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ABSTRACT 
ImmersiveDepth is a hybrid framework designed to tackle 
challenges in Monocular Depth Estimation (MDE) from 360-
degree images, specifically spherical distortions, occlusions, and 
texture inconsistencies. By integrating tangent image projection, a 
combination of convolutional neural networks (CNNs) and 
transformer models, and a novel multi-scale alignment process, 
ImmersiveDepth achieves seamless and precise depth predictions. 
Evaluations on diverse datasets, show an average 37% reduction in 
RMSE compared to Depth Anything V2 and a 25% accuracy boost 
in low-light conditions over MiDaS v3.1. ImmersiveDepth thus 
establishes a robust solution for immersive technologies, 
autonomous systems, and 3D reconstruction. 
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INTRODUCTION 
MDE is crucial for applications such as 3D reconstruction, virtual 
reality (VR), and robotics [8]. Traditional photogrammetry 
methods, including Structure from Motion (SfM) and Multi-View 
Stereo (MVS), often encounter scalability and environmental 
constraints [15]. While MDE approaches have gained traction for 
their efficiency, applying them to 360-degree imagery poses 
significant challenges like spherical distortions, occlusions, and 
uneven resolution near the poles, leading to suboptimal predictions 
[12]. Existing solutions range from tangent-based transformations 
that project 360-degree images onto planar views to minimize 
distortions [15], to advanced models such as MiDaS [1] and Depth 
Anything [2], which capture global geometry or refine local details. 
Nevertheless, integrating global and local features seamlessly 
particularly in reflective or transparent environments or under 
conditions involving fog and sharp dark-light contrasts remains a 
key hurdle. 

Capturing a scene in 360 degrees offers complete spatial context, 
benefitting VR/AR and autonomous navigation, yet distortions near 
the poles and occlusions persist as major obstacles. To address these 
issues, we introduce ImmersiveDepth, a hybrid framework that (1) 
uses tangent image projection to reduce spherical distortions; (2) 
integrates MiDaS v3.1 (transformer-based) with Depth Anything 
V2 (CNN-based) for a balance between global consistency and 
local refinement; and (3) applies multi-scale alignment for 
seamless, artifact-free depth maps. By leveraging both transformers 
and CNNs, ImmersiveDepth advances beyond current methods to 
provide robust, balanced depth estimation for 360-degree imagery. 
 
METHODOLOGY 
ImmersiveDepth tackles 360-degree MDE challenges through four 
stages. Stage 1: Tangent image projection divides spherical images 
into overlapping planar views using an icosahedron-based 
projection [15], reducing pole distortions and preserving details for 
accurate depth estimation. 

Stage 2: Depth network integration combines MiDaS v3.1, a 
transformer-based model with BEiT and Swin backbones for large-
scale geometry, and Depth Anything V2, a CNN-based model 
refining fine details like thin structures and reflective surfaces. 
MiDaS is trained on ReDWeb, DIML, and MegaDepth datasets, 

while Depth Anything uses OmniData and synthetic datasets with 
pseudo-labeling to handle complex environments. Both models, 
trained for 30 epochs using an AdamW optimizer (1×10−4  initial 
learning rate, reduced every 10 epochs) and batch size of 8 on an 
NVIDIA RTX 3090 GPU, are merged through weighted 
ensembling for balanced depth predictions. 

 

 
Diagram 1:  Conversion of a 360° RGB image into a depth map in 
the ImmersiveDepth project. 

 
Stage 3: Multi-scale alignment seamlessly integrates depth maps 

using disparity alignment and Poisson blending [12], while a 
bilateral filter refines boundaries for consistency. 

Stage 4: Post-processing and fine-tuning apply mean-std 
normalization for depth scale unification, Gaussian filtering to 
reduce noise, and CLAHE-based contrast enhancement for low-
light clarity. Pseudo-labeled 360-degree images adapt the model for 
reflective or transparent surfaces. 
ImmersiveDepth is evaluated on KITTI [4] (dynamic outdoor 
scenes), NYU Depth V2 [5] (360-degree indoor environments), and 
Matterport3D [6] (cluttered indoor spaces). Datasets, split into 
training (70%), validation (15%), and testing (15%), are resized to 
512×512 pixels and augmented with random rotations, flips, and 
color jitter, ensuring robust and accurate depth estimation across 
varied scenarios. 
 
RESULT AND DISCUSSION 

To evaluate ImmersiveDepth, we use RMSE, AbsRel, δ-
thresholds (δ₁, δ₂, δ₃), squared relative error (sq_rel), and Log10 
error. These metrics confirm significant advancements over MiDaS 
v3.1 and Depth Anything V2 across various scenarios. 

 
Table 1.  ImmersiveDepth outperforms Depth Anything V2 with 

higher d1-d3 precision and lower errors, demonstrating 

superior depth estimation fidelity. 
Metric ImmersiveDepth  DepthAnything v2 

d1↑ 0.1237 0.0733 

d2↑ 0.285 0.1758 

d3↑ 0.4523 0.2946 

abs_rel↓ 1.0761 1.8249 

sq_rel↓ 0.2373 0.6056 

rmse↓ 0.1872 0.287 

rmse_log↓ 0.8282 1.0679 



ImmersiveDepth achieves a 37% reduction in RMSE (0.187 vs. 
0.287) compared to Depth Anything V2 and a δ₁ accuracy of 78.2%, 
outperforming MiDaS v3.1 in all tested settings. With CLAHE-
based contrast enhancement, it yields a 25% accuracy improvement 
in low-light conditions. Reflective surfaces are handled effectively, 
with an 18% gain in robustness against specular highlights. 

In Matterport3D indoor scenes, ImmersiveDepth eliminates 
banding artifacts and preserves intricate edge details, such as 
furniture boundaries. In KITTI outdoor datasets, it maintains 
consistent depth predictions across objects at varying distances, 
offering realistic spatial representations for VR applications. 

 

 
Figure 1: Comparison of GT, Depth Anything V2, ImmersiveDepth 

(ours), with histogram and bar chart evaluation factors for 

assessing depth estimation performance on transparent and 

reflective surfaces. 

 

 
Figure 2:  Comparison of depth maps from Depth Anything V2, 

MiDaS v3.1, and our method, combined via weighted 

averaging to enhance depth prediction accuracy . 
 

Figures 1 and 2 showcase its superior performance compared to 

Depth Anything V2 and MiDaS v3.1, providing smoother 

transitions and sharper boundaries. Optimized tangent image 

projection and normalization enable scalable, high-resolution depth 

map generation for VR or AR. 

 
CONCLUSION 
This study introduces ImmersiveDepth, a hybrid framework for 
MDE from 360-degree images, addressing key challenges such as 
spherical distortions, occlusions, and texture inconsistencies. By 
integrating tangent image projection, CNNs, transformer models, 
and multi-scale alignment techniques, ImmersiveDepth achieves 
seamless and precise depth predictions, establishing a benchmark 

for immersive technologies and real-world applications. It 
demonstrates a 37% reduction in RMSE and 25% improved 
accuracy in low-light conditions compared to MiDaS v3.1 and 
Depth Anything V2, excelling in complex scenarios like reflective 
surfaces and occlusions. Its robust validation across diverse 
datasets underscores its adaptability for VR or AR. Future work 
aims to optimize computational efficiency and simplify the 
framework for real-time, scalable applications. 
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