performance as 
the combinations involving EWKI.

3.4. Implications for distribution of live fish between farms

Incorporating spatial information into network analysis offers ben-
efits for understanding live fish distribution between farms by identify-
ing factors influencing fish movement patterns, such as transportation 
costs and shared resources. This knowledge informs the development of 
effective prediction strategies that account for the spatial dynamics of 
the aquaculture network. Understanding the spatial clustering of farms 
helps identify potential hotspots for demand or supply. Spatial analysis 
highlights areas with limited connectivity, revealing opportunities for 
infrastructure development to enhance the efficiency and resilience of 
the fish distribution network.
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The use of EWKI extends beyond aquaculture to other fields where 
network analysis can benefit from spatial considerations. For example, 
in epidemiology, understanding disease transmission dynamics informs 
the development of control strategies. The EWKI model could be used 
with other epidemiological methods to predict the spread of infectious 
diseases across populations, enabling targeted interventions. In trans-
portation and logistics, spatial network analysis can optimise routes and 
supply chain efficiency. In social network analysis, incorporating spa-
tial information enhances the understanding of how proximity affects 
social interactions and information spread.

3.5. Limitation and future work

The study demonstrates the effectiveness of the EWKI in both the 
live fish distribution network and the road network, highlighting its 
ability to predict links with high precision, recall, and F1-score. The 
EWKI’s incorporation of spatial weighting improved predictive perfor-
mance across both datasets, showcasing its adaptability to networks 
with distinct structural and dynamic characteristics. However, the ap-
plication of EWKI may be constrained by computational demands, 
particularly when scaling to larger networks. This challenge is further 
compounded by the need to determine the optimal value of the spatial 
decay parameter 𝛾, which plays a critical role in adjusting the influence 
of distance in the model. Identifying the best-performing 𝛾 requires 
a grid search over multiple values, a process that can be computa-
tionally intensive. Another limitation concerns the use of AUROC as 
a performance metric in the context of highly imbalanced datasets. 
While AUROC can suggest strong overall discrimination, it may be 
overly optimistic in cases where true negatives dominate, as is typical 
in sparse networks like the one used in this study. Future work should 
consider exploring data balancing techniques such as under-sampling 
or over-sampling to provide a more representative evaluation of model 
performance. These approaches could help ensure that the AUROC 
reflects the model’s effectiveness in identifying the minority class more 
accurately. Additionally, future studies could explore the integration 
of EWKI with dynamic graph embedding and graph convolutional 
approaches to further enhance its scalability, temporal adaptability, 
and predictive accuracy in complex evolving networks.

4. Conclusion

This study aimed to enhance the predictive accuracy of link predic-
tion in aquaculture networks by extending the traditional Katz Index 
through the incorporation of spatial weighting, resulting in the devel-
opment of the EWKI. The focus was to accurately predict the changing 
dynamics of fish farms during the movement of live fish between them. 
These dynamics are influenced by factors such as exotic disease incur-
sions, which can alter movement patterns. When a disease outbreak 
occurs, official services may impose movement restrictions on affected 
farms or require the culling of entire fish stocks to prevent further 
spread. This creates changes in the network, as restricted farms are 
temporarily removed from the movement system. Accurately predict-
ing links during these changes is essential for effective aquaculture 
management.

The results demonstrated that the EWKI model outperformed the 
traditional KI and other methods. By incorporating spatial informa-
tion, the EWKI provided more accurate predictions, offering valuable 
insights for disease surveillance and targeted interventions in aquacul-
ture. Furthermore, the study found that combining EWKI with other 
link prediction methods improved performance compared to using 
those methods in isolation. This observation highlights the synergistic 
potential of integrating EWKI’s spatial awareness with the strengths of 
other methods, such as LPI. By leveraging both spatial weighting and 
global or local structural features, these combined approaches provided 
more accurate predictions. The outcome of this study is significant not 
only in aquaculture but also in transport systems.
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Fig. A.6. Performance of ranking metrics (AUPR and AUROC) of the various combined link prediction methods on the road network. Precision–recall curves (solid blue line) and 
receiver operating characteristic curves (dashed red line) are shown for each method, along with their respective values.
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Table A.5
Performance of various link prediction methods the road network.
 Method Precision (%) Recall (%) F1-score (%) TP FP TN FN  
 CN*AAI 0.99 0.14 0.24 2 200 5,828,136 1,472 
 CN*LPI 0.98 0.27 0.43 4 403 5,827,933 1,470 
 CN*KI 4.76 0.68 1.19 10 200 5,828,136 1,464 
 CN*WKI 81.87 99.59 89.87 1,468 325 5,828,011 6  
 CN*EWKI 81.51 96.00 88.16 1,415 321 5,828,015 59  
 AAI*LPI 0.98 0.27 0.43 4 403 5,827,933 1,470 
 AAI*KI 4.76 0.68 1.19 10 200 5,828,136 1,464 
 AAI*WKI 1.96 0.27 0.48 4 200 5,828,136 1,470 
 AAI*EWKI 12.02 1.49 2.66 22 161 5,828,175 1,452 
 LPI*KI 4.29 0.68 1.17 10 223 5,828,113 1,464 
 LPI*WKI 1.76 0.27 0.47 4 223 5,828,113 1,470 
 LPI*EWKI 8.61 1.42 2.44 21 223 5,828,113 1,453 
 KI*WKI 75.00 0.81 1.61 12 4 5,828,332 1,462 
 KI*EWKI 93.97 94.03 94.00 1,386 89 5,828,247 88  
 WKI*EWKI 100.00 73.27 84.57 1,080 0 5,828,336 394  
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