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Abstract

Existing 3D garment reconstruction methods are difficult to implement for online fashion
design and e-commerce or special applications. This paper proposes a novel computer-vision
framework for 3D garment digital reconstruction, which aims to reconstruct high-quality and
realistic virtual 3D garments with fabric mechanic properties for 3D virtual try-on. The new
segmentation scheme is proposed to separate the 3D garment point clouds from background
points, which is suitable for 3D human shapes and is adaptive for different 3D garment models
in different scenes. The new Statistical Outlier Removal algorithm and the learning-based
method PointCleanNet are combined to remove noise and outliers in 3D garment point clouds,
which provides high-fidelity and high-quality 3D garment point clouds. The 3D garment
meshes are then reconstructed from their corresponding point clouds with a modified rolling
ball algorithm. Finally, the meshes are improved and converted into physics-based virtual
try-on 3D garments with fabric mechanic properties added, which enables the assessment of
different body shapes with varied sizes for the same reconstructed 3D garment. Comparison
experiments demonstrate that our framework achieves high-quality and realistic 3D garment
reconstruction and accurate 3D virtual try-on from 2D garment images. We also demonstrate
the proposed framework on a large range of various garments to show this approach has
a great potential for garment future technology, such as online garment shopping, garment
design and manufacturing.
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1 Introduction

Computer vision-based methods have advanced 3D garment reconstruction techniques.The
3D information can be obtained via several images of a garment, which in turn can be used to
automatically reconstruct the full 3D digital garment based on point cloud methods. Recently,
3D digital reconstruction using dense 3D point clouds has shown some potential practical
applications [57]. 3D Digital garments are important forms of digital assets to the evolution
of the digital development of the world and can be used in countless applications, includ-
ing computer animation, digital museums [31], digital games [41] [54], online shopping,
culture conservation, virtual try-on [14] and personalized garment design [22]. 3D garment
reconstruction is one of the key technologies for obtaining digital garments.

To achieve 3D digital design and garment reconstruction, the design of a garment that
mainly consists of sketches or drawings and contours are adjusted to ensure the 3D reconstruc-
tion is a true representation of the designer’s original design ideas. The current state-of-the-art
3D garment reconstruction approaches [10, 53] utilized digital printing, flat pleating and
garment tailoring on 3D models. This process of 3D garment reconstruction demands experi-
enced technicians to manually construct realistically [5, 26, 32, 49]. Moreover, these methods
are difficult to implement for online fashion design and e-commerce or special applications.
For example, historical fashion pieces in museums do not allow direct contact measurement
for accurate 3D reconstructions for digital preservation. Thus, our motivations for the pro-
posed computer-vision based framework are aimed to reconstruct high-quality and realistic
virtual 3D garments with fabric mechanic properties that can be directly applied to the vir-
tual try-on for the same reconstructed 3D garment, enabling the assessment of different body
shapes with varied sizes. Our framework does not need hand-crafted measurements and is
easy to use for the general purpose of digital garment creation.

To develop the framework for the general purpose of digital garment generation, we choose
mobile phone cameras to capture a set of garment images from multiple views (multi-view
images), which imposes several technical challenges, such as processing a large number of
images with fixed angle intervals as well as dealing with varied light conditions. The 3D point
cloud scene is extracted from the captured garment images using the structure-from-motion
(SFM) algorithm [34]. Since the extracted 3D point cloud scene consists of the 3D garment,
background and noisy points, we employ 3D point cloud segmentation and de-noising algo-
rithms to separate the 3D garment point cloud from the background and noisy points, which
can produce high-quality garment meshes suitable for the virtual try-on garment require-
ments. The novelty of our 3D garment segmentation is to separate the 3D garment from
the background points on different 3D garment models by applying the combination of the
cylindrical segmentation algorithm [40] and the Euclidean clustering algorithm [40]. The Sta-
tistical Outlier Removal algorithm [40] and the learning-based method PointCleanNet [39]
are used to remove outliers and noisy points in 3D garment point clouds. The 3D garment
meshes are reconstructed from 3D garment point clouds using the modified rolling ball algo-
rithm, and these modifications improve the mesh surface continuity during the reconstruction.
The hole-close algorithm is used to recover the missing data of the reconstructed 3D garment
mesh surface to obtain high-quality and realistic 3D garment meshes. The texture generation
method can generate reali stic fabric mechanic properties for 3D garment meshes. Finally,
we demonstrate our virtual try-on performed on different 3D garment models. The detailed
illustration of the proposed framework is explained in Section 3. Section 4 illustrates the com-
parison experiments, including 3D garment point cloud extraction from images (Section 4.1),
3D garment point cloud segmentation(Section 4.2), outlier removal and de-noising for 3D
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garment point cloud(Section 4.3), 3D garment mesh surface synthesis(Section 4.4) and 3D
garment virtual try-on(Section 4.5). Section 5 gives a brief summary of the achievements,
comparison results, limitations and future works.

To the best of our knowledge, our computer-vision based framework is the first attempt
of its kind to achieve the 3D garment reconstruction and 3D virtual try-on from 2D garment
images.

The main contributions of this paper are:

e A novel computer-vision framework for 3D garment digital reconstruction is proposed,
which consists of 3D garment point cloud extraction, segmentation, de-noising, 3D mesh
surface reconstruction and virtual try-on.

e The combination of the cylindrical segmentation algorithm and the Euclidean clustering
algorithm is used to separate the 3D garments from the background points on different
3D garment models, which produces high-quality garment meshes suitable for the virtual
try-on garment requirements.

e The modified rolling ball algorithm and hole-close are introduced to recover the missing
data of the reconstructed 3D garment mesh surface for obtaining high-quality and realistic
3D garment meshes.

e The virtual garment try-on application based on our proposed framework has been devel-
oped on different 3D human models with different sizes of 3D garment models.

2 Related work
2.1 3D garment reconstruction

With the in-depth development of digitization in the garment and textile industry, some
approaches [3, 10,46, 52, 52] focusing on the 3D garment reconstruction have been proposed.
Fang [10] proposes a garment piece construction method based on sketch drawing for the
interactive design of the garment piece, which processes the contour line of the garment piece
and enriches the styles of the garment model. Umetani [46] develops a garment design tool for
garment interactive modelling and editing, which obtains special effects of the garment model
after virtual stitching and displays the 3D garment effectively. Geometric modeling [52]
generates garment models through the changes of various geometric topological structures
on the mesh surface of the 3D model. Wei [52] proposes a garment generation algorithm
based on style maintenance, which generates a 3D model that maintains the original style
and fits the human model. Brouet [3] implements the deformation of various parts of the
garment model by adjusting the vertices of the garment pieces, but it requires a large amount
of vertex information to store and calculate dynamic garment behaviours [55].

3D garment models can also be reconstructed from binocular and monocular multi-view
2D images. Binocular multi-view reconstruction needs to maintain multiple cameras at a fixed
distance during the operation, which requires complex operations and powerful (expensive)
devices for stereo visions. Monocular multi-view reconstruction operates with limited pro-
cessing resources and simple operations. Pan [35] optimizes the image matching process in
monocular multi-view 3D reconstruction to reduce the time on feature point matching and
improve the quality of the reconstructed 3D point cloud. Hu [21] proposes a Scale Invariant
Feature Transform (SIFT) algorithm for feature point detection and matching, which extracts
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contour information through Mask R-CNN to separate the 3D garment from the background
and uses Poisson to reconstruct the 3D garment.

Xu [51] developed a web-based design support system that enables users to design realistic
and interesting skirts in the form of technical sketches over the internet. Compared with
traditional computer-aided design (CAD) systems, the proposed system is more effective and
easier to operate as users can create technical sketches in accurate proportions with simple
computer operations in a few mouse clicks. He [16] proposed Sketch2Cloth, a sketch-based
3D garment generation system that uses the unsigned distance fields from the user’s sketch
input. Sketch2Cloth first estimates the unsigned distance function of the target 3D model from
the sketch input and then extracts the mesh from the estimated field with Marching Cubes.
Chen [4] introduced a novel baseline approach for sketch-based garment reconstruction using
an end-to-end generative network capable of generating garment models from single hand-
drawn sketches. Hu [20] designed a novel pipeline to obtain 3D high-quality textile models
based on KinectFusion. The accuracy and robustness of KinectFusion are improved via a
turntable. Experimental results show that the proposed method can conveniently reconstruct
a three-dimensional textile model with synthesized texture. Kuzmichev [25] proposed a
new method of virtual reconstruction of an RH that is based on automatic consideration
of all joining elements. The purpose of this paper is to apply 2D and 3D existing CAD
for virtual reconstruction of the very specific kind of women’s garments such as a side-
saddle riding habit (RH) used in 1875-1915. This study should help researchers and practical
specialists to recreate and save the historical treasure in a digital way. Spelic [36] aims to
present a significant usage of computer-aided design (CAD)/computer-aided manufacturing
(CAM) systems in the apparel and textile industry. The paper makes clear that although this
technological concept is rather old, the use of the CAD/CAM systems will inevitably broaden
in terms of applicability to garment new production stages.

This paper is based on the most accessible RGB cameras on a mobile phone to obtain multi-
view garment images from which to construct a 3D point cloud scene. Background, noise
and outliers are common in the extracted 3D point cloud scene captured by an RGB camera
due to the luminance, caption angles and distances. Thus, the 3D point cloud segmentation
and de-noising are required to separate the 3D garment point cloud from background, noise
and outliers.

2.2 3D reconstruction from point clouds

3D point cloud segmentation methods [11, 23, 58] can be divided into two categories accord-
ing to the organized and disordered input 3D point cloud data [45]. For organized 3D point
clouds, Zhu [58] proposes a point cloud segmentation algorithm based on scan lines for large
scenes. However, this method is sensitive to noise and uneven or sparse 3D point clouds [15].
For disordered 3D point clouds, it mainly includes area growth [23], clustering [56] and
model fitting [11]. Area growth [23] is susceptible to noise [1]. The clustering segmentation
algorithm [56] segments 3D point clouds that contain the same attributes, which shows slow
convergence and low efficiency [44]. The model fitting method Random Sample Consensus
(RANSAC) [56] directly operates on unorganized 3D point clouds generated by 3D laser
scanning and can be used to segment planes accurately, which takes less time than area
growth [23] and clustering [56] and can be considered the most advanced technology for
model fitting. Some methods based on RANSAC have been improved, such as the cylindri-
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cal segmentation algorithm [40] and the Euclidean clustering segmentation algorithm [40],
improving the accuracy of the segmentation. In this paper, we use the well-known algorithm
RANSALC to extract mathematical features, such as straight lines and circles, for 3D garment
point clouds.

Cruz et al. [28, 47, 48] propose de-noising algorithms for 3D point cloud based on surface
fitting [28], Laplace distribution [48] and normal vector distance estimation [47]. However
it shows lower de-noising performance since the manually made features are not efficient
for the de-noising. Recent emerged deep-learning methods [6, 18, 19, 29] extract features
automatically and achieve higher performance on de-noising. A de-noising algorithm based
on non-local enhanced convolutional neural networks [47] and a Signoroni grid de-noising
algorithm [29] have been proposed to achieve effective de-noising. Although these algorithms
deal with large-scale noise and complex point cloud models, they are limited to large and
dense 3D point clouds with different noise scales. We use a statistical outlier removal filter [40]
with a deep learning-based PointCleanNet algorithm [39] together to achieve effective and
robust removal of noise and outliers, which handles large and dense 3D point clouds with
noise and outliers at different scales.

Mesh surface reconstruction [43, 50]restores the object surface of the 3D point cloud. 3D
mesh surface reconstruction can be divided into two parts, including surface fitting [12] and
mesh reconstruction [9]. Surface fitting reconstruction is suitable for surfaces with smooth
surfaces and small changes, which is challenging to achieve surface objects with complex
topology [59]. Mesh reconstruction reconstructs the triangular mesh model and describes the
topology of complex objects [59], which is widely used in point cloud surface reconstruction.
Greedy Projection Triangulation (GPT) [30] reconstructs the 3D point cloud obtained from
LiDAR sensors with 3D geographic information. Although the greedy projection triangula-
tion reconstruction algorithm can completely restore the mesh surface, the resulting surface
is not smooth and has many holes.

Hoppe [17] proposes a Poisson mesh surface reconstruction algorithm, which over-
smooths the 3D mesh model and loses detailed information of 3D meshes. Bernardini [2]
proposes the Ball Pivoting Algorithm algorithm for grid reconstruction of dense point clouds,
which is time efficient for 3D reconstruction, but there are some holes in the reconstructed
meshes. This paper compares the Poisson reconstruction, GPT and rolling ball reconstruc-
tion algorithms for the 3D garment reconstruction and chooses the rolling ball reconstruction
based on the reconstruction results. Finally, the holes are completed using the hole-close
algorithm [40].

The latest advancements in computer vision technology cover several areas, including
deep learning and convolutional neural networks [27], 3D reconstruction and point cloud pro-
cessing [8], self-supervised learning, object detection and instance segmentation, generative
adversarial networks (GANSs) [7], as well as augmented reality (AR) and virtual reality (VR).
Among these, 3D reconstruction-particularly using point cloud data-has seen remarkable
progress with deep learning methods such as [37], PointNet++ [38], and Transformer-based
point cloud networks. These methods excel at extracting and processing 3D point cloud data
from multi-view images or depth sensors, achieving higher precision in 3D object recon-
struction and surface modelling. However, these methods are not suitable for dynamic 3D
garments, because the fabric garments are dynamic, soft and deformable. In this paper, our
proposed framework achieves high-quality and realistic 3D garment reconstruction and accu-
rate 3D virtual try-on from 2D garment images.
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3 Method

Figure 1 shows the computer-vision framework that consists of four modules: a) 3D Point
Cloud Reconstruction, b) 3D Point Cloud Segmentation and De-noising, ¢) Mesh Surface
Reconstruction and d) Virtual Try-on. First, the 3D point cloud scenes of the garments are
reconstructed from multi-view images. Second, the cylindrical segmentation [40], Euclidean
algorithm [40] and Passthrough filter are employed for the separation of the garment from
the background, which can be adapted to different shapes of the garments. To achieve high-
quality 3D garment models, a combination of a deep-learning PointCleanNet algorithm [39]
and a statistical model is used to remove the noise and the outliers for the 3D garment point
clouds. Third, the modified rolling ball algorithm [2] is employed to reconstruct the high-
quality and realistic 3D garment meshes. The hole-close algorithm [40] is used to recover
the missing data of the reconstructed 3D garment mesh surface to obtain high-quality and
realistic 3D garment meshes. Finally, we demonstrate the 3D virtual try-on can be performed
on different 3D human models with different sizes of 3D garment models. The details of our
framework are in the following subsections.

3.1 3D garment scene reconstruction

To obtain the multi-view RGB images, a mobile phone camera is used and located at a fixed
distance and different views from the real-world garment model. Multi-view RGB images
are captured under optimal lighting conditions without extreme low light and over-exposure
for 3D scene reconstruction.

Since the reconstructed 3D scene consists of the 3D garment point cloud, background and
noisy points, the 3D point cloud segmentation and de-noising for the reconstructed 3D scene
are necessary to separate the 3D garment point cloud from the background and noisy points

surface reconstruction

3D Point Cloud Segmentation Surface reconstruction and
3D Point Cloud Extraction and De—noising Virtual try-on
|ttt ' R R L EE L LR ' PR e S S SN P T rres Lepp
e ® o i :b) . b g | d) :
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o [ & o 4 ~ NP s
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: S | g Do ' 8
a) i o BEN'E
' H ! > ! :
3D point cloud segmentation virtual try-on

3D point cloud de-noising

Fig.1 The proposed computer-vision framework consists of four main modules: a) 3D point cloud extraction,
b) 3D point cloud segmentation and de-noising, ¢) mesh surface reconstruction and d) Virtual try-on
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and produce high-quality of cloth meshes suitable for the virtual try-on garment requirements.
The reconstructed 3D scene is down-sampled from approximately 300,000 points to about
10,000 points for the low storage and fast calculation in the 3D point cloud segmentation and
de-noising to obtain a more realistic 3D garment point cloud.

3.2 3D garment point cloud segmentation

The novelty of our 3D garment segmentation is to combine the cylindrical segmentation
algorithm [40] with a Passthrough filtering [40] and an Euclidean clustering algorithm [40]
for separating the 3D garment from the background points on different 3D garment models,
producing high quality of garment meshes suitable for the virtual try-on garment require-
ments.

The cylindrical segmentation algorithm [40] is based on the random sampling consis-
tency (RANSAC) algorithm [13] that segments a cylindrical model from a 3D garment point
cloud by segmenting a 2D planar model and performing the cylindrical segmentation on
the remaining point cloud. First, at least three non-collinear points are randomly selected
from the 3D garment point cloud to estimate the 2D plane model by iteratively finding the
optimal parameters, as defined by (1). The iterative method iteratively finds the in-office and
out-of-office points, where in-office points represent the points that need to be reserved, and
out-of-office points are the points that need to be removed. Second, The unit normal vector of
each point in the 3D garment point cloud is calculated to create the initial value of the cylinder
vertical axis vector (a0, b0, c0) of the 3D cylinder model. The created 3D cylinder model
is located on the estimated 2D plane model vertically, which is parallel to the Z axis. Since
the 3D garment point cloud is parallel to the Y axis, the (a0, b0, c0) is then transformed to
be paralleled with the Y axis, which leads the 3D cylinder model to be vertical to the (X, Z)
plan. The parametric equation determines the specific location of the cylinder, as defined
by (2).

ax+by+cz=d,a®>+b*+c*=1,d>0 1)

f=G—xD)?+ G-y +@—z21)"—

5 5 ()

l[a(x—x)+b(y—y)+cz—z)] —r
where (x1, yl1, z1) represents the coordinates of the center of the circle, r represents the
radius of the cylinder base, (a, b, ¢) represents the cylinder axis vector.

Finally, the four parameters of normal number, normal weight, 3D cylinder radius and
distance from the inner point of the 3D cylinder model to the clothing point cloud are adjusted
to create the final 3D cylinder model for different 3D garment models.

According to the difference of the 3D garment model, the passthrough filtering is combined
with the cylindrical segmentation to separate the different 3D garment point clouds (e.g. skirts,
trousers) from background points. First, a 3D bounding box is formulated by (3). Second,
the passthrough filter changes y,,i, and y;,4. to keep and discard points along the Y axis.

Xmin = Xi = Xmax

P = {pi|Min < p; < Max} = § Ymin < ¥i < Ymax 3)
Zmin = Zi = Zmax
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where p; € {x;, yi, Zi}. (Xmin, Ymin, Zmin) a0d (Xmax, Ymax, Zmax) are the minimum and max-
imum values along the X, Y and Z directions.

The combination of cylindrical segmentation algorithm [40] and Euclidean clustering
algorithm [40], as defined by (4), separates the upper body clothing area and floor.

After the cylindrical segmentation, a point x; is randomly selected from the remaining
points to find K nearest points by using a Kd-Tree through a threshold of an Euclidean
distance dL, as defined by (4).

n

> =y “

i=1

dL

where x; represents a randomly selected point, y; represents the nearest point in K nearest
points.

The selected K nearest points need to be further grouped by finding the K> points where
the Euclidean distance between pi and K nearest points is less than a fixed threshold. Finally,
K> points are reserved, and other points are removed.

3.3 3D point cloud de-noising

To remove the noise and outliers in 3D garment point clouds, a Statistical Outlier Removal
filter [40] and a deep learning-based PointCleanNet [39] are combined to further obtain a
realistic 3D garment point cloud, which is effective and robust to noise and outliers.

The Statistical Outlier Removal filter [40] calculates the average Euclidean distance d;;
from each point in the input 3D garment point cloud. If d;; > T, as defined by (5), (6) and (7),
the corresponding points are considered as outliers and need to be eliminated. Vice versa.

1 m  k
Mzﬁggdﬁ 5)

Oq =

(dij — M)2 (6)

nk !

1 m
i=

k
1j=
T=p+a-o !

where i = (1, ..m) represents a total of m points, j = (1, ...k) represents k neighbour points.
u represents mean distance. oy represents the standard deviation of distance. d;; represents
the Euclidean distance from each point to its neighbours. 7" represents the threshold. « is the
standard deviation multiplier and varies from each 3D garment.

The PointCleanNet algorithm is based on the PCPNet [13], which estimates the displace-
ment vectors for each point and projects noisy points onto the original clean surfaces. The
3D point clouds P;, including the noisy points, are given as input for 1D convolutions and
space transfer network (STN) to extract the point-wise features 4 (p;) of each point p; and
aggregate all features to the global features H, as defined by (8). The per-point displacement
vectors di considered as the translation are estimated from the global features to translate
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each point onto the original clean surfaces, as defined by (9).
H(P)=YpjePh(p;). ®)

Poutput =pi+ d; (9)

The loss function for PointCleanNet focuses on minimizing the L, distance between the
output cleaned 3D point cloud Py, p,, and the ground-truth clean 3D point cloud, as defined
by (10), (11) and (12).

- _ . S 2

Ly(pi, P5) = min. |5 = pil; (10)
- . S~ 2

Li(pi, Py) = nax |5 = pil5 (a1
Ly =oaLs+ (1 —a)l; (12)

Since the PointCleanNet [39] requires 3D point cloud data without texture, we add texture
to the 3D garment point cloud for 3D garment mesh surface reconstruction.

3.4 3D garment mesh surface reconstruction

Once the clean 3D garment point cloud is obtained, a modified rolling ball method (BPA) [2]
is used to reconstruct the mesh of the garment surface.

First, a ball is dropped onto the 3D point cloud and the ball will get caught and settle upon
three points to form a seed triangle, which becomes part of the 3D mesh. Second, from the
seed triangle, the ball pivots along the seed triangle edge formed from two points. The ball
then settles in a new location where a new triangle is formed from two of the previous points
and one new point. Third, as we continue rolling and pivoting the ball, new triangles are
formed and added to the mesh. Finally, the ball continues rolling until the 3D mesh is fully
formed. Most importantly, the BPA algorithm preserves the opening surfaces in the upper
and bottom areas of garments during the mesh surface reconstruction.

The BPA [2] is modified from two aspects for clean 3D garment point clouds. Firstly,
if the points are too far apart and the ball falls through between points, we check that the
normal of the new triangle facet is consistently oriented with the point’s normals. If it is not,
the triangle is rejected. Secondly, if the surface has creases and the ball is larger than these
creases, the ball will roll over the creases and ignore the points inside the creases. To fix this,
multiple ball radii are used in the modified BPA. The smaller balls roll into these creases and
the larger balls prevent the fall through for improving the surface continuity.

To obtain high-quality garment mesh surfaces, we complete the holes in the reconstructed
surfaces. Specifically, the broken edges are found and considered as the holes in the 3D
garment mesh. For each hole, the broken edges defined as the half-edges are sorted by
finding the two half-edges with the same normal vector. For the two half-edges with the
same normal vector, the third edge is added to form a new triangular patch. By iterating this
process, all holes are completed.
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4 Experiment

Four experiments are conducted to prove the feasibility and generality of the framework. First,
we obtained clothing point cloud data using a multi-view approach and extracted six different
3D garment point clouds using cylindrical segmentation, Euclidean clustering segmentation,
and Passthrough filtering algorithms.

Second, the Statistical Outlier and PointCleanNet [39] algorithms are applied to remove
outliers and noisy points on segmented 3D garment point clouds. Third, we compare Poisson
reconstruction, greedy triangulation algorithms and rolling ball algorithm on 3D mesh surface
reconstruction and employ the modified rolling ball algorithm to reconstruct the high-quality
and realistic 3D garment mesh surface. Finally, we perform a dynamic physical simulation
of the 3D garment on the virtual model and show our virtual try-on on different 3D garment
models.

4.1 3D garment point cloud extraction form images

We extract 3D garment point clouds from real-life 3D models wearing six different garments,
including a red dot, a dress, a short sleeve, a denim jacket, a long pant and a short skirt. First,
we use the mobile phone camera to capture more than 150 2D images of each real-life 3D
model from a fixed distance with different angles between 0 and 45 degrees. Second, the six
types of dense 3D garment point clouds are extracted from the captured images, as shown in
Fig. 2.

COLMAP [33] is a reconstruction method that can be applied to any scene. For images
taken from different angles, the optimal angle can be found to improve the effectiveness
of reconstruction and its accuracy. The completeness of the reconstruction model can be
improved through triangulation methods and beam adjustment algorithms. Figure 3 shows
the comparison between the SFM-MVS method in our framework with the COLMAP recon-
struction method, The experiments show that the point cloud reconstructed by our proposed
SFM-MVS compared with COLMAP generated clearer surface textures, reduced noisy points
and holes on the garment surface, making it suitable to segment the garment from the

Fig.2 Six different dense 3D garment point clouds for a red dot, a dresses short sleeve, a denim jacket, a long
pant and a short skirt
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Fig.3 Comparison diagram of dense reconstruction of 3D garment point cloud experiment

background point cloud and achieve subsequent garment surface reconstruction and virtual
fitting to fully display the garment contour structure. The performance is shown in Table 1.
Figure 3 also shows the visual comparison of the results generated by the two methods.
The SEFM-MVS method has a shorter running time and higher efficiency. The point clouds
reconstruction results of COLMAP and SFM-MVS for 6 types of garments are shown in
Fig. 4.

The extracted 3D garment point clouds are downsampled from about 300,000 points to
about 10,000 points for low storage and fast computation in subsequent 3D point cloud
segmentation and de-noising, as shown in Table 2.

4.2 3D garment point cloud segmentation

In this experiment, we extract 3D garment point clouds using cylindrical segmentation,
Euclidean clustering and Passthrough filter algorithms.

We use cylindrical segmentation to segment red dots skirts, short-sleeved denim jackets,
dresses, short skirts and long pants, as shown in Fig. 5. However, the segmentation results
show that the cylindrical segmentation removes the useful points on the pants and destroys
the integrity of the pants. In addition, cylindrical segmentation does not remove the points on

Table 1 Comparison of the

Method Number of point clouds Run time(s)
performance of the proposed
method with COLMAP SFM +WVS 276657 37
COLMAP 237485 45

@ Springer



27974 Multimedia Tools and Applications (2025) 84:27963-27985

x10°
7

SEM+MVS

w -~ W
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Dresses  Shortsleeve Denimjacket Longpants — Shortskirt

Fig. 4 The horizontal axis represents 6 examples in the instance, and the vertical axis represents the number
of reconstructed point clouds. It can be seen that in the six instances, SFM-MVS generated more dense point
clouds than COLMAP, indicating more complete reconstructions

Table 2 Six 3D garment point

clouds down-sampling Garments Initial point After sampling
Red dots 276657 10799
Dresses 688449 9996
Short sleeve 335781 10976
Denim jacket 214636 10369
Long pants 235075 10535
Short skirt 194318 11031

Fig.5 Cylindrical segmentation results for the red dot skirt, the short-sleeve, the denim jacket, the dress, the
short skirt and the long pant
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Fig. 6 Results of the cylindrical segmentation, Euclidean clustering segmentation and Passthrough for six
different garments

the model wearing the skirt and cannot completely split the skirt from the background points.
To this end, the short skirts and pants are segmented using the combination of the cylindrical
segmentation algorithm and the Passthrough filter. The red dots skirts, short-sleeved denim
jackets, dresses, short skirts and long pants are segmented using the combination of cylindrical
segmentation algorithm and Euclidean clustering, as shown in Fig. 6. We change the following
parameters to obtain the four types of 3D garments (red dots, dresses, short sleeves and denim
jackets), as shown in Table 3. We also obtain two types of 3D garment point clouds (long
pants and short skirts) by changing the parameters of the passthrough filter, as shown in
Table 4.

4.3 Outlier removal and de-nosing for 3D garment point cloud

Since the segmented 3D garment point clouds contain outliers and noise, as shown in Fig. 6.

In this experiment, we use Statistical Outlier Removal to remove the outliers of the
segmented 3D garment point cloud, as shown in Fig. 7. For noise removal, we follow Point-
CleanNet and train the network on 18 different shapes (e.g. Stanford bunny, dragon and etc.).
We then fine-tune the trained network on the six segmented 3D garment point clouds. The
PointCleanNet algorithm estimates the displacement vector of each point and projects the
noise point onto the original clean surface, as shown in Fig. 8. The batch size, epoch and
learning rate for PointCleanNet are 64, 2000 and 0.00000001, respectively.

To show the complete and real 3D garment, we add the texture of each point after removing
the noisy points by PointCleanNet, as shown in Fig. 9.

Table 3 Parameters for 3D point

cloud cylindrical segmentation garments Normals Weight Distance Radius
Red dots 100 0.18 0.85 0,2
Dresses 80 0.11 1.30 0,4
Short sleeve 100 0.17 0.55 0,2
Denim jacket 100 0.13 0.40 0,2
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Table 4 Passthrough filter

. garments SetFilterField SetFilterLimits
parameters for 3D garment point
cloud segmentation Long pants y —~10,1.4
Short skirt y —-5,0.8

Fig.8 De-noising results of the PointCleanNet algorithm for six 3D garment point clouds
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Ragin

Fig.9 The texture for each 3D garment point cloud is added after de-noising

4.4 3D garment mesh surface synthesis

To obtain high-quality garment mesh surfaces from the clean 3D garment point cloud, we
compare three mesh surface reconstruction algorithms, including greedy projection triangu-
lation [30], Poisson reconstruction [24] and the modified rolling ball method. These methods
are applied to six types of garments, as shown in Fig. 11. The greedy projection triangulation
algorithm [30] restores the original shape of the 3D point cloud, but the triangular patches
on the surface of the reconstructed clothing model are undulating, and the clothing pieces
are not smooth enough. The uniform quality of the Poisson-reconstructed mesh [24] is better
than the greedy projection triangulation algorithm [30], and the original folds of the garments
are well preserved, but this method automatically fills holes in the opening collar and bot-
tom and over-smoothing at the edges. The modified rolling ball algorithm used in this paper
combines the advantages of greedy projection triangulation and Poisson reconstruction. The
triangular mesh is uniformly distributed and the surface is smooth, as shown in Fig. 10. The
reconstruction triangle number and reconstruction time are reported in Table 5 based on the

Fig. 10 The mesh experiment diagram shows the reconstruction of the rolling ball algorithm
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Table 5 3D mesh surface reconstruction results

Experiments Points Triangle number Time-consuming to rebuild(s)
GPT 3000 6475 37
Poisson 3000 6215 40
Rolling ball 3000 6531 30

same 3000 points for each reconstruction method, which indicates that the modified rolling
ball algorithm is more time efficient and the number of reconstructed triangular meshes is
also larger. More importantly, this method retains the original shape of the 3D garment point
cloud, and the opening areas are well preserved, as shown in Fig. 11.

Fig. 11 Comparison experiments between the rolling ball algorithm, greedy projection triangulation and
poisson reconstruction for the 3D garment mesh surface reconstruction
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The experimental results show that the modified rolling ball algorithm performs better on
3D garment mesh surface reconstruction. Compared with the clothing prototype, the rolling
ball method restores a high-quality 3D garment mesh surface, which provides a realistic 3D
garment mesh surface for the virtual try-on application, as shown in Fig. 12.

4.5 3D garment virtual try-on

In this experiment, we perform a dynamic virtual try-on of the 3D garment on the virtual 3D
models for the reconstructed six 3D garment models.

The physical force modelling is applied for 3D garment virtual try-on. 3D garment physical
force modelling exploits the mechanical principles of 3D garment meshes, which converts the
3D garment meshes into 3D garment physical models. The 3D garment physical models can
be affected by external and internal forces during the processing of virtual fitting. External
forces consist of gravity and wind forces. Internal forces are the interaction forces between
mesh vertices. Once 3D garment physical models are achieved, the dynamic simulation of the
virtual try-on is applied to update positions of all vertices by the sum of in-plane membrane
and outplane bending energies, as illustrated by (13).

W (x) = Wi (x) + W (x) (13)
Wi () = kag (1= [ | / [l D i | (14)
W (x) = kg Y _(6:;/0i)* |0ij]| (15)

Fig. 12 Comparison between the real-life original garment and the 3D garment mesh reconstructed by rolling
ball method
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Fig. 13 The results of a virtual try-on experiment on the initial model

where Wy (y) is the membrane energy as a summation over lengths of edges. Wp(y) is the
discrete bending energy as a summation over mesh edges with the corresponding dihedral
angle. kjs and kp are stretch and bending stiffness coefficients, respectively. We refer readers
to our paper [42] for more detailed information about the dynamic simulation.

When simulating dynamic virtual fitting of 3D garment models, a physical model is
generated through a spring-mass model to form the garment fabric. This is achieved by
setting parameters such as collision thickness, collision strength, collision range, mass, tensile
resistance, damping, and wind speed. The collision thickness is set to 0.071, the collision
strength is set to 1.0, the collision range is set to 1.785, the mass is set to 1.0, the damping
is set to 1.484, the tensile resistance is set to 50.549, and the wind speed is set to 10. The
evaluation metric for virtual try-on is the fit of the garment model on the human body. The
deformed garment model can achieve a smooth and flat fit on the chest, waist, and buttocks
of the human body structure, ensuring moderate relaxation and avoiding penetration.

Fig. 14 The results of the model’s try-on in different poses show the experimental results before and after the
try-on
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Fig. 15 The figure shows an experimental comparison between real-life garments and virtual try-on effects

Finally, we add textures to the 3D garment models and show the comparison results before
and after the try-on in Figs. 13 and 14.

We conducted an experimental comparison between real-life garments and virtual try-on
effects, using dresses and red dots as examples in Fig. 15. Noting that the difference in cm
in Table 6 is due to the body size changes in the virtual model, rather than the construction
accuracy. As the 3D model size changes (e.g., such as the size of bust, waist, and hips), the
reconstructed 3D garment mesh also undergoes corresponding deformations in terms of dress
length, waist, bust, and shoulder width to fit the body size and shape as shown in Tables 6
and 7. More importantly, using a denim jacket and red dots dress as examples, we have shown
that our proposed framework is capable of adding different fabric properties, textures and
physical behaviours to the virtual try-on garment models, showcasing the rich diversity of
various garments that our system can handle also in terms of also adapting to different human
models as shown in Fig. 16.

In conclusion, the comparison results show that our framework outperforms COLMAP on
3D point cloud garment reconstruction. The proposed segmentation and de-noising module
separates the complex 3D background and the 3D garments from the 3D scene, and also
removes the noise and the outliers for the 3D garment point clouds. Finally, the virtual try-on
experiments show that our framework obtains high-quality and realistic 3D garment meshes
to fit different body shapes.

5 Conclusion
In this paper, we have presented a novel computer-vision reconstruction framework for recon-
structing high-quality realistic 3D digital garments. The proposed framework consists of three

main modules including a 3D point cloud extraction module, a 3D point cloud segmenta-

Table 6 Comparison between real-life garments and virtual try-on effects

Dresses Skirt length(cm) waist(cm) Bust(cm) Shoulder width(cm)
Real-life original 4.88 1.08 1.27 1.62
Virtual try-on 4.37 0.99 1.06 1.32
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Table 7 Comparison between real-life garments and virtual try-on effects

Red dots Skirt length(cm) Waist(cm) Bust(cm) Shoulder width(cm)
Real-life original 4.92 1.15 1.37 1.84
Virtual try-on 4.79 1.13 1.08 1.65

tion and de-noising module, and a mesh surface reconstruction and virtual try-on module.
The comparison results show that our framework outperforms COLMAP on 3D point cloud
garment reconstruction and provides realistic 3D garment meshes for the 3D virtual try-on
comparing it with greedy projection triangulation and Poisson reconstruction on 3D garment
mesh reconstruction. Finally, the 3D virtual try-on experiment shows that our framework fits
different 3D human models with different 3D garment sizes. Our framework also has great
potential for garment future technology, such as online garment shopping, garment design
and manufacturing.

It is worth mentioning that the quality of 3D reconstruction by our framework can be
affected by low-light conditions, complex backgrounds, and dramatic fabric deformations.
Thus, we aim to address these challenges in future work through further optimizing trian-
gulation methods and beam adjustment algorithms, making these methods to be adaptive to
complex environmental conditions. To explore the deep learning 3D segmentation methods
and mesh reconstruction, currently, there is a lack of available garment point cloud datasets
for deep learning training. It also has the potential to further explore the use of edge computing
or GPU acceleration to enhance processing speed and enable interactive user experiences.

Fig. 16 The figure shows the experimental results of adding various textures to different garment models in
virtual try-on
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