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Abstract

The digital entertainment industry has seen exponential growth
in recent years, of which the developments have been paral-
leled by the evolution of the Metaverse. The Metaverse repre-
sents a convergence of virtual and real worlds, where users in-
teract through digital characters, necessitating advanced and
authentic digital character animations. Traditional methods
for creating 3D digital character animations involve complex,
labour-intensive processes that are not conducive to real-time
applications or large-scale production due to their high com-
putational costs and extensive data requirements. The rapid
advancement of virtual technology, big data, and artificial
intelligence, especially in generative AI, offers promising so-
lutions to these challenges. However, key research questions
in this topic still remain, including how to create authentic
3D models with small data sizes, how to generate model ani-
mations with dynamic effects in real-time, and how to create
the skeletal motion of digital humans efficiently.

This thesis develops innovative technologies for creating real-
istic and immersive animations of digital characters in real-
time environments, focusing on three primary procedures:
digital character modelling, skin deformation methods, and
skeletal motion construction. The contributions we provided
in this research are concisely listed as follows:

• A survey summarizing the recent developments and ap-
plications of position-based approaches is proposed. This
survey includes the core idea of the position based dy-
namics (PBD) method, the advancements made inside
the algorithm, the applications in other fields, and some
guidance on the research directions for future work.
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• An innovative modelling method is introduced, integrat-
ing the governing equation of elastic beam deformation
and Newton’s second law to reconstruct dynamic 3D
models with high accuracy and reduced data volumes.
This PDE-based approach offers a time-dependent so-
lution for creating detailed deformable models, signifi-
cantly improving upon other baseline surface reconstruc-
tion techniques.

• A novel method for facial blendshape generation is pro-
posed, leveraging an ODE-based surface creation method
and Newton’s second law to produce natural facial ani-
mations. This method effectively reduces the data size
while maintaining natural edge continuities and high ef-
ficiency in creating interpolated facial animations.

• A new neural network structure, the Video-to-Motion
(VTM) framework, is developed to reconstruct skeletal
motion from video sequences. By pre-learning motion
priors and jointly training them with the model, this
method ensures high-fidelity motion reconstruction with
substantial computational efficiency.

To evaluate the efficacy of our proposed methods, various
comprehensive experiments are conducted. These experiments
demonstrate that the developed technologies can significantly
benefit the process of creating realistic and immersive anima-
tions for digital characters in real-time interactive scenarios.
We believe that the completely constructed digital charac-
ter animation can alleviate the labour cost in the game and
animation industries and can be integrated with other ad-
vanced game technologies to lead more users to enter the
Metaverse, resulting in expanding the market and generating
more wealth.
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Chapter 1

Introduction

1.1 Background

According to the "Global Games Market Report 2023" (Newzoo 2024)
released by Newzoo, the number of global players reached 3, 305million
in 2023, marking a 4.3% increase from 3, 168 million in 2022, with a pro-
jected rise to 3, 675 million by 2026. In terms of revenue, the gaming
industry’s total revenue reached $184.0 billion in 2023, expected to reach
$205.4 billion by 2026. Additionally, based on the "Global and China An-
imation Industry Report, 2019-2025," (Research China 2024) released by
Research In China, the global animation industry had an output value of
approximately $500 billion in 2023. In the current stage of the Metaverse,
known as "the coexistence of virtual and real", users in these two vast
commercial markets place more emphasis on the role of virtual avatars
and require comprehensive, authentic, and natural animations of digital
characters to enhance their experience in the virtual world.

The concept of the "Metaverse" originates from Snow Crash, a sci-
ence fiction published in 1992. In this novel, humans could enter digital
space via virtual avatars and interact with each other. Fast forward 30
years of technological advancement in computer vision and graphics, the
"Metaverse" has evolved from a mere idea in fiction to the forefront of
internet digital economy development. From the development practices
and implementation scenarios (Guo 2022), it can be observed that the
Metaverse undergoes three stages: cloud gaming, digital twins, and the
coexistence of virtual and real. Virtual avatars will greatly enhance the
realism of various characters in the virtual world and provide each user
with their own virtual idol, facilitating better social interaction within
games. In the ultimate stage of the Metaverse, every real-world user can

1



create their own digital avatar in the virtual world and freely navigate
across different Metaverses. Each individual in the real world engages in
activities such as learning, working, investing, creating, and consuming,
while their digital avatar in the virtual space participates in activities
like creating, gaming, experiencing, trading, and investing. In this "co-
existence of virtual and real" stage, real-world humans and their digital
avatars will form new social relationships and emotional connections, es-
tablishing a novel "human society" where virtual and real coexist. To
provide users with an immersive experience in the Metaverse, digital
characters require realistic appearances, smooth body movements, and
natural language expressions. Moreover, due to humans’ inherent social
attributes, interactive capability is crucial for digital characters in the
Metaverse. Therefore, the large-scale generation of high-quality digital
characters in real-time is essential for users to enter the Metaverse and
other virtual worlds, as well as allowing users to explore broader digi-
tal spaces. In the realm of digital characters, the role of digital humans
is particularly significant. They serve as representations of human be-
ings in the Metaverse, acting as essential components of human society’s
reconfiguration within this digital space. Enhancing the realism and nat-
uralness of digital humans can greatly enhance the immersive experience
for Metaverse users.

The concept of "digital human" originates from the 1985 essay Cy-
borg Manifesto (Haraway 1985), in which Haraway defined "Cyborg" as
a combination of inorganic machines and living organisms. In 1986, the
U.S. National Library of Medicine (NLM) initiated the Visible Human
Project (National Library of Medicine 1994), which aimed to achieve
the 3D display of human anatomy. This was the first time the term
"Digital Human" was introduced. Over time, the concept has gradually
expanded, referring to virtual characters created using digital technology.
These digital humans can be presented in 2D or 3D forms. Early virtual
digital humans mainly consisted of flat cartoon idols 1 and lacked complex
processes like 3D modelling, hence limiting their realism and depth. Nev-
ertheless, with the rapid advancement in computer graphics technology,
including 3D modelling and physical deformation simulation techniques,

1The inaugural virtual idol, Lynn Minmay, made her debut in the 1982 cartoon
Super Dimension Fortress Macross, as shown in Fig. 1.1.
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Figure 1.1: The inaugural flat virtual idol Lynn Minmay as the cover of
the cartoon Super Dimension Fortress Macross (Macross Wiki 2024).

(a) Necromancer (b) Ironman (c) Asian Woman

Figure 1.2: Example of three classic types of applications on digital hu-
man from SEMA Game Studio (2024): (a) Necromancer is a virtual idol;
(b) Ironman is a reproduced movie character; (c) Asian Woman is a re-
constructed human avatar.
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the trend in digital human research has shifted. Leading research insti-
tutions and commercial teams can now produce highly realistic virtual
digital humans, which can be applied successfully in virtual idol gen-
eration, movie character production, and human avatar reconstruction,
as shown in Fig. 1.2. Yet, the traditional process for constructing a
complete animation of 3D digital humans involves complex procedures,
including image collection, model creation, texture mapping, as well as
motion capture and driving. This process requires specialized sensing
devices and labour-intensive work, making it time-consuming, custom-
made only, and expensive for storage and network transfer resources. It
cannot meet the demands for fast-generating large-scale digital humans
with good realism but with small data, hindering widespread adoption
and application.

In recent years, there have been remarkable advancements in virtual
technology, big data, artificial intelligence (AI), and other technologies,
particularly in the domains of generative AI, like image generation and
language interaction. These advancements have led to the evolution of
digital human technology, which creates more realistic images, offers more
scopes, and brings more commercial value. This has resulted in the term
"generative digital characters", which refers to the use of generative AI
techniques to create incredibly lifelike 3D digital characters. It is achieved
by assimilating real data distribution in a data-driven manner, sampling
the data distribution to create new representations, and finally rendering
the data representation into the digital characters form. Generative AI
has made the process of constructing 3D digital character models more
efficient, resulting in improved realism and boundless potential for fur-
ther development. However, methods integrating deep learning methods
with 3D modelling still face the challenge of requiring extensive datasets
for network training. The massive amount of data results in high com-
putational demands, which in turn require powerful computer devices.
Real-time 3D digital character construction is challenging due to these
computational requirements. The focus of current research lies in reduc-
ing the computational workload without compromising quality.

Therefore, generating visually plausible digital characters in real-time
environments has become the primary task in the game and animation
industry. Existing digital character-related technologies involve each pro-
cedure in the process. In Chapter 2, we will investigate the three main
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procedures: digital characters modelling (DCM), skin deformation meth-
ods (SDM), and skeletal motion construction. This research aims to
explore the potential of innovative technologies in developing real-time,
authentic, and immersive digital character animations to enhance user
experiences in interactive environments. By using these technologies,
artists can save time and resources in creating keyframe models with
high similarities and avoid dealing with unnatural artefacts on skins.
The detailed research questions and objectives will be presented in the
following sections.

1.2 Research Questions

In light of the factors elucidated above, the research questions of this
investigation can be delineated as follows:

• Q1. How to create authentic 3D models with a small data
size? The geometric modelling technologies use low-level man-
ual operations such as manipulations of surface vertices of polygon
models, control points of B-Spline models, surface curves, etc., to
create 3D models. These methods could achieve fast creation of
low-poly models, whilst the details and realism could not be guar-
anteed. Moreover, mesh simplification methods are used to transfer
high poly models into low poly models to fulfil the frames per sec-
ond(fps) requirements in games and movies. To represent detailed
and realistic 3D models with a small data size is a very challenging
task.

• Q2. How to create model animation with dynamic ef-
fects of movements and deformations in real-time envi-
ronments? An animation involves a series of keyframe models to
form the mesh deformation and model movement. Individually cre-
ating a model at each frame during deformation is time-consuming
and is difficult to maintain consistency. Purely geometric computer
animation techniques like Linear Blend Skinning (LBS) (Magnenat
et al. 1988), have high computational efficiency but poor realism,
as they do not consider any underlying physical laws. Physics-
based computer animation technologies follow the underlying phys-
ical laws of object movements and deformations, and can create re-
alistic computer animation. However, the expensive computational
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cost makes it hard to implement in real-time environments like in-
teractive games. The method to generate realistic skin deformation
is full of challenges.

• Q3. How to create accurate skeletal motion of digital hu-
mans? While skin deformation techniques are useful for creating
natural deformation simulations of meshes, the motion realism of
the entire model in real-time animation is still lacking. It is a
significant issue to construct reasonable skeletal motion and uti-
lize it to drive digital characters, creating animations with realistic
movements. Existing motion creation methods all require signifi-
cant human involvement. However, recent advancements in deep
learning and neural networks have made it possible to tackle the
challenging task of reconstructing skeletal motion from videos.

1.3 Aims and Objects

This research endeavours to create dynamic digital human animations
in real time, ensuring authenticity and immersion to enrich user engage-
ments within interactive environments. It also seeks to address the afore-
mentioned research questions comprehensively. To achieve the goal, the
following specific objectives must be attained:

• Review the state-of-the-art skin deformation techniques and inves-
tigate their performance in efficiency and authenticity. Choose the
most proper method and write a survey about its development and
progress. Gain an understanding of the current techniques and
solutions, as well as identify their limitations to make sufficient
preparations for the following work.

• Review current techniques for mathematical mapping and 3D mod-
elling, and investigate the latest research on high-level 3D model
creation methods that involve data reduction. Propose an innova-
tive modelling method to preserve model details as much as possible
with a small data volume. It is supposed to provide a controllable
and realistic model, releasing the burden on storage and internet
transmission.
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• Propose a novel facial blendshape method for fast-generating inter-
polations between different facial poses, as facial expression changes
apart from the other skin deformation of digital humans. It is
supposed to save significant time and effort for artists who create
models for adjacent frames, reducing the need for tedious rework.

• Review the following topics: skeletal motion creation, Human Pose
Estimation(HPE), object detection, and generative digital human
techniques. Propose a novel method to estimate motion from videos
of a moving digital human. It is supposed to be effective and robust
for accurate motion reconstruction from any video.

1.4 Contributions

This research contributes to the process of creating a complete animation
of digital humans with realistic movements in real-time environments.
Three primary stages are focused on: digital human modelling, skin de-
formation methods, and skeletal motion construction. Specifically, the
main contributions can be summarized as:

• A survey is proposed that summarizes the developments and appli-
cations in position-based approaches since 2018. This survey cov-
ers the baseline algorithm of the original position based dynamics
(PBD) method. It also reviews the advancements made in the al-
gorithm, such as solvers and constraints, and introduces significant
implementations of PBD, involving various fields and industries.
Additionally, the survey provides some guidance on the research
directions of position-based approaches for future work. (Chapter
3)

• An innovative modelling method that reconstructs dynamic 3D
models with skin deformation obtained from PBD simulation is
presented. It combines the object motion described by Newton’s
second law and the bending deformation of elastic beams controlled
by the governing equation to develop a new mathematical model.
This PDE-based mathematical model solves the closed-form solu-
tion by separating variables, which are applied to recreate deformed
meshes at different frames. Compared with traditional surface re-
construction techniques, such as Bézier and B-spline, the proposed
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method has shown its ability to reconstruct the deformed 3D mod-
els with high accuracy and a small data volume. (Chapter 4)

• A new facial skin deformation method is introduced. It integrates
ODE sweeping surfaces and Newton’s second law to represent face
models at different poses, generating physics-based facial blend-
shapes. This skin deformation method inherits advantages of ODE
sweeping surfaces, such as small data sizes and natural mainte-
nance of edge continuities. The experiment results have proven
that it can create more natural interpolated facial animation with
high efficiency. (Chapter 5)

• A novel neural network, the Video-to-Motion Generator (VTM),
is provided for constructing the skeletal motion of digital humans
from video sequences. Moreover, a new method is proposed to ma-
nipulate 3D motion priors with distinct scales, which is achieved by
aligning video and motion data on two-body partial potential fea-
ture manifolds. The experimental results have demonstrated that
the proposed method can effectively replicate high-quality motion
while maintaining a high degree of fidelity to the provided video.
(Chapter 6)
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dynamic deformation simulation by integrating pde-based recon-
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A., Chaudhry, E., You, L. and Zhang, J. J., 2021. Efficient and

8



physics-based facial blendshapes based on ode sweeping surface and
newton’s second law. In 25th International Conference Information
Visualisation (IV), IEEE, 303-309.

1.6 Outline of Thesis

The following chapters of this thesis are structured as below:

• Chapter 2. This chapter thoroughly investigates the related tech-
niques in the three primary procedures of digital character anima-
tion creation: modelling, skin deformation, and motion construc-
tion. These methods inspire the following works in this research.

• Chapter 3. This chapter first introduces how the basic PBD
achieves the visually plausible deformation simulation results. Then
the improvements for addressing the inherent limitations of PBD,
and applications for integration with various industries since 2018
are thoroughly reviewed. This survey work was published in Com-
puter Animation and Virtual Worlds (P1).

• Chapter 4. This chapter introduces a PDE-based modelling ap-
proach for fast and precise model reconstruction in dynamic scenar-
ios. This method integrates the governing equation of elastic beams
with Newton’s second law, which enables it to be time-dependent.
With it, detailed deformable models with small data sizes can be
created for creating animation. This work was published in Math-
ematics (P2) and its related work was published in in 36th In-
ternational Conference on Computer Animation and Social Agents
(P3).

• Chapter 5. This chapter introduces a physics-based skin deforma-
tion approach for creating natural facial blendshapes by integrating
an improved ODE-based surface creation method, which is derived
from Newton’s second law. This work was published in In 25th
International Conference Information Visualisation (IV) (P4).

• Chapter 6. This chapter introduces a framework named as Video-
to-Motion for predicting human motion from monocular videos.
This framework first utilizes a two-part motion auto-encoder to
learn motion priors and then leverages a two-part visual encoder
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with the learned motion priors to reconstruct the skeletal motion
from in-the-wild and unseen-view-angle videos.

• Chapter 7. This chapter comprises conclusions and future plans
for this research.
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Chapter 2

Literature Review

The aim of this research is to develop advanced animation technologies
for generating realistic digital characters in real-time environments, which
involves three main procedures: digital character modelling (DCM), skin
deformation methods (SDM), and skeletal motion construction. To be-
gin with, the current modelling method for 3D models will be reviewed
in Section 2.1. Then, this chapter reviews the existing methods for skin
deformation as well as their extensions in Section 2.2. Additionally, ad-
vanced methods for skeleton-based digital character representation and
digital character pose estimation are surveyed in Section 2.3.

2.1 Overview of 3D Modelling Methods

Digital characters can be thought of as projections of real characters in
the "Metaverse." They not only require realistic simulation of character
appearance but also approximate character behaviours, movements, and
facial expressions. Therefore, as the foundation of digital characters, 3D
modelling methods are utilized to closely represent digital character skins
and establish various physical attributes that correspond to character be-
haviour. In 3D modelling, there are generally two approaches: explicit
and implicit methods. Explicit methods involve directly defining a set
of elements that satisfy certain conditions. For example, point clouds
contain the positions of points in three-dimensional space, while polygon
meshes contain information about vertex positions and their connectivity.
In industrial applications like gaming and film production, explicit rep-
resentation models are primarily used, as traditional rendering pipelines
can efficiently handle their display (especially those based on polygon
meshes). However, the level of detail in explicit methods is limited by
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the  model  resolution.  To  generate  highly  realistic  digital  characters,  a
large  number  of  elements  are  needed  to  approximate  the  model’s  details,
leading  to  increased  model  complexity.  On  the  other  hand,  implicit  meth-
ods  only  require  specifying  some  constraints  on  three-dimensional  space,
such  as  signed  distance  functions  (SDF)  or  level  set  method.  With  the  ad-
vancement  of  deep  learning,  more  and  more  methods  are  utilizing  neural
networks  to  approximate  implicit  functions,  such  as  deep  signed  distance
functions(DeepSDF)  (Park  et  al.  2019)  and  neural  radiance  fields(NeRF)
(Mildenhall  et  al.  2021),  resulting  in  finer  geometric  details  of  digital
humans.  Implicit  methods,  being  a  more  flexible  approach,  allow  dig-
ital  human  models  to  overcome  spatial  resolution  limitations,  making
it  a  growing  focus  in  digital  character  research.  This  section  discusses
methods  for  representing  3D  models,  starting  with  explicit  representation
methods,  including  geometric  and  physical  methods,  and  then  moving  on
to  implicit  representation  methods.

2.1.1  Explicit  Representation  Methods

Explicit  representation  methods  describe  a  3D  scene  by  assembling  basic
elements  such  as  points,  meshes,  and  voxels.  These  methods  provide
users  with  detailed  and  precise  visualization  of  various  environments  and
objects,  as  they  can  be  directly  defined  and  observed.  In  the  following
sections,  3D  modelling  methods  based  on  these  three  basic  primitives  will
be  introduced  separately.

2.1.1.1  Point  Clouds

A  point  cloud  is  defined  as  a  collection  of  numerous  points  in  3D  space,
which  contains  all  the  attribute  information  of  geometries,  including
colour  and  normal.  Otepka  et  al.  (2013)  indicated  that  the  term  "cloud"
denotes  the  disordered  characteristic  of  the  group  and  its  spatial  con-
sistency,  featuring  a  vague  edge.  The  point  cloud  dataset,  obtained  by
scanning  instruments,  comprises  points  sampled  from  the  surface  of  an
object.  As  shown  in  Fig.  2.1,  Fig.  2.1(a)  is  the  point  cloud  model  of  the
"Stanford  Bunny",  and  Fig.  2.1(b)  is  the  "Stanford  Bunny"  model.
Raw  point  cloud  data  can  be  acquired  using  various  methods,  such  as  Li-
DAR  laser  scanning,  RGB-D  cameras,  and  multi-sensor  fusion.  Among

these, point cloud data obtained through multi-sensor fusion is the most
comprehensive and reliable.

https://sketchfab.com/3d-models/
http://graphics.stanford.edu/data/3Dscanrep/


(a) (b)

(c)

Figure 2.1: (a) The point cloud model of "Stanford Bunny"; (b) "Stan-
ford Bunny"; (c) The voxel model of "Stanford Bunny"

The reconstruction of a 3D model from the point cloud model is usu-
ally associated with different deep-learning techniques. Depending on
the number of points in the point cloud dataset, it can be determined as
sparse and dense. The sparse point cloud reconstruction involves taking
multiple perspective images of the input scene or object. These images
are processed to find keypoints using techniques like SIFT (Lowe 2004)
or SURF (Bay et al. 2006), which are then matched up across images.
After acquiring the initial camera parameters either from manually cali-
brating or from images, the camera poses and sparse point clouds can be
calculated through Structure from Motion (SFM) (Ullman 1979). Then
utilizing the Levenberg-Marquardt (LM) algorithm, more accurate 3D
coordinates of points can be gained to reconstruct objects. However,
SFM outputs can be influenced by factors like lighting and distance in
images. To address this, David Lowe proposed the SIFT algorithm (Lowe
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2004), which improves accuracy by finding scale and rotation invariant
features.

The dense point cloud reconstruction involves taking the sparse point
cloud obtained from the SFM (Structure from Motion) algorithm and
using a series of global perspective images to create a depth map. This
depth map assigns a depth value to each pixel, which is then projected
into 3D space to form a dense point cloud. Calculating and generating
the depth map is crucial and challenging in dense point cloud recon-
struction. Bleyer et al. (2011) applied the stereo-matching algorithm
PatchMatch on computing the depth map. Though this method yields
good pixel values, it struggles with objects or scenes lacking surface tex-
ture due to partial information loss during computation. Huang et al.
(2018) proposed DeepMVS, which comprises a network consisting of the
patch match matching network, the intra-volume feature aggregation net-
work, and the inter-volume feature aggregation network. This approach
effectively addresses the issue of handling scenes with missing texture sur-
faces by generating a disparity map from the depth map. Nevertheless,
it comes at the cost of slow processing speed. Considering the limitations
of traditional point cloud reconstruction methods, such as scene loss and
susceptibility to environmental factors, dense point cloud reconstruction
algorithms based on deep learning have emerged. Yao et al. (2019) intro-
duced R-MVSNet, which transforms the depth map onto different depth
planes and combines the probability distribution of pixels on these planes
to obtain an initial depth map. R-MVSNet offers fast processing speed
and wide applicability, and no limitations with any input image.

2.1.1.2 Voxels

A voxel, short for "volume pixel element," is like a pixel but in three-
dimensional space. It’s a tiny element, most often a cube, that represents
a point in the 3D world, much like how a pixel represents a point in a
2D image. Voxel-based 3D modelling methods divide 3D space into a se-
ries of adjacent but non-overlapping voxels, which represent the surface
and internal shape of objects, as shown in Fig. 2.1(c). Common voxel-
based modelling methods include 3D grid, Tetrahedral Network(TEN),
Octree modelling, Triangular Prism (TP) modelling, and Constructive
Solid Geometry (CSG). Compared to traditional 3D modelling methods,
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voxel-based approaches provide unique advantages in robustness and re-
construction quality. However, they require higher storage consumption,
and the computational complexity of extending 2D image convolutions
to 3D images is significant.

Wu et al. (2015b) introduced a neural network based on voxel rep-
resentation and deep learning, utilizing regression loss functions. This
approach marks a significant breakthrough in 3D reconstruction using
deep learning. Building upon it, Tatarchenko et al. (2017) proposed a
method for segmenting 3D space, recursively dividing it into eight oc-
tant spaces, to predict higher-resolution shapes on voxel grids. Stutz
and Geiger (2018) pioneered an unsupervised learning approach to 3D
reconstruction. This method completes voxel models of objects without
sacrificing accuracy. It relies on data training and linear optimization of
deep neural networks (DNN). Wu et al. (2016) devised a 3D reconstruc-
tion method using Generative Adversarial Networks (GAN). By employ-
ing a generator G and a discriminator D to evaluate and train input
images, this method generates random 3D models, ultimately yielding
the most accurate model after iterations. The voxel models generated
by this approach boast advantages such as high resolution and detailed
structure.

Whilst voxel-based surface creation methods have their unique ad-
vantages in 3D modelling, they are limited by issues such as memory
consumption and storage usage. In recent years, research on 3D recon-
struction based on deep learning has shifted more towards neural net-
works that operate on point clouds and surface meshes. PointNet (Qi
et al. 2017) has largely addressed the challenges associated with voxel-
based surface representation in deep learning. Other notable methods
utilizing voxel representation such as NeRF (Mildenhall et al. 2021) and
3D Gaussian splitting (Kerbl et al. 2023) play important roles in gener-
ative contents. However, most training and output results in 3D recon-
struction based on deep learning now primarily rely on point clouds and
surface meshes.

2.1.1.3 Meshes

By linking numerous vertices with edges, meshes can be formed (Botsch
et al. 2010). They can then be further redefined by utilizing polygons,
commonly triangles or quadrilaterals, to generate authentic depictions
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Figure 2.2: The polygon mesh model of a dolphin.

of objects (Shirman and Sequin 1987). Thus, 3D models consisting of
surface meshes are polygon mesh models, like the dolphin model in Fig.
2.2. Polygon meshes consist of elements, including vertices, edges, faces,
polygons, and surfaces. They offer a flexible and effective method for il-
lustrating complex shapes and formations, as they can be easily modified
and processed by computer algorithms, and can easily be visualized by
business software. This type of model representation approach is essen-
tial for any pipeline involved in digital content creation (DCC), given its
widespread adoption and interoperability.

Botsch et al. (2010) highlighted that the primary approaches for poly-
gon mesh surface recreation are parametric representation methods. This
kind of approach offers the benefit of the function f : Ω → S reducing
many 3D surface problems on the surface S to 2D problems in the param-
eter domain Ω. However, creating the parametric surface parametriza-
tion f can be quite complicated, as the parameter domain Ω must align
with the topological and metric characteristics of the surface S. Ad-
justing the shape of S may necessitate updating the parametrization to
accurately reflect changes in the underlying geometry. Therefore, the
challenges of parametric surfaces lie in their vulnerability to topological
modification and spatial queries. The following part of this section will
review various crucial techniques for parametric surface representation,
including spline surfaces, subdivision surfaces, and Ordinary Differential
Equations(ODEs)-based surfaces.

Hoschek and Lasser (1993), Prautzsch et al. (2002), Patrikalakis and
Maekawa (2002) introduced surface creation techniques involving Bézier
and B-spline. Bézier curves are essentially the result of linear interpola-
tion as they are created by interpolating between pairs of control points
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to form a smooth curve. Combining multiple Bézier curves allows to
obtain a set of corresponding points on each curve at the same parame-
ter position. By combining these newly sampled points and controlling
them in a similar way to Bézier curves, a smooth surface can be formed
by a set of smooth curves, which is defined as a Bézier surface. Due to
the principles of Bézier surfaces, two adjacent Bézier surfaces naturally
exhibit good G0 continuity. This feature allows users to create a range of
polygon models with smooth surfaces. For example, a polygon model of
a broken blade was created utilizing Bézier surfaces by Li et al. (2010).
However, Bézier surfaces possess a limitation: they cannot handle local
adjustments. Altering control points locally impacts the entire shape of
the model formed by all Bézier surfaces. Furthermore, the polynomial
order of Bézier surfaces correlates with the number of vertices, which
restricts the flexibility in manipulating the entire surface. A higher num-
ber of vertices results in a higher polynomial order, thereby weakening
control over the curve’s shape.

Therefore, to address the limitations of Bézier surfaces, B-spline sur-
face creation methods were developed, allowing for local adjustments to
the surface. Moreover, B-spline surfaces offer the advantage of decou-
pling the polynomial degree from the number of control points, and a
lower degree can result in closer adherence of the B-spline curve to the
control polyline. However, both Bézier and B-spline surfaces have de-
feats, such as the inability to accurately represent complex shapes like
conics. Nevertheless, non-uniform rational B-splines (NURBS), as in-
troduced in (Piegl and Tiller 1997), avoid these limitations. NURBS
have become widely adopted in various software packages for geomet-
ric modelling and have become the standard surface representation in
modern CAD systems due to their versatility, inherited advantages of
B-spline surfaces, and alignment with international standards. As the
name suggests, NURBS extends the basis functions of B-spline curves
to rational functions and assigns a weight to each control point, making
them non-uniform. Hence, NURBS can precisely define freeform surfaces
without relying on solid models, while Bézier and B-spline surfaces are
all particular cases of NURBS.

However, to ensure that adjacent patches of the model can all be
smoothly connected, extra geometric constraints need to be considered
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at all stages of surface processing. This significantly increases the com-
plexity of NURBS surface reconstruction. Besides, NURBS functions rely
on the heavy utilization of polynomials, whilst the solutions to ODEs and
Partial Differential Equations (PDEs) may involve more intricate math-
ematical functions. Consequently, a single Bézier, B-spline, or NURBS
patch may not match the capabilities of a single ODE or PDE patch in
crafting complex shapes.

The process of subdivision approaches, as described in (Stam 1998,
DeRose et al. 2023, Warren and Weimer 2001), initiates with a basic
polygonal model. The polygonal faces of this model are then subdivided
into smaller polygons through various approximation or interpolation
techniques, resulting in a denser polygonal mesh of the model. Subdivi-
sion surfaces offer flexibility without being constrained by topological or
geometric limitations, unlike spline surfaces. Their hierarchical structure
enables the use of highly effective algorithms. Thus, Subdivision surfaces
can simplify the creation of intricate shapes and enhance rendering ef-
ficiency. However, subdivision methods are limited to creating meshes
with semi-regular subdivision connections, which means that the mesh
triangulations result from repetitive uniform refinement of a coarse con-
trol mesh. Since arbitrary meshes do not meet this constraint, they must
undergo remeshing to meet subdivision connectivity requirements in a
preprocessing stage. However, this remeshing process involves resam-
pling the surface, often leading to sampling artefacts and loss of data.
Moreover, subdivision methods face challenges in achieving precision and
the absence of an underlying parametrization.

Compared with the above geometric approaches, physics-based sur-
faces have a better capacity to create more realistic appearances as they
consider the underlying physics of surface deformation. Nealen et al.
(2006) reviewed different surface creation methods based on physics.
These approaches encompass finite element method (FEM), finite differ-
ence method (FDM), and finite volume method (FVM). However, these
common physics-based methods face challenges in numerical computa-
tion, preventing their implementation in real-time environments. In con-
trast, ODE/PDE-based surface creation approaches, which also adhere
to the underlying physics principles in science and engineering, were in-
troduced to address the issue of data size since the coordinates of the
vertices on the surface obey certain ODEs/PDEs. For example, the
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deformations of an elastic beam can be represented by a fourth-order
ODE, according to (Timoshenko 1983). You et al. (2007) first proposed
the novel surface creation method, ODE-based sweeping surfaces, which
utilize minimal data to analytically represent a surface. This method al-
lows quick computation with stable numeric. ODE-based surface blend-
ing was then provided in (You et al. 2014), which allows the creator to
craft blending surfaces to be formed using the analytical solutions to
ODEs. Its form is adjusted by the shape control parameters associated
with the ODE. Though ODEs are simpler to solve compared with PDEs,
PDE-based surface creation methods are more capable of representing
extremely complex models.

Bloor and Wilson (1989) laid the foundation for PDE surface cre-
ation in computer graphics. Since then, various methods based on PDEs
have emerged to address different modelling challenges, including surface
design (Ugail et al. 1999), solid modelling (Ahmat et al. 2011), high-
speed train head optimization (Wang et al. 2021b), and surface mod-
elling (Bloor and Wilson 1990, Sheng et al. 2010). Wang et al. (2019)
have proved that PDE-based modelling methods can create smooth sur-
faces and can generate surfaces by adjusting a small set of boundary
conditions Wang et al. (2021c), simplifying the modelling process. Thus,
by transforming geometric problems into boundary value PDE problems,
the PDE surface creation method can produce natural, continuous, and
smooth surfaces without the need for manual patch stitching, as shown
in Fig. 2.3.

Whilst extensive research has focused on utilizing continuous PDE
surfaces for modelling and exploring PDE surface-based reconstruction,
limited attention has been given to dynamic PDE-based modelling. Thus,
integrating PDE surface creation methods with advanced skin deforma-
tion methods to fulfil real-time 3D modelling for digital characters re-
mains a challenging task. In Chapter 4, an advanced PDE-based mod-
elling method that reconstructs dynamic 3D models, presented by this
research, will be introduced.

2.1.2 Implicit Representation Methods

Implicit representation methods refer to mathematical representations
that do not provide specific point information but instead describe the
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Figure 2.3: Surfaces created by the PDE-based modelling technique (Fu
et al. 2022).

relationship satisfied by all points on the surface. With implicit equa-
tions, since no point information is given, sampling specific points on the
surface becomes a challenging task. In fact, even the visualization of the
surface shape directly from the equation can be difficult. However, using
implicit surface equations makes it straightforward to determine a point’s
relationship with the object’s surface, including whether it is inside the
object, outside it, or exactly on the surface. Moreover, it enables easy de-
termination of whether a ray intersects with the object. Various implicit
representation methods have been developed, which will be reviewed in
this section.

2.1.2.1 Algebraic Surfaces

Algebraic functions represent surfaces through algebraic expressions sat-
isfied by every point on the surface. Bajaj (1988) noted that the common
early methods of algebraic surface expressions were primarily character-
ized by 3D implicit curves, like Space Curves (Bose 1995) and Rational
Curves (Abhyankar 1973). Some simple examples of algebraic surfaces
can be seen in Fig. 2.4. However, it seems that surfaces represented
solely by algebraic equations often exhibit regularity, which makes alge-
braic surfaces struggle to accurately represent more complex geometric
shapes.
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Figure 2.4: Two simple examples of algebraic surfaces: the left one is a
sphere, and the right is an annulus.

2.1.2.2 Constructive Solid Geometry

Constructive Solid Geometry (CSG) essentially employs logical opera-
tors, such as Boolean operations, to combine different objects into com-
plex surfaces or objects, as shown in Fig. 2.5. Hence it allows for the
construction or representation of highly complex models or surfaces us-
ing simple primitives, such as cubes, cylinders, prism, pyramids, spheres,
and cones. Its emergence has, to some extent, alleviated the challenge of
representing complex objects using algebraic implicit surfaces. A compre-
hensive introduction to CSG technology was introduced in (Ghali 2008).

2.1.2.3 Signed Distance Function

Signed Distance Field (SDF) has been roughly introduced in (Oleynikova
et al. 2016), which is fundamentally a grid-based representation method.
The core idea of SDF involves partitioning space into a grid of points and
then storing the distance from each point to the model. This effectively
delineates a surface around the model, where points outside the model’s
surface have values greater than 0, points inside have values less than 0,
and the value 0 denotes points on the surface. Fig. 2.6 shows an example
in 2D space.

Algebraic operations can be performed on the Signed Distance Field
(SDF) values of each point in space to blend them into different new
models, as shown in Fig. 2.7. There’s no need to recalculate the al-
gebraic expressions of the object models’ surfaces. SDF is widely used
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Figure 2.5: A complex object constructed from two simple primitives, a
sphere and a cube, by Boolean operations (Renno and Papa 2015).

Figure 2.6: A 2D example of SDF. Each value of the grid stands for the
nearest distance from the point to the surface (Zucker et al. 2010).
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Figure 2.7: Apply algebraic operations on two SDF models to blend new
and complex model shapes.

in algorithms for real-time representation of complex objects. Its sim-
ple representation aligns well with deep learning techniques, enabling
rapid and accurate characterization of model features. For example,
DeepSDF demonstrates superior performance in both shape represen-
tation and completion tasks by discretizing SDF into a regular grid for
evaluation and measurement denoising (Park et al. 2019). It effectively
handles the objectives of representing intricate structures and closed sur-
faces and delivering high-quality surface normals for shapes. Söderlund
et al. (2022) integrated SDF grids into ray tracing methods to generate
smoother and higher-quality images.

2.1.2.4 Level Set

Osher and Sethian (1988) first developed the level set method, which
provides an implicit representation for evolving curves and surfaces. It
is similar to the SDF approaches, functioning as a specialized form of
SDF, which also identifies the locations where the function value is zero
to define a surface. However, unlike SDF, which provides a strict mathe-
matical definition for every point in space, the level set method approxi-
mates the function using a grid. Bilinear interpolation within these grid
cells is used to determine the function value at any point, and all points
where the function equals zero form the surface. This method has the
advantage of more explicitly defining the shape of space curves compared
to SDF. It has been widely used in medical imaging and physical sim-
ulations (Allaire et al. 2004, Fu et al. 2018, Li et al. 2007, Zhang et al.
2008).

2.1.2.5 Neural Radiance Fields

Neural Radiance Fields (NeRF) (Mildenhall et al. 2021) have emerged as
a preferred method for representing scenes across various applications.
NeRFs introduce an innovative approach to 3D scene representation,
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Figure 2.8: The main procedure of reconstructing 3D model from input
images of different views by neural radiance fields (Mildenhall et al. 2021).

moving away from traditional point clouds and meshes to depict the scene
as a continuous volume. The core idea of NeRF is to represent a 3D scene
by querying an implicit neural network using a radiance field, which en-
codes the volume density and colour of every point from each camera
viewpoint. This method provides a more flexible and adaptable means
of capturing the complexities of 3D scenes, enabling advanced rendering
and modelling techniques, as shown in Fig. 2.8. NeRFs have been further
developed and optimized for better synthetic results (Barron et al. 2021,
Verbin et al. 2022, Zhang et al. 2022, Insafutdinov et al. 2022, Yang et al.
2022), faster training and inferring (Nguyen-Phuoc et al. 2022, Yu et al.
2021, Garbin et al. 2021, Reiser et al. 2021, Liu et al. 2020a, Müller et al.
2022, Deng et al. 2022, Wei et al. 2021, Xu et al. 2022, Fridovich-Keil
et al. 2022, Sun et al. 2022, Chen et al. 2022, Wang et al. 2021a), bound-
less and low-light scene (Martin-Brualla et al. 2021, Zhang et al. 2020,
Niemeyer and Geiger 2021, Yang et al. 2021), and pose estimation (Yen-
Chen et al. 2021, Wang et al. 2021d, Lin et al. 2021). Besides, NeRFs
have been applied to many fields, including city reconstruction (Rematas
et al. 2022, Turki et al. 2022, Tancik et al. 2022), and the processing of
human faces and avatars (Park et al. 2021a b, Peng et al. 2021a).

2.2 Overview of Skin Deformation Methods

In the pipeline of generating realistic digital characters in real-time envi-
ronments, after the construction of 3D models of digital characters, the
next stage is to consider the deformation of model surfaces to enhance
the experience of users in the "Metaverse" when models interact with the
environment. However, Creating realistic and compelling skin deforma-
tions for digital characters is a multidisciplinary challenge, encompassing
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Figure 2.9: An example of geometric modelling (Singh and Kokkevis
2000).

three primary aspects: generating high-quality skin deformations, sim-
ulating skin contact in response to collisions, and producing secondary
motion effects such as flesh jiggling during movement. This section will
review existing techniques for simulating skin deformation, which can
be roughly classified as geometric skinning, example-based skinning, and
physics-based skinning approaches.

2.2.1 Geometric Skinning

Geometric skinning techniques define skeleton-to-skin binding directly
through geometrical ways and relate the surface shape changes only with
the movement of skeletons, as shown in Fig. 2.9. These geometric ap-
proaches to deforming articulated characters have demonstrated satisfac-
tory results at interactive rates.

The traditional way to compute skin deformations is by linearly blend-
ing the corresponding bone transformations of the skin, called Linear
Blend Skinning (LBS) (Magnenat et al. 1988). However, this simple
linear blending approach causes artefacts when capturing complex defor-
mations, including candy-wrapper effects (Fig. 2.10), collapsing elbow,
and failure of secondary deformation (Lewis et al. 2023). These artefacts
can be effectively eliminated by replacing linear blending with nonlinear
blending, which converts affine rigid transformation matrices into pairs
consisting of quaternion and translation.
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Figure 2.10: The left is the reference pose, whilst the right is a typical ex-
ample of "candy-wrapper" artefact, where v denotes the vertex attached
to the joints j1, j2, . . . , jn (n stands for the number of influencing joints);
Cj ∈ SE(3) denotes the transformation matrix from the rest pose of joint
jn to its actual position (Kavan et al. 2008).

Compared with the matrix counterparts, these pairs are easier to
blend. Kavan and Žára (2005) employs a computationally intensive
method, Singular Value Decomposition (SVD), which has limited practi-
cal impact due to their handling of the translational component of skin-
ning transformations. Conversely, dual quaternion skinning (DQS) (Ka-
van et al. 2007) utilizes an approximate blending technique based on
dual quaternions. Rigid transformations are consistently provided by
DQS, which is nearly as fast as LBS. The underlying mathematics of
DQS may be complex, whilst its implementation is relatively straightfor-
ward. Instead of matrices, it leverages the geometric algebra of quater-
nions to represent the rigid translations of the bones, which generalize
regular quaternions to express both translation and rotation. Another
straightforward modification of the LBS was introduced in (Jacobson and
Sorkine 2011), incorporating an additional scalar weight function for each
bone. This method allows for stretching and twisting without altering
the existing skeleton rig or bone weights. Vaillant et al. (2013) intro-
duced a nonlinear skinning method to manage skin contact and muscle
bulge issues, though it fails to handle deep self-intersections. Then, an
improved method was provided to address this, which implements new
composition operators to local self-contact between implicit surfaces and
facilitate blending effects. Another advanced algorithm, presented by
Zhao et al. (2018), utilizes polycube to normalize the shape of meshes
instead of arbitrary shapes.

Nonlinear methods have been effective in addressing the issues of
LBS, such as candy-wrapper effects. However, they come with their own
set of problems that need to be addressed, like joint-bulging artefact.
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Thus, whilst geometric shape deformation techniques offer advantages in
terms of simplicity, efficiency, and controllability, they have limitations
in correcting various artefacts to simulate realistic deformation.

2.2.2 Example-based Skinning

Unlike geometric methods, example-based skinning techniques, also known
as data-driven approaches, enable more intricate skinning effects, includ-
ing muscle bulges and wrinkles, as well as mitigating the artefacts as-
sociated with linear skinning methods. These techniques utilize a series
of sculpted example poses, interpolating them to achieve the desired de-
formation. Lewis et al. (2000) proposed pose space deformation (PSD),
which is one of the earliest example-based methods. It interpolates cor-
rection vectors among the example data by leveraging a radial basis func-
tion. In PSD, the pose space is defined as a set of degrees of freedom
for a character’s model, varying between example poses, while a specific
pose denotes specific values of these degrees of freedom. PSD is a general
term for a class of methods where example poses are interpolated based
on a character’s pose.

Sloan et al. (2001) presented a more advanced extension of PSD,
which example poses distributed in an abstract space to interpolate an
articulated character. This abstract space comprises dimensions repre-
senting the 3D character’s intrinsic properties, including age and gender,
as well as dimensions describing the configuration, such as the degree
of elbow bend. Additionally, weighted pose space deformation (WPSD)
(Kurihara and Miyata 2004) was proposed to significantly reduce the
example size. WPSD can process large-scale deformations with high ef-
ficiency, whilst it cannot simulate detailed deformations even with more
computation compared with PSD. Thus, PSD is more applied to anima-
tion industries with pre-computing results, like the movie industry, but
is not proper for real-time interactive systems, like Metaverse.

This high computational cost problem is then addressed by advanced
research. For instance, Kry et al. (2002) proposed EigenSkin, a method
akin to PSD, which interpolates the rigid transformations by pre-computing
the optimized centre of rotation for each vertex. This approach signifi-
cantly reduces memory usage and allows the GPUs to manage computa-
tions. Despite the simplicity of PSD-based methods, substantial efforts
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are demanded from artists to manually create a wide range of example
poses for training.

Mohr and Gleicher (2003) presented single-weight enveloping (SWE),
which utilizes the example data approximated through fitting the de-
formation parameters, which is another type of approach for skinning.
SWE estimates the single weight for each vertex associated with rigid
character bones, allowing for the addition of extra bones. Conversely,
multi-weight enveloping (MWE) (Wang and Phillips 2002) offers better
approximations compared with SWE by operating on a linear framework
that supports multiple weights of each vertex-bone. However, this comes
at the expense of using 12 weights per vertex bone instead of just one in
SWE. These two approaches enable the generation of a wider range of
deformations from a smaller set of poses by introducing additional weight
parameters, albeit at the cost of increased complexity in weight compu-
tation. To reduce the computational cost of applying parameter fitting
approaches in a real-time interactive system, Wang et al. (2007) pro-
posed a novel method, which treats the enveloping problem as learning
a mapping between skeletal poses and their corresponding mesh.

With the development of machine learning in recent years, this tech-
nique has been integrated into example-based skinning techniques. In
(Bailey et al. 2018), mesh deformations were divided into linear and
non-linear components. The linear deformation is determined by the un-
derlying skeleton transformations of the mesh, while the non-linear defor-
mation is approximated by utilizing deep learning approaches. RigNet
(Xu et al. 2020) utilized machine learning to learn example data in a
dataset. After learning, it can predict a skeleton to fit the input 3D
model and estimate surface skin weights. Fig. 2.11 shows the network
model of DeePSD (Bertiche et al. 2021), which integrates a neural model
into PSD.

Example-based methods excel at producing realistic mesh deforma-
tion when there are enough high-quality example shapes available. How-
ever, the flip side of this advantage is that example-based techniques
require a large number of these high-quality example shapes, which will
contain numerous human involvement.
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Figure 2.11: The neural model overview of DeePSD (Bertiche et al. 2021),
which integrates neural network and machine learning to simulate defor-
mation.

2.2.3 Physics-based Skinning

As geometric skinning approaches are not capable of accurately modelling
dynamic skin deformations due to lacking underlying physical principles,
animators traditionally configure deformation for each keyframe. This
large amount of tedious manual work requires a high cost. Besides,
example-based methods are also labour-intensive for artists, requiring
enough high-quality example model data for training. Physics-based
shape deformation methods tackle this problem as they integrate physics
into the skinning process to significantly enhance the realism and credibil-
ity of character motions. They transfer this manual work to computers to
compute the deformation, effectively saving labour costs. Following the
foundational work of Terzopoulos et al. (1987) and Lasseter’s animation
principle "squash and stretch" (Lasseter 1998), physical simulation has
become pivotal in the animated feature game and movie industry. Nu-
merous physically-based methods have been developed to simulate the
dynamic effects of the skin, reviewed in (Nealen et al. 2006).

Turner and Thalmann (1993) treated the fat layer of the character
skin as a separate elastic surface, whilst the muscles are not modelled
with deformable methods. Kavan and Sorkine (2012) skinned articulated
shapes to simulate high-quality deformation results by optimizing skin-
ning weights and incorporating joint-based deformers. Integrating FEM,
Lee et al. (2009) proposed a sophisticated biomechanical model for simu-
lating realistic flesh deformations. In (McAdams et al. 2011), a multigrid
approach was presented to support hundreds of thousands of degrees of
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Figure 2.12: The process of applying underlying physics laws to model
(Bian et al. 2019).

freedom (DOF), where the material can slide over modelled bones, pro-
viding more local details. Bender et al. (2013) introduced a multi-layer
model to solve physical constraints, including collisions and local volume
preservation, to simulate real skin effects of different tissues. Jacobson
et al. (2012) combined the optimization of a nonlinear energy function
with a deformable body to quickly simulate deformation with high ef-
ficiency. For achieving real-time performance, the computational cost
of physics-based skin deformation methods has to be decreased. These
works have addressed the requirements of interactive systems without
losing accuracy or increasing implementation complexity (Teng et al.
2014, Li et al. 2014, Wang et al. 2015, Murai et al. 2017, Roussellet et al.
2018). In Chapter 5, a facial skin deformation method will be introduced
by integrating Newton’s second law into an ODE-based surface creation
method, to generate natural facial expression change between specific
poses.

Additional research has been conducted by integrating different skin-
ning methods into physics-based approaches. Chaudhry et al. (2015)
presented a new model of dynamic deformations integrating FDM and
example-based methods to create realistic skin deformation with high
efficiency. Xu and Barbič (2016) added PSD to physics-based methods
to meet the real-time application. Based on that, Bian et al. (2019)
combined example-based and physics-based skin deformation and LBS
to develop an efficient deformation creation technique. The pipeline of
this method is shown in Fig. 2.12, which applies a physics-based mathe-
matical model to the model after geometric transformation.
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With the involvement of underlying physical principles, physics-based
methods are capable of generating authentic deformation results com-
pared with geometric approaches, and avoiding numerous manual labours.
However, as they transfer the labour from artists to computers, these
methods rely heavily on computing power. The current hardware cannot
deliver real-time performance for systems such as games and interactive
animations due to these computationally intensive and complex methods.
As a result, most developments focus on either enhancing the realism of
geometric deformation methods or accelerating physics-based deforma-
tion methods.

2.2.4 Position Based Dynamics

The advent of Position Based Dynamics (PBD) (Müller et al. 2007) meth-
ods effectively balanced the trade-off between animation realism and com-
putational efficiency, quickly becoming the most widely used deformation
simulation method in the industry. They are fast, robust, and simple in
simulating dynamic systems. These advantages allow them to quickly
compute visually plausible deformation effects with minimal computa-
tional resources, effectively meeting real-time requirements.

The fundamental algorithm and some prior applications of PBD have
been extensively reviewed in (Bender et al. 2014c 2017). PBD was first
proposed in (Müller et al. 2007), with a non-physical system solving
various constraints to generate visually authentic dynamic simulation.
Whilst originally designed for interactive environments to simulate solid
objects, position-based methods have been proven to be applicable to the
simulation of fluids, articulated rigid bodies, and other scenarios.

However, due to their failure to comply with underlying physics laws,
position-based approaches are only plausible in vision and suffer from
issues such as the inability to converge to a specific solution. To expe-
dite convergence, a multi-grid-based strategy (Georgii and Westermann
2006) was employed by Müller in Hierarchical Position Based Dynamics
(HPBD) Müller (2008) to handle general non-linear constraints, enhanc-
ing the suitability of the simulation process for interactive applications
like computer games. To model more complex physical phenomena, Ben-
der et al. (2014b) proposed a continuum-based formulation and treated
strain energy as a constraint function for the PBD solver. Additionally,
previous PBD methods have long been plagued by a persistent issue:
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constraints can become arbitrarily stiff depending on iteration count and
time step. To tackle this problem, Macklin et al. (2016) introduced the
XPBD method, which utilizes a new constraint formulation and the La-
grange multiplier to solve constraints in a time step and iteration count-
independent manner.

Since the previous works of PBD before 2018 have been thoroughly
introduced in (Bender et al. 2014c 2017), Chapter 3 will provide a com-
prehensive review of the algorithm, as well as the advancements and
applications of position-based approaches after 2018.

2.3 Overview of Motion Reconstruction Meth-
ods

In addition to modelling and skin deformation, a crucial aspect of real-
time digital character generation is motion construction, as the Meta-
verse relies on realistic and comprehensive motion animations to provide
users with an immersive experience. Initially, motion construction in-
volved artists manually modelling motion frame by frame. By assigning
movements to the skeletons to drive their corresponding skins, complete
digital character animations can be created. However, this manual pro-
cess is labour-intensive and tedious, and hence the early animation cre-
ation requires high labour costs to ensure the relative authenticity. To
reduce human effort and cost, various methods, such as motion capture
technology (Menolotto et al. 2020), have been developed. Fig. 2.13 is
an example of the motion-capturing device. More recently, with the de-
velopment and proliferation of deep learning, motion construction has
evolved to the point where it can be reconstructed from 2D images or
videos. Compared to other digital characters, creating motion for digital
humans is the most complex and widely applicable task. Therefore, most
research is focused on Human Pose Estimation (HPE), while this section
will also focus on it and give a comprehensive overview of this challenging
task.

Based on the dimensionality of human poses, the human pose re-
construction task can be divided into 2D HPE and 3D HPE. Numerous
datasets such as FLIC (Sapp and Taskar 2013), MPII (Andriluka et al.
2014), and MSCOCO (Lin et al. 2014) have emerged, supporting various
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Figure 2.13: An example of a motion-capturing device, consisting of 17
inertial and magnetic sensor modules (Roetenberg et al. 2009).

algorithm frameworks for single-person and multi-person pose estima-
tion, greatly enhancing the performance of 2D HPE. The goal of 2D
HPE is to locate and identify 2D keypoints of humans and connect these
keypoints in a sequence to form the projected skeleton on a 2D plane. On
the other hand, 3D HPE aims to predict the 3D coordinates and angles
of human joints. The lack of annotated 3D pose datasets has led many
research methods to build upon 2D pose estimation techniques. Conse-
quently, advancements in 2D pose estimation have laid a solid foundation
for 3D human pose estimation, which holds immense potential for future
research. In practical applications, 3D HPE offers more precise represen-
tations of human poses compared to 2D HPE, as it incorporates depth
information. This increased precision makes 3D pose estimation more
valuable and applicable across a wider range of fields. However, 3D HPE
is also more challenging due to issues such as occlusion, the inherent
depth ambiguity in mapping from single-view 2D to 3D, and the lack of
large-scale outdoor datasets. Given the significance of 3D human pose
estimation, this section primarily focuses on summarizing the research
progress in this area.

Existing research in 3D HPE methods can be broadly categorized into
traditional methods and deep learning methods. Before the widespread
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adoption of deep learning, 3D human pose annotation datasets and high-
performance GPUs were not readily available. Researchers primarily
relied on traditional computer vision and machine learning techniques to
estimate 3D human poses. The key distinction between traditional and
deep learning-based 3D pose estimation methods is the use of multi-layer
neural networks in the latter. This difference in modelling approaches
leads to significant variations in estimation accuracy and computational
complexity. Modelling is a crucial aspect of 3D HPE, aiming to represent
keypoints and features extracted from input data. Given the complex-
ity of real-world environments, selecting appropriate and effective image
features to simplify the modelling process is essential.

Traditional methods often use human body models to describe and
infer poses by extracting image features. These methods demand high
accuracy in feature representation and spatial relationships of keypoints.
High-level features such as Scale Invariant Feature Transform (SIFT)
(Lowe 2004) and Histogram of Oriented Gradients (HOG) (Dalal and
Triggs 2005) are commonly used due to their robust representation ca-
pabilities and ability to compress feature space dimensions effectively.
However, these traditional features, despite their time efficiency, are man-
ually designed and have significant limitations. They may lose critical
image details and suffer from occlusion and inherent geometric ambigu-
ities, restricting their applicability. Moreover, traditional methods im-
pose certain requirements on the collected image or video data, making
them susceptible to factors like collection costs, occlusion, lighting, and
environmental conditions, regardless of using monocular or multi-view
cameras.

In contrast, deep learning models offer strong feature representation
capabilities and automate feature extraction from input data, eliminating
the need for manual feature design. They leverage convolutional neural
networks (CNN) (LeCun et al. 1998) to train on image data, directly
obtaining effective representation methods. CNN extracts rich semantic
features from images, providing higher accuracy and robustness com-
pared to manually crafted features. The representational power of these
networks grows exponentially with increased network depth, enhancing
the precision and robustness of pose estimation in complex environments.
Despite significant progress in deep learning for human pose estimation,
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challenges such as occlusion, insufficient training data, and depth ambi-
guity remain difficult to overcome.

2.3.1 Traditional Methods for 3D HPE

Traditional methods for 3D HPE can be broadly categorized into three
types: generative methods, discriminative methods, and template match-
ing methods. Template matching methods can be seen as a hybrid of the
generative and discriminative approaches.

2.3.1.1 Generative Methods

In traditional methods, feature extraction and the Pictorial Structure
Model (PSM) (Fischler and Elschlager 1973) play crucial roles in pose
estimation. PSM views the human body as a collection of joint struc-
tures (Burenius et al. 2013), with spatial constraints between these joints,
which are particularly advantageous for joint estimation of 3D poses.

When applying generative methods to 3D HPE, the primary task is
to build a parametric human model (Zhang et al. 2021). By adjusting the
model’s parameters, different poses can be generated. Thus, HPE using
generative methods can be framed as an optimization problem, where
the goal is to minimize the difference between the generated model im-
age and the actual image. The core of generative-based HPE lies in
constructing the human model, selecting optimization functions and tar-
get functions, and performing searches in high-dimensional pose spaces
to achieve accurate results. Methods for searching the pose parame-
ter space of constructed human models include Iterative Closest Point
(ICP) (Ganapathi et al. 2012), Gaussian Mixture Models (GMM) (Ye
and Yang 2014), and Markov Chain Monte Carlo (MCMC) sampling
(Brau and Jiang 2016). These methods, although accurate, are compu-
tationally intensive and complex, which hinders real-time performance.
Moreover, the initialization parameters of the human model significantly
affect the ability to find the optimal pose. Good initialization methods
can reduce the time required for spatial searches of human parameters,
thereby improving real-time performance. Conversely, poor initialization
can extend the search time, greatly impacting the algorithm’s efficiency
and real-time applicability.
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2.3.1.2 Discriminative Methods

To address the limitations of generative methods, researchers have de-
veloped discriminative methods for HPE. These methods offer several
advantages, including not requiring pre-generated human pose models
or initialization, and having faster computational speeds. Discrimina-
tive methods regard pose estimation as a regression problem. Initially,
they use classification algorithms to identify body parts and mark the
estimated human joint points through a dotting method. Clustering al-
gorithms then determine the centres of these points, and a pre-trained
regressor precisely estimates the positions of each key point. However,
discriminative methods struggle with robustness when faced with insuf-
ficient samples or occlusions. Additionally, the quality of training data
significantly impacts the accuracy of the final estimation, especially for
discriminative methods that rely on labelled data.

Discriminative algorithms extract features from images and learn the
mapping from the feature space to the pose space. Given the strong cor-
relation between skeletal joints and joint positions, some methods have
incorporated this dependency into their models. For instance, Ionescu
et al. (2011) proposed a discriminative monocular 3D human pose recon-
struction method based on latent segmentation inputs. This model can
infer human poses from monocular images captured in complex environ-
ments. Shotton et al. (2011) trained a regression forest to cluster input
depth images by body parts and used a mean-shift algorithm to estimate
joint positions. Chang and Nam (2013) employed a random classification
forest to identify which body part each visible pixel belongs to and used a
random regression forest to estimate all human joint points. Building on
this, Park et al. (2017)] introduced a random validation forest to elimi-
nate interference caused by self-occlusion. Ramakrishna et al. (2014) used
multiple hierarchical multiclassifier cascades to estimate joint positions,
addressing occlusion to some extent. However, these predictive models
still face challenges such as high model complexity, excessive parameters,
and computational intensity.

2.3.1.3 Template Matching Methods

Template matching based on geometric priors is a key approach for skele-
ton keypoint detection. This method represents the human body by
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keypoints, limb structures, and their spatial relationships. Effective tem-
plate matching techniques can simulate a wide range of poses and im-
prove pose detection accuracy. Historically, two main strategies have
been used. The hybrid methods combine generative and discriminative
approaches, as demonstrated by (Ganapathi et al. 2012), who used pre-
trained discriminative models to estimate body parts and initialized gen-
erative processes affected by fast motion or occlusion. Another strategy
involved data-driven template matching for initial pose estimation, fol-
lowed by generative methods for precise adjustment (Baak et al. 2013,
Ye et al. 2011). However, these methods also face challenges, including
the high cost of building and maintaining pose template libraries, the
trade-off between template variety and search efficiency, and the diffi-
culty in extracting highly discriminative features from raw data. As a
result, little further research has been conducted using these methods.

2.3.2 Deep Learning-based Methods for 3D HPE

Deep learning methods have gained prominence in 3D human pose esti-
mation due to their superior feature extraction capabilities compared to
traditional manually designed feature methods. Unlike conventional ap-
proaches that require pre-defined feature extraction, deep learning lever-
ages neural networks to automatically obtain high-level semantic fea-
tures. Initially, CNN is used to extract image features, which are then
processed to determine the positions of skeletal keypoints. This self-
learning feature representation in deep learning outperforms traditional
methods that rely on prior knowledge. Additionally, the transfer learn-
ing capabilities of deep learning allow models trained on large datasets to
be effectively applied to smaller datasets. Consequently, deep learning-
based 3D human pose estimation has become the mainstream research
approach. This approach can be categorized into two main types: direct
regression-based methods, and 3D pose estimation based on 2D informa-
tion.

2.3.2.1 Direct Regression-based Methods

Direct regression-based HPE, also known as end-to-end HPE, uses a large
network to process all data. Leveraging the ability of deep neural net-
works to fit complex functions, this method typically does not require
additional algorithms or intermediate data. Thus, it directly predicts 3D
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pose coordinates from a single image using a regression-based network
structure. The primary advantage of this approach is its end-to-end
training and inference, simplifying the application process. However, it
demands a sophisticated network architecture and rigorous data prepro-
cessing.

Li and Chan (2015) pioneered in using deep learning for 3D human
pose estimation by training a network to directly regress 3D joint posi-
tions from images. Their method utilized a multi-task training framework
with tasks divided into joint detection and regression. These tasks shared
early feature layers, where the detection task classified whether a local
window contained a specific joint, and the regression task calculated the
relative position of joints to the root joint. The training method was
unique as it first trained a separate visual task for object detection, and
then used the CNN layers from the feature extraction part as the initial
model for 3D HPE, discarding the object detection head and focusing on
the regression task to achieve the final estimation results. Similarly, Park
et al. (2016) proposed a network structure with an additional supervision
branch for 2D pose estimation. This approach used 2D pose estimation
results concatenated with image features to estimate 3D poses, incor-
porating relative position information from multiple joints, not just the
root joint, for more accurate 3D poses. Tekin et al. (2016) pre-trained
an unsupervised autoencoder to learn the mapping from 3D poses to a
high-dimensional latent space, encoding structural dependencies between
joints to strengthen pose constraints. They then used a shallow network
to learn high-dimensional pose representations. By utilizing multi-step
outputs of the encoder, rather than a single fixed-length vector, they
preserved more information.

Heatmap regression retains more information from the image, and us-
ing heatmaps of skeletal keypoints is a mainstream method in 2D human
pose estimation that can also be applied to 3D pose estimation. Tekin
et al. (2017) and Zhou et al. (2019a) utilized 2D heatmaps as intermediate
representations for estimating 3D poses instead of 2D joint coordinates.
Pavlakos et al. (2017) extended the use of skeletal keypoint heatmaps
and the Stacked Hourglass Network (SHN) (Newell et al. 2016) from
2D pose estimation to 3D. Considering the wide range of Z-axis depth,
they proposed a coarse-to-fine structure for gradual regression. For each
joint, each stage generates heatmaps with different channel numbers to
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progressively refine the Z-axis resolution, thus forming 3D heatmaps. By
calculating the confidence of each point, the 3D joint positions can be
inferred in a discrete 3D space, improving the accuracy through iter-
ative refinement from coarse to fine estimates. However, this method
has limitations. When obtaining joint coordinates, taking the maximum
value position from the heatmap and converting it back to the original
image space introduces quantization errors, leading to significant devia-
tions in the final coordinates. Additionally, the non-differentiable nature
of the max operation prevents end-to-end training and optimization of the
model. To address these issues, Zhou et al. (2016) shifted their approach
by detecting body parts instead of directly estimating joint positions.
They embedded kinematic models directly into the deep neural network
to estimate general joint movements, thus enhancing the robustness and
accuracy of 3D human pose estimation.

2.3.2.2 2D Information-based Methods

To address the limitations of direct regression methods in model opti-
mization and practical application, researchers have explored 3D human
pose estimation based on 2D information. These approaches effectively
mitigate the issue of mismatched labelled data quantity and network size
encountered in direct regression methods. 3D pose estimation based on
2D information generally involves two stages: first, acquiring 2D informa-
tion, and then predicting 3D pose coordinates from the 2D pose. There
are two main implementation strategies: one integrates the training of
both 2D and 3D pose networks, while the other uses a pre-trained 2D
pose network and inputs the resulting 2D pose into a 3D pose estimation
network for dimensionality enhancement. The latter, also known as 3D
pose estimation based on 2D skeleton sequences, reduces the overall task
complexity. This method allows the network to more easily learn the
2D-to-3D mapping and benefits from the maturity of 2D pose estimation
techniques. Additionally, it facilitates the incorporation of reprojection
for semi-supervised learning, making it a more mainstream approach.

Joint training of 2D and 3D pose networks represents an alternative
to directly regressing 3D coordinates from images. This method uses the
2D information obtained from the network as an intermediate represen-
tation for further predicting 3D coordinates. Chen and Ramanan (2017)
introduced a method based on 2D pose estimation and pose matching.
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They retrieve and compare the 2D pose obtained from images with the
2D projections of poses from a large 3D human pose library, ultimately
outputting the best-matching 3D pose. This method has the advantage
of avoiding the need for complex human structure constraints, but it re-
quires a large amount of data to ensure high accuracy. Moreno-Noguer
(2017) inferred 3D human poses through distance matrix regression. This
approach encodes the pairwise distances of 2D and 3D body joints into
two Euclidean Distance Matrices (EDM). EDM is invariant to rotation
and translation within the image plane and maintains scale invariance
with normalization. Wang et al. (2018) utilized a pairwise ranking con-
volutional neural network to predict the depth order of human joints.
They then employed a coarse-to-fine pose estimator to perform 3D pose
regression using the 2D joints and depth ranking matrix. Li and Lee
(2019) treated 3D human pose estimation as an inverse problem with
multiple feasible solutions. They first generated multiple 3D pose hy-
potheses and then used a ranking network to select the best 3D pose
based on its 2D projection. This method allows for the refinement of 3D
pose estimation by considering various potential poses and selecting the
most accurate one.

A prominent method based on 2D skeletal sequences for 3D pose es-
timation was proposed by Martinez et al. (2017). This approach starts
with 2D human pose estimates and uses a simple, shallow neural net-
work to regress these 2D poses into 3D human poses, achieving high
accuracy. This straightforward, fast, and lightweight baseline effectively
maps 2D poses to 3D poses and demonstrates that most errors in 3D
pose estimation stem from inaccuracies in 2D pose estimation and the
mapping from 2D to 3D joints. Pavllo et al. (2019) showed that 3D poses
in videos can be accurately predicted using a dilated temporal convolu-
tional model based on 2D joints. They introduced back-projection and
a semi-supervised training method with unlabelled video data, providing
superior accuracy, simplicity, and efficiency compared to recurrent neural
network (RNN) methods (Hossain and Little 2018, Lee et al. 2018). This
approach also outperformed previous methods in scenarios with limited
labelled data. However, it assumes temporal independence of prediction
errors, which may not hold when occlusions occur. Chen et al. (2020)
adopted an iterative strategy to directly match 2D inputs from multiple
cameras with 3D poses, iteratively updating the 3D pose. Nevertheless,
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since this method is linear in time complexity, its runtime increases sig-
nificantly with the number of cameras. Remelli et al. (2020) proposed a
lightweight solution by encoding each view’s image into a unified latent
representation, separating feature mapping from the camera’s viewpoint.
They used a learned camera projection operator to produce accurate
per-view 2D detections, which were then elevated to 3D using GPU-
accelerated direct linear transformation. To enhance the generalization
of multi-view feature fusion, Xie et al. (2020) introduced a pre-trained
multi-view fusion model, MetaFuse, which effectively adapts to new cam-
era settings with minimal labelled data by learning from many cameras
through a meta-learning framework, maximizing adaptability to various
camera poses.

Overall, joint training of 2D and 3D pose networks requires complex
structures and ample training data. In contrast, 3D pose estimation
based on 2D skeletal sequences benefits from mature 2D pose estima-
tion methods, offering simple, lightweight network structures, and fast
training speeds. This makes it a mainstream approach in current 3D
HPE research and in Chapter 6, this research will introduce a novel deep
learning-based method, which estimates high-quality 3D skeletal motion
from 2D inputs.

To sum up, this chapter has covered various related works. With
the insights gained and goals outlined, the following chapters will delve
into my endeavours towards creating advanced animation technologies
for generating realistic digital characters in real-time environments.
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Chapter 3

Review on State-of-the-art
Improvements & Applications of
PBD

3.1 Introduction

As discussed in Chapter 1 and 2, dynamic simulation of 3D models is cru-
cial for creating immersive experiences in the metaverse, making it a hot
research topic in computer animation. Numerous works have advanced
simulation technologies, with reviews by Bender et al. (2014a) and Gib-
son and Mirtich (1997) covering these developments. However, achieving
real-time realistic animations remains a critical performance challenge.
According to the above content, this issue can be addressed through
shape deformation methods, which fall into three main categories: geo-
metric deformation, example-based deformation, and physics-based de-
formation methods. Geometric methods modify 3D model shapes by
manipulating underlying control structures in different ways. For in-
stance, Linear Blend Skinning (LBS) (Magnenat et al. 1988) blends the
influence of multiple joints on each vertex based on assigned weights,
Free-form deformation (FFDs) (Sederberg and Parry 1986) embed the
3D model within a lattice structure, and joint-based methods (Kavan
and Žára 2005, Yang et al. 2006) apply transformations to a hierarchical
structure of joints or bones. These methods work directly on positions
and do not involve any physical surface deformation, often resulting in
animations that appear unnatural. Example-based methods mitigate the
artefacts of geometric methods to generate intricate deformation effects
by learning from well-sculpted example poses, such as PSD (Lewis et al.
2000), SWE (Mohr and Gleicher 2003) and RigNet (Xu et al. 2020).
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Figure 3.1: Some examples of PBD simulated scenes. The left is a solid
ball collided with a deformable soft cube; the middle is a scene with
many twisted bars; the right shows the simulation of fluids (Bender et al.
2017).

These methods require expensive human involvement in creating exam-
ples of realistic mesh deformation. On the other hand, physical meth-
ods rely on physical laws like Newton’s second law to calculate forces
and accelerations, updating corresponding velocities through time in-
tegration. Techniques in this category include impulse-based methods
(Mirtich 1996), mass-spring systems (Chadwick et al. 1989), and FEM
(Capell et al. 2005). Whilst physical methods can produce more realistic
animations, they have drawbacks such as overshooting issues and high
computational costs due to the need for velocity and acceleration layers
and extensive numerical calculations. Consequently, they also fall short
of the desired performance standards in real time.

Recently, position based dynamics (PBD) methods have become a
focal point in interactive systems due to their effective balance between
realism and efficiency. Compared to other approaches, PBD excels in
speed, robustness, and simplicity, making it highly popular for simulating
dynamic systems in real time. First introduced by Müller et al. (2007),
PBD inherits the advantages of geometric methods by directly handling
positions and omitting velocity and acceleration layers. These approaches
focus on solving quasi-static problems, enabling great performance in
real-time simulations and offering visually plausible deformations and
good controllability. Some examples of simulation results produced by
PBD frameworks are shown in Fig. 3.1.

The core algorithm and various applications of PBD have been com-
prehensively detailed in the paper (Bender et al. 2014c 2017). Originally,
PBD methods were introduced for simulating interactive environments
with solid objects. However, it was later demonstrated that these meth-
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ods could also be effectively applied to simulating fluids, articulated rigid
bodies, and other scenarios. In this chapter, recent advancements and
applications of PBD in different scenarios will be reviewed. Previous
works related to PBD up to 2018 have been comprehensively covered in
(Bender et al. 2014c 2017). For clarity and readability, we will briefly
mention part of these earlier works and focus more on the latest devel-
opments since 2018.

3.2 Basic Concept of PBD

The whole pipeline in simulating the deformation of a particle-based
system by the original PBD is introduced in this section, according to
(Müller et al. 2007).

3.2.1 Overview of PBD

A deformable object can be defined by a set of N vertices and M con-
straints in a particle-based system. The ith (t ∈ [1, 2, . . . , N ]) vertex
contains these attributes: mass mi, position xi (x = (x, y, z)) and veloc-
ity vi (v = (vx, vy, vz)). Applying the set of M constraints to alter the
position and velocity attributes of the N vertices at the next timestep,
a group of functions Cj (j ∈ [1, 2, . . . ,M ]) can be computed. Thus, the
position x1

i and velocity v1
i of the ith vertex at the next timestep t+∆t

with its initial position x0
i and velocity v0

i at timestep t is calculated as
follows:

In line (2), the current attributes of each vertex are used to initialize
the state variables. Line (3) applies external forces, which cannot be con-
sidered positional constraints like gravity, to the system via a symplectic
Euler integration step. Line (4) includes an optional damping step to im-
prove simulation performance, while line (5) computes the initial position
pi, which is used only as predictions. Line (6) generates Mcoll nonperma-
nent collision constraints, which are distinct from the fixed constraints
Cj (j = 1, 2, . . . ,M). Lines (7)–(10) use a solver to correct the predicted
position pi. Line (11)-(12) recompute updated velocities and positions.
Line (13) applies friction and restitution coefficients to modify the veloc-
ities of colliding vertices. Finally, the recomputed velocity and position
are assigned to x1

i and v1
i at the next timestep t+∆t. Further explana-

tions of the pipeline will be introduced in the following subsections.

44



Algorithm 1 Calculate position and velocity at a timestep ∆t

Input: x0
i , v0

i , mi, Cj(j ∈ [1, 2, . . . ,M ]), iteration number IN , certain
constraint order

Output: x1
i , v1

i

1: for each i ∈ [1, N ] do
2: initialize xi = x0

i , vi = v0
i , wi = 1/mi

3: vi = vi +∆twifexternal(xi)
4: dampVelocities(vi)
5: pi = xi +∆tvi

6: Ck(k ∈ [1, 2, . . . ,Mcoll]) = generateCollisionConstraints(xi → pi)
7: while iteration index s < IN do
8: pi = projectConstraints(C1, C2, . . . , CM , . . . , CM+Mcoll

,pi)
9: s++

10: end while
11: vi = (pi − xi)/∆t
12: xi = pi

13: vi = velocityUpdate(vi)
14: x1

i = xi, v1
i = vi

15: end for
16: return Outputs

3.2.2 Damping

In (Müller et al. 2007), it has been proven that integrating a damping
term CẊ into Newton’s second law can improve the quality of PBD sim-
ulation, where C is a matrix for computing the damping and Ẋ denotes
a velocity vector. This term is used in line (4) of Algorithm 1 for re-
ducing temporal oscillations of the point positions, which enhances the
simulation stability. As point damping and spring damping can improve
the realism of the simulation results by conserving momentum and point
stability, they are most often used in applications.

3.2.3 Collision

Line (6) of Algorithm 1 generates extra temporary collision constraints
to correct the calculation of the positions of each vertex. There are
primarily two groups of constraints, depending on whether dynamic or
static objects are considered.

When a dynamic object collides with a static object, there will also
be two different conditions considering whether the ray xi → pi crosses
or is inside any objects.
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Figure 3.2: Three different conditions of object collision.

If the ray enters an object, like Fig. 3.2(1), the collision will be
handled as continuous, with an inequality constraint C(pi) and stiffness
k = 1 added to the constraint list, computed as:

C(pi) ⩾ (pi − qc) · nc (3.1)

where qc denotes the intersection point, and nc is the normal of the
collided object surface at qc.

If the ray is completely in the internal space of an object, like Fig.
3.2(2), the collision will be handled as static, with the inequality con-
straint C(pi) computed as:

C(pi) ⩾ (pi − qs) · ns (3.2)

where qs denotes the closest point of the collided object surface to pi,
and ns is still the normal of the collided object surface at qc.

When two dynamic objects collide, the computation becomes a bit
more complex. Consider the collision as a point qi of one object moves
through a triangle, which consists of the closest three points p1,p2,p3 of
the other object to qi, like Fig. 3.2(3). The collision constraint can be
computed as:

C(qi,p1,p2,p3) ⩾ ±(qi − p1) · [(p2 − p1)× (p3 − p1)] (3.3)

where ± is set to make sure that qi is on the correct side of the tri-
angle. This constraint preserves linear and angular momentum as it is
independent of the rigid objects.

The generation of the collision constraints is done outside of the solver
loop, which significantly reduces the running time of the simulation com-
pared with physics-based methods.
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3.2.4 Solver

Lines (7)-(9) of Algorithm 1 utilize a solver to correct the predicted
position p1,p2, . . . ,pN of the N vertices for satisfying the M + Mcoll

constraints, which can be presented as nonlinear equations. The solver
contains a nonlinear Gauss-Seidel iteration to separately calculate each
constraint one by one.

A correction ∆p can be added to linearize the nonlinear constraints
through:

C(p+∆p) = C(p) +∇C(p) ·∆p+O(|∆p|2) ≻ 0 (3.4)

where the symbol ≻ means either = or ⩾.
Considering a second-order approximation, Eq. 3.4 can be written

as:
C(p+∆p) ∼ C(p) +∇C(p) ·∆p ≻ 0 (3.5)

It can be figured out that the above system is undetermined as Eq.
3.5, which is not an equation. Thus, for solving the undetermined prob-
lem, the correction ∆p should be restricted to be in the same direction
with ∇C to preserve the linear and angular momentum, formulated as:

∆p = λ∇C(p) (3.6)

where the scalar λ is a Lagrange multiplier, which can be determined by
substituting Eq. 3.6 into Eq. 3.5 as:

λ =
C(p)∑

j wj|∇pj
C(p)|2

(3.7)

Then the correction of each individual vertex pi can be formulated
as:

∆pi = −λwi∇pi
C(p) (3.8)

Lastly, the stiffness parameter k ∈ [0, 1] will be added to the solver
to control the strength of the constraints.

3.3 Recent Improvements of PBD

However, after surveying the recent works, it can be found that the orig-
inal PBD is limited due to these three main defeats:
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1. The inability to effectively achieve a convergent solution during
iterations.

2. The dependence of results on stiffness parameters k, timestep ∆t,
and iteration count niter.

3. The influence of the processing order of different constraints in the
solver.

In this section, the latest advancements in PBD will be reviewed,
including advanced algorithms designed to address these primary limita-
tions and recent developments extending PBD to other scenarios such as
fluids and cloth.

3.3.1 Improvements in Convergence Problem

As discussed in Section 3.2, the iterative solver is the most critical step in
PBD simulations. It helps the system achieve better corrections in each
iteration, resulting in more realistic deformation outcomes. Nevertheless,
PBD uses a nonlinear Gauss-Seidel solver for iterating projections, which
causes slow propagation of corrections and makes it challenging to achieve
a convergent solution. To enhance the solver’s convergence efficiency, sev-
eral methods have been proposed, such as Hierarchical Position-Based
Dynamics (HPBD) (Müller 2008) and the second-order accurate mul-
tistep method (BDF2) (English and Bridson 2008). HPBD defines a
multigrid-based mesh to propagate error corrections more swiftly, al-
though its tearing algorithm requires further improvement. By incorpo-
rating BDF2 into PBD, which utilizes information from previous time
steps, projection convergence is accelerated. However, this method may
not be competitive for stretchy materials. Additionally, other methods
like the Long Range Attachments (LRA) (Kim et al. 2012) method have
been proposed to further expedite error propagation. Inextensible char-
acter clothing can well-suit LRA, whilst unattached environmental cloth,
such as flying paper, does not benefit from it.

3.3.2 Improvements in Dependence Problem

To eliminate the dependence of simulation results on stiffness parame-
ters k, timestep ∆t, and the number of iterations niter, various methods
have been proposed. Among these, Extended Position-Based Dynamics
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Figure 3.3: The simulation results of a twisted rope demonstrate the
ability of XPBD to generate detailed deformation results (Müller et al.
2020).

(XPBD) and Projective Dynamics (PD) have gained significant atten-
tion. These two methods not only address the dependence issue but also
elevate position-based approaches into standalone research topics.

3.3.2.1 Extended Position Based Dynamics

XPBD was first introduced by Macklin et al. (2016), of which the pri-
mary function is to address the dependency issues inherent in PBD. This
is achieved by associating a compliance α = 1

k
with each constraint.

This simple modification to the PBD solver allows for a rigid solution
regardless of the timestep. Additionally, XPBD allows the generation of
accurate constraint force predictions for force-related effects by provid-
ing consistent solutions. Building on XPBD, by dividing each timestep
into n isometric substeps and performing XPBD iterations at each sub-
step, Macklin et al. (2019b) spent a lower computational cost to notably
enhance achievable stiffness. Müller et al. (2020) improved XPBD to ac-
curately resolve small spatiotemporal details in rigid body simulations,
of which the ability to simulate twisted ropes was demonstrated in Fig.
3.3. Furthermore, Romeo et al. (2018) and Romeo et al. (2020) modi-
fied XPBD by adjusting the distance constraints between mesh vertices
to define muscle dynamics simulations. Liu et al. (2022b) incorporated
additional geometric constraints into XPBD to achieve differential pa-
rameter identification and shape control of linear objects for real-to-sim
robotic manipulation.
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Figure 3.4: The computational time for each frame after 1, 10, 20 itera-
tions of simulating a hippopotamus model by PD and Newton’s method
from (?). It could be observed that, after 10 iterations, the simulation
results retain as many details as the physics-based method, whilst PD
only uses 1/10 time of the latter for simulating one frame.

3.3.2.2 Projective Dynamics

Projective Dynamics (PD) is another extension of PBD, as introduced
in (Bouaziz et al. 2014). PD incorporates additional constraints into the
iteration solver to improve its robustness when handling non-uniform
meshes with varying resolutions. This improvement allows PD to implic-
itly process interactions between objects, reducing the correlation be-
tween stiffness and the number of iterations. Moreover, as illustrated in
Fig. 3.4, PD converges faster than Newton’s method, thus significantly
decreasing computation time.

Bouaziz et al. (2014) demonstrated that, due to the robustness and
simplicity of PD, various materials could be simulated, such as cloth,
shells, and solids. In (Soler et al. 2018), PD was further applied to
simulate Cosserat rods. To accurately model the twisting and bending
deformations of rods, it is essential to conserve angular momentum in ad-
dition to linear momentum. Therefore, the system is changed to include
qn,vn, ωn, where ωn represents the angular velocity of the nth vertex at
timestep tn. Fig. 3.5 shows the high quality of visual results achieved.
Furthermore, Solar et al. compared the convergence times of PD and
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Figure 3.5: The simulation result of a folded rod. The left is a real
elastic rod, while the right is a simulated rod generated by PD (Soler
et al. 2018).

PBD and concluded that PD converges to a mesh-independent solution
even faster than PBD.

PD can also be used to simulate deformable characters, consisting of
rigid parts (bones) and deformable parts (flesh), with articulated skele-
tons, demonstrated in (Li et al. 2019). After integrating additional rigid-
body constraints and joint constraints into the global step of the PD
solver, they group and reorder nf flesh vertices and nb bone vertices us-
ing affine constraints. This method generates stable and efficient joint
simulations with minimal joint error, achieving a quality comparable to
state-of-the-art rigid body simulators.

3.3.3 Improvements in Other Limitations

In the Guass-Seidel-type solver of PBD, the constraints are handled inde-
pendently one after another, hence the convergence order and final results
are affected by the solving order of constraints. Only a few advanced
methods have been proposed so far in addressing the order-dependent
effects caused by the constraint processing order issues within PBD. For
instance, Gu et al. (2017) introduced a sorting method to handle the
fundamental constraint order, enhancing both realism and efficiency in
cloth simulation.
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In spite of this, the PBD solver has many other limitations, such
as the lack of momentum constraints, which ties material stiffness to
the timestep size and the number of iterations. XPBD has addressed
this problem, while Dahl and Bargteil (2019) proposed a straightforward
method to conserve angular momentum loss. Additionally, Bender et al.
(2014c) explained that the Gauss-Seidel version of PBD cannot be effec-
tively parallelized due to the constraint averaging issue. This limitation
makes the number of iterations dependent on the number of constraints.
Addressing this dependency problem is another crucial topic that war-
rants attention.

3.3.4 Improvements in Extensions

As previously mentioned, simulating particle-based dynamic objects was
the goal that PBD was developed for, though it has since been extended
to other scenarios, including cloth, fluid, and rigid body simulations.

3.3.4.1 Cloth Simulation

The basic stretch constraints involve distance constraints between ad-
jacent vertices (Jakobsen 2001). Besides them, cloth simulation also
requires handling bending constraints between adjacent triangles. For
inextensible materials, since the edge lengths remain equal, adding an
isometric bending constraint has been demonstrated particularly use-
ful for simulating cloth with realistic folds and wrinkles (Bender et al.
2014b). Mohammed et al. (2020) applied extra position constraints on
the PBD solver to maintain constant densities. This approach effectively
generates various wind effects on cloth, addressing issues of dynamic layer
preservation and wrinkles. Other scenarios may also impose various con-
straints to accommodate their unique attributes, including self-collision,
cloth-balloon interaction, and strain energy constraints.

3.3.4.2 Fluid Simulation

Fluids were also initially modelled as particle systems by associating
specific constraints to ensure the minimum distance between particles,
known as Smoothed Particle Hydrodynamics (SPH) (Monaghan 1992).
However, SPH has limitations, such as failing to achieve hydrostatic
equilibrium at rest. To address this, Macklin and Müller (2013) in-
tegrated position-based concepts with SPH, introducing position based

52



fluids (PBF), which added density constraints to the solver. Shao et al.
(2017) incorporated PBD position constraints into SPH to stabilize fluid-
solid interactions. Their work demonstrated that PBD notably smoothed
the vorticity of the fluid particle system, enhancing the visual fidelity of
SPH simulations.

Building on PBF, Köster and Krüger (2016) proposed a method
to significantly improve performance in specific scenarios by adaptively
changing the position of each particle in the simulation system using
fine-grained level-of-detail (LOD) information. Geyer (2022) introduced
another modification to PBF, allowing fluid particles to adapt to the
size of fluid shapes, thereby reducing particle count and computational
cost. This approach resolved interaction issues between fluid particles of
different sizes within PBF.

3.3.4.3 Rigid Body Simulation

The fundamental PBD method is versatile, extending beyond particle-
based systems to rigid body simulations by incorporating joint and con-
tact constraints, as shown in Fig. 3.6. The traditional PBD methods ap-
ply Newton’s second law to particles, though they can only suit particle-
based systems. This is because a particle has three spatial degrees of
freedom (DOF), while a rigid body has three additional rotational DOFs
to represent its orientation. For simulating rigid bodies, the constraints
must be extended to the Newton-Euler equations to include rotational
dynamics, treating a rigid body as a group of infinitely many particles.

Frâncu and Moldoveanu (2017) proposed a novel PBD formulation,
which integrates friction and contact into the solver for rigid and elastic
bodies using nonlinear convex optimization. Weiss et al. (2017) intro-
duced PBD as a discrete algorithm for multi-agent crowd simulations,
developing a set of position constraints and integrating them into the
PBD solver. This provided a robust, stable, and easily implementable nu-
merical framework for real-time crowd simulations. Sharma et al. (2020)
enhanced multi-agent simulation by adding extra constraints using sep-
arating planes in the PBD solver to achieve flexible collision avoidance.
Macklin et al. (2019a) presented a framework integrating an off-the-shelf
linear solver into PBD to enhance rigid and deformable contact handling
by a non-smooth Newton iteration method. This method showed great
performance in robotic manipulation scenarios. In (Liu et al. 2022a),
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Figure 3.6: The simulation result of rigid bodies. The top has 2000 elastic
objects (Deul et al. 2016), while the bottom has 5000 rigid boxes (Weiss
et al. 2017).

Liu et al. integrated optimal robot design, model-based motion control,
and system identification into PBD to develop a differentiable frame-
work, improving design efficiency and estimation accuracy. Moreover,
Pan and Manocha (2018) introduced Position-Based Articulated Dynam-
ics (PBAD), which reformulates articulated body dynamics simulation
into an energy minimization problem using only position variables, en-
abling fully implicit integration. This approach improves efficiency at
large timesteps compared to traditional methods but could not com-
pletely avoid numerical dissipation, lacking the precision of integrators
in (Liu et al. 2022a).

For deformable object simulations based on position-based concepts,
real-time performance is a critical standard met by most methods men-
tioned. However, there exist visual artefacts such as numerical damping
and "explosions" when simulating with large timesteps and numerical
approximations in PBD solvers. To correct these artefacts, Dinev et al.
(2018) proposed a post-processing energy projection method with energy
projection, generating visually plausible and stable motions in interactive
systems.
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3.3.5 Summary Table

The content of all the above improvement articles will be recorded in the
following tables for easy inquiry and understanding. The contributions,
advantages, and defeats of the mentioned improved methods of PBD
are summarized in Table 3.1. The extensions of XPBD and PD are
listed in Table 3.2. The advancements of PBD for different scenarios are
summarized in Table 3.3.
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3.4 Recent Applications of PBD

In recent years, the applications of PBD have extended to several other
fields. In this section, the latest applications in specific areas, including
deep learning, medical simulations, and architecture, will be reviewed.

3.4.1 Deep Learning-related Application

With the rapid development of deep learning (DL) techniques in this
decade, it has become a hot topic in computer graphics, which has been
applied to various fields such as 3D representation, image transmission,
and autonomous vehicles, achieving significant progress. The integra-
tion of PBD and DL has been proven effective by many researchers.
For example, graph networks (GN) have been used in PBD as an ac-
celeration method for simulating rod dynamics to estimate constraint
projections (Shao 2022). Compared to the original PBD, the method
integrated GN enhances runtime performance. Beyond improving PBD
performance, the high-quality simulation data generated by PBD has
been used as input for data-driven methods to approximate physical
forces effectively (Holden et al. 2019). Yang et al. (2020) learned and
predicted physical rules for controlling challenging scenarios by embed-
ding neural networks in the projection constraint step. Kim et al. (2022)
introduced an Anisotropic Constraint Boundary Convolutional Neural
Network (AnisoCBConvNet), which uses PBD as a dynamic solver to
generate surface data for deep learning. Except for PBD, PBF (Macklin
and Müller 2013) has also been implemented in Smooth Particle Networks
(SPNets) (Schenck and Fox 2018) to compute rigid body and liquid in-
teractions, as shown in Fig. 3.7.

3.4.2 Medicine Application

In addition to its applications in cloth, deformable objects, and fluid sim-
ulations, PBD has also been employed in surgical simulations since PBD
avoids overshooting issues and is easier to handle collision constraints
compared with physics-based methods. Pan et al. (2015) simulated hy-
brid soft tissue by an interactive dissection method, which applies con-
straints conserving energy and volume to PBD, enhancing the visual
realism of simulation results.
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Figure 3.7: The simulation result of fluids interacting with a rigid body,
produced by SPNets (Schenck and Fox 2018).

Figure 3.8: The simulation result of soft tissue incisions in a virtual
surgery (Berndt et al. 2017).

Following this, Berndt et al. (2017) leveraged PBD’s capabilities to
model all dynamic objects in surgery, simulating soft tissue incisions
(as shown in Fig. 3.8), bones, and body fluids by associating differ-
ent constraints for corresponding materials. Their method demonstrates
faster simulation speeds and better scalability when simulating hybrid ob-
ject scenarios compared to FEM-based methods proposed by Wu et al.
(2015a). Walczak et al. (2019 2020 2022) simulated mitral and aor-
tic valves using a simple material model, utilizing PBD for interactive
parametrization to simulate missing information.

Moreover, Han et al. (2020) simulate tissue deformation within a 2D
surgical framework with PBD. Xu et al. (2018) proposed a method incor-
porating mass-spring-damper (MSD) constraints into PBD for simulating
soft tissue deformation during laparoscopic cholecystectomy, addressing
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Figure 3.9: The simulation result of automatic city layout in solving an
urban design task (Cao and Ji 2021).

the dependency problem between deformation effects and iterative vari-
ables. Additionally, PBD has been used in virtual surgery to simulate
soft tissues (Tagliabue et al. 2020, Liu et al. 2020b), demonstrating its
versatility and effectiveness in medical simulations.

3.4.3 Architectural Application

PBD has also been applied to architectural layout tasks, such as ur-
ban design, where architectural layout standards can be viewed as lay-
out constraints. Cao and Ji (2021) modelled the city layout problem
as the positioning and orientation of buildings B = b1, b2, . . . , bn. In
real layout design task, the building entities are often defined by a se-
ries of virtual models, which are called agent models (AM), to explain
their properties, including shape, shadow and field. For each building
bi ∈ B (i = 1, 2, . . . , n), additional attributes include position pi, orien-
tation θi, associated shape mesh, a set of agent models, and inverse mass
wi =

1
mi

, where mi is the building mass. A priority stiffness k is specially
set for control the order of constraints solving. Due to their inherent
properties, different agent models will also affect the correction process.
Thus, two extra steps were added to the original PBD solver: updating
the priority stiffness k and agent models AM before generating collision
constraints. As shown in Fig. 3.9, with this improved PBD method, the
city layout can be automatically generated.

3.4.4 Summary Table

The content of all the above application articles will be recorded in the
following table for easy inquiry and understanding, where the different
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applications of PBD in various fields are listed in Table 3.4.
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3.5 Conclusion

In this chapter, the latest developments and applications of position-
based methods are reviewed. By introducing the core algorithm of the
original PBD for particle-based systems, the significance of its main three
steps, which correct the vertex attributes, is explained, including damp-
ing, collision, and solver. Next, improvements in position-based methods
since 2018 are examined, highlighting significant extensions such as Pro-
jective Dynamics (PD) and Extended Position-Based Dynamics (XPBD).
The simulations of various materials are introduced, along with modifi-
cations made to accommodate different scenarios, including rigid bodies,
fluids, and cloth. Then, the recent applications of PBD in medical simu-
lations, integration with deep learning, and architectural layout planning
are reviewed.

From these works, we can observe that PBD often excels in applica-
tions requiring high real-time performance. Since PBD omits the velocity
and acceleration layers by directly correcting position, it is computation-
ally efficient while still producing visually plausible simulation results.
Since the primary target of this research is to create authentic digital
character animations in real-time environments, in Chapter 4, we will
consider PBD simulation results as our ground truth in surface recon-
struction techniques, emphasizing the two advantages of this research:
real-time performance and realism.
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Chapter 4

PDE-based Dynamic
Reconstruction Integrating PBD

4.1 Introduction

As mentioned in Chapter 1, despite the challenges posed by the COVID-
19 pandemic, the global gaming market has remained vibrant in recent
years, leading to intense competition for player engagement. To enhance
the gaming experience, advanced technologies such as voice control and
facial recognition have been introduced. However, the quality of digital
character animations continues to be a critical factor influencing play-
ers’ perceptions of interactive games. Researchers are constantly seeking
techniques to create realistic animations of digital characters in real-time
environments, including modelling, skin deformation, and motion con-
struction methods.

Game models are typically created for interactive systems, necessitat-
ing that they are both small and capable of fulfilling real-time rendering.
To achieve this, mesh simplification techniques like (Daniels et al. 2008,
Ebke et al. 2014) have been developed to reduce design parameters in
high-resolution models or to create low-polygon models from scratch.
However, low-resolution 3D models often fall short of providing the nat-
ural and precise animations required for interactive games. To balance
computational efficiency with model detail, techniques such as motion
prediction and anti-aliasing have been developed. Besides, level-of-detail
(LOD) is indispensable in modern open-world games, as it significantly
reduces computational resources by decreasing model detail for objects
outside the player’s immediate view. While LOD alleviates the burden

71



Figure 4.1: A human face model and its reconstruction created by ODE-
based surface creation method.

of more detailed models, the reconstruction of simplified meshes remains
a challenging issue.

Section 2.1.1.3 of Chapter 2 introduced ODE-based Sweeping Surface,
which significantly reduces data size and enhances the controllability of
surface shapes without losing realistic details. Fig. 4.1 is a comparison
example of ODE-based surfaces and ground truth. The left is a human
face model, consisting of 15,378 polygons and 8,221 vertices. The right is
reconstructed with 4,236 polygons and 4,764 vertices from the left ground
truth model via an ODE-based surface creation approach, introduced in
Chapter 5. It can be found that the ODE-based reconstruction model
owns much fewer surfaces and vertices compared with the original one,
with most visual details preserved, like nasolabial folds and cheekbone.
This demonstrates the potential of ODE-based modelling approaches in
creating realistic models in real-time environments.

Similar to ODE-based modelling introduced in Chapter 5, PDE-based
modelling creates 3D models by finding solutions of vector-valued PDEs
with boundary constraints, whilst it has the ability to represent more
complex surfaces. According to (Sheng et al. 2010), the approximation
by NURBS reduces an original femur polygon mesh of 3.2 MB to 0.55 MB,
whilst an analytical PDE approximation can reduce it to 0.26 MB. This il-
lustrates that design variables can be significantly reduced by PDE-based
modelling compared to patch-based and polygonal modelling techniques.

PDE-based modelling that disregards the effects of acceleration and
velocity is known as static PDE-based modelling, which is only consid-
ered in existing ODE/PDE-based modelling technologies. For dynamic
objects, PDE-based modelling considers the effects of acceleration and
velocity by integrating their underlying physical principles as constraints.
These PDE-based methods for dealing with dynamic scenarios are called
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dynamic PDE-based modelling. Although extensive research has been
conducted on static PDE-based modelling, there has been limited study
on dynamic PDE-based modelling. To date, we have not encountered
any work combining dynamic PDEs with deformation simulation to re-
construct dynamic 3D models. Dynamic PDE-based modelling not only
has the advantage of reducing the number of design variables, but the
3D models reconstructed via dynamic PDE-based modelling approaches
also possess time dependency. By setting time variables involved in the
mathematical expressions to define dynamic 3D models, some keyframes
in deformation simulations can be replaced with corresponding keyframes
generated by dynamic PDE modelling. This can circumvent part of cal-
culations and thus enhance the efficiency of real-time simulations.

According to the above motivations, we will introduce a new surface
creation method based on a PDE mathematical model, which has the
following contributions:

• Developing a PDE-based dynamic reconstruction method to recre-
ate deformation models from a series of keyframes in high-quality
performance, including high efficiency, good accuracy and small
data sizes.

• Integrating the governing equation of elastic beams into Newton’s
second law to describe the modelling of dynamic objects. This
forms a new mathematical model, which makes our method physics-
based for creating natural shape changes.

• Applying the separation of variables technique for fast computing
the approximation, as this physics-based method converts the mod-
elling issue to an approximation issue.

• Integrating our method with advanced position-based deformation
methods for high-quality and fast reconstruction of deformable
models in real-time simulation.

• Adding time variable as a parameter into the mathematical model
to describe the consistency among keyframe models in the same se-
ries, which allows interpolating of nonexistent keyframes and omit-
ting in-between keyframes during storage to reduce the data size of
digital character animations.
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Figure 4.2: The deformation simulation results of a horse model, gen-
erated by PBD. From the top left, these models represent the deformed
horse at frame 1,20,30,40,50,60,70,80,90,100, which proves the great sim-
ulation performance of PBD.

• Combining all closed-form solutions into series with infinite terms
and complicated functions to enhance the capability of complex
dynamic reconstructions.

4.2 Deformation Simulation by PBD

Since our method aims to create surfaces with deformation, the first
step is to acquire the reference deformable keyframe models. We choose
PBD as our simulation ground truth for dynamic deformable models due
to its simplicity and capacity for fast computation. The code package
for simulation is based on GitHub PositionBasedDynamics1, which is
designed for visually plausible simulation of deformable solids, fluids,
and rigid bodies. The deformation results are generated on an Intel 6700
CPU with a clock rate of 3.4GHz, and will be utilized in Section 4.4
and 4.5. Some keyframe models generated from the PBD simulation of
a horse model are shown in Fig. 4.2, where the neck can be observed
stretching and torsion. The utilization of the package demonstrated the
capacity for broad applicability and high-quality performance of PBD.

1https://github.com/InteractiveComputerGraphics/
PositionBasedDynamics
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4.3 PDE-based Surface Reconstruction

In modern interactive systems like games, the realism of deformation
simulation is often enhanced by integrating physics-based methods, as
they can provide accurate 3D geometries of bones and muscles for digital
characters. Newton’s second law has been applied by most approaches to
develop dynamic simulations for computer animations due to its founda-
tion and importance. Although Newton’s second law primarily applies to
particles (Bender et al. 2015), it has been used to describe shape deforma-
tion in 3D models. As introduced in Chapter 3, this includes simulating
soft tissue in virtual surgery, deforming 3D facial models, and describing
the dynamic deformation of cloth. In this research, we also introduce
Newton’s second law to develop a physics-based approach for presenting
deformable surfaces.

Newton’s second law has been proven to be applied to particle systems
in (Bender et al. 2015). The points in the system move independently
when simulating their movements by Newton’s second law. However,
this contradicts the fact that the points defining a curve cannot move
independently. For describing curve deformations, we consider the curve
deformation as beam deformation. By integrating the governing equation
of an elastic beam with Newton’s second law, the points independently
moving problem of a curve can be addressed.

Nevertheless, precise models are necessary for achieving high realism
in physics-based modelling. Processing these models involves extensive
numerical computations, resulting in inefficiency. To balance realism
and efficiency, interactive systems like computer animation and video
games often use simplified physics models. For instance, in finite ele-
ment simulations of anatomy and physics-based facial animation, soft
tissues are simplified to isotropic and linear elastic materials, despite
their anisotropic, heterogeneous, and nonlinear elastic properties (Glad-
ilin et al. 2004). Similarly, we simplify the deformations of 3D models to
be isotropic and linear elastic, using Young’s modulus to describe their
mechanical properties.

Building on this foundation, we combined Newton’s second law of
motion with the governing equation for elastic beam bending deformation
to establish a new mathematical model. After deriving a closed-form
solution for this model and integrating it with PBD, we developed a
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dynamic reconstruction method specifically designed for reconstructing
dynamic 3D models with small data sizes for real-time environments.

4.3.1 Mathematical Model

Building upon (Barrielle et al. 2016), Newton’s second law can be applied
to shape changes, depicting the dependence between the product of the
acceleration and mass of an object and its external forces:

ma = f (4.1)

The governing equation of elastic beams for bending deformation is :

EI
d4w

dx4
= f (4.2)

where w(x) denotes the beam deflection in the z direction at position x,
and EI is the flexural rigidity.

Integrating Eq. 4.1 with Eq. 4.2, we gain:

ma = EI
d4w

dx4
(4.3)

Since a vertex w has three components x, y, z of coordinates in 3D
space, Eq. 4.3 can be separated into three parts:

max = EI
d4x

du4

may = EI
d4y

du4

maz = EI
d4z

du4

(4.4)

where u indicates the beam’s parametric direction for converting the
deflection w(x) to coordinate w = (x, y, z).

Letting D = EI, Eq. 4.4 can be combined to:

maw = D
d4w

du4
(4.5)

The acceleration aw describes the second derivative of displacement
w with respect to the time t:

aw =
d2w

dt2
(4.6)

Combining Eq. 4.4 and Eq. 4.5, the PDE mathematical model for
dynamic reconstruction is gained:

m
∂2w

∂t2
= D

∂4w

∂u4
(4.7)
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4.3.2 Closed-form Solutions to PDE

By utilizing the separation of variables technique, we can gain the solu-
tion to Eq. 4.7 with the following form:

w(u, t) = w1(u) · w2(t) (4.8)

Rewritten Eq. 4.8 by substituting the fourth partial derivative of w
with respect to the parametric variable u and the second partial deriva-
tive of w with respect to the time variable t as:

m
w′′

2(t)

w2(t)
= D

w′′′′
1 (u)

w1(u)
= bw (4.9)

where bw is a non-zero constant.
Then the partial differential equation 4.9 can be separated into two

ordinary differential equations:

w
′′′′

1 (u)− bww1(u)/D = 0 (4.10)

and
w

′′

2 (t)− bww2(t)/m = 0 (4.11)

First solving Eq. 4.10 by introducing w1(u) = eru, we can get:

r4eru − bwe
ru/D = 0

and deleting eru, a simplified characteristic equation is gained:

Dr4 − bw = 0 (4.12)

of which roots are:
If bw/D > 0,

r1 = Dw1, r2 = −Dw1, r3 = iDw1, r4 = −iDw1

By instituting the roots into w1(u) = eru, the closed-form solutions
to Eq. 4.10 is:

w1(u) = c∗w1e
Dw1u + c∗w2e

−Dw1u

+ c∗w3cosDw1u+ c∗w4sinDw1u
(4.13)

If bw/D < 0, the roots are:

r1,2 =
√
2(1± i)Dw1/2, r3,4 = −

√
2(1± i)Dw1/2 (4.14)
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By instituting the roots into w1(u) = eru, the closed-form solutions
to Eq. 4.10 is:

w1(u) = c∗w1e
ξDw1ucosξDw1u+ c∗w2e

ξDw1usinξDw1u

+ c∗w3e
−ξDw1ucosξDw1u+ c∗w4e

−ξDw1usinξDw1u
(4.15)

where Dw1 = 4
√

|bw/D|, ξ =
√
2/2, and c∗wi(i = 1, 2, 3, 4) are unknown

constants.
Then solving Eq. 4.11 by introducing w2(t) = ert, we can get:

r2ert − bwe
rt/m = 0

and deleting ert, a simplified characteristic equation is gained:

mr2 − bw = 0 (4.16)

of which roots are:
If bw/m > 0,

r1 = mw1, r2 = −mw1

By instituting the roots into w2(t) = ert, the closed-form solutions to
Eq. 4.11 is:

w2(t) = c∗w5e
mw1t + c∗w6e

−mw1t (4.17)

If bw/m < 0, the roots are:

r3 = imw1, r4 = −imw1

By instituting the roots into w2(t) = ert, the closed-form solutions to
Eq. 4.11 is:

w2(t) = c∗w5cosmw1t+ c∗w6sinmw1t (4.18)

where mw1 =
√

|bw/m|, and c∗wi(i = 5, 6) are unknown constants.
Integrating the closed-form solutions w1(u) to Eq. 4.10 and the

closed-form solutions w2(t) to Eq. 4.11 into Eq. 4.8, the closed-form
solutions to the proposed mathematical model can be calculated as:

If bw/m > 0, bw/D > 0,

w(u, t) =cw1e
mw1teDw1u + cw2e

mw1te−Dw1u + cw3e
mw1t cosDw1u

+cw4e
mw1t sinDw1u+ cw5e

−mw1teDw1u + cw6e
−mw1te−Dw1u

+cw7e
−mw1t cosDw1u+ cw8e

−mw1t sinDw1u

(4.19)
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If bw/m > 0, bw/D < 0,

w(u, t) =cw1e
mw1teξDw1u cos ξDw1u+ cw2e

mw1teξDw1u sin ξDw1u

+cw3e
mw1te−ξDw1u cos ξDw1u+ cw4e

mw1te−ξDw1u sin ξDw1u

+cw5e
−mw1teξDw1u cos ξDw1u+ cw6e

−mw1teξDw1u sin ξDw1u

+cw7e
−mw1te−ξDw1u cos ξDw1u+ cw8e

−mw1te−ξDw1u sin ξDw1u
(4.20)

If bw/m < 0, bw/D > 0,

w(u, t) =cw1 cos(mw1t)e
Dw1u + cw2 cos(mw1t)e

−Dw1u

+cw4 cos(mw1t) cosDw1u+ cw3 cos(mw1t) sinDw1u

+cw5 sin(mw1t)e
Dw1u + cw6 sin(mw1t)e

−Dw1u

+cw7 sin(mw1t) cosDw1u+ cw8 sin(mw1t) sinDw1u

(4.21)

If bw/m < 0, bw/D < 0,

w(u, t) =cw1 cos(mw1t)e
ξDw1u cos ξDw1u+ cw2 cos(mw1t)e

ξDw1u sin ξDw1u

+cw3 cos(mw1t)e
−ξDw1u cos ξDw1u+ cw4 cos(mw1t)e

−ξDw1u sin ξDw1u

+cw5 sin(mw1t)e
ξDw1u cos ξDw1u+ cw6 sin(mw1t)e

ξDw1u sin ξDw1u

+cw7 sin(mw1t)e
−ξDw1u cos ξDw1u+ cw8 sin(mw1t)e

−ξDw1u sin ξDw1u
(4.22)

where cwi(i = 1, 2, . . . , 8) are unknown constants.

4.3.3 Extend PDE with Infinite Terms

Putting together the different combinations from Eq. 4.19 to Eq. 4.22,
we can use the following equation to represent the position w(u, t):

w(u, t) =
32∑
i=1

cwifwi(u, t,Dw1,mw1) (4.23)

where cwi (i = 1, 2, . . . , 32) are unknown constants combined by all con-
stants of the 4 distinct conditions, and fwi(u, t,Dw1,mw1) (i = 1, 2, . . . , 8)
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are given as follows:

fw1(u, t,Dw1,mw1) = emw1teDw1u

fw2(u, t,Dw1,mw1) = emw1te−Dw1u

fw3(u, t,Dw1,mw1) = emw1t cosDw1u

fw4(u, t,Dw1,mw1) = emw1t sinDw1u

fw5(u, t,Dw1,mw1) = e−mw1teDw1u

fw6(u, t,Dw1,mw1) = e−mw1te−Dw1u

fw7(u, t,Dw1,mw1) = e−mw1t cosDw1u

fw8(u, t,Dw1,mw1) = e−mw1t sinDw1u

fw9(u, t,Dw1,mw1) = emw1teξDw1u cos ξDw1u

fw10(u, t,Dw1,mw1) = emw1teξDw1u sin ξDw1u

fw11(u, t,Dw1,mw1) = emw1te−ξDw1u cos ξDw1u

fw12(u, t,Dw1,mw1) = emw1te−ξDw1u sin ξDw1u

fw13(u, t,Dw1,mw1) = e−mw1teξDw1u cos ξDw1u
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fw14(u, t,Dw1,mw1) = e−mw1teξDw1u sin ξDw1u

fw15(u, t,Dw1,mw1) = e−mw1te−ξDw1u cos ξDw1u

fw16(u, t,Dw1,mw1) = e−mw1te−ξDw1u sin ξDw1u

fw17(u, t,Dw1,mw1) = cos(mw1t)e
Dw1u

fw18(u, t,Dw1,mw1) = cos(mw1t)e
−Dw1u

fw19(u, t,Dw1,mw1) = cos(mw1t) cosDw1u

fw20(u, t,Dw1,mw1) = cos(mw1t) sinDw1u

fw21(u, t,Dw1,mw1) = sin(mw1t)e
Dw1u

fw22(u, t,Dw1,mw1) = sin(mw1t)e
−Dw1u

fw23(u, t,Dw1,mw1) = sin(mw1t) cosDw1u

fw24(u, t,Dw1,mw1) = sin(mw1t) sinDw1u

fw25(u, t,Dw1,mw1) = cos(mw1t)e
ξDw1u cos ξDw1u

fw26(u, t,Dw1,mw1) = cos(mw1t)e
ξDw1u sin ξDw1u

fw27(u, t,Dw1,mw1) = cos(mw1t)e
−ξDw1u cos ξDw1u

fw28(u, t,Dw1,mw1) = cos(mw1t)e
−ξDw1u sin ξDw1u

fw29(u, t,Dw1,mw1) = sin(mw1t)e
ξDw1u cos ξDw1u

fw30(u, t,Dw1,mw1) = sin(mw1t)e
ξDw1u sin ξDw1u

fw31(u, t,Dw1,mw1) = sin(mw1t)e
−ξDw1u cos ξDw1u

fw32(u, t,Dw1,mw1) = sin(mw1t)e
−ξDw1u sin ξDw1u

where ξ =
√
2/2.

For more complex scenarios, if 32 constants are insufficient for con-
structing deformation shapes, Eq. 4.23 can introduce S = 1, 2, . . . groups
of unknown constants cwi(i = 1, 2, . . . , 32S) through replacing Dw1 and
mw1 with DwS and mwS. Hence Eq. 4.23 is converted into the following
function, which can be regarded as an infinite series when S approaches
infinity:

w(u, t) =
32S∑
i=1

cwifwi(u, t,DwS,mwS) (4.24)

4.3.4 Transformation Elimination

After forming the representation of w(u, t) and approximating the closed-
form solutions, the remaining tasks are to solve the unknown integration
constants in Eq. 4.24 and then use it to create new deformation shapes.
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Assuming the surface shapes of a 3D model at frame n (n = 0, 1, . . . , N)

are known and the time corresponds to frame n is tn, we use wnk (w =

x, y, z) to indicate the x, y and z coordinate values of the kth point
(k = 1, 2, 3, . . . , K) on one of the curves defining a 3D model at frame n.

When a 3D model moves from one frame to the next frame, rigid
transformation may be involved. We remove rigid transformations through
the following treatment.

First, we align the first point of a curve at different frames through

wnk = wnk − (wn0 − w00) (4.25)

After that, we rotate the curve at frame n to align with the curve at
frame 0. Assuming the general rotation matrix at frame n is:

an,11 an,12 an,13

an,21 an,22 an,23

an,31 an,32 an,33

 (4.26)

Using the above rotation matrix to align the curve at frame n to the
curve at frame 0 means the following matrix multiplication:

[
xnk ynk znk

]
an,11 an,12 an,13

an,21 an,22 an,23

an,31 an,32 an,33

 (4.27)

which changes the curve point wnk into w̃nk below:

x̃nk = an,11xnk + an,21ynk + an,31znk

ỹnk = an,12xnk + an,22ynk + an,32znk

z̃nk = an,13xnk + an,23ynk + an,33znk

(4.28)

The elements ai,j (i, j = 1, 2, 3) in the rotation matrix are obtained
by minimizing the sum of the squared errors between the points w̃nk and
w0k, i.e.,

∂

∂an,rs

K∑
k=1

[(x̃nk − x0k)
2 + (ỹnk − y0k)

2 + (z̃nk − z0k)
2] = 0

(n = 1, 2, ..., N ; r, s = 1, 2, 3)

(4.29)

After all the elements in the rotation matrix are determined, we use
Eq. 4.28 to obtain w̃nk.
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4.3.5 Approximation for Constants

In order to approximate the curve at frame n with Eq. 4.24, we should
first determine the values of the parametric variable u. To do this, we
find the minimum and maximum values of w̃nk and denote them with
w̃n,min and w̃n,max, respectively. The u parametric value corresponding
to the kth point at frame n is obtained as:

unk =
w̃nk − w̃n,min

w̃n,max − w̃n,min

(4.30)

Substituting tn and unk into Eq. 4.24, we obtain the predicted val-
ues w(unk, tn). Then calculate the sum of the squared errors between
the predicted values w(unk, tn) and real values w̃nk for all the points on
the curve for all the frames and minimizing the sum to determine the
unknown integration constants involved in Eq. 4.24, i.e.,

∂

∂cr

N∑
n=0

K∑
k=1

[w(unk, tn)− w̃nk]
2

=
∂

∂cr

N∑
n=0

K∑
k=1

[
32S∑
i=1

cifi(unk, tn, DwS,mwS)− w̃nk]
2 = 0

(r = 1, 2, ..., 32S)

(4.31)

By solving the 32S linear equations in Eq. 4.31, we determine the 32S
unknown integration constants. Substituting them back into Eq. 4.24,
we use them to create new deformed shapes of the 3D models at new
frames. In Section 4.4, we will take S = 1 as an example to demonstrate
the application of Eq. 4.24 in dynamic reconstruction as it is the simplest
scenario.

4.4 Experiment 1: Dynamic Model Recon-
struction

In this experiment, our proposed dynamic reconstruction method will
be compared with static modelling using B-splines and Bézier curves.
We provide two instances to demonstrate the capability of our method
to reconstruct complex curves while significantly reducing the number of
design variables. Additionally, we present two examples of reconstructing
a horse and an armadillo via our method.

Our method applies to scenarios where dynamic curve reconstruc-
tion involves determining 8 unknown constants from a series of keyframe
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curves by initially setting mw1 = Dw1 = 1, as specified in Eq. 4.19. In
this experiment, we use two curves at two adjacent frames to determine
the 8 unknown constants for dynamic curve reconstruction. For compari-
son, we also use the mathematical equations of two Bézier curves defined
in (Abdel-Aziz et al. 2021) and two B-spline curves defined (Ravari and
Taghirad 2016) to reconstruct the same pair of curves.

In the first curve instance, we reconstruct a closed curve and its open
version at frames 20 and 100 using our proposed dynamic modelling
method, as well as static modelling methods with B-splines and Bézier
curves. For the time variable tj, we normalized it to interval [0, 1] by
setting the 20th frame as t0 = 0 and the 100th frame as t1 = 1. Then,
calculate the average error Eaj and maximum error Emj between the
N points on the original curve and the corresponding N points on the
reconstructed curve as follows:

Eaj =
1

N + 1

N∑
n=0

djn

djn

Emj = max

{
dj0

dj1

dj1

dj1
· · · djn

djn

}
(j = 0, 1)

(4.32)

where

djn =

√√√√[
8∑

i=1

cxifx(tj, un)]2 + [
8∑

i=1

cyify(tj, un)]2 + [
8∑

i=1

czifz(tj, un)]2

djn =
√

x2
jn + y2jn + z2jn

(j = 0, 1)
(4.33)

and fx(tj, un), fy(tj, un) and fz(tj, un) are separated from fw(tj, un),
which is defined in Eq. 4.23.

Fig. 4.3 shows the original and reconstructed curves by our proposed
PDE-based method, Bézier curves-based method, and B-spline curve-
based method. The results of open curves are on the left of six subfigures
(a),(b),(c),(d),(e), and (f), while their closed versions are on the right
of the six subfigures. The term PDE on the subfigures denotes the
curve reconstructed by our proposed PDE-based dynamic reconstruction
method. In Fig. 4.3, (a) is the original curves at the 20th and 100th frame;
(b) is the reconstructed curves by our proposed method at the 20th and
100th frame; (c) is the reconstructed curves by Bézier-based method at
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the 20th and 100th frame; (d) is the reconstructed curves by B-spline-
based method at the 20th and 100th frame; (e) is the comparison among
the original curves and reconstructed curves by three different methods
at the 20th frame; (f) is the comparison among the original curves and
reconstructed curves by three different methods at the 100th frame.

We can figure out that the shape of the original curves is quite compli-
cated. From subfigures (e) and (f), it is demonstrated that our proposed
method approximates the original curves quite well in visualization since
the curves generated by our proposed method are slightly closer to the
original curves than the ones generated by the other two methods in some
local regions.

As for data size, our mathematical model only involves 8 vector-valued
unknown constants, of which the design variables are only 5.7% of the
original curves. This indicates the powerful capacity of accurate recon-
struction for dynamic complex curves in open and closed versions with
small data sizes.

The quantified comparison of design variables, average and maximum
errors to the original curves, and the computational time of CPU among
our proposed method, B-spline-based method, and Bézier-based method
are provided in Table 4.1. The first column of the table denotes the
method used for curve reconstruction. The second column stands for
the type of curve, where OC is the open curve, and CC is the closed
curve. PM denotes the number of all the vertices on the two curves.
PBB is the number of design variables used for reconstruction. EA1 and
Em1 are the average error and maximum error between the original and
reconstructed curves at the 20th keyframe, EA2 and Em2 are the average
error and maximum error between the original and reconstructed curves
at the 100th keyframe, EA12 is the average value of the average errors at
the 20th and 100th keyframes, Em12 is the bigger one of the maximum
errors at the 20th and 100th keyframes, and all the errors in the table
are multiplied by 10−3. The average errors EA1 and EA2 and maximum
errors Em1 and Em2 are determined by the first one and second one of
Eq. 4.32, respectively.

Table 4.1 demonstrates that the average and maximum errors of our
proposed dynamic reconstruction method are very small. Except for
the maximum error in the open curve case, the errors are nearly iden-
tical to those of the static reconstruction methods using Bézier and B-
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Figure 4.3: The comparison between the original and reconstructed
curves with 71 points at the 20th and 100th frames. (a) Original curves
at the 20th and 100th frames. (b) PDE reconstructed curves at the 20th

and 100th frames. (c) B-spline reconstructed curves at the 20th and 100th

frames. (d) Bézier reconstructed curves at the 20th and 100th frames.
(e) Original, PDE, B-spline, and Bézier curves at the 20th frame. (f)
Original, PDE, B-spline, and Bézier curves at the 100th frame.
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splines. The error results from the B-spline and Bézier static reconstruc-
tion method are exactly the same. For the open curve, our method shows
a maximum error of 71.60692, which is lower than the maximum error
of 79.84222 from the Bézier and B-spline static reconstructions. The
computation time for our proposed dynamic reconstruction method is
approximately twice that of the Bézier static reconstruction method and
1.6− 1.7 times that of the B-spline static reconstruction method.

In the aforementioned reconstruction, the curve at the 20th frame and
its corresponding curve at the 100th frame are quite distant from each
other. Despite this, our proposed dynamic reconstruction method still
achieves high accuracy. When the frames are closer together, the errors
can be significantly decreased. To demonstrate this, we use two adjacent
frames shown in Fig. 4.4. In this curve instance, the 37th and 38th frames
are used, where the results are presented in Fig. 4.4, organized similarly
to Fig. 4.3. From subfigures (e) and (f), we can clearly observe that
the reconstructed curves from our dynamic method and the Bézier and
B-spline static reconstructions are very close to the original curves.

The average and maximum errors generated by our proposed method
and Bézier and B-spline static methods are given in Table 4.2, while
all errors are multiplied by 10−4. The average errors caused by our
proposed method are very small and slightly larger than those caused
by the Bézier and B-spline methods. The maximum errors of our pro-
posed method are much smaller than those of Bézier and B-spline static
methods, i.e., 8.077028 ∼ 8.422275 against 80.48240 ∼ 80.73569 and
18.39898 ∼ 19.07610 against 80.82564 ∼ 81.08065. However, the com-
putational time of our proposed method is higher than the Bézier and
B-spline methods, i.e., 1.9 ∼ 2.01 times that of the Bézier method and
1.77 ∼ 1.94 times that of the B-spline method.

The discussion above demonstrates that the errors introduced by our
proposed dynamic reconstruction method are smaller than those caused
by the Bézier and B-spline static reconstruction methods. Besides, un-
like Bézier and B-spline static reconstructions, which do not incorporate
a time variable and are thus unsuitable for dynamic or time-varying re-
constructions, our proposed method effectively addresses this issue.

Additionally, we will provide two examples of dynamic 3D model
reconstruction and compare them with B-spline static reconstruction. In
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these comparisons, Bézier static reconstruction is slightly faster than B-
spline static reconstruction but yields identical results. Therefore, Bézier
static reconstruction is not considered in the subsequent examples.

The first example involves reconstructing the deformed shapes of a
horse model at different keyframes obtained from PBD simulation. To
achieve this, we first extract the curves to be reconstructed from the
undeformed polygonal model. As shown in Fig. 4.5, the curve to be
reconstructed in (b) is extracted from the undeformed polygonal horse
model in (a). The original horse model has 15, 389 vertices and 30, 710

faces. Since each vertex has x, y, and z components, the original horse
model has a total of 46, 167 design variables.
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Figure 4.4: The comparison between the original and reconstructed
curves with 71 points at the 37th and 38th frames. (a) Original curves
at the 37th and 38th frames. (b) PDE reconstructed curves at the 37th

and 38th frames. (c) B-spline reconstructed curves at the 37th and 38th

frames. (d) Bézier reconstructed curves at the 37th and 38th frames. (e)
Original, PDE, B-spline, and Bézier curves at the 37th frame. (f) Origi-
nal, PDE, B-spline, and Bézier curves at the 38th frame.
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Figure 4.5: The undeformed horse model and its extracted curves. (a)
Polygon horse model, (b) extracted curves.

For representing the horse model, we extracted 593 curves and used
the 4, 744 vector-valued coefficients involved in Eq. 4.19 to define these
curves at two different keyframes. Since each vector-valued coefficient has
x, y, and z components, our proposed method uses a total of 14, 232 de-
sign variables to reconstruct the horse model at two different keyframes.
Although the 593 curves were manually extracted without optimizing the
number of points on each curve to reduce the number of unknowns, the
extracted curves still reduce the design variables by more than two-thirds
compared to the polygonal horse model.

Fig. 4.6 shows the original deformed models reconstructed using
our proposed method and the B-spline method. In the figure, PDE
Model refers to the dynamic reconstruction obtained using our proposed
method, while the B-spline Model refers to the static reconstruction ob-
tained using the B-spline method. The first and fourth rows display the
original deformed models from the PBD simulation. The second and
fifth rows show the models reconstructed by our dynamic method, and
the third and sixth rows show the models reconstructed by the B-spline
method.

When comparing the original models in the first and fourth rows
with the reconstructed models from our dynamic method in the second
and fifth rows and the B-spline method in the third and sixth rows,
no significant visual differences are observed. We also calculated the
average and maximum errors between the reconstructed models and the
original deformed models for both methods. The average and maximum
errors for reconstructing the first and tenth frames using our method are
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Figure 4.6: The comparison among the original deformation of
the horse model generated by PBD and the reconstructed shapes
created by our proposed method and B-spline method at frame
1, 20, 30, 40, 50, 60, 70, 80, 90, 100.

6.1746×10−4 and 4.672209×10−2, respectively. For the B-spline method,
the average and maximum errors are 5.321225×10−4 and 5.191078×10−2,
respectively.

These data indicate that our proposed method achieves comparable
reconstruction accuracy as the B-spline method, as both methods have
very low average errors. These errors are three to four orders of mag-
nitude lower than the differences between the maximum and minimum
values of the x, y, and z coordinates, which are in the range of single or
double digits. The results demonstrate that our method provides good
reconstruction accuracy.

The second example involves reconstructing the deformed shapes of
an armadillo polygon model obtained from position-based dynamics sim-
ulations at different keyframes. The original armadillo model has 5, 182

vertices and 5, 180 faces, resulting in 5, 182 vector-valued design variables.
We extracted a total of 196 curves to represent the armadillo model and
used 1, 568 vector-valued coefficients in Eq. 4.19 to define the curves
at two different keyframes. Again, our method reduced the number of
vector-valued design variables of the armadillo polygon model by more
than two-thirds.

Fig. 4.7 shows the original deformed shapes of the armadillo polygon
model, along with the shapes reconstructed using our method and the
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Figure 4.7: The comparison among the original deformation of the
armadillo model generated by PBD and the reconstructed shapes
created by our proposed method and B-spline method at frame
1, 20, 30, 40, 50, 60, 70, 80, 90, 100.

B-spline method. Comparing the shapes reconstructed by both methods
to the original deformed shapes, no significant differences were observed.
This example also demonstrates that our method provides good recon-
struction accuracy.

4.4.1 Summary

The first experiment utilized two instances for curve reconstruction and
two examples for model reconstruction to prove the capacity of our pro-
posed method in creating an accurate reconstruction of model deforma-
tion. It significantly reduces the data size to fit the real-time environ-
ments with realism successfully preserved.

Moreover, we calculated the average CPU time required to obtain
deformed shapes using PBD for 100 keyframes of these two models. The
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total average time needed for the PBD simulation was 6, 420 millisec-
onds. In contrast, our proposed method, by setting the time variable
t in Eq. 4.19 to 98 different values, reconstructed the deformed shapes
between two keyframes in average 1, 827 milliseconds, generating 98 new
deformed shapes between these keyframes. Clearly, using our dynamic
reconstruction method to replace some keyframes in the PBD simulation
can reduce the total simulation time. On the other hand, by setting the
time variable t to different values between 0 ⩽ t ⩽ 1, new consistently
deformed models can be created. These will be proven in Section 4.5.

4.5 Experiment 2: Generation of In-between
Keyframe Models

As mentioned in the last part of Section 4.4, we will further explore
the capacity of our proposed method in the generation of in-between
keyframe models to further reduce the data required during storage and
internet transmission, which is significant for creating realistic animation
of digital characters in real-time environments. To describe more complex
objects, the mathematical model is extended from 8 unknown constants
in Eq. 4.19 to 32 unknown constants by considering all settings with
different mw1 and Dw1 in Eq. 4.23.

We first choose three different models from (Zhou and Jacobson 2016)
to demonstrate the accuracy and efficiency of the proposed method, as
shown in Fig. 4.8, whilst the cube-rope model will be used to illustrate
our experiment.

In order to use the proposed algorithm to reconstruct the deformed
shapes, we convert the surface models shown in Fig. 4.8 into curve-
represented models. We manually extract curves along the length direc-
tion of the cube-rope model. The cube-rope model is defined by 19, 968

vertices. In total, 24 curves are extracted, and each curve has 832 points.
Fig. 4.9 shows the curve-represented models at the 10 frames. Each ex-
tracted curve was then used to fit the proposed mathematical model and
recreated by the method in Section 4.4. Finally, all the curves will be
used to reconstruct the cube-rope models. The whole framework of this
experiment is shown in Fig. 4.10 for a better understanding.

For the purpose of illustration, we take the 1st extracted curve to
demonstrate the dynamic reconstruction process. The same method is
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Figure 4.8: The models used for implementing our proposed method.
From left to right are cube-rope, rings and dumpling. We take the cube-
rope model as the example to explain our experiment and compare the
errors and running time for all models with the PBD results and B-Spline.

Figure 4.9: Curve representations of the cube-rope models shown in Fig.
4.8.
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Figure 4.10: The framework of our experiment. We use simulation results
generated by PBD at frames 0,2,4,6,8 and 10. After extracting the curves
from the original models, we get the curves to fit our mathematical model.
Then, the curve information at frames 1,3,5,7, and 9 were computed by
the trained mathematical model. The calculated curves were then used
to reconstruct the mesh models, which are compared with the original
PBD deformation models at the same frames. As could be seen from
the details on the right parts, few differences could be found between the
original model from PBD and the reconstructed model by our proposed
method.

applicable to the remaining 23 extracted curves.
For fitting our mathematical model along with the time variable t,

we first align the first point of the 1st curve at frame 1 to frame 10

with the first point of the 1st curve at frame 0 through Eq. 4.25 and
obtain ŵnk (n = 1, 2, . . . , 10; k = 1, 2, . . . , 832). Then we solve Eq. 4.29
to determine the elements of the rotation matrix, and use Eq. 4.28 to
obtain w̃nk (n = 1, 2, . . . , 10; k = 1, 2, . . . , 832). After that, we use the
deformed shapes at frames 0, 2, 4, 6, 8, and 10 to determine the unknown
integration constants ci in Eq. 4.23. In order to generate deformation
shapes at frames 1, 3, 5, 7, and 9, we determine unk (w = x, y, z; n =

1, 3, 5, 7, 9; k = 1, 2, . . . , 832) at frames 1, 3, 5, 7, and 9 with linearly
interpolating unk of two adjacent frames of frames 0, 2, 4, 6, 8, and 10,
and use Eq. 4.23 to calculate the deformed shapes of one baseline curve
at frames 0, 1, 2, 3, . . . , 10, depict them as red curves in Fig. 4.11, where
the baseline curves are in blue, and obtain w(unk, tn) (w = x, y, z; n =

0, 1, 2, . . . , 10; k = 1, 2, . . . , 832).
For the static reconstruction with B-Spline curves and linear interpo-

lation, we use the normal cubic B-Spline method with 50 control points
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Figure 4.11: Visual comparison among the baseline curves highlighted in
blue and reconstructed curves with the proposed algorithm highlighted in
red and B-Spline curves combined with linear interpolation highlighted
in pink.

provided in (Prautzsch et al. 2002) to fit the model and obtain B-Spline
curves at frames 0, 2, 4, 6, 8, and 10. Then, we linearly interpolate
two adjacent B-Spline curves at frames 0, 2, 4, 6, 8, and 10 to ob-
tain the B-Spline curves at frames 1, 3, 5, 7, and 9, depict B-Spline
curves at frame 0, 1, 2, 3, . . . , 10 as pink curves in Fig. 4.11 as well,
and use the interpolated B-Spline curves to calculate coordinate values
w(unk) (w = x, y, z; n = 0, 1, . . . , 10; k = 1, 2, . . . , 832).

After that, we quantify the errors between the baseline shapes w̃nk

and the reconstructed shapes w(unk, tn) obtained from the proposed al-
gorithm and B-Spline method through the following equations:

EAn =
1

832D

832∑
k=0

∥w̃nk − w(unk, tn)∥ (n = 0, 1, 2, . . . , 10) (4.34)

EMn =
1

D
max{∥w̃nk − w(unk, tn)∥} (n = 0, 1, 2, . . . , 10; k = 1, 2, . . . , 832)

(4.35)
where EAn is the average error, EMn is the maximum error, D is the
distance between the two furthest points of the 1st extracted curve.

We use the same way to calculate the errors for all three models. The
rings model has 18, 468 vertices, formed by 16 curves, and the dumpling
model has 24, 847 vertices, formed by 251 column curves. Among the
three models, the curves on the rings model are the most simple, whilst
those on the dumpling model are quite complex and difficult to fit with
small design parameters. These qualitative observations are corroborated
by the quantitative results presented in Table 4.3. The results provide
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a visual comparison between our proposed method, the B-Spline and
linear interpolation method, and the baseline shapes. Our reconstructed
curves exhibit minimal differences with the baseline curves generated by
PBD, except for some parts when the curvature fluctuates. Conversely,
the curves produced by the B-Spline and linear interpolation method
display noticeable deviations from the baseline curves. As could be seen
from Table 4.3, for the first model (cube-rope), the average EAn and
the maximum EMn of our proposed method are 0.006986 and 0.019478,
whilst those of B-Spline method are 0.046644 and 0.270942. The accuracy
improvement of EAn is obvious, with about 52.72% for averaging all
models. The maximum EMn for all models decreases 21.33% , from
0.2709 to 0.2132.

The CPU used to generate the 11 frames is 7.442 seconds and frames
0, 2, 4, 6, 8, and 10 is 4.085 seconds by PBD for the cube-rope model.
Using frames 0, 2, 4, 6, 8, and 10 to determine the unknown integration
constants in Eq. 4.23 and generate reconstructed shapes at frame 1, 3,
5, 7 and 9 with Eq. 4.23 is 0.293 seconds. Using frame 0, 2, 4, 6, 8, and
10 to determine the unknown control points in the B-Spline method for
reconstructing B-Spline curves at frames 0, 2, 4, 6, 8, and 10 and lin-
early interpolating the reconstructed B-Spline curves to obtain B-Spline
curves at frame 1, 3, 5, 7 and 9 is 0.034 seconds. Plus 4.085 seconds
used by PBD to generate frames 0, 2, 4, 6, 8, and 10, our proposed
dynamic reconstruction algorithm takes 4.378 seconds to generate the
shapes at the 11 frames (frame 0 to frame 10), and B-Spline and linear
interpolation method take 4.119 seconds to generate the shapes at the 11

frames. The above data indicate our proposed dynamic reconstruction
algorithm combined with the PBD simulation only requires 58.13% of
the time required by PBD to generate the shapes at the 11 frames, in-
dicating our proposed dynamic reconstruction algorithm combined with
PBD simulation can greatly reduce computational time. Although the
total time required by our proposed dynamic reconstruction algorithm is
a little more than the total time required by B-Spline curves and linear
interpolation, our proposed dynamic reconstruction algorithm has higher
accuracy, involves fewer design variables, and is physics-based.
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These results indicate that our proposed dynamic reconstruction al-
gorithm can generate in-between keyframes with higher efficiency and
accuracy compared with the B-spline method.

4.5.1 Summary

In this experiment, we extend the design variables from 8 to 32 for de-
scribing more complex models, according to Eq. 4.23. After comparing
our method and the reconstruction with B-Spline curves and linear in-
terpolation between frames, the results demonstrate that our proposed
method further raises the efficiency of the dynamic deformation simula-
tion and reduces data sizes while keeping good accuracy. More impor-
tantly, our proposed method can efficiently generate continuous deforma-
tion shapes, which are not generated by PBD and require less time for
PBD to generate them.

4.6 Conclusion

In this chapter, we propose a PDE-based method for fast and precise
model reconstruction in dynamic deformation simulation. By integrating
the governing equation, which depicts the bending deformation of elastic
beams, into Newton’s second law, which depicts the object movement,
we present a novel mathematical model. The closed-form solution of this
mathematical model is obtained by utilizing the separation of variables
technique and the least square method. We have combined four different
closed-form solutions of our proposed mathematical model for dynamic
deformation simulation, and make it able to be combined with infinity
terms, significantly raising the capacity of PDE-based dynamic recon-
struction. Besides, by normalizing the time variable t in the interval
[0, 1] and introducing it into the vector-valued PDE of the mathemati-
cal model, we bring the model capacity to generate in-between keyframe
models with high efficiency and accuracy. With this time-dependent at-
tribute, many keyframes simulated by PBD can be replaced with the
ones generated by our method, so that the computational time cost on
the PBD simulation can be saved to further enhance its real-time per-
formance. Besides, our method is also able to generate skin deformation
results by the proposed mathematical model. The experiments, which
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integrate with PBD and compare with other baseline methods, demon-
strate that our proposed method can reconstruct deformable models with
small data sizes but retain most details. This greatly benefits the target
of this research in creating realistic animations of digital characters in
interactive systems.
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Chapter 5

Skin deformation Method Based
on Newton’s Second Law for
Generating Natural Human
Facial Blendshapes

As introduced in Chapter 1 and 2, skin deformation techniques have be-
come a standardized method for creating real-time animations in both
the animation industry and academic research. Across various skin de-
formation methods, the primary focus remains on achieving realism and
efficiency. To achieve realism, it is necessary to store a high level of de-
tails, including sufficient vertices, which often results in significant redun-
dancy that is not frequently utilized in calculations. Geometric methods
continue to be widely used for determining skin deformation. On the
other hand, physics-based techniques, while capable of enhancing real-
ism, require extensive numerical computations, consuming considerable
CPU resources and thus reducing efficiency. As the most important and
widely researched topic, digital humans have been focused, among all
research for digital character animation. Thus the human facial blend-
shapes issue is addressed in this chapter as one of the skin deformation
problems.

Inspired by the ODE-based sweeping surface methods (You et al.
2007) and ODE-based surface blending method (You et al. 2014), we
propose a new physics-based method to generate natural facial blend-
shapes from ODE-based models for fulfilling the goal of this research in
generating realistic animation of digital characters. Our method has the
following contributions:
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• Develop an ODE-based surface creation method to reconstruct 3D
face models with small data sizes from extracted curves, which are
extracted from reference models.

• Provide an interpolation method based on Newton’s second law,
which has the capacity to generate in-between curves from the
curves on two sides.

• Combine the ODE-based surface creation method and physics-based
interpolation method to efficiently create natural facial animation.

5.1 ODE-based Surface Creation

The foundation for the 3D model surface creation method in this chapter
comes from (Bian et al. 2019), where this section will give a concise
introduction to it.

5.1.1 Mathematical Model

The mathematical model of ODE-based sweeping surfaces consists of
a vector-valued equation w = S(u, v) along with boundary conditions,
where w = (x, y, z) denotes the positions of vertices on surface S, which
is defined by two normalized parametric variables u and v. Fixing v

at vi, the surface S is converted to a curve Ci = S(u, vi). The form
of the ODE and the boundary conditions vary depending on the conti-
nuity requirements. For creating smooth and controllable surfaces, we
aim to fulfil C2 continuity between adjacent surface patches, including
position, tangent, and curvature continuities. These control parameters
allow for fine-tuning the details of the facial patches. Thus, the boundary
constraints contain 3 different parts for each u = 0, 1:

u = 0 S(0, v) = c1(v), ∂S(0, v)/∂v = c2(v), ∂S2(0, v)/∂v2 = c3(v)

u = 1 S(1, v) = c4(v), ∂S(1, v)/∂v = c5(v), ∂S2(1, v)/∂v2 = c6(v)
(5.1)

where cj(v) (j = 1, 2, . . . , 6) are unknown functions.
For achieving all the boundary constraints, a vector-valued sixth-

order ODE is employed as follows, as it involves 6 unknown constants,
which represent six continuity values:

ρ
d6S(u, vi)

du6
+ η

d4S(u, vi)

du4
+ λ

d2S(u, vi)

du2
= 0 (5.2)
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Figure 5.1: ODE-based surface creation by two boundary and four control
curves in (Bian et al. 2019).

where ρ, η and λ are shape control parameters, S(u, vi) stands for the ith

curve Ci of the surface S.
Fig. 5.1 shows the creation of a surface by forming an iso-parametric

curve with six corresponding vertices from the two boundary curves and
four control curves.

5.1.2 Closed-form Solution

The sixth-order ODE in Eq. 5.2 can be converted into a fourth-order
ODE by using the method of substitution method to reduce order as:

ρ
d4S̄(u, vi)

du4
+ η

d2S̄(u, vi)

du2
+ λS̄(u, vi) = 0

S̄(u, vi) =
d2S(u, vi)

du2

(5.3)

Similar to the processing of Eq. 4.10 in Section 4.3, substituting
S̄(u, vi) = eru into Eq. 5.3, we can get this quartic equation:

ρr4 + ηr2 + λ = 0 (5.4)

Further introducing t = r2, Eq. 5.4 can be rewritten as a quadratic
equation:

ρt2 + ηt+ λ = 0 (5.5)

of which roots are

t1,2 = −η
1±

√
1− 4ρλ/η2

2ρ
(5.6)

Taking the situation 4ρλ/η2 < 1 as an example, we can get the roots
of Eq. 5.4:

r1,2 = ±iξ1 r3,4 = ±iξ2 (5.7)
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where ξ1,2 =

√
η
1±
√

1−4ρλ/η2

2ρ
.

Thus, the final solution to Eq. 5.2 can be gained as:

S(u, vi) = b1 cos ξ1u+ b2 sin ξ1u+ b3 cos ξ2u+ b4 sin ξ2u+ b5u+ b6 (5.8)

where bk(k = 1, 2, . . . , 6) are vector-valued unknown constants.
Combining Eq. 5.8 and Eq. 5.2, the surface S with boundary con-

straints of six control curves can be defined as:

S(u, v) = g1(u)c1(v) + g2(u)c2(v) + g3(u)c3(v)

+ g4(u)c4(v) + g5(u)c5(v) + g6(u)c6(v)
(5.9)

where

g1(u) = −d1 cos ξ1u− d4 sin ξ1u+ d1(e11 + 1) cos ξ2u

+ e9 sin ξ2u− (ξ2e9 − ξ1d4)u− (e11d1 − 1)

g2(u) = −(d1 + d2) cos ξ1u− (d3 + d4) sin ξ1u+ (e9 + e10) sin ξ2u

− [ξ2(e9 + e10)− ξ1(d3 + d4)− 1]u− e11(d1 + d2)

g3(u) = −d5 cos ξ1u− d7 sin ξ1u+ d10 cos ξ2u+ (e5e9 + e6e10 + e12/ξ2)

· sin ξ2u− [ξ2(e5e9 + e6e10)− ξ1d7 + e12]u− (e11d5 − 1/ξ22)

g4(u) = d1 cos ξ1u+ d4 sin ξ1u− d1(e11 + 1) cos ξ2u

− e9 sin ξ2u+ (ξ2e9 − ξ1d4)u+ e11d1

g5(u) = d2 cos ξ1u+ d3 sin ξ1u− d2(e11 + 1) cos ξ2u

− e10 sin ξ2u+ (ξ2e10 − ξ1d3)u+ e11d2

g6(u) = −d6 cos ξ1u− d8 sin ξ1u+ d6(e11 + 1) cos ξ2u+ (e7e9 + e8e10

− e13/ξ2) sin ξ2u− [ξ2(e7e9 + e8e10)− ξ1d8 − e13]u− e11d6
(5.10)

d1 = e1/(e1e3 − e2e4) d2 = −e2/(e1e3 − e2e4)

d3 = e3/(e1e3 − e2e4) d4 = −e4/(e1e3 − e2e4)

d5 = d1e5 + d2e6 d6 = d1e7 + d2e8

d7 = d4e5 + d3e6 d8 = d4e7 + d3e8

d9 = (e11 + 1)(d1 + d2) d10 = −1/ξ22 + (e11 + 1)d5

(5.11)
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and

e1 = ξ1(cos ξ1 − 1) + ξ21 sin ξ1(1− cos ξ2)/(ξ2 sin ξ2)

e2 = sin ξ1 − ξ1 + ξ21 sin ξ1(1/ sin ξ2 − 1/ξ2)/ξ2

e3 = cos ξ1 − 1 + ξ22(1− cos ξ2)/ξ
2
2 + ξ21(cos ξ2 − cos ξ1)(1/ξ2 − 1/ sin ξ2)/ξ2

e4 = ξ1(− sin ξ1 + ξ1 sin ξ2/ξ2) + ξ21(cos ξ2 − cos ξ1)(cos ξ2 − 1)/(ξ2 sin ξ2)

e5 = (1/ξ2 − cos ξ2/ sin ξ2)/ξ2

e6 = (sin ξ2 + cos2 ξ2/ sin ξ2 − cos ξ2/ sin ξ2)/ξ2

e7 = (1/ sin ξ2 − 1/ξ2)/ξ2

e8 = (1− cos ξ2)/(ξ2 − sin ξ2)

e9 = (ξ21)[d4 sin ξ1 − d1(cos ξ2 − cos ξ1)]/(ξ
2
2 sin ξ2)

e10 = (ξ21)[d3 sin ξ1 − d2(cos ξ2 − cos ξ1)]/(ξ
2
2 sin ξ2)

e11 = ξ21/ξ
2
2 − 1

e12 = cos ξ2/(ξ2 sin ξ2)

e13 = 1/(ξ2 sin ξ2)
(5.12)

5.2 Facial Blendshape based on Newton’s Sec-
ond Law

In this section, we integrate Newton’s second law to present a new, ef-
ficient, and physics-based facial blendshape method. We will start by
introducing Newton’s second law, then deriving its exact closed-form so-
lution, and finally determining the unknown constants involved in this
solution.

5.2.1 Algorithm

Newton’s second law can be defined in a 3D space as:

ma = f (5.13)

where m is the mass, a = (ax, ay, az) is the acceleration, and f =

(fx, fy, fz) denotes the external force.
The acceleration a is the second derivative of the displacement x =

(x, y, z) with respect to time t:

a =
d2x

dt2
(5.14)
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Substituting Eq. 5.14 into Eq. 5.13, we can get:

m
d2x

dt2
= f (5.15)

Then, we establish the initial and boundary conditions for solving the
aforementioned second-order ordinary differential equation by consider-
ing the position of the initial and final postures, as well as the velocity
of the initial posture.

Considering a 3D model consists of a group of N vertices. We use
x̄n(n = 1, 2, . . . , N) to denote the vertices at the initial pose, where t = 0,
and ¯̄xn(n = 1, 2, . . . , N) to denote the vertices at the final pose, where
t = 1, to normalize t in the interval [0, 1]. Thus, the position change x is
x = 0 when t = 0, and is x = ¯̄xn − x̄n when t = 1.

The initial and boundary conditions can be given as:

t = 0 xn = 0

dxn

dt
= 0

t = 1 xn = ¯̄xn − x̄n

(5.16)

Substituting x with xn in Eq. 5.15, we have:

m
d2xn

dt2
= fn (5.17)

Integrating Eq. 5.17 with respect to t twice, we can gain:

xn =
fn
2m

t2 + c0t+ c1 (5.18)

where c0 and c1 are unknown constants.
Substituting Eq. 5.18 into Eq. 5.16, we can solve the two constants

c0 = c1 = 0, and the external force can be defined as:

fn = 2m(¯̄xn − x̄n) (5.19)

Then, introducing Eq. 5.19 into Eq. 5.18, the position change x can
be calculated as:

xn = (¯̄xn − x̄n)t
2 (5.20)

and the position values x̂n at any pose between the initial and final pose
can be determined as:

x̂n = x̄n + (¯̄xn − x̄n)t
2 (5.21)

108



Figure 5.2: Two face models with the same topology but different poses,
achieved from (Sumner and Popović 2004). The left is a neutral model,
while the right is a laugh model.

5.2.2 Experiment

Compared to the animation of other parts of digital characters, facial
deformation is more critical as it requires higher precision to be perceived
as realistic. To validate the experimental results, we used the model
library provided in (Sumner and Popović 2004) and selected two different
face models with the same topology, as shown in Fig. 5.2. First, we apply
the ODE-based method introduced in Section 5.1 to reconstruct the two
models. Then, we use both the linear interpolation method and our
proposed method to compute the keyframes between them. Finally, we
created an animation transitioning between the two different face models
to demonstrate the implementation of our proposed approach and its
application to facial deformation animation.

5.2.2.1 Patch Segmentation

There has been various research for parametrizing facial expressions.
Ekman and Friesen (1978) proposed the Facial Action Coding System
(FACS), which uses corresponding parameters to control different facial
shapes. Hamm et al. (2011) presented that facial appearance can encode
the movement of each facial muscle, with slight variations in commands.
Furthermore, any anatomically possible facial expression can be encoded
by FACS. By breaking facial expressions down into temporal segments
and action units, it can be further interpolated to fit any intelligent
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Figure 5.3: Face patch segmentation.

environment, as discussed in (Freitas-Magalhães 2013). More recently,
the Skinned Multi-Person Linear Model (SMPL) has been proposed by
Loper et al. (2023), which learns the relationship between mesh vertices,
presenting shapes, and joints, describing poses. It utilizes the relation-
ship to control facial expression by manipulating facial joints. Unlike
these methods, we leverage wireframes to define 3D models and recreate
3D models from these wireframes using the ODE-based surface creation
method. However, face patch segmentation is required for all approaches
due to the complexity of facial surfaces.

In this experiment, the face model is separated into 7 patches, includ-
ing eye socket, eye bone, nose bridge, nostril cheek, mouth, and jaw, as
shown in Fig. 5.3.

5.2.2.2 Surface Reconstruction

We first extract all the boundary curves of each face patch, as well as add
two control curves to each boundary curve by the method introduced in
Section 5.1. These control curves define the tangents and curvatures on
the extracted boundary curves, which correspond to the first and sec-
ond derivatives. Fig. 5.4 shows the boundary curves and their control
curves on the left and the resulting curves from the ODE surface cre-
ation method on the right. We compare the original model with the
reconstructed surface of the neutral model in Fig. 5.5(a) and the laugh-
ing model in Fig. 5.5(b). In Fig. 5.5(a) and Fig. 5.5(b), the left models
are the original model, while the right models are reconstructed models.
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Figure 5.4: Extracted wireframes of each face patch. The left is the six
control curves of each patch, and the right is all curves generated by the
ODE-based surface creation method using extracted control curves.

(a) Neutral Pose (b) Laugh Pose

Figure 5.5: Comparison of the original and recreated models reveals
that the original laughing model contains detailed features like nasolabial
folds, which are effectively restored using the ODE-based surface recre-
ation. The ODE sweeping technique preserves significant details by ma-
nipulating the control curves.
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Despite using a minimal number of patches to create the ODE-scanned
surface representation of the 3D model, the reconstructed facial model
(right images in Fig. 5.5(a) and Fig. 5.5(b)) retains most details com-
pared to the original facial model (left images in Fig. 5.5(a) and Fig.
5.5(b)). As shown in Table 5.1, the ODE-based reconstructed models
is defined by 4, 764 vertices on boundary and control curves along with
three shape control parameters defined in Eq. 5.2. This results in the
reconstructed model having only about 58% of the design variables com-
pared to the original models with 8, 821 and 8, 246 vertices, significantly
saving data storage space while maintaining similar quality. Additionally,
the constructed model offers a convenient method for quickly manipulat-
ing facial shapes and expressions by adjusting boundary curves, control
curves, and shape control parameters. Besides, as adjacent ODE patches
share the same boundary conditions, C2 continuity is naturally achieved,
eliminating the need for manual stitching and saving substantial time in
ensuring smooth transitions between patches.

Table 5.1: The numerical comparison between the original models and the reconstructed models.

Model
Type

Original
Model

Recreated
Model

Reduce
Rate

vertices number neutral 8221 4764 42.05%
laugh 8246 4764 42.23%

polygon number neutral 15378 4236 72.45%
laugh 15411 4236 72.51%

5.2.2.3 Facial Blendshape

Applying vertex interpolation methods between polygon models with dif-
ferent poses can achieve facial blendshapes. However, establishing corre-
spondences between models with different topologies or vertex numbers
can be labour-intensive and time-consuming. The use of numerous polyg-
onal vertices to define these models further increases the computational
cost for interpolating between models.

By reconstructing models using the ODE-based surface creation method,
we can achieve facial blendshapes through interpolating boundary and
control curves rather than vertices. This approach eliminates the need

112



Figure 5.6: Comparison between 29 reconstructed keyframe models by
our proposed method and LBS. We use the green and blue boxes to
emphasize the shape alteration of the mouth and eyes.

to establish correspondences between models with different topologies or
vertex numbers, and reduces the time required to interpolate multiple
polygonal vertices.

Unlike the widely used purely geometric linear interpolation for fa-
cial blendshapes like LBS (Magnenat et al. 1988), our method employs
Newton’s second law, making it physics-based. This has the potential to
create more natural-looking facial blendshapes. We have implemented
both our proposed algorithm and LBS, and used them to create facial
blend shapes for demonstrating the advantages of our proposed method.

The facial blendshape results are shown in Fig. 5.6, where the left
and right models are original models with the neutral pose and laugh
pose. The models on the first raw are reconstructed models by the ODE-
based surface creation method, while the models on the second raw are
reconstructed by LBS. There are 31 keyframe models created in total,
whilst only the 7th, 13th,19th, and 25th keyframe models are displayed for
comparison.

Through observing Fig. 5.6, we can find that facial blend shapes
based on linear interpolation produce uniform changes between two ad-
jacent models, resulting in expression changing at a constant speed. How-
ever, in reality, facial movements do not occur at a uniform speed. For
instance, when opening or closing the mouth, the lips may accelerate
or decelerate at the beginning or end of the motion. This acceleration
and deceleration can create more natural lip movements. By using inter-
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polation derived from Newton’s second law, we can easily achieve these
acceleration effects, resulting in more natural-looking blend shapes.

5.3 Conclusion

In this chapter, we developed a physics-based skin deformation method
that integrates an improved ODE surface creation framework with New-
ton’s second law to generate realistic facial animations. By leveraging
this approach, we addressed several key challenges in digital character
animation, such as achieving visually natural deformations, maintaining
edge continuity, and ensuring computational efficiency. The ODE-based
surface creation method allows for smooth and physically plausible transi-
tions between different facial expressions while minimizing computational
overhead, making it suitable for real-time environments.

One of the primary advantages of our method lies in its ability to
achieve realistic deformations with small data sizes. This is particu-
larly significant in real-time applications, where memory and bandwidth
constraints often limit the complexity of animations. Additionally, the
framework’s capacity to maintain edge continuity ensures that the result-
ing animations appear smooth and free from visual artefacts, an essential
requirement for creating convincing facial expressions in digital charac-
ters.

Our work builds on the foundational goals of this research by provid-
ing a solution that balances realism and computational efficiency. Unlike
traditional approaches such as Linear Blend Skinning (LBS), which often
suffer from artefacts like volume loss, our physics-based method main-
tains the integrity of the facial model during deformation. Moreover,
the incorporation of Newton’s second law adds a layer of physical real-
ism, enabling animations that respond naturally to external forces and
dynamics.

In conclusion, the proposed physics-based skin deformation method
represents a significant step forward in achieving realistic and efficient
facial animations. Its ability to handle dynamic expressions, maintain
physical accuracy, and operate effectively under real-time constraints
makes it a valuable contribution to the field of digital animation.
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Chapter 6

Advanced Motion Prediction
Method from Monocular Videos

6.1 Introduction

It has been mentioned in Chapter 2 that, as the most important subfield
of the digital character motion research field, 3D human pose estimation
(HPE) has become a fundamental topic in computer vision research and
remains a hot issue. It has broad applications in areas such as action
recognition, human-computer interaction, and pose tracking. The goal
of HPE is to describe the human body’s shape in images, videos, and
webcam video streams. This involves multiple tasks, including object
recognition, segmentation, regression, and detection. For fulfilling the
target of this research in creating realistic digital character animation
in real-time environments, we will dive into the digital human motion
construction procedure of the whole process in this chapter.

Traditional 3D HPE has gradually become less of a research focus
with the recent advent and proliferation of deep learning technologies.
Deep learning-based 3D HPE approaches can be broadly categorized into
direct regression-based methods and 2D information-based methods. Di-
rect regression-based methods often utilize a large neural network to pro-
cess all the data and predict 3D human pose information directly from a
single image. This allows for end-to-end training and end-to-end output
in practical applications. However, the direct regression-based approach
requires handling vast amounts of data, demanding high capabilities in
network structure and data preprocessing. Besides, they face challenges
such as the mismatch between the amount of labelled data and the net-
work’s scale.
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In contrast, 2D information-based methods assist 3D HPE by incor-
porating 2D information, such as 2D keypoints and 2D heatmaps. This
reduces the hardware burden and training complexity. These methods
can be further divided into two categories based on whether the 2D poses
and the 3D poses are jointly trained. Approaches that train 2D and 3D
pose networks simultaneously use the 2D information obtained within
the network as feature values for training. However, tiny errors in 2D
joints can be magnified in 3D space, leading to inaccurate 3D HPE re-
sults. Another approach is to pre-train a 2D pose network to obtain 2D
skeleton sequences, which are then used as additional inputs for training
the 3D pose network. Since 2D HPE methods are relatively mature, this
approach significantly reduces the overall complexity, making it easier for
the network to learn the mapping from 2D to 3D. Moreover, it allows for
semi-supervised training through re-projection. Our research also builds
on this pre-training method. However, there is inherent ambiguity in the
mapping between 3D and 2D, which is a significant challenge that needs
to be addressed.

Existing works have proven that the ambiguities can be mitigated by
integrating 3D motion priors into the network. These approaches can
be roughly classified as explicit and implicit methods depending on the
representation of the priors imposed. The explicit methods include ob-
served data optimizing (Akhter and Black 2015) and biomechanics-based
joint angle restricting (Hatze 1997, Kodek and Munih 2002). However,
it is difficult to completely configure the joint angle limitations related
to poses for the entire body. The implicit methods focus on implicit pri-
ors, such as denoising score matching (DSM) (Ci et al. 2023), generative
adversarial networks (GAN) (Davydov et al. 2022, Peng et al. 2021b),
variational auto-encoder (VAE) (Pavlakos et al. 2019, Ling et al. 2020),
and Gaussian mixture model (Hou et al. 2021, Bogo et al. 2016). Nev-
ertheless, they face challenges, including training trouble and collapse of
posterior mode.

In light of the training framework of the contrastive language-image
pre-training (CLIP) model (Radford et al. 2021), we can approach the
alignment of cross-modal latent manifolds between video data and 3D
skeletal motion data to recreate human motion from monocular videos.
The constructed motion priors can be then leveraged to simplify the
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learning of meaningful relationships and mappings between these two dis-
tinct modalities. This enhances the details and semantic information of
the shared latent manifold, of which advantages have been demonstrated
in various cross-modal tasks (Ao et al. 2023, Komarichev et al. 2022,
Theodoridis et al. 2020). By utilizing recently collected motion datasets,
Human3.6m (Ionescu et al. 2013) and AIST++ (Li et al. 2021b), we
can construct a compact, well-defined shared latent manifold that en-
compasses videos of human performances and their corresponding 3D
motion data. Since sufficient information for accurate human pose re-
construction is contained in this manually constructed latent manifold,
faithful motion can be reconstructed by aligning video data to 3D motion
priors.

To achieve the above process, we design a notable Video-to-Motion
(VTM) framework, which includes a two-part motion auto-encoder (MoAE)
and a two-part visual encoder (TPVE). In our framework, MoAE is first
utilized to identify the latent manifold as the motion prior. It separates
the learning of the motion latent manifold into upper body and lower
body components, effectively reducing the complexity of modelling the
entire human pose manifold. Furthermore, MoAE is trained on normal-
ized 3D skeletal motion data, which helps eliminate the impact of skeletal
scale on the manifold. Then, a manifold alignment loss is employed to
align the video feature manifold with the motion prior. The video feature
manifold is constructed from video inputs by TPVE, which is co-trained
with MoAE to reconstruct 3D human motion, and also consists of two
separate parts: one for the upper body and one for the lower body. This
carefully designed process enables motion and visual representations to
remain in harmony within the VTM framework.

Our VTM framework has undergone extensive evaluation on the AIST++
dataset (Li et al. 2021b). The reconstruction results indicate that VTM
outperforms or matches state-of-the-art (SOTA) methods in terms of var-
ious metrics for HPE. It is pointed out that, VTM demonstrates its ca-
pability to rapidly generate accurate human motions synchronized with
video sequences (∼ 145 fps). This real-time performance significantly
benefits the target of this research in creating realistic digital character
animation in real-time environments.

The main contribution of this chapter is as follows:
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Figure 6.1: The overview of our VTM framework.

• We introduce a novel cross-modal method that effectively leverages
3D motion priors to reconstruct 3D human motion from monocular
videos due to the alignment between the video data and motion
data on the two-body-part latent feature manifolds. Compared to
SOTA methods, our improvements on MRPE and MBLE are 70.2%
and 92.9%, respectively.

• We propose a new strategy to learn scale-invariant motion priors
from normalized motion data, which aids in achieving more accu-
rate motion reconstruction.

• We conduct thorough experiments to validate the effectiveness of
the learned 3D motion priors and explore the best ways to integrate
these priors.

6.2 Process of VTM

Fig. 6.1 shows the overview of our proposed Video-to-Motion framework.
MoAE denotes a motion auto-encoder, comprising motion encoders EM

u

and EM
l , motion decoders Du and Dl, and a root decoder Dr. It is first

trained on the motion data to learn latent manifolds as the motion pri-
ors. TPVE presents a two-part motion encoder, comprising 2D keypoints
feature extractors Ku and Kl, visual fusion blocks Fu and Fl, and visual
encoders EV

u and EV
l . It is then co-trained with MoAE to align the visual

features with the motion priors for reconstructing 3D human motion. EB

is a bone ratio predictor, which is used for predicting the bone ratios.
The superscripts M and V stand for Motion and Video; u and l represent
upper body part, lower body part and root. In this section, the process of
our VTM will be comprehensively introduced.
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6.2.1 Dataset Preparation

6.2.1.1 Dataset Selection

Since 3D human pose reconstruction from videos is a cross-modal issue,
the dataset we require for this research should also be capable of pro-
viding cross-modal information. The mentioned datasets, AIST++ and
Human3.6m, are both cross-modal datasets, containing skeletal motion
data and video data, which can train our model to create complete motion
representations from monocular videos. However, the AIST++ dataset
features a greater diversity of performers compared with the Human3.6m
dataset. More performers align well with our goal of a general method
in motion reconstruction for different skeletons, whilst they bring more
challenges. Thus, the AIST++ dataset is selected as our primary dataset
for training and evaluation. Specifically, we utilize the 2D keypoints and
videos of camera 1 in the AIST++ dataset as our monocular input.

6.2.1.2 Data Preprocess

We first examine the AIST++ dataset and exclude sequences with incor-
rect poses to ensure the learned latent manifold is well-defined. Then a
skeleton with J joints is constructed for all 27 performers in the AIST++
dataset by using the 3D joint positions, of which the bone lengths are
adjusted to match the characters in the videos. Using the joint rotations
and the created skeletons to generate motion and store them in BVH
format, the BVHAIST++ dataset is created.

Subsequently, we create a universal skeleton s̄, which averages all
27 skeletons in the BVHAIST++ dataset. All the motion data can be
aligned with it to create a normalized dataset, where an extra parameter,
bone ratios b, is introduced to represent ratios of each bone between the
universal skeleton s̄ and the original skeleton. The ratios predicted by our
VTM can be used to restore the original skeleton from s̄ during inference,
preserving fidelity to the original skeletal structures.

6.2.1.3 3D Motion Representation

Utilizing the camera parameters provided by the datasets as the transfer
matrix, the BVH files of the average skeleton s̄ can be converted from
the world space, i.e. vertex coordinates, to the camera space. Hence
the tth frame of the transformed motion sequence can be presented as
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xt = {rqt , r
p
t , r

v
t ,x

q
t ,x

p
t ,x

v
t }, where rqt ∈ R6 and xq

t ∈ R6(J−1) stand for the
6D rotation representations (Zhou et al. 2019b) of the root and non-root
joints, rpt ∈ R3 and xp

t ∈ R3(J−1) denote the global 3D joint positions,
and rvt ∈ R3 and xv

t ∈ R3(J−1) represent linear velocities.

6.2.1.4 2D Keypoints Representation

Camera parameters are utilized for projecting 3D joint positions, which
are computed by forward kinematics (FK), into 2D space to generate
2D keypoints. Thus, the scale consistency between 2D keypoints and
3D motion can be conserved. The tth frame of the 2D keypoints can be
presented as kt = {kp

t ,k
v
t }, where kp

t ∈ R2J represents the 2D virtual
keypoints, and kv

t ∈ R2J denotes their linear velocities.

6.2.2 Pre-training Motion Priors

Siyao et al. (2022) has proven the effectiveness of independently recon-
structing root and non-root joints in 3D HPE. Thus, a motion auto-
encoder(MoAE) is developed to distil compact and well-defined motion
priors from motion data, which consists of a two-part motion encoder
(TPME), a two-part motion decoder (TPMD), and a root decoder (RD),
as shown in Fig. 6.1. Similar to (Zhang et al. 2023), our approach inte-
grates a two-part design into a convolutional architecture.

6.2.2.1 TPME

TPME contains two motion encoders EM
u and EM

l , which are designated
for the upper and lower body parts, respectively. The inputs Xu and Xl

are split from the input sequence X = {xt, . . . . ,xt+T−1} ∈ RT×J×12 and
contain root data. The encoders process the inputs to the latent vectors
Zu ∈ RT

4
×128 and Zl ∈ RT

4
×64 as follows:

Zu = EM
u (Xu), Zl = EM

l (Xl) (6.1)

According to the alignment between the universal skeleton s̄ and the
input X, the two latent vectors are normalized for the capacity of cap-
turing 3D motion kinematic constraints without the dependency on the
skeleton scale. Thus, these two vectors can serve as motion priors, which
benefit for gaining a decreased Mean Per Joint Position Error (MPJPE)
value for the reconstructed motion.
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6.2.2.2 TPMD

TPMD leverages decoders Du, Dl and a 1D convolutional aggregation
layer A to decode non-root motion X̂nr from the latent vectors Zu and
Zl as:

X̂nr = A(Du(Zu)⊕Dl(Zl)) (6.2)

where ⊕ denotes the concatenation operation.

6.2.2.3 RD

By comparison, RD only leverage decoder Dr to directly decode root
motion X̂r from the concatenation of Zu and Zl as:

X̂r = Dr(Zu ⊕ Zl) (6.3)

where X̂r only include the velocities rzv and 3D root positions rzp on
the Z-axis, and the root rotation rq, which can be computed by rzp, 2D
keypoints and the camera intrinsic parameters during inference.

6.2.3 Learn Human Motion from Videos

For learning 3D human motion from videos, we present a two-part visual
encoder (TPVE), which achieves the mapping between motion priors and
visual features, to leverage the learned motion priors. Thus, the joint
rotations can be decoded using TPMD and RD. Besides, a bone ratio
predictor (BRP) and a root translation predictor (RTP) are designed
for directly reconstructing root translations and bone ratios from videos,
respectively.

6.2.3.1 TPVE

As shown in Fig. 6.1, TPVE consists of several components: a video
feature extractor, two 2D keypoint feature extractors for the upper and
lower body, two visual feature fusion blocks that combine video features
with keypoint features, and two visual encoders that map the fused visual
features to the latent manifold shared by the motion data.

The video feature extractor comprises two learnable 1D convolutional
layers covu and covl, which allow TPVE to adapt and refine video fea-
tures, and a pre-trained ResNet18 (He et al. 2016). We fix the weights
of ResNet18 and remove its last fully connected layer.
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The two 2D keypoint feature extractors Ku and Kl are three-layer
CNNs. 2D keypoint features can be extracted by utilizing these two
extractors to process sub-sequences Ku and Kl, which are separated from
2D keypoint sequences K ∈ RT×J×4.

The visual feature fusion blocks leverage two 1D convolutional layers
as two residual blocks Fu and Fl to fuse video and keypoint features Ṽu

and Ṽl as:
Ṽu = Fu(convu(V)⊕K(Ku)),

Ṽl = Fl(convl(V)⊕K(Kl))
(6.4)

The visual encoders consist of EV
u and EV

l and are designed for map-
ping between latent manifold and visual features. For better capturing
temporal correlations, they are improved by two cross-temporal context
aggregation (CTCA) modules (Guo et al. 2023). The latent manifolds
Z̃u ∈ RT

4
×128 and Z̃l ∈ RT

4
×64 are encoded from the visual features Ṽu

and Ṽl as:
Z̃u = EV

u (Ṽu),

Z̃l = EV
l (Ṽl)

(6.5)

6.2.3.2 BRP

Due to the significant difference in human height and proportions among
individuals, the scale of skeletons is crucial in 3D human motion. To ad-
dress this, we created the universal skeleton s̄ to standardize the skeleton
during training. As video and 2D keypoints inherently reflect the scale
information of characters, we utilize the Bone Ratio Predictor (BRP) EB

to predict bone ratios b̃ from the visual features Ṽu and Ṽl as:

b̃ = EB(Ṽu ⊕ Ṽl) (6.6)

The predicted bone ratios b̃ can be used to reconstruct individual
skeletons b̃ · s̄ during training.

6.2.3.3 RTP

Global root translation is critical for accurately reconstructing 3D human
motion. Nevertheless, it is challenging to gain precise root translation
due to the ambiguity caused by global 3D joint positions. For example,
the same 2D pose can be performed by the same person at different 3D
locations. To address this issue, the Root Translation Predictor (RTP)
module is introduced, which directly reconstructs these translations from
the video.

122



6.2.4 Training Loss

6.2.4.1 Loss for Motion Priors

The loss LM that we use for training MoAE to learn motion priors consists
of a motion reconstruction loss LM

rec and a motion smoothness loss LM
s :

LM = LM
rec + LM

s (6.7)

LM
rec is a smooth L1 loss that considers the relative importance of

distinct joints to ensure the latent manifold is well-defined (Holden et al.
2017), formulated as:

LM
rec = ωrL1(X̂r,Xr) + ωnrL1(X̂nr,Xnr) (6.8)

where ωr and ωnr are relative weights.
LM
s helps to smooth out sudden changes in the reconstructed motion

over time. It is formulated as:

LM
s =ωrL1(V̂elr,Velr) + L1(V̂elnr,Velnr)+

ωrL1(Âccr,Accr) + L1(Âccnr,Accnr)
(6.9)

where Vel & V̂el and Acc & Âcc denotes the velocities and accelerations
of the ground-truth and reconstructed data, respectively.

6.2.4.2 Loss for Motion Reconstruction

The loss L that we use for co-training TPVE and BRP with MoAE
consists of a manifold alignment loss Lma, a bone prediction loss Lb, a
motion prediction loss LV

pred and a smoothness loss LV
s , formulated as:

L = Lma + Lb + LV
pred + LV

s + λLM (6.10)

Lma aligns visual latent manifold with motion priors, formulated as:

Lma = L1(Z̃u,Zu) + L1(Z̃l,Zl) (6.11)

Lb corrects the bone ratio prediction by BRP, formulated as:

Lb = L1(b̃,b) (6.12)

LV
pred optimizes the motion prediction, formulated as:

LV
pred = ωrL1(X̃r,Xr) + ωnrL1(X̃nr,Xnr) (6.13)
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where X̃r and X̃nr denote the root and non-root data, generated by
decoders using visual inputs of TPVE.

LV
s =ωrL1(Ṽelr,Velr) + L1(Ṽelnr,Velnr)+

ωrL1(Ãccr,Accr) + L1(Ãccnr,Accnr)
(6.14)

where Ṽel and Ãcc denote the velocities and accelerations of the pre-
dicted motion.

6.2.4.3 Root Translation Reconstruction

The loss LT that we use for RTP to reconstruct root translation consists
of a motion prediction loss LV T

pred, and a smoothness loss LV T
s , a motion

prediction loss LV
pred and a smoothness loss LV

s , formulated as:

LT = LV
pred + LV

s (6.15)

LV T
pred = ωrL1(X̃

′
r,X

′
r) + ωnrL1(X̃

′
nr,X

′
nr) (6.16)

where X̃′
r and X̃′

nr denote the root and non-root data generated by RTP.

LV T
s =ωrL1(Ṽel

′
r,Vel′r) + L1(Ṽel

′
nr,Vel′nr)+

ωrL1(Ãcc
′
r,Acc′r) + L1(Ãcc

′
nr,Acc′nr)

(6.17)

We set the relative weights from Eq. 6.7 to Eq. 6.17 as: the relative
importance for the root is 2.0, the end-effectors is 1.5, and all other joints
are 1.0.

Motion encoders are ignored during training, with only 2D inputs fed
into our VTM for human motion reconstruction during inference. For
the rest of the digital characters, motion reconstruction can be dealt with
in a similar way, with different skeletons and motion priors. The final
generated motion consists of rotations of all joints, which are generated
by decoders with visual inputs, and global 3D positions, which RTP
generates.

6.3 Experiments

6.3.1 Implementation Details

The experiments for our VTM are implemented by PyTorch 1.10.1 on
a desktop PC, which is equipped with an Intel Xeon(R) E5-2678 CPU,
128GB RAM, and two GeForce RTX 3090 24GB graphics cards.

The setup configuration is:

124



1. Set joint number J of the universal skeleton s̄ to 24.

2. Extract 32 frames from each of the video sequences by a sliding
window of length 4 for training.

3. Train MoAE for 500 epochs by the AdamW optimizer (Loshchilov
and Hutter 2017) with a batch size of 100 and a learning rate of
initially 1e− 4, decayed by 0.5 every 100 epochs.

4. Co-train TPVE with MoAE by the same settings but a batch size
of 64.

5. Train RTP independently by the same settings of TPVE.

6.3.2 Comparisons

As far as we surveyed, MotioNet (Shi et al. 2020) is the only existing
method that, from monocular video inputs, generates a thorough 3D
human representation, including a kinematic skeleton with scale infor-
mation, root joint translation, and joint rotations. For a comprehensive
evaluation, VTM is also compared with other SOTA methods that pre-
dict 3D joint positions or SMPL parameters by different model structures
and inputs. To ensure a fair comparison, the BVHAIST++ dataset and
the same skeletal topology are applied for training these models via their
released code and training configurations. Specifically, we choose the
VPose backbone (Pavllo et al. 2019) for the Poseaug (Gong et al. 2021)
model owing to its superior performance. For the RLE (Li et al. 2021a)
model, we add a depth channel to extend their codes to implementation
on 3D HPE, as their experiments are all in 2D space. Since no detailed
3D pose representation is provided in PCT (Geng et al. 2023), we only
train the first-stage motion tokens by leveraging the 3D joint positions
in camera space.

6.3.2.1 Quantitative Comparisons

We utilize two standard metrics to evaluate the performance of HPE,
MPJPE and PA-MPJPE. Mean Per Joint Position Error(MPJPE) mea-
sures the average distance between the predicted joints and the ground
truth joints of a human skeleton, formulated as:

MPJPE =
1

24T

T−1∑
n=0

23∑
j=0

∥∥p̂j
n − pj

n

∥∥
2

(6.18)
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where p̂j
n and pj

n denote the generated and ground-truth positions of the
jth joints at the nth frame, respectively. Procrustes Aligned Mean Per
Joint Position Error (PA-MPJPE) is a variant of MPJPE, which mea-
sures the average Euclidean distance between the predicted and ground-
truth joint positions. The lower value of MPJPE and PA-MPJPE stands
for better performance of the algorithm.

Specifically, we compute Mean Bone Length Error (MBLE) for differ-
ent approaches to evaluate the level of the reconstruction of the complete
motion representation. Its formulation is:

MBLE =
1

23T

T−1∑
n=0

22∑
j=0

∥∥∥b̂ljn − bljn

∥∥∥
2

(6.19)

where r̂pn and rpn denote the generated and ground-truth root positions
at the nth frame, respectively.

Moreover, Mean Root Position Error(MRPE) is employed to evaluate
the root translation reconstruction when compared with MotioNet and
Ray3D (Zhan et al. 2022). Its formulation is:

MRPE =
1

T

T−1∑
n=0

∥r̂pn − rpn∥2 (6.20)

where b̂l
j

n and bljn denote the length of the generated and ground-truth
jth bone at the nth frame, respectively. All metrics are computed on the
validation dataset and measured in millimetres.

The joint rotations generated by VTM and MotioNet utilize FK to
compute 3D joint positions for metric computation. As shown in Ta-
ble 6.1, VTM ranks second and third in MPJPE and PA-MPJPE, re-
spectively. This variation is due to the unique objective of VTM, which
prioritizes reconstructing comprehensive 3D motion representations from
monocular video, differentiating it from methods mainly focused on 3D
joint positions. Notably, VTM significantly outperforms MotioNet and
Ray3D in MRPE. Additionally, VTM and MotioNet hold the top two
positions in MBLE. This highlights the effectiveness of reconstructing
complete motion representations in addressing the issue of bone length
inconsistencies in 3D human motion reconstruction, which is vital for
applications requiring skinning.

Except for the experiments implemented on AIST++, we also evalu-
ate the performance of VTM from scratch on the Human3.6m and 3DPW
datasets.
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MotioNet ContextPoseVideo RLE Ray3d PCTPoseaug GFpose OursVPose VIBE HMR2.0 SMPLer

Figure 6.2: The qualitative comparisons on motion reconstruction of our
VTM to SOTA methods.

MPJPE, PA-MPJPE, and MRPE on the Human3.6m dataset are
66.0, 50.2, and 15.6, respectively. MRPE of VTM is less than the reported
value of 109.5 from Ray3D as the skeleton of the Human3.6m dataset con-
tains three extra joints, which correspond to zero-length bones. These
additional joints are crucial for human motion driven by skeletons and
rotations. Nevertheless, these extra joints increase the difficulty in op-
timizing networks, resulting in MPJPE of VTM not matching SOTA
methods.

Since the 3DPW dataset has jittery roots, we only evaluate MPJPE
and PA-MPJPE on it. Their values on the validation datasets of BVHAIST++
and 3DPW are (20.9, 18.1) and (108.0, 79.0), respectively, which are com-
parable to other implementations on 3DPW of SOTA methods. This
demonstrates that VTM is robust for implementation on in-the-wild
datasets.

6.3.2.2 Qualitative Comparisons

We select four random video frames from the validation dataset to vi-
sually assess the motion quality reconstructed by different approaches.
The construction results are shown in Fig. 6.2, where the ground truth
poses are represented as green skeletons, while the reconstructed poses
are represented as red skeletons. It can be observed that the constructed
motions generated by VTM match the ground-truth motions much better
than most SOTA methods, especially in scenarios with significant self-
occlusions like the motions on the second row. This distinct advantage
is attributed to the introduced motion priors, which encode plausible 3D
motion manifolds. The correlations between joint rotations can be cap-
tured by this encoding to facilitate the inference of reasonable human
poses in these challenging situations.
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c1 c2 c3 c4 c5 c6 c7 c8

Figure 6.3: The reconstruction results of the same performer at the same
frame from different unseen view angles.

6.3.3 Evaluations

6.3.3.1 Robustness to Unseen View Angles

As described in Section 6.2.1, our VTM was specifically trained on 2D
keypoints and videos from camera 1 in the AIST++ dataset. However,
the performance of VTM in employing 2D keypoints and videos extracted
from cameras 2 to 8 is shown in Fig. 6.3. The first row shows the
same performer in the same frame with distinct unused camera settings,
while the second row shows their corresponding reconstructed motions.
This experiment demonstrates the robustness of VTM across previously
unseen view angles during training.

6.3.3.2 Robustness to in-the-wild videos

A network for mapping is introduced to allow VTM with motion recon-
struction from in-the-wild videos, of which the structure is a four-layer
MLP. With this network, the COCO-formatted keypoints can be con-
verted into our virtual 2D keypoints. It advantages our VTM to im-
plement on in-the-wild videos, resulting in direct use of 2D keypoints
detected by readily available 2D HPE models. Two examples of recon-
structing motion from arbitrary videos are shown in Fig. 6.4 and Fig.
6.5, where the first row shows randomly grabbed frames of a continu-
ous video sequence and the second row shows their corresponding recon-
structed motions. This experiment illustrates the robustness of VTM
in consistently producing accurate 3D human motion from in-the-wild
videos.
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Figure 6.4: The reconstruction results from in-the-wild videos.

Figure 6.5: Another reconstruction results from in-the-wild videos.
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6.3.3.3 Evaluations on MoAE

The effectiveness of MoAE is validated through three experiments with
distinct configurations:

1. MoAE-SKW: We use the unnormalized skeletons to train MoAE
instead of the normalized universal skeleton s̄ for investigating the
impact of different skeleton scales on reconstruction accuracy.

2. MoAE-Q: We follow the methods in (Holden et al. 2017, Hou et al.
2021) to leverage quaternion-based rotation and a local 3D joint po-
sition representation for evaluating the superiority of our proposed
6D rotation representation.

3. OPMoAE: We do not process the skeleton with the upper and lower
parts but increase the latent space dimension to 196 to conserve its
size for evaluating the necessity of the two-part design.

The quantitative evaluation results are shown in Table 6.2. It can
be observed that MPJPE on MoAE-Q is much larger than MPJPE. It is
due to the error accumulation caused by representing root rotations as
angular velocities to the Y-axis, which is more severe for long sequences.
The evaluation comparison results demonstrate the efficacy of our three
designs in MoAE, including the normalized skeleton s̄, the 6D rotation
representation, and the two-part design.

Table 6.2: The evaluation comparisons of MoAE and its variants on MPJPE, PA-MPJPE, and
MRPE.

Method MoAE-SKW MoAE-Q OPMoAE MoAE

MPJPE↓ 4.9 84.0 5.7 4.8
PA-MPJPE↓ 4.1 10.7 4.9 4.0

MRPE↓ 0.8 98.5 1.1 0.8

6.3.3.4 Evaluations on Motion Priors

VTM co-trains the motion priors with MoAE by creating the alignment
between the visual latent manifold and the pre-trained motion priors.
The following experiments are implemented to assess its efficacy, where
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the quantitative results on MPJPE, PA-MPJPE, and MRPE are shown
in Table 6.3.

Joint training. We set different values of λ for VTM training to
evaluate the co-training with MoAE. As shown in Table 6.3, when λ > 0,
an inverse trend can be found on all three metrics, where we achieve the
best MPJPE but the worst MRPE when λ = 0.3. All metrics are poor
when λ = 0.0, which is fixed for the rest models.

VTM-w/o_prior stands for the model where MoAE is deleted and
Lma is discarded from Eq. 6.10 to remove the motion priors. Its result in
Table 6.3 illustrates that a more precise root translation reconstruction
result can be achieved without motion priors. The negative impact of
motion priors on root translation reconstruction accuracy is caused by
the reason explained in Section 6.2.3.3. Therefore, VTM-λ0.3 is employed
to produce joint rotations, and VTM-w/o_prior is treated as the RTP
module to produce root translations. Since motion priors enhance the
bone ratio prediction, we can find that VTM-w/o_prior’s MRPE 13.5 is
worse than VTM’s MRPE 13.6 with better-predicted bone ratios.

Since different models are used to generate joint rotations and root ro-
tations, we discard the unused outputs from VTM-λ0.3 and VTM-w/o_prior.
Consequently, we implement two models VTM-w/o_RT, which configures
VTM-λ0.3 to generate only joint rotations, and VTM-w/o_prior-OR, which
configures VTM-w/o_prior to generate only root translations. However,
their worse results in Table 6.3 illustrate that it is mutually beneficial to
treat joint rotations and root translations as auxiliary outputs for each
other.

VTM-w/PT-D jointly trains both TPVE and decoders, which are ini-
tialized with the pre-trained MoAE, to generate motion priors, whilst
VTM-w/PT-fixD only trains TPVE and leverages the pre-trained MoAE
decoders with fixed weights to generate motion priors. The result com-
parison between Table 6.3 and VTM-w/o_prior in Table 6.3 indicate that
joint training for motion priors assist in precisely reconstructing joint
rotations. However, the results of VTM-w/o_PT-fixD illustrate the de-
creased performance when imposing improper motion priors.

Latent manifolds alignment. We experiment with three models
to figure out a suitable method for aligning cross-modal latent manifolds.
VTM-w/o_ma discards Lma from Eq. 6.10, VTM-CL follow the methodology
used in CLIP to replace Lma with a contrastive loss(CL), and VTM-CL+L1
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integrates CL into Lma. Nevertheless, the metric results of them are
worse than VTM. This indicates that CL is inappropriate for our dataset
as it contains extensive similar poses.

Scale-independent motion priors. To explore the influence of
skeleton scales on 3D motion priors, we conduct VTM-SKW, which employs
MoAE-SKW to train the motion data generated from the original skele-
tons. The results indicate the significance of our universal skeleton s̄ as
VTM only learns kinematic constraints as joint rotations when skeleton
scale information is eliminated.

6.3.3.5 Evaluations on two-part design

As shown in Fig. 6.1, a module A is adopted to conserve the correlations
between the upper and lower body parts. Thus, for evaluating the effi-
cacy of this design, we conduct VTM-CA, which adds two cross-attention
modules before decoders, and VTM-w/o_A, which discards A and concate-
nates the outputs of decoders as the final non-root motion. The worse
results illustrate the significance of the aggregation layer.

6.3.3.6 Other Evaluations

VTM-OP removes the two-part design and replaces MoAE with OPMoAE,
of which the results are much worse than VTM though these two auto-
encoders have similar performance in Table 6.2. This proves that HPE
from monocular videos is much more complex than normal HPE tasks.

VTM-w/o_CTCA removes the CTCA modules from the visual encoders,
of which the results indicate CTCA’s effectiveness in improving the tem-
poral correlations to enhance reconstruction accuracy.

VTM-w/o_K only inputs videos for training, of which the results are
notably inferior in all three metrics. On the other hand, VTM-w/o_V

only inputs 2D keypoints for training, of which the results remain top-3
ranking in MPJPE, but distinctly drop in MRPE. This is because 2D
keypoints contain motion contours, whilst video data benefits building
global spatial awareness.

VTM-w/o_prior-L increases the dimensions of Zu and Zl to 192 and
96, of which the results are comparable to VTM-w/o_prior but are worse
than VTM.
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6.3.4 Skeleton-driven Mesh Animation

Skeleton-only animation often fails to showcase realistic and natural
movements for digital humans in real-time environments. To address
this, the industry typically uses mesh-based animation to represent a
wide range of dynamic motions and deformations, achieving a more nat-
ural and lifelike effect. As introduced in (Rodriguez 2013), driving a mesh
model involves two interconnected steps: rigging and skinning. Rigging
involves adding controllers to simplify the manipulation of complex poses
by assigning weights to multiple bones. Skinning binds the mesh vertices
to corresponding bones, ensuring that when the skeleton moves, the mesh
deforms accordingly. This allows the skeleton’s motion to drive the mesh
and produce high-quality performance of deformation animations. For
most cases, rigging and skinning are predominantly performed manu-
ally by designers, which is both time-consuming and labour-intensive.
Consequently, significant efforts have been made to develop automatic
techniques for rigging and skinning. For example, Baran and Popović
(2007) proposed Pinocchio, a system designed for auto-rigging models,
which solves the weight-assigning problem and optimal skeleton embed-
ding searching problem. Pan et al. (2009) presented another simple and
efficient automatic rigging approach. It constructs the hierarchical skele-
ton by refining a coarse curve skeleton, which is extracted from the
character, with a perpendicular silhouette. However, current commer-
cial software has integrated these advanced algorithms into the program
to benefit the designers.

To evaluate the capability of our proposed method to generate real-
time animated digital humans driven by predicted skeletal motion, we de-
signed an additional experiment, which is inspired by (Liu et al. 2022c).
Since our method predicts skeletal motion directly from video, the only
remaining step is to bind the predicted skeleton to a digital human mesh
via skinning. We utilized Blender as the software platform for this ex-
periment. First, we generated a new male human mesh model using the
add-on called HumanGeneratorV4, which is general and unique. Then,
we employed another add-on, AutoRigPro, to automatically rig the skele-
ton to the mesh model. After rigging, we used Blender’s Python API to
render the predicted skeletal motion and the mesh animation accordingly
in real-time from video. Sample frames of the rendered animation are
shown in Fig. 6.6, where the first row is the sample frames of the original
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Figure 6.6: Sample frame comparisons among videos, predicted skeletons,
and mesh animations.

videos, and the second and the third rows are the same frames of the pre-
dicted skeleton and the skinned human models, respectively. Our method
predicts motion on the universal skeleton s̄, which means the prediction
results are not affected by the topology and shape of the skeletons. Af-
ter the pre-skinning process is complete, the rendered animation closely
matches the frame rate of skeletal motion prediction. Specifically, our
system achieves approximately 145 frames per second (FPS), which is
also synchronized with video sequences and motion generation, demon-
strating that our approach is capable of producing real-time and accurate
skeleton-driven digital human animations.

6.4 Conclusion

In this chapter, we propose a novel Video-to-Motion(VTM) framework to
reconstruct human motion from monocular videos with a two-part strat-
egy. VTM first uses a two-part motion auto-encoder to learn well-defined
motion priors and then leverages them to reconstruct motions from video
data. With comprehensive experiments, it has been demonstrated to be
effective and robust for accurately generating high-quality motions from
unseen view angles and from in-the-wild videos. Besides, it has been
proven to achieve realistic mesh animation in real-time environments,
which fits the target of this research in creating realistic animation of
digital characters in interactive systems.
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Though VTM is only implemented on digital humans, other digital
characters can deal with motion reconstruction in a similar way with
different skeletons and motion priors. However, acquiring high-quality
datasets for other digital characters is still a big challenge.
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Chapter 7

Conclusion and Future Work

This thesis studied the existing research on 3D modelling, skin defor-
mation, and 3D human pose reconstruction and gained insight into the
fundamental techniques in the creation of realistic animations for digital
characters, especially digital humans, in real-time interactive environ-
ments, such as games and virtual chatting. Then, a series of advanced
methods toward answering the research questions (Section 1.2) are pre-
sented.

In chapter 3, the latest developments and applications of approaches
based on PBD are reviewed. It begins with the introduction to the
core algorithm of the basic PBD for a particle-based system, including
the three primary parts: damping, collision, and the solver. Then, the
improvements in position-based approaches since 2018 are thoroughly
studied, including its extensions addressing PBD’s inherent limitations,
such as PD and XPBD, and integration with other systems, such as
cloth, rigid body, and fluids. The recent applications of PBD in various
fields since 2018 are also summarized, including medical systems, deep
learning, and the architectural industry. These works demonstrate the
efficacy of position-based approaches in real-time systems. Upon these
works, the PBD techniques are utilized for the later chapter to achieve
the goal of our research.

In Chapter 4, a PDE-based modelling method is introduced for fast
and accurate model reconstruction in dynamic deformation simulation.
Its mathematical model is derived from Newton’s second law and the
governing equation of elastic beams, and gains the close-form solutions
leveraging the separation of variables technique. The time variable is
integrated into the mathematical model by normalizing it in the interval
[0, 1], making our method capable of generating in-between keyframe
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models with high efficiency and accuracy. This allows to eliminate an
enormous amount of time spent on PBD simulation, resulting in our
proposed method being time-saving. The comparison results to other
baseline methods demonstrate that our presented method can reconstruct
deformable models with small data sizes while maintaining most details,
which can be the answer to Q1.

In Chapter 5, a physics-based skin deformation method is proposed,
which integrates an improved ODE-based surface creation method with
Newton’s second law to create natural facial animation. The blendshape
models created by our method have natural C2 continuities between ad-
jacent patches, controllable shapes, and small data sizes, which ensure
the superior performance of our method in real-time scenarios. This skin
deformation method can be the answer to Q2.

In Chapter 6, a novel Video-to-Motion(VTM) framework is presented,
which reconstructs human motion from monocular videos in a two-part
strategy. VTM first utilizes MoAE to learn well-defined motion priors
and then employs the motion priors for predicting motions from video in-
puts. With comprehensive experiments, VTM has been demonstrated to
be effective and robust for precisely predicting high-quality motions from
unseen view angles and reconstructing motions from in-the-wild videos.
Its performance in achieving realistic animation of digital human models
synchronized with video sequences indicates that, it can be applied in
interactive systems. This framework can be the answer to Q3.

7.1 Limitations and Future Work

Although the stated objectives of this thesis are achieved as mentioned
above, there still exist several future works required to be further studied
in the proposed methods.

Dynamic modelling. There are future works in dynamic modelling
techniques. For example, an automated and optimal curve extraction
method is required to be investigated for reducing labour costs. This
method first determines the maximum reconstruction error Emax. Ac-
cording to the limitation of Emax, we can automatically identify the
vertices of a single curve and calculate the reconstruction error Erec,
comparing it to Emax. If Erec is less than Emax, more vertices should be
added to the curve. If Erec exceeds Emax, some selected vertices should
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be removed. This process is repeated until Erec is less than or equal to
Emax.

Furthermore, how to determine optimal terms in Eq. 4.24 and op-
timal values of the parameters mS and DS to achieve optimal balance
among the computational efficiency, reconstruction accuracy, and data
sizes have not been investigated in this research. The work given in this
research only investigates the integration between PBD and PDE-based
dynamic reconstruction. It can be extended to integrate PDE-based dy-
namic reconstruction with other numerical methods such as the finite ele-
ment method, finite difference method, mass-spring systems, etc. Apart
from reconstructing new shapes from known shapes obtained by PBD
simulation, how to introduce dynamic PDE-based simulation into the
PBD algorithm and other numerical methods to improve computational
efficiency and convergence can also be a future research topic.

Skin deformation. Our proposed skin deformation method can also
be enhanced. For example, the wireframe extraction procedure involves
manual work, which is tedious and time-consuming. This manual work
can be saved by a procedural extraction method to parametrize face mod-
els. By introducing a template face model with pre-segmented surface
patches, we can modify the input models by manipulating the control
parameters. Besides, since we only investigate facial blendshapes using
interpolation between a neutral pose model and a laugh pose model, fa-
cial blendshapes among a neutral pose model and many target models
with different poses have not been studied, which can be tackled by de-
veloping new algorithms of facial blendshapes based on Newton’s second
law. Moreover, except Newton’s second law, there are many physical laws
required to be investigated for integration, which can generate different
animation effects. Furthermore, the potential of introducing our method
as a constraint into PBD to create more realistic skin deformation results
with high efficiency requires to be investigated.

Motion reconstruction. With the help of professional motion cap-
ture systems, various high-quality human motion datasets have been pro-
posed, like CMU mocap1. Though they provide sufficient motion infor-
mation, the paired video data of the motions are lacking, which makes
them incapable of supervised learning. We will explore the potential of
leveraging these datasets with readily available videos in unsupervised

1http://mocap.cs.cmu.edu/
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or semi-supervised learning. Besides, since the videos in the AIST++
dataset are all captured with simple backgrounds, we will develop back-
ground augmentation approaches to integrate the background variation
for more robust training.

Entire system. After researching the techniques for different stages
in creating realistic animation, we plan to develop a framework to re-
construct the complete animation of digital characters, especially digital
humans, from videos, with real-time performance and accuracy being fo-
cused. Thus, the target of this research can be regarded as being truly
achieved.
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