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Beyond Short Segments: A Comprehensive Multi-Modal Salience
Prediction Dataset With Standard-Length 360-Degree Videos

Anonymous Author(s)

12  360-degree Videos

4-channel
Ambisonics

Mono
Audio

30 Participants

Head/Gaze
Fixation

Audio
Energy

Map

Salience
Map

Figure 1: This work produces a novel multi-modal 360 degree video salience dataset with 12 standard-length video and collected
observational data from 30 participants under both mono and ambisonic sound conditions.

ABSTRACT
Understanding user interactions in immersive 360-degree video
environments is essential to optimizing both the user experience
and transmission technology, such as advanced data compression
and transmission over the Internet. Unlike flat videos, 360-degree
videos enrich sensory experiences with complex ambisonic spatial
information, posing unique challenges for multi-modal salience
prediction. Recent research has introduced various 360-degree
datasets equipped with ambisonic sound, but these primarily con-
tain only short video segments, typically under 30 seconds. This
limitation raises concerns about the generalizability of findings,
particularly for the specific ambisonic features of 360-degree videos,
leading to optimisation errors in the delivery. To overcome these
challenges, we developed a comprehensive multi-modal, standard-
length 360-degree video salience dataset and analyzed interac-
tions from 30 participants under both mono and ambisonic audio
settings. Our study reveals a detailed relationship between am-
bisonic audio distribution and viewer attention, underscoring the
issues and complexities of applying leanings from short-segment
to longer formats. Furthermore, we assess existing salience pre-
diction models and introduce an efficient baseline model to eval-
uate the impact of different modal features in our dataset. Our
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findings indicate that ambisonic features, unlike visual and au-
dio features, pose significant challenges when extrapolated from
short video segments to longer video segments. The insights and
the new dataset from this current study establish a more realis-
tic benchmark for future research on multi-modal salience pre-
diction in 360-degree videos. Our proposed dataset is available at
https://anonymous.4open.science/r/ambi360dataset-F263(temporary
anonymous link).

CCS CONCEPTS
• Computing methodologies → Interest point and salient
region detections; •Human-centered computing→ Virtual
Reality.
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modal Learning
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1 INTRODUCTION
360-degree panoramic videos have become increasingly popular in
virtual reality environments. Optimizing the transmission of these
videos requires a deep understanding of user behavior, which is
crucial for developing effective video compression and adaptive
streaming techniques [8, 27]. For instance, predicting saliency maps

1
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and head movements can significantly enhance the processes [21,
25].

Previous research has predominantly focused on the visual as-
pects of 360-degree videos [23]. However, recent studies have started
integrating both visual and auditory features to provide a more
holistic view of user interaction within these immersive environ-
ments [3, 5]. The audio features in 360-degree videos, mainly using
4-channel B-format first-order ambisonic sound, differ markedly
from traditional flat videos. This ambisonic audio transmits not
only sound, but also embeds spatial information that indicates the
direction of sound sources in the environment [31].

Sound features have been shown to effectively depict user be-
haviour in flat video studies [20], raising questions about the signif-
icance of spatial audio information in 360-degree videos. Despite
the growing interest in spatial audio information, most research has
focused on short video segments (less than 30 seconds) [3, 5], driven
by the ease of collection and testing of short videos, a common
practice for studying audio features in flat videos [20]. However,
unlike audio features, the spatial information of ambisonic sound
has a relatively weaker impact on user perception. It remains un-
clear whether this influence on user behavior is consistent between
short videos and longer ones.

To address this issue, we introduce a novel dataset of 12 standard-
length videos, ranging from 40 to 240 seconds, available in both
ambisonic and mono audio formats. We collected head and eye
tracking data from 30 participants to capture the 360-degree experi-
ence accurately and examine the influence of ambisonic sound on
user behaviour over typical video durations. To our knowledge, this
is the first dataset of its kind designed specifically for behavioural
analysis in standard-length ambisonic 360-degree videos.

We further conducted a detailed analysis of how user behaviour
varies with different sound types and video durations to explore
whether the spatial information from ambisonic sound can be con-
sistently applied across entire videos. We discuss how deep learning
models can simultaneously process multi-modal information, in-
cluding visual, audio, and ambisonic spatial data. Building on a
comprehensive review of previous work, we developed a baseline
model to assess whether ambisonic sound improves the prediction
of user salience maps. Our focus was on evaluating whether the
information learned from video segments can be generalised to
entire videos.

In summary, our main contributions are as follows:

• Wegenerated a standard-length 360-degree ambisonic video
dataset, which included 12 videos from 40 to 240 seconds.

• We collected observational data from 30 participants with
both head and gaze tracking data. Half of the observational
data was collected under ambisonic sound conditions, while
the other half was collected under mono sound conditions.

• Our in-depth analysis of longer video formats has yielded
mixed results concerning the impact of ambisonic spatial in-
formation on participant behaviour. These findings contrast
with earlier studies that were focused on shorter videos,
suggesting that both the type and length of the videos sig-
nificantly influence user experience. This disparity under-
scores the need to consider video duration and content

characteristics when evaluating the effectiveness of am-
bisonic features in salience predictions.

• We established a multi-modal salience map prediction base-
line model and demonstrated (using our dataset) that am-
bisonic spatial information cannot be effectively learned
from video segments and generalized to entire videos.

2 RELATEDWORK
2.1 360-Degree Video Dataset
// todo add mono + ambi reason + FOA

Optimizing the compression and transmission processes of 360-
degree videos necessitates a deep understanding of user behaviour.
Early studies primarily focused on visual features and their corre-
lation with viewer salience. For example, the Salient360! Grand
Challenges [10] propelled advancements in salience prediction
by providing benchmark platforms and datasets, which facilitated
more accurate predictions of viewer attention. Subsequent research
expanded the collection of 360-degree content across various do-
mains [9, 14, 23, 28], demonstrating the feasibility of salience map
predictions in this medium. However, these datasets often lack
ambisonic sound, omitting a crucial aspect of the immersive 360-
degree video experience and potentially skewing analyses of the
impact of audio on viewer attention. It is worth noting that xxxx .

The significant role of audio features in salience prediction has
been established in studies on flat videos [11]. Addressing this,
Zhang [26] introduced ASOD60K, an extensive audiovisual 360-
degree dataset that includes visual, audio, and gaze tracking data.
Nevertheless, the audio component was presented in mono, mir-
roring the format used in flat videos, which overlooks the spatial
nuances of ambisonic sound. To rectify this weakness, Chao et al.
[5] and Bernal-Berdun et al. [3] developed datasets that include
ambisonic environments, making them comprehensive resources
for studying salience in 360-degree videos so far. However, their
focuses on short video segments raise questions about the general-
izability of their findings to longer video formats. We believe that
the analysis of standard-length 360-degree videos is needed.

2.2 Audio-Visual Salience Prediction in
360-Degree Videos

The introduction of various 360-degree video datasets has marked
significant progress in research in this area. Initially, studies focused
on visual modalities, with pioneers like Lebreton et al. [12] adapting
heuristic models from 360-degree images to videos. Advances in
deep learning, particularly through regression methods employed
by Xu et al. [22] and Zhu et al. [30], extended these models to
accommodate continuous video inputs. However, the traditional
application of CNNs to equirectangular projections failed to address
the inherent distortion in 360-degree video geometry. Researchers
have since explored alternative formats like cube padding to miti-
gate these issues [7, 16] and developed specialized convolutional
kernels for 360-degree content [28].

Despite these improvements, the absence of audio and ambisonic
spatial information in many studies limits the overall predictive
accuracy. Recognizing this limitation, Chao et al. [6] proposed a
multi-modal salience prediction model that integrates visual, audio,
and ambisonic spatial information, addressing distortions with cube

2
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Table 1: Comparison of multi-modal 360 degree video dataset

Dataset # Videos Duration Resolution Mono Audio Ambi Audio # Observers Head Data Gaze Data Public Available

360AVD [18] 256 10s 1K to 4K ✓ ✗ - ✗ ✗ ✓

ASOD60K [26] 67 30s 4K ✓ ✗ 20(mono) ✓ ✓ ✓

D-SAV360 [3] 85 30s 4K ✗ ✓ 87(ambi) ✓ ✓ ✓

Li et al. [13] 46 15s 4K ✓ ✓ 15(mono)+15(ambi) ✓ ✓ ✗

SVGC-AVA [24] 57 28s 4K ✓ ✓ 21(mono)+21(ambi) ✓ ✓ ✗

Chao et al. [5] 15 25s 4K ✓ ✓ 15(mono)+15(ambi) ✓ ✗ ✓

Ours 12 40s-240s 4K ✓ ✓ 15(mono)+15(ambi) ✓ ✓ ✓

map projections and utilizing 3D Resnets to process multi-modal
data [17]. Recent efforts by Zhu et al. [29] and Yang et al. [24] have
further refined these models, enhancing their ability to leverage
audio and spatial information. However, the scarcity of comprehen-
sive multi-modal datasets and the reliance on short video segments
continue to pose challenges in assessing the generalization of these
findings to full-length videos.

In response, we present a novel dataset of standard-length 360-
degree videos to evaluate the generalization capabilities of different
modalities in deep learning models. This study aims to bridge the
research gap by examining how effectively audio and ambisonic
spatial information learned from short segments can be applied
to longer video formats, thus, providing detailed insights to the
field of salience prediction in immersive video environments using
multi-modal information.

3 DATASET OVERVIEW
3.1 360-degree Video Data Collection
Prior to data collection, we established a benchmark for the typi-
cal length of 360-degree videos by leveraging the YouTube Search
API [1]. We analyzed a sample of 1000 360-degree videos from
YouTube, examining their metadata to ascertain their durations, as
depicted in Figure 2. Our findings revealed that 360-degree videos
generally exhibit a shorter, more concentrated length distribution
compared to standard flat videos. This trend is primarily due to the
increased likelihood of motion sickness in longer 360-degree video
formats. However, the duration metrics, including a first quartile of
92 seconds, a median of 148 seconds, and a third quartile of 242 sec-
onds, confirmed that most 360-degree videos substantially exceed
30 seconds in length. Consequently, for our dataset, we selected
video lengths ranging from 40 to 240 seconds. Following this analy-

Figure 2: The duration distribution of 360-degree videos on
the YouTube platform

sis, we randomly chose 12 videos from YouTube, all encoded in 4K

resolution and featuring 4-channel B-format ambisonic sound, with
frame rates between 25 and 30 fps. These selections cover a diverse
range of environments, both indoor and outdoor. To quantify the
visual diversity of our dataset, we computed Temporal Informa-
tion (TI) and Spatial Information (SI) metrics, comparing these to
those from a previous study by Chao et al. [5] as shown in Fig-
ure 3. SI assesses the complexity of each frame, while TI measures
changes between consecutive frames. Our dataset demonstrated
a comparable SI to the prior dataset, indicating similar content
richness. However, the TI was lower in our dataset likely due to the
longer average video lengths that tend to preserve more complete
information, thus, exhibit reduced temporal variation.
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Figure 3: The comparison of Spatial Information(SI) and Tem-
poral Information(TI) between our and Chao et al. [5] dataset

3.2 Participants Data Collection
We conducted experiments using the HTC Vive Pro Eye headset,
which offers a visual angle of 110 degrees and a resolution of 1.5K
per eye. The experimental environment was created in Unity. Due
to thelimited support for ambisonic sound in Unity video player,
we integrated the Oculus Native Spatializer plugin for high-quality
ambisonic sound decoding. For data collection, the HTC head and
eye tracking SDK was employed, selected for its rapid calibration
capabilities and a 90Hz data capture rate, ensuring accurate tracking
of participant movements.

3
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Thirty participants were involved in the experiment, randomly
assigned to view six mono and six ambisonic videos. This random-
ization ensured that each video was viewed by 15 participants in
mono and another 15 in ambisonic sound settings. The demographic
was composed of 19 males and 11 females, with 20% having no prior
VR experience. Participants stood throughout the experiment, with
eye-tracking calibration performed before each video. To mitigate
fatigue, rest periods ranging from 2 to 5 minutes were allotted
between videos.

3.3 Fixation and Salience Map Generation
Following the methodologies from prior research [3, 5], a fixation is
defined as a gaze that remains nearly stationary (movement under
3 degrees) for at least 200 milliseconds. To process gaze data, we
initially applied the Identification by Dispersion-Threshold (I-DT)
method to filter out saccade movements [4]. Eye fixations were
then clustered using DBSCAN [19] for each frame across different
participants, allowing us to generate individual and aggregated
fixation data for both the ambisonic and mono sound groups.

Saliency maps were created from these fixation maps by count-
ing the number of fixations per pixel for each frame (every 33ms).
A Gaussian filter with a standard deviation of 5 degrees was ap-
plied to these counts to smooth the data and produce a continuous
representation of areas most engaged by observers.

4 DATASET ANALYSIS
4.1 Head and Gaze tracking data
In prior VR research, head orientation data has been commonly used
as a proxy for estimating gaze direction when calculating salience
maps, largely due to its easier collection process [5, 14]. However,
the accuracy of saliencemaps derived from head orientation relative
to those obtained from direct gaze tracking in VR settings is not
often examined. In our study, we concurrently gathered both head
and gaze tracking data, allowing for a direct comparison between
salience maps generated from each type of data.

(a) Average salience map generated by Gaze(left) and Head(right)
data

0 100 200 300 400 500 600 700
vertical coordinate

gaze
head

0 200 400 600 800 1000 1200
horizontal coordinate

gaze
head

(b) Salience distribution on Vertical(left) and Horizontal(right) direc-
tions

Figure 4: Average salience map and distribution

Figure 4a illustrate the average differences in the distribution
of saliency maps based on head orientation and gaze data. Further
analysis of these differences in the vertical and horizontal planes
was conducted using max pooling, as shown in Figure 4b. Our find-
ings indicate that while the saliency maps from both data sources
align closely in the horizontal direction, significant discrepancies
arise in the vertical distribution. The gaze-based saliency maps
displayed a broader vertical spread, which can be attributed to the
physical characteristics of VR headsets.

The weight and design of VR headsets tend to encourage users
to maintain a balanced head position, preferring to use their eyes
rather than their heads to look upwards or downwards. This behav-
ioral tendency means that head-based salience maps often fail to
capture true areas of interest along the vertical axis. Consequently,
gaze tracking appears to be a more precise method for identifying
eye fixations and, by extension, salient regions within VR envi-
ronments. Additionally, our analysis confirmed the presence of an
equator bias within our dataset, a phenomenon noted in previous
research with very similar outcomes [3, 5, 24].

4.2 Ambisonic Audio Data
Ambisonic audio data in our study is encoded in a 4-channel B-
format, comprising components W, X, Y, and Z. The W channel
represents the omnidirectional audio signal, while X, Y, and Z chan-
nels encode the spatial information of sound sources. Following
the methodology proposed by Morgado et al. [15], we decoded this
4-channel ambisonic audio into a single-channel audio signal to
isolate the audio feature, and generated a 2D Audio Energy Map
(AEM) to represent the spatial characteristics of the sound. An
example of AEM is illustrated in Figure 5.

4
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Figure 5: Audio Energy Map(AEM) Example

To analyze the ambisonic spatial information comprehensively,
we computed the entropy of the AEM for each video frame. AEM
entropy, akin to the entropy of a saliency map, quantifies the com-
plexity and diversity of the data based on Shannon entropy from
information theory. High entropy, as depicted in Figure 5a, signifies
concentrated audio sources with clear positional information. Con-
versely, low entropy, shown in Figure 5b, indicates a more scattered
distribution of sound sources, suggesting the absence of a dominant
audio source.

Ours Chao et al.
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Figure 6: The comparison ofAEMentropy violin plot between
our and Chao et al. [5] dataset

Our analysis, visualized in Figure 6, compares the distribution of
AEM entropy in our standard-length dataset against previous short-
segment datasets. We found that standard-length videos typically
exhibit a higher occurrence of low-entropy frames compared to the
30-second segments, indicating a broader and more diverse range
of sound source distributions. This results in both median and mean
entropy values being lower in our dataset, reflecting more realistic
audio environments where multiple sound sources may be present
simultaneously or intermittently, often without a distinct, dominant
source.

4.3 Ambisonic spatial information and user
attention

To investigate the correlation between audio spatial information
and user attention, we adapted the Normalised Scanpath Salience
(NSS) metric, which is traditionally used in saliency map predic-
tion. This adaptation allows us to measure the correlation between
participants’ eye fixation positions and the Audio Energy Map
(AEM), assessing the impact of audio spatial information on atten-
tion. Due to the inherent latency in human responses to audio cues,

we modified the NSS calculation to include a temporal window,
accommodating the delayed reaction time of participants following
auditory stimuli. This is expressed in the adapted NSS Equation 1.

𝑁𝑆𝑆 =
1
𝑁

𝑁∑︁
𝑖=1

𝑡+Δ∑︁
𝑗=𝑡

𝑍𝐴𝐸𝑀 (𝑥 𝑗
𝑖
) (1)

where 𝑍𝐴𝐸𝑀 (𝑥) represent standardized AEM map,
∑𝑁
𝑖=1 denotes

the sum over all fixation points, and
∑𝑡+𝛿

𝑗=𝑡 represents the sum over a
temporal window from time 𝑡 to 𝑡 +Δ. This extension accounted for
potential behavioral delays, thus enhancing our ability to analyze
the temporal correlation between AEM and user attention. In our
calculations, we set Δ to 300 ms based on typical human reaction
times to auditory stimuli.

Traditional methods calculate a single NSS value for short video
segments, which suffices for brief analyses. However, our focus on
standard-length videos necessitates a more detailed approach. We
computed the NSS for each 30-second window within the videos to
evaluate the temporal variability of attention response to ambisonic
spatial information.

Three exemplar cases, shown in Figure 7, illustrate our analysis.
For each time window, we averaged the NSS scores for all frames
to obtain the window’s mean score. The significance of differences
between NSS scores from ambisonic and mono audio settings was
tested using the non-parametric Wilcoxon signed-rank test after
confirming data non-normality with the Shapiro-Wilk test. In the
figure, pairs marked ’ns’ represent no significant statistical differ-
ence, * indicates .01 < 𝑝 < .05, ** indicates .001 < 𝑝 < .01, and ***
represents 𝑝 < .001.

Our results, as described in Figure 7, indicate variable impacts
of ambisonic spatial information on user behavior across different
video segments. For instance, significant impacts on user attention
are noted during specific intervals (e.g., 60s to 120s in Figure 7a),
while other intervals show negligible or no significant effects. A
similar pattern is observed in Figure 7b, where ambisonic spatial
information shows significant impact from 0s to 30s and from 150s
to 180s, but not in other segments. In contrast, Figure 7c illustrates a
scenario where ambisonic spatial information does not significantly
influence user attention at any point.

Moreover, the NSS values suggest varying degrees of alignment
between the AEM and the saliency maps across different video
segments. Positive values indicate a strong correlation where user
attention aligns with sound source directions, while negative values
suggest attention diversion from these areas.

To further elucidate the relationship between AEM and user
attention, we projected the 2D distribution map onto a circular hor-
izontal plane, clearly visualized the directional relationship between
the AEM and saliency maps(Figure 8). We demonstrate three dif-
ferent types of distributions to highlight the significant differences
in the alignment between the AEM and saliency map distributions
across different video segments:

• Figure 8a: Overlapping distribution, where there is a high
degree of correspondence between the AEM and saliency
maps, indicating aligned user attention with audio spatial
cues.
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(b) Example Sample 2
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(c) Example Sample 3

Figure 7: Comparison of NSS scores between ambisonic and mono sound groups with a statistically significant difference test.

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

(a) Overlapping distribution

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

(b) Mixed distribution

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

(c) Divergence distribution

Figure 8: Three different types of distributions in each column( Red refers to salience distribution and Blue refers to AEM
distribution)

• Figure 8b: Mixed distribution, showing partial alignment,
with areas of both high and low correlation between the
audio cues and user attention.

• Figure 8c: Divergence distribution, where the AEM and
saliency maps are largely uncorrelated, highlighting seg-
ments where spatial audio cues do not effectively guide
user attention.

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Beyond Short Segments: A Comprehensive Multi-Modal Salience Prediction Dataset With Standard-Length 360-Degree Videos Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

In conclusion, the influence of ambisonic spatial information
on user behavior exhibits notable inconsistencies across standard-
length video segments. This variability, alongside the diverse align-
ment of AEM with the salience map, contrasts with earlier findings
from short video segment studies and underscores the complexity
of assessing audio spatial impacts in more prolonged and immersive
settings. This necessitates a nuanced approach to analyzing how
temporal dynamics influence the relationship between spatial audio
information and viewer attention.

5 MULTI-MODAL USER SALIENCE
PREDICTION IN 360 DEGREE VIDEO

5.1 Baseline Model
For our experimental model, we focus on evaluating the generaliza-
tion capabilities of features across videos of various lengths, which
is critical for practical applications. We devise a baseline model for
the purpose of evaluating xxxxx using xxxxx.

Our baseline model employs a lightweight 3D ResNet [17] for
video feature extraction and SoundNet [2] for audio features, chosen
for their efficiency and robust performance.

Our approach is different to prior work in multi-modal 360-
degree salience prediction. Despite various methodologies being
used, as described in Section 2.2, prior work generally adapts a
three-stream architecture to handle different data modalities sepa-
rately. The three-stream architecture processes video, audio, and
ambisonic spatial information independently through dedicated
feature extractor modules. This approach ensures that the unique
characteristics of each modality are captured effectively and the ex-
tracted features are then amalgamated using advanced multi-modal
fusion techniques, which may include methods such as concatena-
tion [6], attention-based mechanisms [24], or weighted fusion [29].
The integration of multimodalities is crucial for leveraging the
complementary nature of the modalities to enhance prediction
accuracy.

Similarly, in our framework the fusion of these features is per-
formed using a weighted strategy [29], aiming to optimize the
contribution of each modality based on its relevance and impact
on the prediction task. The fused features are then decoded into
salience maps using a 1x1 convolution, ensuring precise and refined
predictions.

To validate the effectiveness of our baseline model, we conducted
comparative evaluations against prominent existing models using
the well-known dataset from [5]. The results, summarized in Ta-
ble ??, demonstrate that our model achieves performance compara-
ble to the state-of-the-art. These findings underscore the efficacy of
our model in integrating multi-modal information and lay a strong
foundation for further exploration on our extended dataset. Our
approach is not only practical but also scale-able, making it suitable
for broader applications in salience prediction research.

5.2 Experiment Setup
5.2.1 Dataset settings. To better compare with previous datasets
and test the generalisation capabilities of differentmodality features,
we constructed two distinct training and testing sets:

• From Segment to Full Video: Given that our videos are
of varying lengths, we divided each video into 30-second
segments. The first 30 seconds of each video were used as
the training dataset, while the remaining segments longer
than 30 seconds were used as the testing dataset. This setup
allowed us to test whether features from different modali-
ties learned from a segment of a video could generalize to
the entire video.

• From Full Video to Others We selected 4 full length
videos as the training data and the remaining 8 videos as the
testing data. This method of data partitioning is consistent
with previous datasets, allowing us to test whether features
learned from full videos can generalise to other full videos.

5.2.2 Implementation Details. To minimize variables and enhance
reproducibility, we strictly followed the implementation details
from previous works [6, 29]. We constructed the baseline model
using PyTorch and employed spherical KL divergence as the loss
function.The 3d-Resnet and Soundnet component are both pre-
trained the same as DAVE and Soundnet project separately. The
AEM was pre-calculated at the same resolution as the video frames.
We used the Adam optimizer to train the entire network and dy-
namically adjusted the learning rate based on the cosine annealing
restart scheduler for 20 epochs. All experiments were conducted
on a single Nvidia RTX 3090 GPU.

5.3 Experiment Result
To understand the generalization capabilities of different modality
features under various dataset settings, we tested the baselinemodel
in three scenarios: using only visual features, using both visual
and audio features, and using visual, audio, and ambisonic spatial
features. We evaluated the prediction accuracy of salience maps
using four typical metrics: Normalized Scanpath Salience (NSS),
Correlation Coefficient (CC), Kullback-Leibler Divergence (KLD),
and the Area Under the Receiver Operating Characteristic Curve
(AUC-J). Higher scores for NSS, CC, and AUC-J, and lower scores
for KLD, indicate more accurate predictions. The results of all tests
are presented in Table 2.

Our results show that it is evident that the inclusion of audio
features significantly enhances salience prediction across various
dataset settings. Models trained on 30-second segments performed
well on standard-length videos, demonstrating that audio features
possess strong generalization capabilities, allowing them to learn
from segments and generalize to other parts. This finding aligns
with observations from flat audiovisual salience prediction tasks.

However, the ambisonic spatial features did not improve salience
prediction results on our dataset. Notably, features learned from
30-second segments significantly reduced the accuracy of salience
prediction on full videos. Similarly, features learned from full videos
did not positively impact the prediction of other full videos. This
outcome is consistent with our discussion in Section 4.3, where
we explored the correlation between AEM and the salience map.
The AEM does not consistently align with the salience map dis-
tribution, and this complex relationship is challenging to capture
from 30-second segments. Additionally, this relationship is diffi-
cult to generalize across different standard-length videos. These
conclusions diverge from those obtained with previous datasets.
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Figure 9: Basic architecture of multi-modal Salience Prediction in 360-Degree Video

Table 2: The impact of different modality features on salience prediction across various training sets on our dataset

Training set Visual Audio Audio Spatial NSS↑ CC↑ AUC-J↑ KLD↓
30s Segment ✓ 1.673 0.559 0.824 3.043
30s Segment ✓ ✓ 2.313 +38% 0.692 +24% 0.903 +9% 2.060 +32%
30s Segment ✓ ✓ ✓ 2.036 -12% 0.657 -5% 0.872 -3% 2.373 -15%

Full video ✓ 1.557 0.489 0.785 3.445
Full video ✓ ✓ 2.038 +31% 0.660 +35% 0.841 +7% 2.199 +36%
Full video ✓ ✓ ✓ 1.957 -4% 0.664 +0.6% 0.835 -1% 2.352 -7%

We attribute this discrepancy to our dataset, which more closely
resembles real-world standard-length videos, encompassing more
complex relationships between AEM and user behaviours.

Effectively utilizing ambisonic spatial features for predicting
user behaviour remains a challenging problem. Despite their po-
tential, our findings indicate that ambisonic spatial features do not
consistently enhance salience prediction accuracy and may even
reduce prediction performance when derived from short segments.
This underscores the need for further research to develop methods
that can better leverage the spatial audio information provided by
ambisonic sound to accurately predict user attention in 360-degree
videos.

6 LIMITATION
Our study utilized a dataset comprising 12 standard length videos,
with a total video frame exceeding that of previous datasets consist-
ing of <30s video segments. While this is a significant improvement,
it remains limited compared to flat video datasets, particularly those
used for training large-scale pre-trainedmodels. The relatively short
number of video may not provide sufficient data to fully capture the

potential advantages of ambisonic spatial information for salience
prediction.

7 CONCLUSION
In this paper, we introduce a novel dataset specifically designed
for the study of multi-modal 360-degree video salience prediction,
with a particular focus on the generalization capabilities of different
modals on standard length 360 videos. Our analysis demonstrated
that the incorporation of ambisonic spatial information presents
unique challenges and does not consistently improve prediction
performance. Our findings suggest that, while ambisonic spatial
features have the potential to contribute to user behaviour pre-
diction, their effective integration requires further investigation.
Future work should aim to address these limitations by developing
larger datasets and more sophisticated models to better leverage
the rich information provided by different modalities.
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