
Geometrically and Perceptually Accurate Facial Mesh
Synthesis and Personalised Blendshapes Generation

using Graph Neural Networks

submitted by

ROBERT KOSK

for the degree of
Doctor of Engineering Digital Media

of

BOURNEMOUTH UNIVERSITY

Faculty of Media and Communication
Centre for Digital Entertainment

March 2024

This page is intentionally left blank.

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and due acknowledgement
must always be made of the use of any material contained in, or derived from, this thesis.

Supervisors

Dr Richard Southern (Bournemouth University)
Prof. Lihua You (Bournemouth University)
Willem Kokke (Humain Limited)

This page is intentionally left blank.

ABSTRACT

The importance of geometric deep learning applications to 3D content creation has in-
creased rapidly, driven by significant investments in the next generation Virtual Reality
platforms and Visual Effects intensive productions. Generation of high fidelity digital
humans became a focal point and one of the fundamental challenges in these applications.
The availability of high-quality facial scans and recent advances in deep learning methods
applied to mesh processing have led to the development of data driven models. These
approaches are at the forefront of content creation technologies, offering artists and users
the ability to rapidly generate and edit character assets. Despite major improvements in
recent years, the geometric and perceptual quality of 3D facial meshes generated with
these techniques do not meet high standards of VFX and AAA video games industry.

This research explores geometric deep learning approaches to generation and editing
of registered 3D facial meshes and personalised blendshapes. Significant impact of facial
shape representations on the quality of reconstructed meshes is demonstrated. Novel
methods are proposed to improve the geometric and perceptual accuracy of generated
facial meshes and personalised blendshapes. Additionally, user parameters are exposed to
independently edit low and high frequency facial deformations.

The concept of Deep Spectral Meshes is introduced, which is based on spectral decom-
position of meshes in 3D shape representation learning. Using the proposed framework, a
parametric model for 3D facial mesh synthesis is built to demonstrate improvements in
facial mesh reconstruction in terms of geometric and perceptual error metrics. Additionally,
a method is proposed to leverage mutually exclusive objectives of independent control of
deformations at different frequencies, and generation of plausible, synthetic examples.

A platform is built to compare various deep 3D Morphable Models coupled with
different 3D mesh representations and to evaluate them with several distance and perceptual
metrics. Using the platform, improvements upon existing state-of-the-art reconstruction
results are demonstrated and strengths and weaknesses of 3D mesh representations and
preprocessing techniques are further exposed. Subsequently, personalised blendshapes
generation with spectral mesh processing method is introduced to improve geometric

vi |

and perceptual accuracy of synthesised expressions. The proposed method improves
personalisation over the deformation transfer, which remains a standard industrial practise.

The projects presented in this thesis address professional requirements of industrial
partner, Humain Ltd.

TABLE OF CONTENTS

List of figures xi

List of tables xix

1 Introduction 1
1.1 Motivation . 1
1.2 Industrial Context . 2
1.3 Academic Context . 3
1.4 Objectives . 5
1.5 Contributions . 5
1.6 Thesis Outline . 6

2 Background and Related Work 9
2.1 Facial Shape Representations . 9

2.1.1 Images and depth . 9
2.1.2 Points and meshes . 10
2.1.3 Differential surface representation 12
2.1.4 Deformation representation . 13
2.1.5 Voxels . 15

2.2 Generative Deep Learning on Euclidean Domains 15
2.2.1 Autoencoders . 15
2.2.2 Adversarial training . 16
2.2.3 Denoising diffusion models . 18

2.3 Geometric Deep Learning . 21
2.3.1 Convolutional Graph Neural Networks 21
2.3.2 Pooling and de-pooling . 23
2.3.3 Spectral Mesh Processing . 24
2.3.4 Geometric Deep Learning in Spectral Domain 25

2.4 Parametric Face Models . 26
2.4.1 Linear models . 26

viii | TABLE OF CONTENTS

2.4.2 Non-linear models . 28
2.5 Monocular 3D Face Reconstruction . 30

2.5.1 Structure-from-Motion . 30
2.5.2 Other shape cues from 2D images 31
2.5.3 Statistical model priors . 31
2.5.4 Estimation of the parameters . 31

3 Comparison of Shape Representations in Deep 3D Morphable Models 33
3.1 Introduction . 33

3.1.1 Inspiration by the quantisation of different mesh representations . 33
3.1.2 Impact of the model, input representation and its preprocessing on

the quality of the outputs . 34
3.2 Method Overview . 35
3.3 Deep3DMM Comparison Platform . 36

3.3.1 Compared models . 36
3.3.2 Mesh sampling . 37
3.3.3 Graph convolution . 37
3.3.4 Pooling and unpooling . 38
3.3.5 Residual layer . 38
3.3.6 Datasets . 39
3.3.7 Experimental configurations . 39
3.3.8 Data processing . 40
3.3.9 Loss functions . 44
3.3.10 Evaluation metrics . 45

3.4 Implementation Details . 47
3.5 Experiments and Comparisons . 47

3.5.1 Impact of Euclidean and differential representations 49
3.5.2 Impact of input normalisation and standardisation 58
3.5.3 Impact of different deep 3D morphable models 62

3.6 Conclusions . 68

4 Deep Spectral Meshes 71
4.1 Introduction . 71

4.1.1 Inspiration by the spatial frequency theory of perception 71
4.1.2 Spectral mesh decomposition in geometric deep learning 72

4.2 Method Overview . 74
4.2.1 Spectral Partitioning and Representation 74
4.2.2 Neural Network . 77

TABLE OF CONTENTS | ix

4.2.3 Final Assembly . 78
4.3 Mass matrix in spectral partitioning . 78

4.3.1 Quantitative evaluation . 80
4.3.2 Qualitative evaluation . 82
4.3.3 Conclusions . 84

4.4 Deep Spectral Meshes . 84
4.4.1 Vertex Representation . 84
4.4.2 Graph Network Architecture . 87
4.4.3 Network Structure . 87
4.4.4 Training Process . 88
4.4.5 Inference . 88

4.5 Conditioning Influence . 89
4.6 Implementation Details . 89
4.7 Applications and Comparisons . 90

4.7.1 Mesh Reconstruction . 91
4.7.2 Mesh Interpolation . 104
4.7.3 Multi-Frequency Editing . 107

4.8 Conclusions . 109

5 Personalised Expressions Generation 111
5.1 Introduction . 111
5.2 Personalised Blendshapes Generation using Variational Graph Autoencoders112

5.2.1 End-to-end approach . 112
5.2.2 Two-step approach . 114
5.2.3 Comparative results . 115

5.3 Personalised Blendshapes Generation with Spectral Mesh Processing . . . 123
5.3.1 Method overview . 123
5.3.2 Data preprocessing and network training 124
5.3.3 Inference and spectral assembly 125
5.3.4 Pareto-optimal partitions . 125
5.3.5 Comparative results . 128

5.4 Conclusions . 130

6 Conclusions and Future Work 133
6.1 Summary and conclusions . 133
6.2 Future work . 135

References 139

x | TABLE OF CONTENTS

Appendix A Deep3DMM Comparison Platform Software Design 151
A.1 Overview . 151

A.1.1 Models . 151
A.1.2 Architectures . 151
A.1.3 Horizontal and vertical blocks 153
A.1.4 Layers and samplers . 153
A.1.5 Data processing and training . 153

A.2 Layers and architectures . 155
A.2.1 Graph sampling . 155
A.2.2 Graph convolution and feature aggregation 155
A.2.3 Horizontal and vertical blocks 155

A.3 Data loading and processing . 157
A.3.1 Universal interface to different file structures 157
A.3.2 Iterators . 160
A.3.3 Readers and data formats . 160

Glossary 165

Acronyms 167

LIST OF FIGURES

1.1 High-resolution scan of Dr Erika Rosenberg performing the combination
of AU6, AU12, AU15 and AU17. Image courtesy of Humain Ltd. 2

2.1 Left: muscles underlying the AUs 1-7. Right: muscular actions which
change the appearance of a face. Note that FACS measures changes in
facial appearance, and not muscle activations. Reproduced from the FACS
manual by Ekman et al. [35]. 11

3.1 Qualitative comparison of the reconstruction results of the Facsimile train-
ing and test sets output from the SpiralNet++ (top) and LSA-3DMM
(bottom) using 4 representations (in columns). The details of experimen-
tal configurations are shown in Tables 3.1 and 3.2. Per-vertex L1 norm
error and per-vertex DAME are rendered as colour. As the DAME metric
aggregates error calculated on edges, a colour is assigned to a vertex by
averaging error on its incident edges. The visibility weight is not applied
when visualising DAME because the area occupied by vertex colour is
already reflected in shading. It is recommended to zoom into the digital
version to compare the surface artefacts on the generated meshes. 56

3.2 Qualitative comparison of the reconstruction results of the Facsimile train-
ing and test sets output from the FeaStNet (top), Neural3DMM (middle)
and MeshAutoencoder (bottom) using 4 representations (in columns). The
details of experimental configurations are shown inTables 3.1 and 3.2.
Per-vertex L1 norm error and per-vertex DAME are rendered as colour. It
is recommended to zoom into the digital version to compare the surface
artefacts on the generated meshes. 57

xii | LIST OF FIGURES

3.3 The results from the comparison of 5 Deep3DMMs configured with 4
representations plot against the L1 norm error and the perceptual DAME
metric. This visualisation allows one to simultaneously assess the models’
performance in terms of both objectives. The configurations using the same
model share the same fill colour, while those using the same representation
share the same border colour. The discussion over these results can be
found in Section 3.5.3. 63

3.4 Qualitative comparison of the meshes from the Facsimile training set,
reconstructed from each of 5 compared models using the representation,
which achieved the highest perceptual quality (top) and the highest geo-
metric quality (bottom). 66

3.5 Qualitative comparison of the meshes from the Facsimile test set, recon-
structed from each of 5 compared models using the representation, which
achieved the highest perceptual quality (top) and the highest geometric
quality (bottom). 67

4.1 Overview of the proposed Deep Spectral Meshes graph neural network.
Preprocessed meshes P are partitioned to two frequency bands through
spectral decomposition. The resulting low and high-frequency displace-
ments Plow and Phigh are transformed to standardised Euclidean coordi-
nates Flow and the deformation representation (DR) Fhigh (Section 4.4.1).
Subsequently, graph encoders Ehigh and Elow encode the features to la-
tent means µhigh and µ low, and deviations σhigh and σ low. Means and
deviations are concatenated, and latent codes Z are sampled from the distri-
bution N ([µhigh | µ low], [σhigh | σ low]). Graph decoders Dhigh and Dlow

reconstruct inputs from Z (Sections 4.4.2 - 4.4.4). Outputs F′
high and F′

low

are converted back from their representations to Euclidean coordinates
P′

high and P′
low, which are later combined to get the final vertex positions

P′ (Section 4.4.5). 76
4.2 Plot of Eave(k)(4.3) (blue line) and Eave(k)(4.4) (green line) in terms of the

parameter k. Eave(k)(4.3) consistently requires lower k to achieve the same
average L1 norm. 80

4.3 Comparison of per-mesh CPU time required to compute Equations (4.3)
(blue line) and (4.4) (green line) in terms of different parameters k. It
is demonstrated that CPU time is independent of value of k and that
Equation (4.4) takes ≈ 20 ms longer to compute than Equation (4.3). . . . 81

4.4 Plot of Emax(k)(4.3) (blue line) and Eave(k)(4.4) (green line) in terms of the
parameter k. Emax(k)(4.3) is higher up to k = 600, and lower from that point. 81

LIST OF FIGURES | xiii

4.5 Comparison of Emax(k)(4.3) (blue line) and Emax(k)(4.4) (green line) in terms
of the average L1 error. It demonstrates that for a given average L1 error,
Emax(k)(4.3) is higher than Emax(k)(4.4). 82

4.6 Qualitative comparison of spectral mesh decomposition using Equation (4.4)
under "Mass matrix" columns and Equation (4.3)) under "No mass ma-
trix" columns. Despite similar (±10−4) average L1 norm between the
partitioned mesh and the original signal, the distribution of L1 norm varies
across the vertices. The areas of an eye, neck and jawline are magnified to
demonstrate the spatial frequency imbalance in meshes under "No mass
matrix" columns comparing to meshes under "Mass matrix" columns. . . 83

4.7 One-ring neighbourhood vertices and the angles used to calculate cotangent
weights. 85

4.8 Visualisation of meshes Plow and Phigh produced using Equation (4.11)
from a mesh P using different parameters k. 86

4.9 Comparison of the reconstruction results with our method (k = 500, γ = 1,
Z = 64) and with common representations used in other methods: Eu-
clidean coordinates [23, 50, 151], standardised Euclidean coordinates
[14, 22, 43, 46, 102] and normalised deformation representation (DR)
[62, 136]. Across Facsimile and FaceWarehouse datasets, our method out-
performs in reconstructing examples from the training set and favourably
balances perceptual and geometric quality on the Pareto-front of optimal
solutions. Our method underperforms on the FaceScape [144] dataset be-
cause the benefit of using normalised DR representation for high-frequency
information is minuscule compared to standardised Euclidean representation. 95

4.10 The results from the user study comparing our method with common
representations used in other methods: Euclidean coordinates [23, 50, 151],
standardised Euclidean coordinates (Eucl. Std.) [14, 22, 43, 46, 102] and
the normalised deformation representation (DR Norm.) [62, 136]. The
bars show the percentage of participants who selected the mesh generated
by the given method as more similar to the ground truth mesh. The
participants were asked to select “Difficult to say” only when they had to
guess between the generated models. 97

4.11 Comparison of the impact of 18 different parameters k on (A) L1 norm and
(B) DAME test reconstruction error on the Facsimile™ test dataset. . . . 98

xiv | LIST OF FIGURES

4.12 Comparison of the effect of different values of k (blue points) on perceptual
and spatial reconstruction error. The parameter k affects the trade-off
between the perceptual error measured with DAME and spatial fidelity
measured with L1 norm. Values of k which form a Pareto front of optimal
solutions when considering solely perceptual quality and spatial fidelity
are connected with a red line. 99

4.13 Qualitative comparison of the reconstruction results of training data with
our method (k = 500, γ = 1) and with common representations used
in other methods: Euclidean coordinates [23, 50, 151], standardised Eu-
clidean coordinates [14, 22, 43, 46, 102] and the normalised deformation
representation (DR) [62, 136]. The meshes generated by our method
achieve superior results compared to other representations. Zooming into
the digital version is recommended to see the surface artefacts on the
results generated with Euclidean and standardised Euclidean representations.100

4.14 Qualitative comparison of the reconstruction results of test data with our
method (k = 500, γ = 1) and with common representations used in other
methods: Euclidean coordinates [23, 50, 151], standardised Euclidean
coordinates [14, 22, 43, 46, 102] and the normalised deformation represen-
tation (DR) [62, 136]. The meshes generated by our method have similar
surface quality to the outputs with DR while achieving much lower volume
loss in the neck, chin, and cheek areas. 101

4.15 Visual comparison of the reconstruction results of the Facsimile™ and
FaceWarehouse datasets using our method (k = 500, γ = 1, Z = 64) and
four other methods: Mesh Autoencoder [151], SpiralNet++ [46], Neural
3DMM [14] and FeaStNet [129]. It is recommended to zoom into the
digital version to compare the reconstructed meshes. 102

4.16 The outcomes of the user study, which compared the visual similarity
to the ground truth of the meshes generated by our method and other
methods: Mesh Autoencoder [151], SpiralNet++ [46], Neural 3DMM [14]
and FeaStNet [129]. The bars show the percentage of participants who
selected the mesh generated by the given method as more similar to the
ground truth mesh. The participants were asked to select "Difficult to say"
only when they had to guess between the generated models. 103

LIST OF FIGURES | xv

4.17 Interpolation of low-frequency and high-frequency latent parameters, k =
500. Two facial meshes (in green and purple outlines) are encoded. They
are from the Facsimile™ [59] dataset. In (A), the model is trained with the
Conditioning Factor γ = 1.0. In (B), the Conditioning Factor γ = 0.4. The
meshes arranged in a grid are decoded from interpolated latent parameters.
In (C), the meshes in green and purple outlines are interpolated in the
vertex space. 105

4.18 Interpolation of low-frequency and high-frequency latent parameters. This
time, the parameter k = 1000. Two facial meshes (in green and purple
outlines) are encoded, both from Facsimile™ [59] dataset. In (A), the
model is trained with the Conditioning Factor γ = 1.0. In (B), the Condi-
tioning Factor γ = 0.4. The meshes arranged in a grid are decoded from
interpolated latent parameters. They demonstrate that with γ = 0.4, the
network can generate implausible examples, such as the older man with
young, smooth skin at (α = 0,β = 1). This implausible effect is countered
with higher Conditioning Factor γ = 1.0 at (α = 0,β = 1). 106

4.19 Comparison of latent code editing between the proposed method and Mesh
Autoencoder [151]. In (A), the editing of low-frequency latent codes of
encoded mesh P1. In (B), the editing of high-frequency latent codes of
encoded mesh P2. Top and middle row: the examples decoded using our
model with k = 500 and Conditioning Factor γ = 0.4 and γ = 1.0. Bottom
row: the results of editing a subset of latent parameters using the method
in [151]. The parameters of our method successfully disentangle high and
low frequencies. While subjective, it can be observed that lower γ provides
more control and produces more diverse results. Meanwhile, altering the
parameters of Mesh Autoencoder [151] affects the entire frequency spectrum.108

5.1 Diagram of the proposed end-to-end approach to generate personalised
blendshapes. 112

5.2 Comparison of an end-to-end training approach and the two-stage training
strategy. 115

xvi | LIST OF FIGURES

5.3 Visualisation of meshes used to generate results with the Deformation
Transfer (DT) [120] method. Three different identities from the Facsimile
[59] dataset with varying gender and age were used as sources of defor-
mations (bottom left). Two target identities with neutral expression are
selected for demonstration. A full validation dataset of identities is used
in evaluation. The DT is used to transfer expressions from source shapes
onto target neutral identities (top). The results are evaluated against the
expected ground truth expressions (bottom right). 118

5.4 Visual comparison between expressions generated with three different
methods: existing Deformation Transfer [120] method using three dif-
ferent sources of deformation, the proposed end-to-end approach with
standardised Euclidean coordinates (Eucl. Std.) and the proposed end-to-
end approach with normalised deformation representation (DR Norm.). It
should be noted that the Deformation Transfer [120] method is compared
here as it is a standard industrial approach for facial blendshapes genera-
tion. DT uses a single set of sources and its lower performance is expected
when compared against models which are trained on the datasets of many
identities. 119

5.5 Qualitative comparison of synthesised expressions from Facsimile test
dataset. Expressions generated by our proposed methods achieve lower L1

error compared to the results from the Deformation Transfer. 120
5.6 Qualitative comparison of synthesised expressions from Facsimile test

dataset. Expressions generated by our proposed methods achieve lower L2

error compared to the results from the Deformation Transfer. 121
5.7 Overview of the proposed Personalised Blendshapes Generation with

Spectral Mesh Processing approach. 124
5.8 Comparison of the effect of different values of k (blue points) on per-

ceptual and spatial error between the ground truth and the synthesised
expressions. Comparison is performed using identities from validation
Facsimile dataset.The plots depict results from spectral assembly of the
following expressions: "face compression" (top), "mouth wide" (middle)
and "phoneme OO - brow raise - eyes open wide" (bottom). The param-
eter k affects the trade-off between the perceptual error measured with
FMPD and spatial fidelity measured with L1 norm. Values of k which form
a Pareto front of optimal solutions when considering solely perceptual
quality and spatial fidelity are connected with a red line. 127

LIST OF FIGURES | xvii

5.9 Comparison of different blendshapes generation methods in terms of per-
ceptual DAME and spatial L1 error between the expected ground truth
expression and the expression synthesised with each method. Methods are
evaluated on a test Facsimile dataset. 129

A.1 The UML diagram showing the relationship between classes contained
within three core modules of the Deep3DMM Comparison Platform: layers,
architectures and models. Sequences of layers form HorizontalBlock or
VerticalBlock objects composed into architectures such as MeshEncoder,
MeshDecoder and ProbabilisticMeshDecoder. These architectures build
the model, either an autoencoder or a variational autoencoder. This diagram
considerably simplifies the layers module, and Figure A.3 gives more
insight into it. The models module is also simplified in this diagram.
Figure A.2 provides more details on this module. 152

A.2 The UML diagram depicting the relationship between classes of the
Deep3DMM Comparison Platform, which take part in training, testing
and validation of the deep 3D morphable model. Each model contains
the GeometricLosses object, which provides methods for the error metrics
calculation. Each model also has an instance of the UniversalDatastructure,
allowing the model to access external data and metadata independently
of the file structure of the dataset. The pytorch_lightning.Trainer object
orchestrates the training. It runs the forward process and the backpropaga-
tion of the model, calls the callbacks and logs the results using a choice of
loggers. It uses an ExplicitDataModule to lazy-load batches of training,
validation and test data into the model. The optimised parameters, the
associated hyperparameters and other configurations are stored on the
hard drive. The details on the objects of which the models are composed
are shown in Figure A.3. The relationships with other modules of the
data_structures and data_modules can be found in Figure A.5. 154

A.3 The UML diagram showing the relationship between the classes in the
layers module of the Deep3DMM Comparison Platform. SpiralConv [14],
SpiralPlusPlusConv [46], FeaStConv [129] and LSAConv [22] implement
the graph convolutions and pooling layers, while VCConv [151] imple-
ments the residual blocks built of graph convolutions, pooling and residual
layers. The horizontal and vertical blocks are the compositions of these
objects. The HorizontalBlocks have only one graph sampler instance,
while VerticalBlocks have at least one graph sampler. 156

xviii | LIST OF FIGURES

A.4 The structure of datasets and other files used in this work by the Deep3DMM
Comparison Platform. The UniversalDatastructure provides an interface
between this file structure and the objects of the platform. 159

A.5 The UML diagram showing the relationship between the classes of the
modules responsible for data loading and data processing. The data pro-
cessing pipeline is built of a sequence of iterators, which can calculate
different metrics over the set of iterated samples. The iterators use the
readers to accommodate the reading of various file formats. A sequence
of transforms can be applied to each sample by the reader. The DataPro-
cessBase abstract class implements methods for common data processing
operations. These methods use iterators with associated readers and trans-
forms. The DataProcess subclass implements the process() method, which
calls a sequence of the processing operations defined by the parent class.
The resulting preprocessed dataset is used by the ExplicitDataModule in
the training, testing and validation process, as shown in the diagram in
Figure A.2. 161

LIST OF TABLES

3.1 Grid of 20 configurations used in Deep3DMM Comparison Platform. Au-
toencoders (AE(·)) or Variational Autoencoders (VAE(·)) with different
inputs are laid out in terms of the Deep3DMM method and the repre-
sentation. Models in these configurations are trained with 3 datasets:
Facsimile, FaceWarehouse and FaceScape, resulting in 60 experimental
configurations in total. 48

3.2 A grid of loss functions used in 20 configurations used in Deep3DMM
Comparison Platform. The loss functions are laid out in terms of the
Deep3DMM method and the representation. Models in these configu-
rations are trained with three datasets: Facsimile, FaceWarehouse and
FaceScape, resulting in 60 experimental configurations in total. 49

3.3 Quantitative comparison of the reconstruction results on the Facsimile train-
ing and test sets output from the configurations of different Deep3DMMs
(in columns) using four representations (in rows). The details of exper-
imental configurations are shown in Tables 3.1 and 3.2. The results are
evaluated with L1 norm, L2 norm, DAME and FMPD metrics, as de-
scribed in Section 3.3.10. Discussion over these results can be found in
Sections 3.5.1, 3.5.2 and 3.5.3. 50

3.4 Quantitative comparison of the reconstruction results on the FaceWare-
house training and test sets output from the configurations of different
Deep3DMMs (in columns) using 4 representations (in rows). The details
of experimental configurations are shown in Tables 3.1 and 3.2. The re-
sults are evaluated with L1 norm, L2 norm, DAME and FMPD metrics, as
described in Section 3.3.10. Discussion over these results can be found in
Sections 3.5.1, 3.5.2 and 3.5.3. 51

xx | LIST OF TABLES

3.5 Quantitative comparison of the reconstruction results on the FaceScape
training and test sets output from the configurations of different Deep3DMMs
(in columns) using 4 representations (in rows). The details of experimental
configurations are shown in Tables 3.1 and 3.2. The results are evalu-
ated with L1 norm, L2 norm, DAME and FMPD metrics, as described
in Section 3.3.10. Discussion over these results can be found in Sec-
tions 3.5.1, 3.5.2 and 3.5.3. 52

4.1 Per-mesh CPU time and CPU memory required to compute terms from
Equations (4.11) and (5.10). Three datasets of different vertex count are
compared: FaceWarehouse [18] (150 meshes, 11,510 verts), Facsim-
ile ™ [59] (202 meshes, 14,921 verts) and FaceScape [144] (26,317 verts). 90

4.2 Numerical comparison of the reconstruction results of the Facsimile™ and
FaceWarehouse datasets using our method (k = 500, γ = 1, Z = 64) and
four other methods: Mesh Autoencoder [151], SpiralNet++ [46], Neural
3DMM [14] and FeaStNet [129]. 92

4.3 Quantitative comparison of the reconstruction results with our method
(k = 500, γ = 1) and with common representations used in other methods:
Euclidean coordinates [23, 50, 151], standardised Euclidean coordinates
[14, 22, 43, 46, 102] and the normalised deformation representation (DR)
[62, 136]. To ensure a fair comparison between our method and other input
representations, they are evaluated on the fully convolutional variational
graph autoencoder with a single encoder and a single decoder. The encoder
is the same as Ehigh or Elow, and the decoder is the same as Dhigh or
Dlow, without the dropout layer. All the comparisons encode to latent
space Z of 64 parameters. Our method outperforms the reconstruction
of examples from the training set on most datasets. On the test set, our
method favourably compromises between the point-wise L1 precision and
the perceptual DAME metric. Other methods considerably sacrifice one of
these in favour of another. 93

4.4 Ablation study on the reconstruction task demonstrating the impact of nor-
malisation of the deformation representation (DR) and the standardisation
of Euclidean coordinate inputs. 96

LIST OF TABLES | xxi

5.1 Quantitative comparison of spatial and perceptual error in two different
training strategies: end-to-end and two-step, each using two different
shape representations: standardised Euclidean coordinates (Eucl. Std.)
and the normalised deformation representation (DR Norm.). Percentage
points indicate change in error between the end-to-end and the two-step
approaches. 117

5.2 Quantitative comparison of spatial and perceptual discrepancy between
ground truth expressions and the expressions generated with three methods:
existing Deformation Transfer [120] method, the proposed end-to-end
approach with standardised Euclidean coordinates (Eucl. Std.) and the
proposed end-to-end approach with normalised deformation representation
(DR Norm.). 123

This page is intentionally left blank.

ACKNOWLEDGMENTS

I have to start by thanking my supervisor Richard Southern for many years of truly
transformative mentorship, shaping the way I think and solve problems. I would like
to extend my deepest gratitude to my supervisor Lihua You for invaluable advice and
dedication.

I am extremely grateful to Greg Maguire for constant inspiration and guidance in
making this work impactful in industrial setting. Thank you for all the resources and the
opportunity of working in such a research and innovation-driven environment. I would like
to thank my industrial supervisor Willem Kokke, whose technical wizardry has helped
resolve the toughest implementation issues.

Special thanks to my colleagues from Humain who I worked with and learned from.
Particularly, I want to thank Shaojun Bian and Anzong Zheng from Humain’s R&D
team, for countless discussions about my work and showing me how to be a successful
researcher.

I would like to extend my sincere thanks to everyone at the Centre for Digital Enter-
tainment, especially Mike Board for all-important support and encouragement, and Zoe
Leonard for unforgettable memories and sense of belonging.

I am grateful to the reviewers of this thesis, Xiaosong Yang and Vinay Namboodiri,
for their valuable feedback, which has helped improve this work.

This research would not have been possible without funding by EPSRC grant EP/016
540/1 and Humain Ltd.

Thank you to all the friends who have been close to me for all these years, particularly
Brygida, S, erban and Phoebe.

I am also thankful to my family. I could not have undertaken this research without
many sacrifices and unconditional love of my parents Beata and Krzysztof. Thank you
for always believing in me and being anchors in my life. I extend my appreciation to my
brother Darek for being my great friend and supporter.

Finally, I would like to thank my partner Hubert for sharing all my ups and downs
over all the years of this journey. Your love and support gave me strength to finish this
thesis.

This page is intentionally left blank.

DECLARATION

This thesis had been created by myself and has not been submitted in any previous
application for any degree. The work in this thesis has been undertaken by myself except
where otherwise stated.

Robert Kosk
March 2024

This page is intentionally left blank.

PUBLICATIONS

The following publications stem from research presented in this thesis:

Kosk, R., Southern, R., You, L. Bian, S., Kokke, W., Maguire, G. (2024). Deep Spectral
meshes: Multi-Frequency Facial Mesh Processing with Graph Neural Networks.
Electronics 13, no. 4: 720. https://doi.org/10.3390/electronics13040720 [Journal Article]

Kosk, R., Southern, R., You, L. Bian, S., Kokke, W., Maguire, G. (2024). Mesh Represen-
tation Matters: Investigating the Influence of Different Mesh Features on Perceptual
and Spatial Fidelity of Deep 3D Morphable Models. Virtual Reality & Intelligent
Hardware 6, no. 5: 383-395. https://doi.org/10.1016/j.vrih.2024.08.006 [Journal Article]

Kosk, R., Southern, R., Kokke, W. (2020). Parametric Face Model with Geometric Deep
Learning. The 17th ACM SIGGRAPH European Conference on Visual Media Production,
7–8 December 2020, Virtual Conference. [Poster]

https://doi.org/10.3390/electronics13040720
https://doi.org/10.1016/j.vrih.2024.08.006

This page is intentionally left blank.

CHAPTER1

INTRODUCTION

1.1 Motivation

Generating high-fidelity digital characters has become more significant now than ever
before. With substantial investments pouring into new visual effects-intensive content by
technology companies, the demand for lifelike digital humans is escalating. For example,
conglomerates like Meta Platforms, Inc. are reported to have invested at least USD
36 billion in developing content and tools to populate the next-generation social media
platforms based on Virtual Reality.

Meanwhile, video game developers express concerns over lack of highly skilled human
resources required to generate high-fidelity game characters. Modelling and animation
of high-quality, digital faces remains a tedious process, which requires multidisciplinary
expertise and expensive, complex setups. As an example, it takes approximately 180
person-hours for an experienced 3D modeller to create 89 blendshapes used for a digital
double. High-end rigs often require hundreds of shapes, scaling up to even 900 person-
hours of digital sculpting, assuming that no automated process is involved. Current industry
methods use deformation transfer techniques to aid the blendshapes generation process.
Nonetheless, the resulting shapes require extensive and time-consuming manual clean-up
by skilled artists. Moreover, expressions produced with deformation transfer techniques
are not personalised to the target identity model.

Therefore, visual effects (VFX), games and animation studios look for solutions which
would cut costs and time of facial shapes creation, while maintaining standards appropriate
for industrial applications. At the same time, the rapidly developing virtual reality industry
demands fully automated and flexible methods to generate likeness and dynamics of a
human face. Digital faces are used beyond entertainment domain, with applications in
medical visualisation and training, forensic facial reconstruction, as well as virtual avatars
for chatbots and telepresence.

2 | 1.2 Industrial Context

The availability of high-quality facial scans and recent advances in deep learning
methods applied to mesh processing have led to the development of data-driven para-
metric models. These approaches are at the forefront of content creation technologies,
allowing artists and users to rapidly generate high-fidelity character assets for these ap-
plications. However, geometric and perceptual quality of generated assets often does not
meet standards appropriate for industrial applications.

1.2 Industrial Context

The industrial partner of this research is Humain Ltd., the supplier of 3D digital character
services to world leading entertainment and technology companies within the video games
industry. Founded in 2017 and headquartered in Belfast, the company collaborated on some
of the biggest video game titles, including several owned by Xbox Game Studios: ZeniMax
Media Inc., Obsidian Entertainment, Inc. (The Outer Worlds), The Initiative (Perfect Dark
series), and 343 Industries (Halo series). Humain’s credits include Call of Duty: Black
Ops Cold War (Activision Publishing, Inc.), Saints Row series (Deep Silver), the critically
acclaimed Diablo II Resurrected (Blizzard Entertainment), Warhammer 40,000: Space
Marine 2 (Saber, Focus Entertainment), Microsoft Flight Simulator 2024 (Asobo, Xbox
Game Studios) and Avowed (Obsidian Entertainment, Xbox Game Studios). Humain
has also completed projects for Google Stadia and Google Alphabet and has moved into
creating digital twins of music celebrities including David Guetta, Squeezie, Martin Garrix
and Ne-Yo for metaverse music company, Stage11.

Currently, Humain’s expertise is primarily focused on digital faces for AAA video
games. Humain Ltd. does not develop its own video games. Typically, the company
produces a facial rig from a 3D model of a human face provided by a game developer.
Over the years, Humain Ltd. has developed EKER™ - the facial rigging system based on
Facial Action Coding System [35] using scans of Dr Erika Rosenberg as a deformation
source (see Figure 1.1). EKER™ takes a neutral face mesh as an input and automatically

Figure 1.1 High-resolution scan of Dr Erika Rosenberg performing the combination of
AU6, AU12, AU15 and AU17. Image courtesy of Humain Ltd.

https://humain-studios.com
https://www.xbox.com/en-GB/xbox-game-studios
https://www.zenimax.com/
https://www.zenimax.com/
https://www.obsidian.net/
https://www.theinitiative.com/
https://www.343industries.com/
https://www.callofduty.com/uk/en/blackopscoldwar
https://www.callofduty.com/uk/en/blackopscoldwar
https://www.activision.com/
https://www.deepsilver.com/
https://diablo2.blizzard.com/
https://www.blizzard.com/
https://stadia.google.com/
https://abc.xyz/
https://stage11.com/
https://humain-studios.com
https://humain-studios.com

1.3 Academic Context | 3

generates a facial rig. Due to automation, it reduces human intervention in the rigging
process. Nonetheless, the resulting shapes are not personalised and require additional
manual cleanup by the artists.

Additionally, Humain would like to be able to generate facial shapes of new identities
to populate virtual worlds. The resulting faces should be editable at coarse and fine level
of detail with a small set of parameters. The parametric model could be used in a 3D face
reconstruction task. The research and development of a monocular 3D face reconstruction
system is an ongoing process at Humain, and work presented in this thesis has been carried
out in parallel, as complementary part of this process.

Humain’s goals include:

1. Generation of facial shapes of high perceptual and geometric accuracy.

2. Generation of personalised blendshapes given a neutral face mesh.

3. Editing of facial shapes at coarse and fine level of detail.

1.3 Academic Context

In response to needs of the industrial partner Humain Ltd., as well as wider computer
animation, VFX and games industry, the following research question has been posed:

How to generate and edit geometrically and perceptually accurate
digital faces and personalised blendshapes?

Here, generation of faces means an automated process of synthesising triangle meshes of
head and neck.

Editing refers to modifying facial shapes using a limited number of controllers. In this
work, the focus is on the ability to separately edit low- and high-frequency facial shape
displacements.

Geometric accuracy is measured with point-wise distance metrics, such as L1 and
L2 norms. These metrics are sensitive to coarse, low-frequency discrepancies between
meshes.

Perceptual accuracy is measured with perceptual metrics, such as Fast Mesh Percep-
tual Distance (FMPD) [132] or the Dihedral Angle Mesh Error (DAME) [127]. These
metrics are sensitive to fine, high-frequency discrepancies between meshes.

4 | 1.3 Academic Context

Digital faces are either virtual doubles of existing humans, or non-existing heads.
Following the requirements of the industrial partner Huamin Ltd., as well as high-end
AAA games production standards, the focus is on facial meshes with 10-20K vertices.

Personalised blendshapes are a set of facial expressions of a given identity. Observable
changes in facial shape result from contraction and relaxation of underlying muscles,
thickness of fascia, skin elasticity and shape of facial features, jaw and skull. In contrast,
generic blendshapes do not account for these personal features.

In this thesis, it is hypothesised that challenges posed in the research question can be
addressed with geometric deep learning of suitable facial shape representations.

Three-dimensional meshes are non-Euclidean data, unlike Euclidean data such as
voxels, which have an underlying grid structure and can be treated by extending already-
existing 2D deep learning paradigms. The lack of grid structure poses a challenge when
attempting to apply classical deep learning techniques to non-Euclidean data. To address
this problem, geometric deep learning [15] has been developed explicitly for non-Euclidean
data. Geometric deep learning is used in this work to learn the parametric space of facial
meshes. Learned parameters can be used in facial shape generation and editing.

Parametric models, such as 3D morphable models [34], are commonly used to syn-
thesise new meshes by altering the coefficients in a parametric space. They are widely
applied due to their ability to model intrinsic properties of 3D faces. Parametric models
have been used in graph neural networks to represent facial shapes. Parametric models
with graph neural networks, called deep 3D morphable models, are also used in this work
for 3D facial mesh synthesis.

It is hypothesised that using different input and output representations to deep 3D
morphable models can improve upon existing mesh reconstruction methods in terms of
either perceptual or geometric accuracy. It can be expected that using input and output
representations, which explicitly encode the surface properties, improves the perceptual
quality of the resulting meshes. On the other hand, using input and output representations,
which explicitly encode the vertex positions in 3D space, might improve the geometric ac-
curacy of generated meshes. To prove these hypotheses, a selection of deep 3D morphable
models combined with different mesh representations is compared in this thesis.

Lower-frequency displacements encode most of the mesh volume, while higher-
frequency displacements describe fine surface details. This observation can be used
to improve the geometric and perceptual quality of generated meshes. Spectral mesh
processing [115] derives eigenvalues, eigenvectors, or eigenspace projections from the
mesh operators and uses them to carry out desired tasks. It provides a powerful means to
achieve different approximations of a 3D mesh with different frequencies.

It is hypothesised that by integrating the shape representation which explicitly encodes
the surface properties, and by integrating spectral mesh processing for decomposition of

1.4 Objectives | 5

mesh displacements, geometric deep learning, and parametric models with graph neural
networks, a new 3D facial mesh synthesis model can be developed, such that it would
expose user parameters to control disentangled low- and high-frequency displacements,
generate plausible facial shapes, and allow the user to control displacements independently
at low- and high-frequency levels.

1.4 Objectives

Based on the aims covered in Section 1.3, the following objectives are devised:

1. Evaluate influence of different mesh representations input to graph autoencoders in
terms of geometric accuracy and perceptual quality. Compare the impact of normal-
isation and standardisation of inputs to graph autoencoders in terms of geometric
accuracy and perceptual quality. Design and implement software which allows to
evaluate different inputs to various graph autoencoders.

2. Based on conclusions from Objective 1, propose and evaluate a method which utilises
strengths and weaknesses of different mesh representations in graph autonecoders to
improve overall perceptual and geometric accuracy of generated meshes. Demon-
strate reconstruction, interpolation and editing applications of the method.

3. Using conclusions from Objective 1 and techniques developed in Objective 2, pro-
pose and evaluate a method which improves perceptual and geometric accuracy of
personalised blendshapes synthesised from a neutral face input.

4. Identify potential applications and future research directions.

1.5 Contributions

Research presented in this thesis resulted in the following main contributions:

• A novel parametric deep face model which enables independent control of high- and
low-frequency displacements.

• Enhanced geometric and perceptual quality of generated meshes, achieved through
the use of different representations of displacements at high and low frequencies.

• Identification of strengths and weaknesses of different inputs to various graph
autoencoders in terms of geometric accuracy and perceptual quality. The design
and implementation of software which allows to evaluate different inputs to various
graph autoencoders.

6 | 1.6 Thesis Outline

• The improved quality of generated meshes by selecting best performing combinations
of an input representation and the graph autoencoder based on either perceptual or
geometric quality objective.

• Introduction of spectral decomposition of meshes in 3D shape representation learning
and demonstration of importance of mass matrix normalisation in this method.

• An improvement of geometric accuracy and perceptual quality of personalised
blendshapes synthesis by using graph autoencoders coupled with spectral mesh
processing.

1.6 Thesis Outline

The remaining chapters of this thesis are organised as follows:
Chapter 2 covers background and related work in the areas of facial shape representa-

tions, generative deep learning, deep learning on non-Euclidean domains, parametric face
models and monocular 3D face reconstruction.

Chapter 3 addresses Objective 1. It investigates the hypothesis that leveraging different
input and output shape representations within deep 3D morphable models can enhance
mesh reconstruction methods in terms of perceptual and geometric accuracy. An evaluation
platform, the Deep3DMM Comparison Platform, is introduced to assess various deep 3D
morphable models across different shape representations. This chapter explores configura-
tions of five deep 3D morphable models with four input and output representations trained
on multiple datasets and evaluates them using geometric and perceptual metrics. The
conclusions from this chapter provide insight into influence of different shape representa-
tions and preprocessing techniques on perceptual and geometric fidelity of reconstructed
meshes.

Chapter 4 addresses Objective 2. It introduces Deep Spectral Meshes method and
tests the hypothesis that by integrating the shape representation which explicitly encodes
the surface properties, and by integrating spectral mesh processing for decomposition of
mesh displacements, geometric deep learning, and parametric models with graph neural
networks, a new 3D facial mesh synthesis model can be developed, such that it exposes
user parameters to control disentangled low- and high-frequency displacements, generate
perceptually and geometrically accurate facial shapes, and allows the user to control
displacements independently at low- and high-frequency levels.

Chapter 5 addresses Objective 3. It examines the hypothesis that graph autoencoders
can enhance the mapping between neutral face meshes and personalised expressions, out-
performing existing Deformation Transfer method in terms of geometric and perceptual

1.6 Thesis Outline | 7

accuracy. Additionally, personalised blendshapes generation with spectral mesh process-
ing method is introduced to improve geometric and perceptual accuracy of synthesised
expressions.

Chapter 6 provides a summary and conclusions. Lastly, it addresses Objective 4
through identification of potential applications and future work directions.

Finally, Appendix A covers software design and implementation details of the compar-
ison platform from Chapter 3.

This page is intentionally left blank.

CHAPTER2

BACKGROUND AND RELATED WORK

In this chapter, Section 2.1 reviews important concepts and the literature on various repre-
sentations of facial shapes, the deep learning methods which devise these representations
in Euclidean domain are reviewed in Section 2.2 and non-Euclidean domain in Section
2.3. Parametric face models are covered in Section 2.4, and methods of mapping between
facial representations, including the reconstruction of 3D face shapes from 2D images, are
discussed in Section 2.5.

2.1 Facial Shape Representations

2.1.1 Images and depth

RGB and RGB-D images are the most common representations of facial shapes at a stage
of acquisition. High-end facial performance capture requires expensive, multi-view camera
setups. However, as monocular RGB capture devices are inexpensive and widely available,
monocular methods of acquisition became an important and popular research topic. Images
of faces are primarily used to infer skin texture and other facial shape representations, such
as a point cloud or parameters of a parametric model. Numerous methods further constrain
inference of facial shapes from images with additional information, such as landmarks,
edges and silhouettes. Comprehensive review of facial landmarks detection from 2D
images is provided in survey by Wu and Ji [138]. Browatzki and Wallraven [16] achieve
state of the art results in predicting facial landmark heatmaps from 2D image representation
of faces. Firstly, they capture implicit knowledge of facial shape by unsupervised training
of an adversarial autoencoder. Then, they retask the generation of RGB facial images to
prediction of landmark heatmaps. Applications of the constraints devised from 2D images
are described in Section 2.5. Thanks to structured representation of 2D images, large
number of deep learning models can directly operate on them.

10 | 2.1 Facial Shape Representations

2.1.2 Points and meshes

Point clouds, here denoted with P, can be extracted from a set of images through Simulta-
neous Localisation and Mapping (SLAM) [37] [36]. Using this approach requires subjects
to maintain a static facial expression. When captured in high resolution, results from
SLAM often act as the ground truth of a 3D facial shape. Nonetheless, points do not
provide direct information about surfaces which they represent and can be ambiguous. To
give an insight into topological properties of the object, a 3D mesh representation is used.
In this thesis,triangular meshes are considered and denoted as sets M = {V ,E }, where
vi ∈ V , i = 1 . . . |V | is a set of vertices (points in 3D space) and E is a set of pairs of ver-
tices, which define mesh connectivity. Positional information about vertices is represented
using matrix P, where rows pi correspond to vertices, and columns correspond to xyz
coordinates. In Section 2.3 on geometric deep learning, words mesh and graph are used
interchangeably, both denoted with M . When meshes are used as a shape representation
in deep learning, some of the negative effects of their variance to rigid transformations can
be reduced with rigid registration of all the training examples.

Blendshapes

3D facial shapes are usually animated in two common representations: skinning, blend-
shapes or their combination. Blendshapes are 3D facial meshes sharing the same connec-
tivity, each with a different elementary expression, often derived from FACS. Animation
with blendshapes is possible through blending these expressions with each other and with
a base mesh. Given neutral identity face B0 and blendshapes Bi, where i ∈ {1,2...,n}, a
new expression p is the linear combination of blendshapes:

P =
n

∑
i=0

αiBi , (2.1)

where αi is a weight of a blendshape Bi, where 0 < αi < 1, ∀i and ∑i αi = 1. To be able to
apply the same expressions on top of different identities, delta blendshapes are used:

P = B0 +
n

∑
i=0

αi(Bi −B0) . (2.2)

This way, a model of facial shapes is obtained, where each shape can be defined in terms
of non-orthogonal vectors. These vectors are useful for artists, as they are semantically
meaningful. Alternative formulations with orthogonal basis are described in Section 2.4.1.

Despite its popularity, mostly attributed to simple formulation, facial animation with
blendshapes has numerous limitations. Linear blending between shapes does not conform
with biomechanical motion of faces. Furthermore, editing of such animations requires

2.1 Facial Shape Representations | 11

the manipulation of individual blendhapes. As blendshapes do not form an orthogonal
space, their linear combinations are often counter-intuitive and most combinations require
additional, corrective blendshapes. In high-end facial rigs, the number of corrective
blendshapes can reach over a thousand shapes, making these rigs very challenging to
maintain and develop.

Facial Action Coding System

Figure 2.1 Left: muscles underlying the AUs 1-7. Right: muscular actions which change
the appearance of a face. Note that FACS measures changes in facial appearance, and not
muscle activations. Reproduced from the FACS manual by Ekman et al. [35].

Facial Action Coding System (FACS) is the standard taxonomy of facial expressions.
It codifies movements of underlying muscles based on changes in facial appearance, as
shown in Figure 2.1. Almost every facial expression can be encoded with a combination
of Action Units (AUs), which are observable effects of contraction or relaxation of a
certain muscle or a group of muscles. For example, a combination of AU6, AU12, AU15
and AU17 results in the expression depicted in Figure 1.1. Furthermore, each AU has its
intensity score ranging from A (trace) through C (marked pronounced) to E (maximum).
Importantly, FACS was not designed to codify visemes, so that additional primary shapes
are required to describe speech.

Deformation Transfer

Modelling of hundreds of blendshapes, including corrective shapes, is laborious and often
infeasible task. Delta blendshapes, described before, can be reused in limited extent, usu-
ally on neutral faces with very similar physiognomy and style. Seminal work of Sumner
and Popovic [120] introduced the Deformation Transfer, which transfers deformations
from a source subject onto a target subject. Both, source and target, do not need to share the
same connectivity or number of vertices. In practice, given one set of blendshapes, artists

12 | 2.1 Facial Shape Representations

can automatically generate a corresponding set of blendshapes for another individual. The
method generalises to thoroughly different identity shapes, including highly stylised char-
acters. Nevertheless, selecting a set of vertex markers to establish correspondence between
shapes remains a manual part of this process. Furthermore, the deformation transfer on
faces ignores the fact that different individuals perform the same facial expressions in a
different way. This problem is recognised in this thesis and following Objective 3, the
correspondence between identity and expression is established in Chapter 5. Li et al. [77]
propose to re-introduce individuality of facial expressions with a set of example poses of a
target face. Yet, their technique requires additional modelling effort and improvements
are seen mostly on expressions covered by example expressions, with minor impact on
remaining shapes.

2.1.3 Differential surface representation

Previously described representations have one common disadvantage - their editing can
be tedious due to large number of parameters. Laplacian coordinates [115] allow for
new mesh editing and shape approximation techniques. As this representation inspired
further work in representing displacements and some of its concepts are shared with graph
convolutional networks, it deserves a more detailed overview.

There are numerous representations which allow for mesh editing, for instance free-
form deformation (FFD) embeddings, finite element method (FEM) etc. Nonetheless,
differential coordinates are especially interesting for our problem, as intrinsic surface
properties, such as curvature, are natively optimised in this representation. The differential
coordinates δ i of the vertex vi ∈ V with position pi are calculated as follows:

δ i = wi j ∑
j∈Ni

pi −p j , (2.3)

where Ni are indices of vertices in neighbourhood of vi. Simply put, δi is the difference
between the vertex position and weighted sum of its neighbourhood positions. Sorkine
[115] uses valence-based weights wi j =

1
|Ni| , however cotangent weights are often used

instead [84]. Differential coordinate δ i encodes important local properties: it approximates
the normal direction of a local surface and its magnitude is proportional to local mean
curvature. While Laplacian coordinates are translation invariant, they are still sensitive to
rotations.

Graph Laplacian

The Laplacian operator L transforming vectors in absolute Euclidean coordinates to
differential coordinates is

2.1 Facial Shape Representations | 13

L = I−D−1A , (2.4)

where A is an adjacency matrix of a mesh M , D−1 is an inverse degree matrix of A and I is
an identity matrix. As differential representation is translation invariant, the reconstruction
from Laplacian coordinates back to absolute Euclidean coordinates does not have a unique
solution and at least one positional constraint must be added to the linear system.

Least-squares Meshes

Sorkine and Cohen-Or [117] introduced least-squares meshes - a smooth approximation
of control points, which constrain the mesh in differential representation. Positional
constraints used for reconstruction are either a selection of existing points or new vertex
positions, known as anchors. The system reconstructing the points is then solved in a
least-squared sense. When representing facial performance, curvature is an important
property to preserve. Therefore, a set of anchors can be used to encode different facial
expressions and identities as least-squares meshes.

2.1.4 Deformation representation

Mesh difference is a natural way of describing facial action units, which are displacements
of a neutral identity. While differential coordinates encode local surface properties, defor-
mation representation encodes local deformation properties using deformation gradient.

Let’s consider a vertex vi ∈ V with position pi on a reference mesh M0 and the same
vertex with position p′

i on a deformed mesh Mn. Following work of Sorkine et al. [116],
Baran et al. [7] calculate the deformation gradient Ti by solving following weighted
least-squares system, which minimises energy E(Ti), such that

E(Ti) = ∑
j∈Ni

ci j

∥∥∥∥(p′
i −p′

j)−Ti(pi −p j)

∥∥∥∥2

, (2.5)

where Ni are indices of vertices in 1-ring neighbourhood of vi and ci j are cotangent weights
calculated on M0. Note similarities to Equation 2.4.

Representing deformations as affine transformations Ti is not practical, because linear
interpolation between shapes in this space is meaningless. Sumner et al. [121] propose
to decompose Ti into rotational part and a scale/shear part using polar decomposition,
so that Ti = RiSi. Rotation matrix Ri, mapped to logRi can be linearly interpolated and
then converted back to Ri = exp(logRi). Linear interpolation of Si is meaningful without
additional conversions. This form of deformation representation is still variant to global
rotations.

14 | 2.1 Facial Shape Representations

RIMD

Gao et al. [41] introduced a rotation-invariant mesh difference (RIMD). As opposed to
Laplacian coordinates, RIMD is invariant in terms of both rigid rotations and translations,
making it a suitable representation for training deep neural networks [122].

Deformation gradient is calculated as in Equation 2.5. Global rotations cancel out
in RIMD representation, because instead of Ri, only rotational difference dRi j = RT

i R j

is kept. This leads to a drawback of this representation - as Ri is not explicitly encoded
in RIMD representation, a surface reconstruction requires a two-steps iterative process.
Firstly, to calculate optimal positions p′, Ri is initialised and fixed, and p′ is solved in
a least-squared sense using Cholesky factorisation. In the second step, Ri is explicitly
obtained using Singular Value Decomposition. Due to lack of a closed form solution,
surface reconstruction from RIMD is not computationally efficient.

ACAP

As-consistent-as-possible (ACAP) deformation representation is proposed by Gao et al.
[42] as an improvement of computational issues of RIMD representation and its ability to
handle large rotations. Deformation gradient is computed as in Equation 2.5. The rotation
matrix Ri is represented using a rotation axis ω i and rotation angle φi, so that all possible
rotations can be encoded with (ω i,φi + ti ·2π), where t is an arbitrary integer. To ensure
smooth, large rotations, integer oi ∈ {−1,1} is introduced to indicate potential reversal of
axis. Then, compatibility of axis orientations between adjacent vertices is maximised by
maximising oi and the rotation angle between adjacent vertices is minimised by minimising
ti.

Simplified deformation representation (DR)

ACAP representation optimises consistency of angles between adjacent vertices to handle
rotations larger than 2π rad. However, in context of facial deformations, local rotations
never exceed 2π rad. Wu et al. [136] address this fact and simplifies the deformation
representation by skipping the optimisation of integers oi and ti. Wu et al. [136] prove
effectiveness of the simplified representation in reconstructing caricatures of faces through
combination and extrapolation of deformation features.

Skinning

Despite multiple approaches to representing spatial deformations [40], linear blend skin-
ning (LBS) remains the most popular skinning model due to simple formulation and
computational efficiency [76]. Next to blendshapes, it is primary representation of facial

2.2 Generative Deep Learning on Euclidean Domains | 15

deformations in animation and games industry. In LBS, surface deformation is represented
as a set of bones B = {R j|T j}, where R j and T j are rotation and transformation matrices
of jth bone. Position pi of each vertex vi ∈ V is transformed by weighted combination
of bone transforms B, where wi j is the weight of jth bone influencing vi. The deformed
vertex position

p′
i =

|B|

∑
j=1

wi j(R jpi +T j) . (2.6)

Smooth Skinning Decomposition with Rigid Bones (SSDR), introduced by Le and
Deng [71], solves an inverse LBS problem. The algorithm automatically extracts bone-
vertex weights map W and bone transforms B from a set of example poses Mn by
minimising following energy using block coordinate descent algorithm:

E(w,R,T) =
|M |

∑
n=1

|V |

∑
i=1

∥∥∥∥∥p′n
i −

|B|

∑
j=1

wi j(Rn
jpi +Tn

j)

∥∥∥∥∥
2

, (2.7)

where wi j ≥ 0, ∑
|B|
j=1 wi j = 1 and Rn

j is an orthogonal matrix with determinant = 1.

2.1.5 Voxels

Voxels are a 3D extension of a concept of pixels. Well established machine learning
techniques in the field of 2D images can be easily applied to voxels due to their regular
structure. On the other hand, data size of this representation limits the resolution of
shapes because of high computational cost. It can be estimate that representing a face
which meets requirements outlined in Section 1.2, requires 17.5 M voxels, leading to a 3D
binary volume taking 140.6 MB of storage. For comparison, Euclidean coordinates mesh
representation of the same face 3D model is 0.117 MB, and the deformation representation
(DR) is 0.351 MB. Due to infeasible memory consumption, voxels representation is not
considered in this research.

2.2 Generative Deep Learning on Euclidean Domains

2.2.1 Autoencoders

Dimensionality reduction of a large set of facial shapes is essential in devising a limited
number of parameters which allow for facial shapes editing. Autoencoders aim at dimen-
sionality reduction of data X . They consist of two neural networks: encoder E(x) which
maps data samples x ∈ X onto bottleneck z, and decoder D(z) which takes latent variable

16 | 2.2 Generative Deep Learning on Euclidean Domains

z and outputs reconstructed data sample x̂. The networks E(x) and D(z) are optimised
using gradient descent with an objective to minimise L2 norm between input x and output
x̂. Such formulated autoencoders do not produce regular latent space and lead to overfitting,
so arbitrary point z decoded by D(z) will not generate new, meaningful content x̂.

To regularise the latent space of the autoencoders and, consequently, allow for afore-
mentioned generative process to work, Kingma and Welling [69] introduced Variational
Autoencoders (VAE). Instead of encoding an input as a single point, each x is encoded as a
distribution p(z|x), which approximates a prior p(z), so that encoder outputs mean µ and
covariance σ of this normal distribution. In addition to reconstruction loss, KL divergence
regularisation term is added to enforce distribution p(z|x) to be close to standard normal
distribution. Thanks to regularisation, VAEs produce complete and continuous latent space
of data X with generative properties. Training of Variational Autoencoders is very stable.
When trained on images, their main drawback is blurry output. One of the reasons for the
blurry output comes from the training principle, which is not able to assign low probability
to blurry points (note that Generative Adversarial Networks from subsequent subsection
solve this problem through adversarial training).

Tan et al. [122] create a Mesh VAE model of mesh deformations. They ignore non-
Euclidean nature of 3D meshes and use only fully connected layers in both the encoder and
decoder, following classical VAE architecture described in [69]. The Mesh VAE shows
that standard Variational Autoencoders can be successfully utilised for both generation and
interpolation of mesh deformations in RIMD representation [41]. However, due to large
number of parameters and extensive memory consumption, fully connected layers are not
practical in such models and can be replaced by more efficient graph convolutional layers,
described in Section 2.3.1.

2.2.2 Adversarial training

Generative Adversarial Networks

Another popular generative model architecture, Generative Adversarial Network (GAN),
was proposed by Goodfellow et al. [47]. GANs consist of two simultaneously trained
networks, the generator G and the discriminator D. Generator G samples from normal
Gaussian distribution and transforms the sample G(z) so that it follows prior distribution.
Discriminator D performs binary classification with a goal to classify all outputs from G as
generated (false) distributions and all examples x ∈ X from training dataset as real (true)
distributions. The objective of generator G is to confuse the discriminator D and make it
produce false positives. In such adversarial setup, D and G play a two-player min-max
game and weights of the network G are implicitly optimised in iterative steps. In ideal

2.2 Generative Deep Learning on Euclidean Domains | 17

situation, optimisation of weights of G and D converges when G generates samples which
follow the probability distribution of the prior and D is unable to differentiate between real
and generated distributions.

When trained on images, unlike VAEs, GANs are able to produce crisp results. Never-
theless, training of original GANs is usually unstable and sampling tends to lack diversity.
Very often, the generator learns to produce tiny set of outputs and traps the discriminator
in a local minimum. Such failure is called mode collapse. To tackle unstable learning
and poor mode coverage, multiple improvements over original GAN were proposed [108].
DCGAN [100] uses convolutional layers to improve visual quality of generated images.
Instead of binary classifying discriminator, EBGAN [149] uses autoencoder discriminator
with energy-based loss. WGAN [3] introduces alternative loss function based on the
Wasserstein distance. It is further improved by WGAN-GP [49]. BEGAN [9] builds upon
previous advancements and proposes autoencoder-based GAN which enforces equilibrium
between generator and discriminator losses.

Progressive learning

Despite many improvements, previously mentioned approaches still struggle to generate
larger images, because in higher resolution it is easier for the discriminator to differentiate
between generated and training data, which leads to unstable training. Denton et al. [29]
observe that it is easier to learn the mapping from latent space to high resolution images
in steps, and use course-to-fine approach of LAPGAN, where cascade of convolutional
GANs is trained within a Laplacian pyramid framework. Contrary to LAPGAN which
consists of separate GANs for each level in the hierarchy, Karras et al. [63] propose a
single, progressively growing GAN (PGGAN). Generator G and discriminator D are mirror
images of each other, and as training progresses, higher resolution layers are added to both
networks. This method not only stabilises, but also speeds up the training process.

Style-based approach

Given two 2D images: one representing arbitrary style, and another representing content, a
neural network proposed by Huang and Belongie [58] is able to efficiently transfer that
style onto given content. The novelty of the proposed network lies in Adaptive Instance
Normalisation (AdaIN) layers, which align mean and variance of the input content to
mean and variance of the given style. The authors demonstrate, that AdaIN performs
style normalisation by normalising feature’s statistics. This way, majority of the network
manipulates the content of a given image, while AdaIN handles its style.

Seminal work of Karras et al. [64, 65], StyleGAN, incorporates AdaIN layers in
generative part of GAN. When previously described GANs take the latent code as an

18 | 2.2 Generative Deep Learning on Euclidean Domains

input to the first layer of the generator G , in StyleGAN, the first layer is a learned tensor,
which becomes constant during the inference. Instead, the latent code z is mapped onto
intermediate latent space, which is input as a style into AdaIN at each convolutional
layer. Moreover, in order to generate stochastic features, Gaussian noise is fed after each
convolution. Visual comparisons show that noise highly impacts the generation of fine,
stochastic details. StyleGAN is able to synthesise high-quality 2D images of faces with
10242 resolution. Moreover, thanks to latent code injected after each convolutional layer,
the network provides scale-specific control over the generation process. Resulting latent
code is disentangled, so that individual factors of variation consistently correspond with
specific direction vectors in latent space.

Li et al. [78] propose a non-linear morphable model of faces which utilises StyleGAN
architecture to generate colour texture and displacement maps with pore-level details.
Variation in identity and facial expressions is represented through offsets in UV space. The
correlation between textures and geometry is preserved through their joint training. The
output from StyleGAN is further upscaled to 4K using super-resolution network introduced
by Ledig et al. [72].

Hybrid models

Variational Autoencoders and Generative Adversarial Networks are the most popular
deep generative approaches. Training of VAEs is very stable, yet decoded images lack
details and tend to be blurry. Although training stability of GANs was substantially
improved, they can be challenging to train. On the other hand, GANs produce more
detailed, sharper images. Having these in mind, Huang et al. [57] propose to combine both
training methods in their IntroVAE model. Most recently, Pidhorskyi et al. [94] introduce
StyleALAE, which leverages advantages of GANs, VAEs and AdaIN. The progressively
growing encoder network E outputs style vector after each of its Instance Normalisation
(IN) layer. The style is input to Adaptive Instance Normalisation (AdaIN) layers of the
corresponding, progressively growing, adversarially trained generator G . StyleALAE
is especially interesting for us: due to presence of the encoder, it not only synthesises
high-quality 2D images of faces, but also serves as their disentangled representation with
multi-scale control.

2.2.3 Denoising diffusion models

Recent developments in denoising diffusion models demonstrate outstanding performance
in generative modelling. For example, Dhariwal and Nichol [31] employ their ablated
diffusion model (ADM) to outperform state-of-the-art GANs on image-synthesis task.
Notable examples of text-guided generative models include Stable Diffusion, which builds

2.2 Generative Deep Learning on Euclidean Domains | 19

upon work of Rombach et al. [103], DALL·E 2 [101], and GLIDE [91], the diffusion
models conditioned on CLIP [99] embeddings. Croitoru et al. [26] provide a thorough
literature survey on diffusion models in computer vision.

Diffusion models have been applied to a wide variety of generative and discriminative
tasks on 2D images. In the area of 2D facial registration, DiffuseMorph [67] adapts
diffusion models to generate deformation fields.

Denoising Diffusion Probabilistic Models (DDPM)

Denoising Diffusion Probabilistic Models (DDPMs) have been proposed in [114, 55]. They
are a class of generative models which gradually refine noise through a learned denoising
process.

In the forward process, the noising is performed as follows:

p(xt | xt−1) = N (
√

1−βt · xt−1,βt · I),∀t ∈ {1, ...,T}. (2.8)

The original sample x0 is corrupted by the Gaussian noise in T iterations. Given the
previous sample xt−1, the distribution of the next sample xt is the normal distribution of
mean and co- variance calculated according to the variance schedule β1, ...,βT ∈ [0,1). For
example, Ho et al. [55] choose (βt)

T
t=1 to linearly increase from β1 = 10−4 to βT = 0.02,

where T = 1000.
Equation 2.8 calculates the probability distribution of xt given the previous noising

step, i.e. in a recursive process. It can be rewritten to explicitly calculate the distributions
of any xt given original x0:

p(xt | x0) = N (

√
β̂t · x0,(1− β̂t) · I). (2.9)

The mean and covariance terms use β̂t = ∏
t
i=1(1−βt), i.e. a product of all (1−βt) up to

desired noising step t. Based on Equation 2.9, xt can be sampled simply by adding the
mean term to the product of a standard Gaussian distribution sample zt and the standard
deviation (square root of covariance):

xt =

√
β̂t · x0 +

√
1− β̂t · zt ,zt ∼ N (0,I). (2.10)

There are at least two approaches to the reverse process. They both begin with a sample
from a standard Gaussian distribution xT ∼ N (0,I), and iteratively revert the noising
process to finally obtain a new, generated sample x0:

p(xt−1 | xt) = N (µ(xt , t),Σ(xt , t)). (2.11)

20 | 2.2 Generative Deep Learning on Euclidean Domains

While the forward process iteratively removes information through noising, the reverse
process starts from noise and iteratively generates information.

In the first approach, a neural network takes as an input sample xt and embedding at
time step t. This embedding is devised from positional encoding, which describes the
position of a sample in a sequence, so that each position is assigned a unique representation.
The network is trained to predict the mean µ and covariance Σ of the normal distribution.
This approach can be turned into objective of maximising evidence lower-bound (ELBO),
where at each time step t, pθ (xt − 1 | xt) is as close as possible to the true posterior
in the forward pass. Kullback–Leibler (KL) divergence is used to compare these two
distributions.

p(xt−1 | xt) = N (µ(xt , t),Σ(xt , t)). (2.12)

The second approach simplifies the learning objective and Nichol and Dhariwal [90]
propose to parametrise Σθ (xt , t) and combine both objectives into a single loss function
Lhybrid = Lsimple +λLvlb,λ = 0.001. They also apply a stop-gradient to the µθ (xt , t) for
the Lvlb, so that Lvlb can guide Σ(xt , t) and Lsimple has the most influence on µθ (xt , t).
According to Saharia et al. [105], L1 norm leads to lower sample diversity than originally
used L2 norm [55], but it reduces potential hallucinations.

Conditional diffusion

Conditioning is used to guide a generative process. Here, two conditioning methods are
considered, concatenation and cross-attention.

The generative process begins with Gaussian noise yT ∼ N (0,I) and it is iteratively
refined in T steps, at each step learning conditional parametric distribution pθ (yt−1 |
yt ,x),∀t ∈ {1, ...,T}, where θ are learnable parameters of the model pθ . At each step, yt−1

and x are concatenated to form an input to pθ . Additional information can be used as well,
for example Saharia et al. [106] concatenate noise statistics to help with the denoising
process. Data must be spatially aligned before concatenation. Therefore, concatenation
of different modalities can be difficult. Even within the same modality, lower resolution
images guiding higher resolution generation must be upscaled through interpolation to
match high-resolution dimensions.

Rombach et al. [103] propose an alternative conditioning mechanism using cross-
attention. The main advantage of cross-attention over previously described concatenation
is flexibility. This mechanism allows to mix latent codes of different modalities. Attention
is permutation invariant. It can be beneficial in domains where order of elements is
irrelevant. For example, a set of photographs of an object from various angles or an
unindexed pointcloud. In permutation-variant domains, such as latent codes, images
or meshes, data must be positionally encoded. There are multiple choices of positional

2.3 Geometric Deep Learning | 21

encodings, both learned and fixed. An input to Scaled Dot-Product Attention [128] consists
of query-key-value (Q,K,V):

Attention(Q,K,V) = softmax
(QKT√

d

)
·V (2.13)

In self-attention, Q, K and V are devised from the same input array. In contrast, cross-
attention calculates Q from the first array, and K and V from the second array. The output
has dimensions of the first array, independently from dimensions of the second array.

2.3 Geometric Deep Learning

Undirected graph (mesh) is the most common representation of a facial shape. Deep neural
networks have proven to be powerful tools in extracting latent representations of data in
Euclidean domain. In recent years, these deep learning approaches extended to irregular
graphs [139, 15, 140] and allowed for learning non-linear, lower-dimensional embeddings
of meshes, including human faces.

2.3.1 Convolutional Graph Neural Networks

The concept of graph convolutions generalises traditional operation of a convolution on
structured grids, such as 2D images or 3D voxels. Convolutional layers aim at extracting
representation of vertex vi ∈ V by aggregating feature fi and its neighbours. Such approach
reduces the number of parameters in the model and helps the network to learn local
patterns.

Graph signal processing

Graph signal processing (GSP) extends classical signal processing tools, such as Fourier
transform or filtering, to signals residing on a set of vertices of a graph [92]. Convolutional
filters on a graph need to satisfy two main properties: they can be applied symmetrically
to each vertex and they aggregate information in arbitrary neighbourhood of this vertex.
Satisfying these conditions in spatial domain is not straightforward. Representing data
defined on a graph in frequency domain helps to establish such convolving filter.

Graph Laplacian (see Equation 2.4) can be used to convert signal residing on vertices
of an undirected graph to frequency domain. The normalised graph Laplacian L̂ is

L̂ = I−D−1/2AD−1/2 . (2.14)

22 | 2.3 Geometric Deep Learning

L̂ can be decomposed (using SVD) into L̂ = UΛUT , where U are eigenvectors of L̂, which
form Fourier basis of a frequency space. Λ is a diagonal matrix of eigenvalues of L̂,
representing different frequencies. This way, both, a signal x residing on vertices and a
convolutional filter g, can be projected onto diagonal matrices in Fourier domain using
graph Fourier transform (GFT), transforming signal x into x̂ = UT x. To recover original
signal x, inverse GFT is applied: x = Ux̂. Knowing that convolving two signals in spectral
domain means multiplying them together, the operation of convolution of signal x with
filter g is formulated as

x∗G gθ = Ugθ UT x , (2.15)

where gθ = diag(UT g), and ∗G is a graph convolution operator.

Spectral graph convolutions

The first formulation of spectral convolutions on graphs in the field of machine learning
comes from Bruna et al. [17]. They define a convolutional operator in the same way as
in Equation 2.15, with gθ = Θ being a set of learnable parameters. There are three major
disadvantages of this formulation. Firstly, the number of parameters is strictly dependent
on |V |. For dense graphs, large number of parameters can result in overfitting. Secondly,
convolutional operator is defined in terms of U, which is expensive to calculate on larger
graphs. Thirdly, convolutional filter is not localised, i.e. it is not defined on a small
neighbourhood around a central vertex.

To overcome aforementioned issues, Defferrard et al. [27] propose ChebNet network,
which approximates filter gθ by the Chebyshev polynomials of Λ, so that convolutional
operator is redefined as

x∗G gθ = U

(
K

∑
i=0

θiTi(Λ̃)

)
UT x =

K

∑
i=0

θiTi(L̃)x , (2.16)

where Λ̃ = 2Λ/λmax − I and L̃ = 2L̂/λmax − I, K is an order of Chebyshev polynomials
defined recursively by function Ti(·), θ ∈ RK is polynomial coefficients and λmax is the
largest eigenvalue. Formulation of a filter in ChebNet avoids expensive computation of ba-
sis U and significantly reduces the number of learnable parameters. Moreover, convolving
filter approximated with Chebyshev polynomials is localised in K-ring neighbourhood.

MeshVAE model of Tan et al. [122] explores probabilistic latent space of 3D shape
deformations using fully connected layers, which results in vast number of learnable
parameters. As an improvement, Yuan et al. [145] use convolutional layers with the
same operator as in Equation 2.16 to convolve pre-processed ACAP deformation features

2.3 Geometric Deep Learning | 23

residing on vertices V of a mesh M . Consequently, their model is able to handle dense
meshes and it reduces a chance of data overfitting.

Kipf and Welling [70] further decrease the number of learnable parameters using
first-order approximation of ChebNet. They assume K = 1, λmax = 2, θ = θ0 = −θ1,
add self-loops to adjacency matrix and normalise it. This approach is effective in vertex
classification tasks, however, to our knowledge, its performance on representation learning
of 3D deformations has not been explored yet.

Spatial graph convolutions

More recent approaches move away from isotropic convolutional operators in spectral
domain in favour of the anisotropic ones, defined in the spatial domain. Bouritsas et al.
[14] and Gong et al. [46] build graph convolutional operators which explicitly enforce
consistent ordering of vertices using a spiral. These approaches ignore irregularity of
graphs. In contrast, in [43] and [151], convolutional operators learn adaptive weighting
matrices. Additionally, the convolutional operators by Zhou et al. [151] support transpose
convolutions. All the aforementioned convolutional operations are applicable to features
residing on vertices.

So far, all the presented convolutional operations were applicable to features residing
on vertices V . Yet, features can be defined on edges or faces as well. Hanocka et al.
[50] introduce a convolution operator g which aggregates feature x0 of a central edge and
features x j of its four adjacent edges:

x0 ·g0 +
4

∑
j=1

g j ·x j , (2.17)

where g is a convolutional filter. As features {x1, x2, x3, x4} edges {e1,e2,e3,e4} ∈ E

can be ordered in two different ways, a symmetric function is applied to them, so that
convolution invariance is ensured.

To benefit from aforementioned convolutional operator, invariant deformation represen-
tations, such as DR or ACAP, would have to be redefined in terms of edges. Interestingly,
RIMD representation already encodes rotation differences dRi j residing on half-edges.

2.3.2 Pooling and de-pooling

Pooling is an operation which sub-samples a feature map to reduce computational load,
memory consumption, as well as the number of learnable parameters. When applied
to subsequent convolutional layers, it allows to train multi-scale convolutional filters,
capturing local and global patterns. Pooling has been widely used in deep networks for 2D
image processing and recently it was generalised to graphs in various ways. There exist

24 | 2.3 Geometric Deep Learning

numerous graph coarsening methods applied to generic directed and undirected graphs,
however this overview will be focused specifically on pooling and de-pooling operations
on 3D meshes.

In domain of meshes, pooling can be performed through classical mesh simplification
methods, such as the algorithm by Garland and Heckbert [44], which iteratively contracts
pairs of vertices that maintain surface error approximations using quadric matrices. Ranjan
et al. [102] design graph pooling and de-pooling operations based on this simplification
algorithm. As down-sampling of surfaces is lossy, they perform pooling and build de-
pooling matrices at the same time. It is achieved by projecting original vertices onto closest
triangle in down-sampled mesh and storing their positions in barycentric coordinates.

Yuan et al. [145] also use mesh simplification [44] to devise mesh pooling operations.
Unlike previous method, their approach produces meshes with evenly distributed triangles
(due to an additional error term which penalises length of the longest edge around each
vertex). Simplification is performed through edge contraction, half-way the edge length.
Average of features residing on contracted vertices is assigned to a newly created vertex.
Accordingly, max-pooling could be implemented by assigning maximal feature to the new
vertex. Similarly to image-based pooling, Yuan et al. [145] propose to assign features on
vertices of the simplified mesh to corresponding vertices on the dense mesh.

Hanocka et al. [50] introduce pooling based on edge collapse, where an order of edges
to collapse is dependent on the magnitude of the features residing on these edges. It enables
non-uniform deletion of areas which are not useful for minimising particular loss in the
neural network. As in other methods, vertex positions are recorded during the pooling
operation and retrieved in the de-pooling. Task-dependent pooling achieved state-of-the-art
results in mesh classification problems, however it was not applied to mesh generation
tasks, because in this type of pooling shape of the surface is not preserved.

2.3.3 Spectral Mesh Processing

Various methods of spectral mesh processing have been developed to address the problems
of shape analysis, mesh simplification, surface segmentation, and shape correspondence.
Sorkine [115] and Zhang et al. [147] comprehensively review existing work until 2005
and 2010, respectively. Recent work in the field is reviewed in the following paragraphs.

Melzi et al. obtain smooth, local, controllable, orthogonal, and efficient basis called
Localized Manifold Harmonics (LMH) through the spectral decomposition of new types
of intrinsic operators. The authors integrate local details provided by the basis and the
global information from the Laplacian eigenfunctions to deal with local spectral shape
analysis [83]. Xu et al. fit the original 3D model with a finite subdivision surface and restrict
the eigenproblem with a subdivision linear subspace to obtain intrinsic shape information

2.3 Geometric Deep Learning | 25

of 3D models through fast calculation of large-scale Laplace–Beltrami eigenproblem on
the models [142]. Lescoat et al. propose a new mesh simplification algorithm, which uses
a spectrum-preserving mesh decimation scheme to simplify input meshes and makes the
Laplacian of simplified meshes spectrally close to the Laplacian of input meshes [75].

Wang et al. use a Laplacian operator and select and combine some of its sub-
eigenvectors to compute a single segmentation field to conduct mesh segmentation [131].
Tong et al. build a Laplacian matrix, propose a spectral mesh segmentation method, which
converts mesh segmentation into an ℓ0 gradient minimisation problem, and devise a fast
algorithm to solve the minimisation problem [125]. Bao et al. devise a feature-aware
simplification algorithm to create a coarse mesh. Then, they use the spectral segmentation
method proposed in [125] to perform partition on the coarse mesh to obtain a coarse
segmentation. Next, they reverse the simplification process to map the coarse mesh to the
input mesh and smooth jaggy boundaries to develop a spectral segmentation method for
large meshes [5].

Jain and Zhang first transform two 3D meshes into spectral domain and find and
match the embeddings of the two 3D meshes in the spectral domain to obtain vertex-to-
vertex correspondence between the two 3D meshes [61]. Dubrovina and Kimmel use
the eigenfunctions of the Laplace–Beltrami operator to calculate surface descriptors and
match surface descriptors to develop a correspondence detection method [33]. Melzi et
al. introduce iterative spectral upsampling to obtain high-quality correspondences with a
small number of coefficients in the spectral domain [82].

Spectral methods share a common framework. They define a matrix representing a
discretisation of a continuous operator over a mesh. In this thesis, the concept of spectral
mesh processing in introduced to 3D shape representation learning.

2.3.4 Geometric Deep Learning in Spectral Domain

Dong et al. propose a convolutional neural network framework called Laplacian2Mesh
by mapping 3D meshes to a multi-dimensional Laplacian–Beltrami space to deal with
irregular triangle meshes for shape classification and segmentation [32]. Lemeunier et al.
integrate spectral mesh processing and deep learning models consisting of a convolutional
autoencoder and a transformer to develop a spectral transformer called SpecTrHuMS to
generate human mesh sequences [74]. Qiao et al. present a deep learning approach that
uses Laplacian spectral clustering to build a fine-to-coarse mesh hierarchy and integrate
Laplacian spectral analysis and mesh feature aggregation blocks to encode mesh connectiv-
ity for shape segmentation and classification [97]. Based on the idea of approximating low
and mid frequencies on coarse grids, Nasikun and Hildebrandt investigate a new solver
called the Hierarchical Subspace Iteration Method that can solve sparse Laplace–Beltrami

26 | 2.4 Parametric Face Models

eigenproblems on meshes faster than existing methods based on Lanczos iterations, pre-
conditioned conjugate gradients, and subspace iterations [88].

2.4 Parametric Face Models

Parametric models of facial shapes [34] aim at learning the general representation of
faces that captures prior knowledge about them. This prior knowledge helps to resolve
ambiguities in otherwise ill-posed computer vision tasks, including 3D face reconstruction
from images covered in Section 2.5.

2.4.1 Linear models

Global 3DMM

The pioneering 3D Morphable Model (3DMM) proposed by Blanz and Vetter [11] is
a probability distribution function, which measures the likelihood that a set of input
coefficients will output plausible 3D face shape. It uses Principal Component Analysis
(PCA) to reduce dimensionality of 200 facial identity shapes and corresponding 2D textures.
Basis vectors U = {bT

1 , ...,b
T
n } and standard deviation coefficients diag(Λ) = {λ1, ...,λn}

resulting from PCA are used to reconstruct or generate facial shapes as

p = p̄+
n

∑
i=1

αibi , (2.18)

where p is a vectorised representation of 3D vertex positions of the reconstructed shape, p̄
is the mean shape and α is the vector of parameters. Analogical formulation applies to
the model of facial textures. Given that a few tens of first basis vectors bi are enough to
represent almost 90% of the original variance, dimensionality reduction is achieved by
ignoring least significant vectors and, consequently, limiting the number of parameters
α . The concept of a 3DMM [11] has stood the test of time and improved over the years.
For example, Booth et al. [13] build LSFM - the largest face 3DMM model using 9663
identities, and prove its regularisation effectiveness in 3D face reconstruction from images
[12].

Local models

Global 3DMMs [11, 13] are very compact representations of facial shapes, thus require
relatively small number of parameters. Nonetheless, they struggle to reconstruct local
details of distinct facial areas. Moreover, bases of global 3DMMs lack a semantic interpre-
tation. To overcome these limitations, researchers either manually segment the face and

2.4 Parametric Face Models | 27

learn separate PCA models of each region [11], use automated segmentation process [123],
or perform Independent Component Analysis to obtain a sparse model [89]. In contrast
to previous approaches, Wu et al. [134] proposes to represent local displacements with a
set of patches and regularise overall facial shape using the underlying anatomical bone
structure. This approach requires facial shapes with corresponding jaw and skull bones
data, which are very difficult to obtain (through either magnetic resonance imaging (MRI)
or computerised tomography (CT) scans). Consequently, approaches which require MRI
or CT scans are infeasible for our research.

Bilinear and multilinear models

Aforementioned techniques either encode identity shapes alone, or entangle them with
expressions. Resulting models do not allow for independent manipulation of either ex-
pressions or identities. Numerous authors tackle this issue with a bilinear model, where
two PCA models are combined in additive manner. A different variation of this bilinear
model is used by Thies et al. [124], whose model encodes identity shapes in space with
orthogonal bases from PCA, while expressions are encoded in space with blendshapes
as the bases. This approach does not results in compact representation of facial shapes,
because blenshapes do not form an orthogonal space.

Although bilinear models disentangle identites from expressions, they do not preserve
any correlations between them. In order to reestablish these correlations, Vlasic et al. [130]
proposes a multilinear model that performs higher-order singular value decomposition
(HOSVD) on a 4-tensor, where identities, expressions, visemes and vertex coordinates are
the separate modes. Such formulation preserves correlations between modes, but is limited
to complete tensors where each identity has corresponding set of exactly the same facial
expressions.

Skinned linear models

While linear models are capable of compact representations of deformable shapes, they are
not used to characterise articulated poses. Loper et al. [81] propose a Skinned Multi-Person
Linear (SMPL) model of human body poses, which combines linear blend skinning (see
Section 2.1.4) with identity and pose-dependent corrective shapes PCA models.

Li et al. [79] introduce Faces Learned with an Articulated Model and Expressions
(FLAME), which extends SMPL method to 3D heads. In FLAME, linear blend skinning
is used to represent articulated poses of the neck, jaw, and eyeballs. The mean identity
template mesh is added to weighted PCA vectors representing head shape, pose correctives
and expression offsets. The resulting mesh is deformed using a skinning function. Joint
locations depend on face identity. To model this relationship, FLAME formulates a joints

28 | 2.4 Parametric Face Models

predictor, which is a learned, sparse matrix. FLAME remains one of the most popular
parametric representations of 3D human faces.

2.4.2 Non-linear models

Linear models assume Gaussian prior distribution of facial shapes. This assumption
is not correct [34]. Non-linear models have potential to generalise to wider range of
unseen examples and provide more compact representation. In recent years, deep learning
approach to generating non-linear models of facial shapes and textures became the area of
active research.

Models in 2D image space

Deep generative models on regular grids, such as images, are strikingly successful in
approximating prior distributions of faces . Recently, researchers begun applying these
2D generative approaches to learning the manifold of facial displacements. In order to
directly apply deep learning architectures in Euclidean domain, facial displacements need
to be represented as either 2D images in UV space or voxels . Bagautdinov et al. [4]
use Variational Autoencoders to learn displacement maps. As VAEs often produce blurry
results, they propose a compositional approach, where different level of detail is learned
on each layer of the encoder, and the decoder combines these multi-level representations
into the final displacement map. Generative Adversarial Networks are especially popular
choice of architecture [45, 111] and lead to high-quality results [78]. Abrevaya et al.
[1] bypass challenges of applying traditional deep learning methods to meshes by using
only fully-connected layers. Their method is based on GAN with generator producing
3D facial meshes in Euclidean space, and the discriminator evaluating these shapes in
UV space. Slossberg et al. [113] demonstrate strong correlation between facial identity
shapes and their colour textures. They propose to use a progressively-growing GAN to
generate colour textures of faces and, based on these textures, optimise coefficients of
a 3DMM (as in Equation 2.18) to obtain facial identity shapes. Li et al. [78] propose
the model able to generate facial identity and expression shapes at pore-level resolution,
coupled with multiple 4K texture maps. The method utilises StyleGAN architecture to
learn displacements in UV space. Furthermore, the super-resolution network [72] is used
to up-sample texture maps.

Aforementioned methods, projecting facial displacements onto 2D images, benefit
from well-established generative models in Eucleadean domain. Nonetheless, they require
a large number of learnable parameters, which leads to high computational cost and risk of
overfitting. Most recently, alternative approaches attempt to learn representations of facial
shapes directly on 3D meshes using geometric deep learning.

2.4 Parametric Face Models | 29

Models in 3D mesh space

Work of Ranjan et al. [102] is the first geometric learning approach to representing facial
shapes. It utilises VAE architecture with custom pooling layers and graph convolutional
operations described in Equation 2.16. Models [14, 22, 43, 151, 129] improve this archi-
tecture with custom convolutional and aggregation operators. Cheng et al. [23] introduce
MeshGAN, the first adversarial approach to learning facial manifold directly on 3D meshes.
It integrates graph convolutional operator based on Chebyshev polynomials and uses neu-
tral architecture based on BEGAN [9]. In addition to shape, Zhou et al. [150] jointly learn
deformation offset and colour residing on vertices of a face mesh.

All above methods represent facial displacements in Euclidean coordinates - a variant
representation, which performs worse than invariant alternatives [122, 145]. In contrast,
Jiang et al. [62] learn disentangled manifolds of facial identities and expressions in de-
formation representation (DR), described in Section 2.1.4. They introduce a framework
consisting of graph VAEs, which disentangle facial mesh into identity shape and the
expression on a mean shape. Finally, the fusion network combines identity and expression
and reestablishes correspondence between them.

Apart from geometric deep learning methods, various physically-based facial models
are introduced [60]. Several authors propose highly-expressive local models, further
constrained with underneath skull and jaw bone [48, 134]. Such approaches allow for
anatomical control, where indirect facial surface editing is achieved through manipulation
of underlying skull and/or muscles. Although anatomically constrained models effectively
regularise local models, they require not only high-quality facial surface scans, but also
corresponding bone structures. Such paired data is difficult and expensive to obtain.

Neural scene representations

More recently, Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) gained
popularity in 3D scene representation, including human heads. Rabby and Zhang [98],
Chen and Wang [20] and Bao et al. [6] provide detailed surveys of NeRF and 3DGS.

NeRF [85] reconstructs a 3D scene from a set of 2D images taken from different
viewpoints. By training a neural network to understand the relationship between the
scene’s geometry and appearance, NeRF can generate highly photorealistic renderings
from any perspective. During training, the network learns to map 2D image coordinates and
viewing directions to corresponding 3D points and colours. This is achieved by optimising
the network to minimise the difference between rendered and real images. Finally, the
trained network can synthesise new views by querying the radiance field at different points
in 3D space, allowing for dynamic scene rendering. Such implicit radiance field function
can be formulated as a multi-layer perceptron map MLP(x,y,z,θ ,φ), which maps (x,y,z)

30 | 2.5 Monocular 3D Face Reconstruction

coordinates and viewing directions (θ ,φ) onto colour and density values. This approach
comes at a high computational cost due to volumetric ray marching rendering.

3D Gaussian Splatting [66] is a hybrid 3D representation that combines the advantages
of explicit and implicit radiance fields by using learnable 3D Gaussians to model a scene.
Unlike NeRF, Gaussian Splatting retains structured data storage while benefiting from
neural optimisation techniques. This approach allows for real-time, high-quality rendering
with reduced training time. The 3D Gaussian representation is mathematically defined as
a weighted sum of Gaussian functions ∑i G(x,y,z,µi,Σi) · ci(θ ,φ), where each Gaussian
is characterised by a mean µi, a covariance matrix Σi, and a view-dependent colour ci.
Rendering of 3DGS involves projecting the learnable 3D Gaussians onto a 2D image
plane in a process known as "splatting." This step maps the 3D representation onto a
pixel-based view. The Gaussians are then sorted based on their depth to maintain correct
visibility ordering. Finally, the pixel values are computed by blending the contributions
of overlapping Gaussians, resulting in a high-quality, photorealistic image. Compared to
NeRF, this approach significantly improves rendering speed and reduces computational
cost.

NeRF and 3DGS are applied to representation of 3D avatars [21, 86, 56, 30, 96, 107,
152]. In 3D head reconstruction, many approaches leverage FLAME model (see Section
2.4.1) as geometric prior for 3D Gaussian Splatting. In these methods, FLAME acts as a
coarse guidance for 3DGS reconstruction.

2.5 Monocular 3D Face Reconstruction

The literature on 3D face reconstruction is vast and beyond the scope of this review.
Comprehensive survey can be found in the report by Zollhöfer et al. [153]. Given that
Objective 2 is to develop a parametric face model, which improves the facial reconstruction
results, a brief overview of different 3D face reconstruction methods is provided, with
particular emphasis on statistical models acting as 3D face priors.

2.5.1 Structure-from-Motion

The 3D structure of rigid scenes can be reconstructed from a series of images and 2D
landmarks. Such pipeline, referred to as Structure-from-Motion (SfM), requires controlled
environment of acquisition and, on its own, is insufficient in 3D face reconstruction from
in-the-wild images, as demonstrated in [53]. Combination of SfM with other visual cues
can lead to high-quality results, such as those of Agrawal et al. [2]. They generate a point
cloud using SfM method, and then reconstruct high-quality, static 3D faces using points,
silhouettes and landmarks as constraints.

2.5 Monocular 3D Face Reconstruction | 31

2.5.2 Other shape cues from 2D images

As mentioned above, unconstrained SfM fails to produce satisfactory results. In order
to constrain the outputs, various cues are extracted from 2D images, such as landmarks,
edges, silhouettes, textures and shading.

For example, to reconstruct diverse and exaggerated 3D caricatures from their 2D
representations, Zhang et al. [148] propose to weakly-constrain their model with landmarks.
Additionally, they utilise extrapolation properties of ACAP deformation representation,
which helps to obtain highly-exaggerated facial shapes.

Shape-from-shading (SfS) method extracts facial surface details from 2D images using
image formation assumptions, such as Lambertian reflectance. SfM is able to reconstruct
fine facial features, such as wrinkles [133]. Nevertheless, it relies on difficult to estimate
lighting and shading information, which leads to many unwanted artefacts. Besides that,
this method on its own is able to produce only 2.5D facial shapes [137] and requires more
constraints to obtain a full 3D face model.

2.5.3 Statistical model priors

Most 3D face reconstruction methods regularise shapes with statistical models, which are
covered in Section 2.4. Parametric face models are able to correctly reflect global shape of
an individual. Nevertheless, their resolution is often limited and they tend to lack details
such as wrinkles. The state-of-the-art methods attempt to balance two conflicting effects:
(1) regularisation of the parametric models, which accurately reconstructs global shape
and (2) constraints from cues, which bring fine-level details.

2.5.4 Estimation of the parameters

Parameters of the parametric face model need to be estimated based on a 2D image or
a sequence of images. There are two main approaches to devise the parameters of the
statistical model. The first one, analysis-by-synthesis, is an optimisation process, where
a synthetic image is generated from a set of parameters which are iteratively refined to
minimise the difference between this generated image and a reference image. Booth et al.
[12] propose a generative approach to monocular 3D face reconstruction, which is able
to handle in-the-wild images. The major advantage of the analysis-by-synthesis is ability
to perform parameters optimisation without supervision with ground-truth 3D meshes,
which are inaccessible for such images captured in-the-wild. The second technique is a
discriminative approach, which regresses the parameters of the model directly from an
image or set a of images. With rapid development of the deep convolutional networks,

32 | 2.5 Monocular 3D Face Reconstruction

this approach can effectively devise parameters of the model in less time than the iterative
optimisation.

Lin et al. [80] take the discriminative approach to reconstruct 3D shape and coarse
RGB texture, which is further refined using graph convolutional operations, as in Equation
2.16 with pooling layers as in [102]. This approach is particularly interesting, as it learns
RGB colour values residing on vertices.

Several methods allow for multi-view input [135, 109, 28]. The last one, regresses
parameters of a 3DMM in unsupervised manner, with a set of constraints, including
skin-detecting mask and a pre-trained face recognition network. The multi-view input is
possible thanks to image-quality measure which provides weights for individual shapes
aggregation.

A coarse-to-fine framework, where general shape and fine details are generated in
different stages, is used to balance contradicting effects of strong regularisation and
variance [146, 126, 19]. In [146], facial shapes are represented with depth image, so the
method does not allow for full 3D head reconstruction. In [126] and [19], the overall
shape is reconstructed with fitted 3DMM, and fine details are represented with a bump and
displacement maps respectively. These methods are able to reproduce detailed likeness of
an individual, yet due to noise and multiple unwanted artefacts, their outputs can not be
used directly in VFX, games and animation production.

CHAPTER3

COMPARISON OF SHAPE

REPRESENTATIONS IN DEEP 3D
MORPHABLE MODELS

3.1 Introduction

The parametric face models are extensively used in computer vision tasks. The literature
review from Chapter 2 indicates that building upon and improving deep 3D morphable
models (Deep3DMMs) can be helpful in meeting the objectives outlined in Chapter 1.
The application of deep 3D morphable models in high-end visual effects and AAA games
production is limited, as these models struggle to reconstruct facial meshes with minimal
disparity, capturing both local details and the global shape.

This chapter investigates the effects of using different input and output representations
to Deep3DMMs and the standardisation and normalisation of these representations, to
improve the perceptual quality and geometric accuracy of facial meshes output from these
models. The Deep3DMM Comparison Platform is implemented to efficiently perform
these comparisons on multiple deep 3D morphable models in the industrial setting, with
different datasets and 3D face representations. Findings from this chapter are used in
methods described in Chapters 4 and 5.

3.1.1 Inspiration by the quantisation of different mesh
representations

An observation of Sorkine et al. [119] is particularly relevant in this work. They focus on
suppressing the visual effects of quantisation. The authors demonstrate that:

34 | 3.1 Introduction

1. Quantisation of meshes in differential representation introduces perceptually in-
significant, low-frequency error.

2. Quantisation of 3D meshes in 3D Euclidean coordinates space introduces noticeable,
high-frequency error.

Differential representation explicitly encodes the surface properties of the mesh, and
the position of vertices is encoded implicitly in this representation. In contrast, 3D
Euclidean coordinates describe the position of vertices in explicit form, and the surface
properties can be implicitly derived from this representation. It can be concluded that the
properties explicitly encoded in a representation are best preserved after that representation
is subjected to quantisation. Conversely, the properties which are only implicitly encoded
in a representation can be more severely affected by quantisation. Since encoding 3D
shapes in a compact parametric space is lossy, deep 3D morphable models have similar
compression side-effects to quantisation.

Based on these observations and the following discussion, it can be hypothesised that:

1. Using different input and output representations improves the state-of-the-art fa-
cial mesh reconstruction results in terms of either perceptual quality or geometric
accuracy.

2. Using input and output representations, which explicitly encode the surface proper-
ties, improves the perceptual quality of the resulting meshes.

3. Using input and output representations, which explicitly encode the vertex positions
in 3D space, improves the geometric accuracy of the resulting meshes.

3.1.2 Impact of the model, input representation and its preprocessing
on the quality of the outputs

Most previous publications on deep 3D morphable models, as outlined in Chapter 2,
evaluate the proposed methods against only one mesh representation, most commonly
standardised Euclidean coordinates. Consequently, the performance of these models with
other mesh representations is unknown, which provides an opportunity to evaluate these
models from the representation perspective. Furthermore, it allows to distinguish the
combinations of models and representations which outperform the results achieved in the
original implementations of these models.

In the aforementioned publications, evaluation metrics that compare ground truth
meshes with reconstructed meshes are usually limited to Euclidean distance. However, as
demonstrated in Chapter 2, L-norm metrics poorly correlate with the perceptual quality of

3.2 Method Overview | 35

reconstructed meshes. Given that the perceptual quality of a mesh is an essential factor in
assessing the method’s usability in visual applications, the lack of perceptual evaluation of
deep 3D morphable models is a noticeable gap in the literature.

It is proposed to design and implement the Deep3DMM Comparison Platform, which
accommodates the preprocessing of various datasets to different input representations
and training multiple models within the same framework. The Deep3DMM Comparison
Platform aims at testing the hypotheses 1-3 and answering the following questions:

1. How does the normalisation of input to Deep3DMMs affect the perceptual and
geometric quality of output meshes?

2. How does the standardisation of input to Deep3DMMs affect output meshes’ per-
ceptual and geometric quality?

3. Which model and representation combinations optimise the geometric and perceptual
quality of the output meshes?

The overview of the Deep3DMM Comparison Platform and the strategy to test hy-
potheses 1-3 and answer research questions 1-3 are provided in Section 3.2. The details of
the proposed platform software and the formulae to calculate inputs in different representa-
tions and the loss functions are described in Section 3.3. Section 3.4 covers the technical
aspects of the models’ implementation. The results from 60 experiments conducted in the
Deep3DMM Comparison Platform are evaluated in Section 3.5. Evaluation described in
this section proves the hypotheses 1-3 and gives detailed answers to questions 1-3.

3.2 Method Overview

This section outlines the methodology, which tests the hypotheses 1-3 from Section 3.1.1
and answers the research questions 1-3 from Section 3.1.2.

Deep 3D morphable models (Deep3DMMs) learn hierarchical, multi-scale represen-
tations of 3D meshes analogically to learning hierarchical representations of structured
2D and 3D grids, such as images and voxels. In recent years, multiple approaches have
been proposed to generalise the building blocks of deep neural networks to non-Euclidean
domains. The following section describes the design of the proposed Deep3DMM Com-
parison Platform software, which combines the building blocks of 3D morphable models
to allow fair comparison between different approaches on various datasets. Moreover, the
resulting software is the basis of further developments at Humain Limited. The method-
ology behind the execution of 60 different experimental configurations is explained in
Section 3.3.7. Software design details are explained in Appendix A.

36 | 3.3 Deep3DMM Comparison Platform

3.3 Deep3DMM Comparison Platform

The proposed Deep3DMM Comparison Platform focuses on evaluating various Deep 3D
morphable models. Specifically, the FeaStNet [129], Neural 3DMM [14], SpiralNet++
[46], Mesh Autoencoder [151] and LSA-3DMM [43] are compared in this work. This
section gives insight into the compared models, datasets, components of the comparison
platform and formulae used to process the data, calculate loss and evaluate the results.

3.3.1 Compared models

All the compared methods are convolutional graph autoencoders or convolutional vari-
ational graph autoencoders which perform 3D mesh representation learning in spatial
domain (see Chapter 2). These methods are chosen based on the following selection
process. Firstly, methods that rely on 2D domain projections, such as UV mapping or
image-based convolutions, are excluded due to parametrisation artifacts. In contrast, graph
convolutions learn directly on the graph structure, preserving the intrinsic connectivity
of the mesh. Secondly, methods which support vertex-based signal representations are
preferred. This property aligns well with common mesh representations, where representa-
tions such as Euclidean coordinates or differential representation (DR) are defined on graph
nodes. Finally, convolutional operators in the spectral domain are excludes as they are
inherently isotropic, which limits their ability to learn anisotropic mesh features, especially
in the 3D shape reconstruction task. Therefore, five representative graph convolutional
autoencoders operating in the spatial domain are selected.

The models selected for comparisons differ in at least one of three main areas: graph
simplification algorithm, graph convolution approach or features aggregation method.

Neural 3DMM [14] proposes spiral graph convolution, which locally orders the vertices
in a spiral and keeps this order fixed. The reference vertex on the template mesh is manually
selected and the spiral sequences follow the shortest geodesic distance from that vertex.
To maintain a consistent spiral size, zero-padding is applied to vertices with shorter spiral
lengths than the average. Pooling is defined based on quadric mesh simplification algorithm
[44], which iteratively contracts edges to simplify meshes and minimise quadric error.

FeaStNet [129] introduces a novel graph convolution operator which dynamically learns
the correspondence between filter weights and neighbouring nodes. FeaStNet aggregates
features from neighbouring vertices based on trainable weight functions. Initially, this
method was proposed for shaper correspondence task. Therefore, in this comparison,
FeaStNet’s convolution operation is used within the shape reconstruction framework used
by Neural 3DMM method.

3.3 Deep3DMM Comparison Platform | 37

SpiralNet++ [46] improves upon Neural 3DMM’s formulation of spiral graph convo-
lution. The method does not limit the spiral length and therefore avoids zero-padding.
Additionally, a given vertex always follows the same spiral sequence across meshes,
regardless of the initial direction. This eliminates the need for manually selecting a ref-
erence vertex. SpiralNet++ performs pooling and de-pooling based on quadric mesh
simplification.

Unlike FeaStNet, Mesh Autoencoder [151] and LSA-3DMM [43] design local convo-
lutions which are not based on input features and can be shared across samples with the
same topology. LSA-3DMM and Mesh Autoencoder use local structure-aware anisotropic
convolutional operations. Adaptive weighting matrices are learned for each vertex based
on the local neighbourhood connectivity. LSA-3DMM uses quadric mesh simplification
for pooling, while Mesh Autoencoder introduces simple graph simplification based on
nodes connectivity only. The method operates on non-manifold graphs and extends its
graph convolution operation to transpose convolutions and residual layers. Therefore, it
is the only method which allows for a fully-convolutional variational graph autoencoder.
Transpose convolutions, residual layers and simple sampling are covered in detail in the
following sections and in Appendix A.

3.3.2 Mesh sampling

In the context of Deep3DMMs, mesh sampling aims to create a mesh hierarchy with
different levels of detail, where a mapping exists between the vertices at lower resolution
and the vertices at higher resolution. Subsequently, such a hierarchy can be used in
convolutional and pooling operations to capture a mesh’s global and local features.

While the downsampling of 2D images is uncomplicated due to the regularity of grids,
the irregular topology of graphs poses a challenge. It is addressed by many approaches to
sampling meshes, outlined in Chapter 2. As downsampling is a lossy operation, upsampling
transformation is usually built together with downsampling transformation. The result is a
sequence of graphs {M0, ...,MN}, where N is the number of downsampled graphs, and
M0 is the original, sampled mesh. The correspondence between the graph Mn and the ith

node of its sampled version Mn+1 is defined as a local region N (i) in Mn.

3.3.3 Graph convolution

Convolutions on graphs have the same purpose as traditional convolutions on 2D and
3D grids. They regularise the neural network by abstracting an input into a feature map.
Similarly to downsampling, the generalisation of convolutional operations to meshes is non-
trivial. Therefore, many approaches have been proposed. Chapter 2 reviews convolutional

38 | 3.3 Deep3DMM Comparison Platform

operations on non-Euclidean domains. In general, a convolution operation calculates
output feature yi ∈ RO residing on the ith node, such that:

yi = ∑
xi, j∈N (i)

WT
j xi, j +b , (3.1)

where xi, j ∈RI is the input feature residing on the jth vertex in a local region N (i). Apart
from mapping the input signal onto a different number of filters with different sizes, some
approaches to graph convolutions, such as [151], allow for convolution stride larger than 1,
which leads to downscaling of a graph.

3.3.4 Pooling and unpooling

Pooling is an operation which aggregates features residing on nodes in a local region N (i).
The local region represents the connections between sampled graphs. Due to the uneven
distribution of vertices and irregular topology, recent works proposed various aggregation
functions to address these issues. More details on different feature aggregation methods
can be found in Chapter 2. Unpooling is the opposite of pooling, so it distributes the signal
to nodes in a local region N (i).

3.3.5 Residual layer

The introduction of residual layers to Deep3DMMs comes from direct inspiration from
their equivalent in traditional deep learning architectures, particularly ResNet [52]. In
the residual layer, the signal from the previous layer is aggregated with the signal from
the current layer. In the case of deep learning on meshes, the following challenges can
be identified: a) The previous layer and the current layer can have a different topology,
and b) Each layer can have different size of features. While the former challenge can be
treated as a form of pooling, the latter challenge requires a dedicated solution. Out of
the methods compared in this work, only [151] proposes residual blocks. This method
introduces a learned matrix with shape O× I, which maps features across all the vertices
in a graph, where O is the size of the output feature, and I is the size of the input feature.
With solutions to both challenges, the residual layer can be constructed by mapping the
features from a previous layer to a new, compatible shape and subsequently pooling or
unpooling to match the topology in the current layer. Naturally, when the dimensionality
of features is compatible, the mapping operation becomes an identity function. Similarly,
pooling or unpooling is redundant when the topology is compatible. Thus it should be
skipped.

3.3 Deep3DMM Comparison Platform | 39

3.3.6 Datasets

Three datasets of human head meshes are selected for comparisons. Facsimile™ [59] is
a proprietary dataset owned by the industrial partner of this research, Humain Limited.
It is comprised of 202 diverse identities with a neutral head mesh and 19 expressions.
The meshes share common quad topology and are triangulated as part of pre-processing.
Mesh resolution is 14,921 vertices. Each mesh in Facsimile™ dataset is cleaned-up by a
professional artist and it aligns with quality of meshes used in AAA games.

FaceScape [144] dataset contains triangle meshes of 938 subjects with 20 expressions
each. After mesh quality review, 121 subjects are excluded and 807 subjects are used in
experiments. The meshes share common topology and their resolution is 26,317 vertices.
FaceScape dataset is selected for comparative experiments due to high quality and one
of the largest number of subjects available publicly for research purpose at the time of
conducting these experiments.

FaceWarehouse [18] dataset has 150 subjects with 20 expressions each. Triangle
meshes share common topology with 11,510 vertices. The dataset is selected for compara-
tive experiments due to its popularity in 3D computer vision research.

3.3.7 Experimental configurations

Deep3DMM Comparison Platform is designed to run multiple similar experiments in the
common framework, where the experiments differ in using particular types of objects,
preprocessing transformations, datasets or hyperparameters. Therefore, the modular
approach in designing and implementing the Deep3DMM Comparison Platform is reflected
in the generation of configuration files for each experiment. For this purpose, the Hydra
[143] configuration management system is used. The framework allows the dynamic
creation of hierarchical configuration files, which an experiment-specific configuration
file can overwrite. For example, the model configuration file comprises configuration files
associated with architectures, forming a natural hierarchy of configuration files.

To test the hypotheses 1-3 and answer the research questions 1-3, 60 different hierarchi-
cal configuration files are generated. The experiments associated with each configuration
differ using the respective Deep3DMM method [14, 46, 129, 151], the dataset [18, 59, 144]
and the input and output representation.

40 | 3.3 Deep3DMM Comparison Platform

3.3.8 Data processing

Rigid registration transform

Rigid registration is a process of finding the transformation in Euclidean space, which
aligns two sets of points such that the overall point-wise distance between these sets is
minimised. Unlike in non-rigid registration, the transformations involve only the rotation
Ri and translation ti. In this work, the focus is on the rigid alignment of 2 sets of points of
3D meshes, mean P̄ and Pi, where the correspondence between the points is known. In
meshes with an uneven distribution of vertices on a surface, excluding a subset of vertices
from calculating the transformations can be desirable. It is not required for the datasets
considered in this work. The solution to finding Ri and ti is minimisation of the following
energy E(Ri, ti) in the least-squares sense:

P̄ =
1
n

n

∑
i=0

Pi,

E(Ri, ti) =

∥∥∥∥RiPi + ti − P̄
∥∥∥∥

2
.

(3.2)

Rotation Ri can be calculated using the singular value decomposition

UΣVT = (P̄− p̄)(Pi − p̄i),

Ri = VUT ,
(3.3)

where p̄ and p̄i are the centroids of P̄ and Pi. If det(Ri) =−1, then Ri performs reflection
of the points in 3D space. In such case, the elements of the third column of V need to be
multiplied by −1. Following that, ti is obtained as follows:

ti = p̄i −Rip̄ (3.4)

The resulting rigid registration function is denoted as:

rigid_reg(P̄,Pi) = RiPi + ti (3.5)

In this work, the rigid registration is used in several circumstances. Firstly, it is exper-
imentally found that rigidly registering the meshes to their mean improves the model’s
performance. The improved performance comes from rigid registration transformation,
which limits rotational and translational variance of data input to the neural network. Apart
from preprocessing, rigid registration has a second practical application. Meshes output by
the neural network in the Deformation Representation (DR) or the normalised Deformation
Representation (DR Norm) need to be transformed back to Euclidean coordinates, as Eu-

3.3 Deep3DMM Comparison Platform | 41

clidean coordinates representation is the target representation for all the facial blendshapes.
As DR and DR Norm are differential representations, the information on the location of a
3D mesh in 3D space is lost in the encoding process. Therefore, to evaluate the geometric
and perceptual accuracy of the results, the meshes output from the network are decoded to
Euclidean coordinates representation, and then they are rigidly registered to the ground
truth mesh for evaluation with L1, L2, DAME and FMPD error metrics. In the method
proposed in Chapter 4, it is no longer required to rigidly register the outputs decoded from
the DR Norm representation due to a mesh assembly method, which uses spectral mesh
filtering.

Centring and uniform scaling transforms

Centring and uniform scaling are the transforms implemented in the Centre and Scale
classes. Centring the vertex positions Pi is calculated as follows:

centre(Pi) = Pi −
min(Pi)+max(Pi)

2
(3.6)

In uniform scaling, all vertex positions Pi are scaled by the scaling factor s, such that
all the vertices end up in the box of edge length = 2, centred at the origin of a 3D space.
In other words, the vertex positions end up within range [−1,1].

s =max({max(P0),max(P1), ...,max(Pn)}).

uniform_scale(Pi,s) =
Pi

s

(3.7)

It is experimentally found that centring and subsequently scaling the meshes input to
deep 3D morphable models improves the geometric and perceptual quality of the meshes
reconstructed by the model.

Standardisation and normalisation transforms

Usually, machine learning algorithms relying on gradient descent perform poorly when
input feature channels have different scales. The inputs are often standardised or nor-
malised to overcome this issue. Standardisation and normalisation are the transforms
implemented in the Standardise and the Normalise classes. The inverse of these transforms
is implemented in the Destandardise and Denormalise classes, respectively.

Normalisation adjusts the channels of the input to a common scale. This involves
shifting and scaling the values so the features are in a certain range, usually [0,1] or [−1,1].
The choice of an activation function should inform the choice of the appropriate range to
which the inputs are normalised. For example, when using hyperbolic tangent tanh(·) ∈
(−1,1) activation function, the inputs should be normalised to range [−0.95,0.95] or even

42 | 3.3 Deep3DMM Comparison Platform

[−0.9,0.9] to avoid the gradient vanishing problem. In the case of Exponential Linear Unit
ELU [24] activation function used in the methods compared in this work, inputs in range
[−1,1] are sufficient.

The formula to normalise each channel of Fi to range [a,b] is:

norm(Fi,a,b) =
Fi −min(F)

max(F)−min(F)
(b−a)+a, (3.8)

where min(F) denotes the minimum value in each channel of all samples F, and max(F)
denotes the maximum value in each channel of all samples F.

In this work, the following simplified formula is used, which scales and shifts the
inputs to range [−a,a]:

norm(Fi,a) =
Fi −min(F)

max(F)−min(F)
2a+min(F) (3.9)

To denormalise the input, the following formula is used:

denorm(Fi,a) =
(Fi +a)(max(F)−min(F))

2a+min(F)
(3.10)

Standardisation does not bind the values to a predefined range, unlike normalisation.
Instead, the values of each channel are centred around the mean and scaled to have a unit
standard deviation. The standardisation function is calculated as follows:

σ =

√
∑

n
i=0(Fi − F̄)2

n
,

std(Fi) =
Fi − F̄

σ

(3.11)

The inverse to standardisation is calculated as follows:

destd(Fi) = σFi + F̄ (3.12)

Representations formulae

The inputs to deep 3D morphable models are the results of data preprocessing, which
follows the aforementioned pipeline. Input representations F(3.14) to F(3.14) are calculated
as in Equations (3.14 - 3.19).

The centred mean shape is denoted as

P̄ctr = centre(P̄). (3.13)

3.3 Deep3DMM Comparison Platform | 43

Euclidean coordinates representation F(3.14) is the result of rigidly registering the vertex
locations P̄ to centred mean shape P̄ctr and subsequently uniformly scaling the vertex
locations by the scalar factor s, which is calculated as in Equation (3.7). The sequence of
transformations applied to obtain Euclidean coordinates is:

F(3.14) = uniform_scale(rigid_reg(P̄ctr,P),s). (3.14)

The standardised Euclidean coordinates (Euclidean Std) representation F(3.15) is the
standardised version of F(3.14), such that F(3.15) = std(F(3.14)). The standardisation is
calculated following the Equation 3.11. The sequence of transformations applied to obtain
standardised Euclidean coordinates is:

F(3.15) = std(uniform_scale(rigid_reg(P̄ctr,P),s)) (3.15)

The normalised Euclidean coordinates (Euclidean Norm) representation F(3.16) is
the normalised version of F(3.14), such that F(3.16) = norm(F(3.14)). Normalisation is
performed as in Equation 3.9, with a = 1. During the preliminary experiments, this
representation has proven inferior in comparison to other representations and therefore
inputs F(3.16) are not used in comparisons presented in Section 3.5.

F(3.16) = norm(uniform_scale(rigid_reg(P̄ctr,P),s),a) (3.16)

The deformation representation (DR) is obtained from F(3.14). The transformation
function dr(·) is implemented following the Equations from Chapter 2. The deformation
gradient, calculated in the dr(·) function, represents the displacement between the centred
mean shape P̄ctr and the Euclidean coordinates F(3.14). In other words, P̄ctr is used as the
template. The sequence of transformations applied to obtain the deformation representation
(DR) is:

F(3.17) = dr(P̄ctr,uniform_scale(rigid_reg(P̄ctr,P),s)) (3.17)

The normalised deformation representation (DR Norm) is the normalised version of
F(3.17)., such that F(3.18) = norm(F(3.17)). Normalisation is performed as in Equation 3.9,
with a = 1. The sequence of transformations applied to obtain the normalised deformation
representation (DR Norm) is:

F(3.18) = norm(dr(P̄ctr,uniform_scale(rigid_reg(P̄ctr,P),s)),a) (3.18)

The standardised deformation representation (DR Std) F(3.19) is the standardised ver-
sion of F(3.17), such that F(3.19) = std(F(3.17)). The standardisation is calculated following

44 | 3.3 Deep3DMM Comparison Platform

the Equation 3.11. During the preliminary experiments, this representation has proven
inferior in comparison to other representations and therefore F(3.19) is not used in com-
parisons presented in Section 3.5. The sequence of transformations applied to obtain the
standardised deformation representation (DR Std) is:

F(3.19) = std(dr(P̄ctr,uniform_scale(rigid_reg(P̄ctr,P),s))) (3.19)

The impact of the choice of F(3.14), F(3.15), F(3.17) and F(3.18) in different Deep3DMMs
on the geometric and perceptual quality of the reconstructed meshes is evaluated in
Section 3.5.

3.3.9 Loss functions

Loss functions calculate the difference between the predicted values, output from a neural
network, and the ground truth values. The discrepancy between the predicted and the
actual values guides the optimisation process. During the training, learnable parameters of
the model are updated at each iteration through backpropagation in terms of loss L. In this
work, L1 norm is used to measure this discrepancy.

Apart from using different representations input to a neural network, such as F(3.14)

(Euclidean), F(3.15) (Euclidean Std), F(3.17) (DR) and F(3.18) (DR Norm), the ground truth
can also be encoded in various representations. In other words, the loss function can
calculate the difference between the ground truth and the predicted values in different
spaces, for example, the Euclidean space or the space of differential coordinates.

Notably, the preliminary experimentation has shown that calculating the loss in a space
distorted by normalisation and standardisation is suboptimal. Hence, standardised and
normalised vectors predicted by the neural network are denormalised and destandardised
before the loss calculation, following the Equations (3.10) and (3.12), respectively.

Moreover, it is found that the space in which the loss is calculated should match
the space in which the input is represented, namely, when inputs are represented with
Euclidean coordinates (F(3.14) and F(3.15)), the loss should be calculated in the Euclidean
space. Analogically, when inputs are represented with differential coordinates (F(3.17) and
F(3.18)), the loss should be calculated in the space of differential coordinates.

Based on the above discussion, the following loss functions are defined for those deep
3D morphable models which are variational autoencoders. Of the compared methods,
these loss functions are used only by the Mesh Autoencoder [151]. The loss function in
the variational autoencoder is a sum of two terms. The first one is L1 norm of a difference
between the predicted and the ground truth vectors. The second term is the weighted
Kullback–Leibler (KL) divergence, which measures the difference between the normal

3.3 Deep3DMM Comparison Platform | 45

distribution N (0,1) and the latent distribution, where φ is a scalar weight. The loss terms
in variational autoencoders are calculated as follows:

L(3.20) = ||F(3.14)−denorm(VAE(F(3.18)))||1
+φKL(N (0,1)||p(E(Z|F(3.18))),

(3.20)

L(3.21) = ||F(3.14)−destd(VAE(F(3.18)))||1
+φKL(N (0,1)||p(E(Z|F(3.15))),

(3.21)

L(3.22) = ||F(3.14)−VAE(F(3.14))||1
+φKL(N (0,1)||p(Z|F(3.14))).

(3.22)

The remaining compared methods [14, 43, 46, 129] are the autoencoders. Their loss
functions calculate the L1 norms between the predicted and the ground truth vectors without
the KL divergence regularisation term. The loss functions of the autoencoders are defined
as:

L(3.23) = ||F(3.14)−denorm(F(3.18))||1, (3.23)

L(3.24) = ||F(3.14)−destd(AE(F(3.15))||1, (3.24)

L(3.25) = ||F(3.14)− (AE(F(3.14))||1. (3.25)

Table 3.2 specifies the experimental configurations in which the above loss functions
are used.

3.3.10 Evaluation metrics

Testing the hypotheses 1 and 3 requires measuring the geometric quality of the meshes
reconstructed by a deep 3D morphable model. The geometric quality of a reconstructed
mesh is defined in Chapter 1 as the L1 or L2 point-wise norm measurement between the
predicted 3D mesh in Euclidean space and the ground truth 3D mesh in Euclidean space.
Therefore, these metrics are employed to measure the geometric quality of the meshes
reconstructed in the comparative experiments in this work.

The L1 and the L2 norms are the most common evaluation metrics used to compare
the performance of different deep 3D morphable models, including the models compared
in this work. However, to the knowledge of the author, this work is the first to evaluate
the deep 3D morphable models in terms of the perceptual quality, defined in Chapter 1 in

46 | 3.3 Deep3DMM Comparison Platform

terms of the Fast Mesh Perceptual Distance (FMPD) [132] or the Dihedral Angle Mesh
Error (DAME) [127].

DAME metric is selected for perceptual evaluation because it has one of the highest
correlation scores with human visual system (HVS) on the compression task [25]. DAME
is restricted to datasets with shared topology as it is based on the difference between
oriented dihedral angles in meshes. The metric takes into account the masking effect and
the visibility weighting. The last one depends on the camera view and resolution, thus this
term is replaced with triangle areas, as suggested in [127]. In the calculation of DAME, the
border edges are ignored, as oriented dihedral angles cannot be calculated on these edges.

FMPD perceptual metric has achieved the highest overall correlation with human
visual system in [25] and therefore has been selected as the second perceptual metric
in the proposed comparative framework. FMPD measures discrepancy between local
and global roughness of meshes. Similarly to DAME, it also accounts for the masking
effect. However, unlike DAME, the metric is capable of measuring perceptual discrepancy
between meshes with different connectivity. Per-vertex local roughness is calculated
on the reference mesh and the evaluated mesh. Following that, the visual masking and
psychosomatic saturation effect are used to weight the local roughness. These effects
reflect human visual system. Next, global roughness is calculated using normalised surface
integrals of the local roughness. The final perceptual score is the difference between the
surface integrals of a reference mesh and the evaluated mesh.

The hypotheses 1 and 2 require the measurement of the perceptual quality, for which
DAME and FMPD metrics are calculated between the predicted 3D mesh in Euclidean
space and the ground truth 3D mesh in Euclidean space. Unlike the loss terms from
Section 3.3.9, the evaluation metrics are always calculated in the Euclidean space. For
this reason, irrespective of the model’s output representation, the output is converted to
Euclidean coordinates representation. The predictions in Euclidean Std representation are
destandardised using the Equation 3.12, while the predictions in Euclidean representation
do not require further post-processing. In contrast, DR Norm is denormalised using
Equation (3.10), and both differential representations DR and DR Norm need to be
converted back to Euclidean coordinates representation. As described in Section 3.3.8, the
differential coordinates do not encode the location of a mesh in 3D space. For this reason,
the meshes converted from the deformation representation (DR) are rigidly registered to
ground truth meshes before evaluation with geometric and perceptual metrics.

3.4 Implementation Details | 47

3.4 Implementation Details

All models are trained with Adam optimiser [68] with parameters β1 = 0.9 and β2 = 0.999,
latent space size of 64, learning rate of 10−3, learning rate decay of 0.99, batch size of 16
for Facsimile and FaceWarehouse datasets and batch size of 8 for the FaceScape dataset.
ELU [24] activation functions are used. The models are trained for 450 epochs.

In experiments, the Mesh Autoencoder [151] has 5 upscaling convolutional blocks and
5 downscaling convolutional blocks. The residual rates are at 0.5. Due to the nature of
subsampling method used in this approach, additional graph convolutional layer was added
to bring the latent space size to 64 (8 latent vertices × 8-dimensional features). Therefore,
the channel dimensions are [|f|, 32, 64, 128, 128, 8], where |f| is the size of a per-vertex
input feature. In Euclidean coordinates-based representations |f|= 3, while in differential
coordinates-based representations |f| = 9. The convolutional operators have stride = 2,
kernel radius = 2 and basis weights = 35.

In the case of FeaStNet, Neural3DMM, SpiralNet++ and LSA-3DMM, their encoders
are built of convolutional layers, each followed by a pooling layer with a pooling factor =
4. The last layer of the encoder is fully connected, with an output size equal to a latent
space size of 64. The encoder channel dimensions = [|f|, 16, 32, 64, 128]. The decoder
mirrors the encoder. Additionally, in Neural3DMM, the encoder’s first two layers and the
decoder’s last two layers are dilated convolutions with step size = 2 and dilation ratio = 2.

3.5 Experiments and Comparisons

The Deep3DMM Comparison Platform, described in Sections 3.2 and 3.3, provides a
flexible environment for experimentation. The platform’s modular nature allows the
comparison of various deep 3D morphable model methods, and an efficient data processing
pipeline allows the generation of different representations of the input. Consequently,
the comparison platform is used to compare five deep 3D morphable Model approaches
[14, 46, 129, 151], using three datasets [18, 59, 144] and four different input representations
(F(3.14), F(3.15), F(3.17) and F(3.18)), evaluated on 2 geometric metrics (L1 and L2 norm)
and 2 perceptual metrics (DAME [127] and FMPD [132]). This comparison setup results
in 60 experiments. The reconstructions from each experiment are evaluated using the
training set and the test set with 4 metrics, producing 480 records in total. These records
are presented in Tables 3.3, 3.4 and 3.5.

For clarity, the compared models and the inputs to these models are outlined in Table 3.1.
The derivations of these inputs are shown in Section 3.3.8. The corresponding loss functions

48 | 3.5 Experiments and Comparisons

used in each experiment are presented in Table 3.2. The equations for each loss function
can be found in Section 3.3.9.

In this section, the results from the 60 experiments are evaluated from the following
perspectives:

1. Impact of Euclidean coordinates-based and differential coordinates-based representa-
tions on geometric and perceptual quality of the outputs, when accounted for different
Deep3DMMs and datasets (Section 3.5.1). Conclusions from this evaluation test the
hypotheses 1-3.

2. Impact of standardisation and normalisation of the inputs on geometric and percep-
tual quality of the outputs, when accounted for different Deep3DMMs and datasets
(Section 3.5.2).

3. Impact of the compared Deep3DMMs on geometric and perceptual quality of the
outputs, when accounted for different input representations and training datasets
(Section 3.5.3).

Table 3.1 Grid of 20 configurations used in Deep3DMM Comparison Platform. Autoen-
coders (AE(·)) or Variational Autoencoders (VAE(·)) with different inputs are laid out in
terms of the Deep3DMM method and the representation. Models in these configurations
are trained with 3 datasets: Facsimile, FaceWarehouse and FaceScape, resulting in 60
experimental configurations in total.

Euclidean
Euclidean

Standardised
Deformation

Representation

Deformation
Representation

Normalised
FeaSt

AEFeaSt(F(3.14)) AEFeaSt(F(3.15)) AEFeaSt(F(3.17)) AEFeaSt(F(3.18))

Neural
3DMM

AE3DMM(F(3.14)) AE3DMM(F(3.15)) AE3DMM(F(3.17)) AE3DMM(F(3.18))

Spiral
Net++

AESpiral(F(3.14)) AESpiral(F(3.15)) AESpiral(F(3.17)) AESpiral(F(3.18))

Mesh
Autoe.

VAEMesh(F(3.14)) VAEMesh(F(3.15)) VAEMesh(F(3.17)) VAEMesh(F(3.18))

LSA-
3DMM

AELSA(F(3.14)) AELSA(F(3.15)) AELSA(F(3.17)) AELSA(F(3.18))

3.5 Experiments and Comparisons | 49

Table 3.2 A grid of loss functions used in 20 configurations used in Deep3DMM Compari-
son Platform. The loss functions are laid out in terms of the Deep3DMM method and the
representation. Models in these configurations are trained with three datasets: Facsimile,
FaceWarehouse and FaceScape, resulting in 60 experimental configurations in total.

Euclidean
Euclidean

Standardised
Deformation

Representation

Deformation
Representation

Normalised
FeaStNet [129]

L(3.25) L(3.24) L(3.25) L(3.23)

Neural
3DMM [14]

L(3.25) L(3.24) L(3.25) L(3.23)

Spiral
Net++ [46]

L(3.25) L(3.24) L(3.25) L(3.23)

Mesh
Autoenc. [151]

L(3.22) L(3.21) L(3.22) L(3.20)

LSA-
3DMM [43]

L(3.25) L(3.24) L(3.25) L(3.23)

3.5.1 Impact of Euclidean and differential representations

Quantitative evaluation

The representations are grouped into two categories: Euclidean coordinates-based (Eu-
clidean and Euclidean Std) and differential coordinates-based (DR and DR Norm). When
comparing these categories, the best-performing representation is chosen from each cate-
gory to make a comparison. This is to exclude the effects of standardisation, normalisation,
or the lack of thereof.

Based on the Facsimile training dataset results presented in Table 3.3, the Euclidean
coordinates-based representations outperform the differential coordinates-based representa-
tions in geometric quality. Nonetheless, the differential coordinates-based representations
outperform the Euclidean coordinates-based representations in perceptual quality. The L1

norm error is lower with the Euclidean coordinates-based representations by the factor of
2.69+1.16

−1.00 compared to the differential coordinates-based representations. Analogically,
the L2 norm error is, on average, lower by the factor of 1.89+3.07

−1.67. However, with 2 out
of 5 models compared, the L2 norm error is higher with the Euclidean coordinates-based
representation. The DAME error is consistently lower with the differential coordinates-
based representations compared to Euclidean coordinates-based representations by the
factor of 1.91+0.42

−0.62. The FMPD shows a similar pattern, with differential coordinates-based

50 | 3.5 Experiments and Comparisons

Table 3.3 Quantitative comparison of the reconstruction results on the Facsimile training
and test sets output from the configurations of different Deep3DMMs (in columns) using
four representations (in rows). The details of experimental configurations are shown in
Tables 3.1 and 3.2. The results are evaluated with L1 norm, L2 norm, DAME and FMPD
metrics, as described in Section 3.3.10. Discussion over these results can be found in
Sections 3.5.1, 3.5.2 and 3.5.3.

Facsimile Dataset - Training

FeaStNet
Neural
3DMM

Spiral
Net++

Mesh
Autoenc.

LSA-
3DMM

L1 Norm ×10−3 9.27 6.595 4.777 2.602 6.881
L2 Norm ×10−5 71.102 28.908 13.498 47.742 29.272
FMPD ×10−2 100 93.873 100 51.962 6.433Euclidean

DAME ×10−2 31.542 15.306 22.990 6.036 2.85
L1 Norm ×10−3 2.022 1.714 1.353 2.364 1.325
L2 Norm ×10−5 38.36 23.012 13.614 42.129 14.394
FMPD ×10−2 35.369 25.553 44.532 43.544 8.971

Euclidean
Std

DAME ×10−2 5.296 3.839 5.349 4.9 2.719
L1 Norm ×10−3 6.889 3.127 5.218 4.012 3.55
L2 Norm ×10−5 26.124 57.278 14.933 9.54 71.399
FMPD ×10−2 20.671 18.254 10.659 6.795 18.873DR

DAME ×10−2 2.27 2.092 2.296 2.767 2.104
L1 Norm ×10−3 16.538 13.291 11.767 4.769 3.843
L2 Norm ×10−5 135.619 83.129 68.504 13.078 87.011
FMPD ×10−2 49.14 48.031 45.708 12.479 6.463DR Norm

DAME ×10−2 7.735 7.109 6.66 3.045 2.57

Facsimile Dataset - Test

FeaStNet
Neural
3DMM

Spiral
Net++

Mesh
Autoenc.

LSA-
3DMM

L1 Norm ×10−3 9.45 6.983 6.004 8.320 7.194
L2 Norm ×10−5 71.84 30.832 19.428 39.529 30.315
FMPD ×10−2 100 94.536 100 48.925 6.862Euclidean

DAME ×10−2 31.813 15.414 22.875 5.814 2.806
L1 Norm ×10−3 9.07 5.954 6.38 5.782 6.367
L2 Norm ×10−5 49.656 20.974 24.434 19.54 24.894
FMPD ×10−2 34.374 23.965 39.42 30.846 8.396

Euclidean
Std

DAME ×10−2 5.354 3.807 4.869 3.885 2.939
L1 Norm ×10−3 9.525 13.275 12.465 12.049 15.634
L2 Norm ×10−5 50.34 107.757 84.487 84.892 129.809
FMPD ×10−2 19.875 17.118 12.445 2.653 17.603DR

DAME ×10−2 2.228 2.456 2.278 3.065 2.393
L1 Norm ×10−3 17.507 17.406 12.791 9.290 13.825
L2 Norm ×10−5 158.564 158.41 85.656 49.449 102.034
FMPD ×10−2 49.784 48.68 45.26 3.609 4.603DR Norm

DAME ×10−2 7.734 7.309 6.627 3 3.167

3.5 Experiments and Comparisons | 51

Table 3.4 Quantitative comparison of the reconstruction results on the FaceWarehouse
training and test sets output from the configurations of different Deep3DMMs (in columns)
using 4 representations (in rows). The details of experimental configurations are shown in
Tables 3.1 and 3.2. The results are evaluated with L1 norm, L2 norm, DAME and FMPD
metrics, as described in Section 3.3.10. Discussion over these results can be found in
Sections 3.5.1, 3.5.2 and 3.5.3.

FaceWarehouse Dataset - Training

FeaStNet
Neural
3DMM

Spiral
Net++

Mesh
Autoenc.

LSA-
3DMM

L1 Norm ×10−3 11.552 7.202 6.267 2.541 7.275
L2 Norm ×10−5 153.49 30.02 23.225 4.403 29.636
FMPD ×10−2 100 100 100 47.637 28.462Euclidean

DAME ×10−2 49.7 28.935 44.265 5.266 2.943
L1 Norm ×10−3 1.92 1.578 1.212 1.116 1.026
L2 Norm ×10−5 3.193 1.902 1.041 1.091 0.896
FMPD ×10−2 45.656 38.517 50.578 32.636 16.847Euclidean Std

DAME ×10−2 6.81 4.48 6.062 3.23 1.767
L1 Norm ×10−3 6.867 7.762 4.088 2.57 4.472
L2 Norm ×10−5 25.609 31.06 9.575 3.326 10.881
FMPD ×10−2 1.580 1.549 0.971 3.833 2.073DR

DAME ×10−2 0.904 0.827 0.866 1.171 0.810
L1 Norm ×10−3 9.131 7.616 6.541 2.208 3.489
L2 Norm ×10−5 41.392 27.944 20.778 2.467 6.562
FMPD ×10−2 10.292 10.75 10.813 3.668 1.101DR Norm

DAME ×10−2 2.277 2.233 2.161 1.137 1.097

FaceWarehouse Dataset - Test

FeaStNet
Neural
3DMM

Spiral
Net++

Mesh
Autoenc.

LSA-
3DMM

L1 Norm ×10−3 12.177 8.043 6.996 5.332 8.295
L2 Norm ×10−5 161.514 36.895 27.695 15.503 37.719
FMPD ×10−2 100 100 100 48.566 26.868Euclidean

DAME ×10−2 49.314 29.068 44.252 5.499 2.687
L1 Norm ×10−3 8.169 4.017 4.694 5.337 4.472
L2 Norm ×10−5 37.138 9.072 12.218 15.337 11.919
FMPD ×10−2 43.419 37.621 47.91 24.573 17.532Euclidean Std

DAME ×10−2 6.299 4.458 5.633 2.528 1.89
L1 Norm ×10−3 7.806 10.569 11.090 10.023 6.764
L2 Norm ×10−5 32.325 58.098 64.124 50.386 23.561
FMPD ×10−2 1.577 1.629 1.123 3.096 2.189DR

DAME ×10−2 0.867 0.81 0.857 1.19 0.8
L1 Norm ×10−3 10.171 8.474 7.890 7.424 6.787
L2 Norm ×10−5 52.726 36.706 31.728 28.66 24.309
FMPD ×10−2 10.272 10.536 10.173 3.208 11.962DR Norm

DAME ×10−2 2.24 2.209 2.084 1.216 1.132

52 | 3.5 Experiments and Comparisons

Table 3.5 Quantitative comparison of the reconstruction results on the FaceScape training
and test sets output from the configurations of different Deep3DMMs (in columns) using
4 representations (in rows). The details of experimental configurations are shown in
Tables 3.1 and 3.2. The results are evaluated with L1 norm, L2 norm, DAME and FMPD
metrics, as described in Section 3.3.10. Discussion over these results can be found in
Sections 3.5.1, 3.5.2 and 3.5.3.

FaceScape Dataset - Training

FeaStNet
Neural
3DMM

Spiral
Net++

Mesh
Autoenc.

LSA-
3DMM

L1 Norm ×10−3 3.848 3.531 2.417 1.325 4.075
L2 Norm ×10−5 10.335 9.886 3.799 1.586 10.178
FMPD ×10−2 59.522 22.959 42.746 3.243 13.108Euclidean

DAME ×10−2 15.973 9.228 10.893 2.198 1.725
L1 Norm ×10−3 0.819 0.941 0.717 0.961 0.48
L2 Norm ×10−5 0.664 0.95 0.601 1.056 0.329
FMPD ×10−2 7.811 11.346 2.714 5.016 11.56Euclidean Std

DAME ×10−2 2.152 1.723 2.539 1.808 1.45
L1 Norm ×10−3 4.997 5.022 4.458 6.948 4.67
L2 Norm ×10−5 13.817 13.787 11.241 25.814 12.311
FMPD ×10−2 16.787 16.246 15.757 7.927 16.612DR

DAME ×10−2 1.439 1.447 1.458 1.666 1.402
L1 Norm ×10−3 15.337 13.592 10.139 6.068 4.473
L2 Norm ×10−5 113.032 93.426 51.34 19.191 10.717
FMPD ×10−2 21.267 21.057 14.353 9.633 14.719DR Norm

DAME ×10−2 5.505 5.298 4.406 1.638 1.632

FaceScape Dataset - Test

FeaStNet
Neural
3DMM

Spiral
Net++

Mesh
Autoenc.

LSA-
3DMM

L1 Norm ×10−3 3.92 3.629 2.502 1.712 4.23
L2 Norm ×10−5 10.567 10.198 3.971 2.286 10.813
FMPD ×10−2 59.413 22.815 42.592 3.215 13.169Euclidean

DAME ×10−2 15.982 9.23 10.898 2.259 1.714
L1 Norm ×10−3 2.257 1.365 1.696 1.299 1.687
L2 Norm ×10−5 3.845 1.54 2.178 1.381 2.547
FMPD ×10−2 7.558 11.454 2.81 5.529 11.327Euclidean Std

DAME ×10−2 2.166 1.728 2.505 1.817 1.57
L1 Norm ×10−3 6.134 6.197 4.748 7.618 5.27
L2 Norm ×10−5 21.088 20.756 12.141 35.464 15.343
FMPD ×10−2 17.048 16.569 16.142 9.078 16.78DR

DAME ×10−2 1.459 1.456 1.446 1.834 1.417
L1 Norm ×10−3 15.055 13.237 9.926 5.924 4.87
L2 Norm ×10−5 109.629 88.536 48.812 18.313 12.823
FMPD ×10−2 20.979 20.698 14.037 10.804 15.044DR Norm

DAME ×10−2 5.483 5.267 4.379 1.163 1.626

3.5 Experiments and Comparisons | 53

representations giving the lower FMPD by the factor of 2.94+3.47
−1.94. Only with LSA-3DMM

the FMPD remained practically the same.
The Facsimile test dataset results provide a consistent pattern, proving that Euclidean

coordinates-based representations give superior geometric quality. In contrast, the differen-
tial coordinates-based representations outperform in perceptual quality. The L1 norm error
is lower with the Euclidean coordinates-based representations by the factor of 1.14+0.29

−0.20

compared to the differential coordinates-based representations. For the L2 norm error,
Euclidean coordinates-based representations give 3.43+1.71

−2.41 times lower error. The benefits
of Euclidean coordinates-based representations in terms of L1 and L2 norms are apparent
when using each of 5 compared models. On the other hand, the differential coordinates-
based representations give considerably lower DAME and FMPD errors by the factors of
1.71+0.69

−0.54 and 1.71+0.69
−0.54, respectively.

Table 3.4 outlines the FaceWarehouse dataset results. Evaluation on the training
set confirms the observations from analysing the Facsimile dataset results. Euclidean
coordinates-based representations outperform the differential coordinates-based representa-
tions in L1 and L2 metrics by the respective factors of 3.43+1.40

−1.45 and 8.30+6.39
−6.04. DAME and

FMPD perceptual metrics are lower with the differential coordinates-based representations
compared to the Euclidean coordinates-based representations by the respective factors of
4.99+2.54

−2.81 and 26.01+26.08
−17.11.

These trends persist in the results from the test subset of the FaceWarehouse dataset.
Euclidean coordinates-based representations give 1.53+0.58

−0.57 lower L1 norm error, signifi-
cantly outperforming the differential coordinates-based representations on all the compared
models, except FeaStNet, with which it has similar L1 norm error with both types of repre-
sentations. Likewise, Euclidean coordinates-based representations outperform regarding
the L2 norm error with every model, except FeaStNet, by the factor of 2.27+1.77

−1.40. DAME
and FMPD are consistently, significantly lower when using differential coordinates-based
representations. Precisely, DAME is 4.77+2.50

−2.64 times lower, and FMPD is lower by the
impressive factor of 21.85+20.82

−13.91.
The FaceScape dataset results presented in Table 3.5 paint a more complex picture.

Evaluation of the training set clearly shows that Euclidean coordinates-based representa-
tions result in considerably lower L1 norm and L2 norm error by the factors of 6.66+2.66

−1.32

and 20.95+11.62
−6.44 respectively. Contrary to trends observed with the Facsimile and Face-

Warehouse datasets, Euclidean coordinates-based representations give lower FMPD by
2.52+2.77

−1.24. Notably, in this case, FMPD and DAME metrics are not consistent because
the differential coordinates-based representation yields lower DAME by the factor of
1.31+0.43

−0.28, regardless of the model used. Therefore, except for the FMPD metric, the trends
on the FaceScape dataset are consistent with the previous observations. However, given
minor improvements of the differential coordinates-based representations on DAME met-

54 | 3.5 Experiments and Comparisons

ric and their significant underperformance on L1 and L2 metrics, standardised Euclidean
coordinates representation is the preferred representation.

The results from the test set of the FaceScape dataset show that Euclidean coordinates-
based representations result in 3.5+1.06

−0.78 times lower L1 norm error, 8.57+4.91
−3.53 times lower L2

norm error, 2.57+2.43
−1.24 times lower FMPD. Similarly to the training set, FMPD and DAME

perceptual metrics are inconsistent, and the differential coordinates-based representations
give 1.41+0.32

−0.31 times lower DAME.

Qualitative evaluation

The Facsimile meshes reconstructed by Deep3DMMs, which use the Euclidean coordinates-
based (Euclidean and Euclidean Std) and differential coordinates-based (DR and DR Norm)
representations, are visually compared against the ground truth model in Figures 3.1 and 3.2.
As in the qualitative evaluation, the best-performing representation is chosen from each
category to make a comparison. This is to exclude the effects of standardisation, normali-
sation, or the lack of thereof. This evaluation is subjective, and, as such, it is considered
supplementarily to quantitative evidence.

The qualitative evaluation of the results confirms the previous observations based
on the numerical metrics. On the test set, the mesh outputs from the SpiralNet++ and
Neural3DMM with Euclidean Std representation, the overall shapes are closer to the
ground truth compared to the mesh outputs from the SpiralNet++ and Neural3DMM with
DR representation. DR representation results in noticeable volume loss over the whole
head, especially in the chin area. However, the Euclidean Std representations leads to
high-frequency surface perturbations, while the DR feature results in a smooth surface.
Nevertheless, in the meshes output with SpiralNet++ and Neural3DMM, fine surface
details are lost in reconstruction, regardless of the representation. These trends are further
exaggerated on the test set. The output from the models using DR representation does
not resemble the ground truth mesh. In contrast, the reconstruction with Euclidean Std
representation captures its silhouette despite an abundance of high-frequency surface
artefacts.

The outputs from the FeaStNet demonstrate a strong contrast between the geometric ac-
curacy and perceptual quality of Euclidean coordinates-based and differential coordinates-
based representations. On the training set, the reconstruction generated with Euclidean Std
representation is more similar to ground truth regarding the volumes of individual facial
features. However, the surface of the mesh is noisy and scattered with small spikes. The
tip of the nose is greatly affected by high-frequency perturbations. The mesh generated
with DR representation has a clean surface; however the volumes of facial features are
further from the ground truth across the whole face. The difference between the impact of

3.5 Experiments and Comparisons | 55

the representations is even more noticeable in the test set. Regardless of representation, the
generated meshes are perceptually and geometrically far from the ground truth. Despite
that, the silhouette of the mesh reconstructed from the model with the Euclidean Std
representation is more similar to the ground truth, except from the neck. This mesh has a
multitude of small spikes scattered across its whole surface. In contrast, the mesh surface
reconstructed from the model with the DR representation is clean. In this case, however,
the overall silhouette does not resemble the ground truth mesh and is closer to the mean of
all training samples in the Facsimile dataset.

Finally, the meshes generated by LSA-3DMM and Mesh Autoencoder follow a similar
pattern. The perceptual surface quality of the outputs from LSA-3DMM is slightly higher
when DR and DR Norm are used. Nevertheless, the most considerable difference in
the impact of representations is in the geometric quality, where differential coordinates-
based representations noticeably underperform. Moreover, despite the clean surface of
meshes output from the models using differential coordinates-based representation, they
are smooth and lack fine surface details. The same cannot be said about the outputs from
Mesh Autoencoder. Despite a few surface artefacts, the surface details on meshes generated
with the model using DR and DR Norm are close to the ground truth. Conversely to the
reconstructions from the Euclidean Std representation, facial features’ silhouettes and
volumes are significantly different from those of the ground truth.

Summary

The comparative results from 60 experiments performed with five different models, three
datasets and four representations, evaluated on two perceptual and two geometric metrics,
consistently show that:

1. Using the differential coordinates-based representations results in higher perceptual
quality (measured with DAME and FMPD) and lower geometric quality (measured
with L1 and L2 norms) compared to differential coordinates-based representations.
This observation proves the hypothesis 2.

2. Using the Euclidean coordinates-based representations results in higher geometric
quality (measured with L1 and L2 norms) and lower perceptual quality (measured
with DAME and FMPD) than differential coordinates-based representations. This
observation proves the hypothesis 3.

Despite the above trends, exceptions exist.

56 | 3.5 Experiments and Comparisons

Euclidean DR

L1 Norm

DAME

DR NormEuclidean StdGround Truth

0

0.03

0

0.03

DR NormGround Truth Euclidean DREuclidean Std

L1 Norm

DAME

0

0.03

TestTraining
SpiralNet++

0

0.03

Euclidean DR

L1 Norm

DAME

DR NormEuclidean StdGround Truth

0

0.03

0

0.03

DR NormGround Truth Euclidean DREuclidean Std

L1 Norm

DAME

0

0.03

TestTraining
LSA-3DMM

0

0.03

Figure 3.1 Qualitative comparison of the reconstruction results of the Facsimile train-
ing and test sets output from the SpiralNet++ (top) and LSA-3DMM (bottom) using 4
representations (in columns). The details of experimental configurations are shown in
Tables 3.1 and 3.2. Per-vertex L1 norm error and per-vertex DAME are rendered as colour.
As the DAME metric aggregates error calculated on edges, a colour is assigned to a vertex
by averaging error on its incident edges. The visibility weight is not applied when visualis-
ing DAME because the area occupied by vertex colour is already reflected in shading. It
is recommended to zoom into the digital version to compare the surface artefacts on the
generated meshes.

3.5 Experiments and Comparisons | 57

Euclidean DR

L1 Norm

DAME

DR NormEuclidean StdGround Truth

0

0.03

0

0.03

DR NormGround Truth Euclidean DREuclidean Std

L1 Norm

DAME

0

0.03

TestTraining
FeaStNet

0

0.03

Euclidean DR

L1 Norm

DAME

DR NormEuclidean StdGround Truth

0

0.03

0

0.03

DR NormGround Truth Euclidean DREuclidean Std

L1 Norm

DAME

0

0.03

TestTraining
Neural 3DMM

0

0.03

Euclidean DR

L1 Norm

DAME

DR NormEuclidean StdGround Truth
Text

0

0.03

0

0.03

DR NormGround Truth Euclidean DREuclidean Std

L1 Norm

DAME

0

0.03

TestTraining
Mesh Autoencoder

0

0.03

Figure 3.2 Qualitative comparison of the reconstruction results of the Facsimile training
and test sets output from the FeaStNet (top), Neural3DMM (middle) and MeshAutoencoder
(bottom) using 4 representations (in columns). The details of experimental configurations
are shown inTables 3.1 and 3.2. Per-vertex L1 norm error and per-vertex DAME are
rendered as colour. It is recommended to zoom into the digital version to compare the
surface artefacts on the generated meshes.

58 | 3.5 Experiments and Comparisons

3.5.2 Impact of input normalisation and standardisation

Quantitative evaluation

Tables 3.3, 3.4 and 3.5 provide an insight into the effects of standardisation and normali-
sation. The preliminary tests have shown that F(3.16) and F(3.19) result in high geometric
and perceptual errors and they were not included in the comparison presented in this
work. The effects of standardisation are assessed by comparing the input in Euclidean
coordinates representation (Euclidean) and the input in standardised Euclidean coordinates
representation (Euclidean Std). The effects of normalisation are assessed by comparing the
input in the deformation representation (DR) and the input in the normalised deformation
representation (DR Norm).

Generally, standardisation applied to Euclidean coordinates representation improves
the geometric and perceptual quality of the output meshes. On training sets, standardisa-
tion decreased the L1 norm error by the factors of 3.65+1.54

−2.55, 5.02+2.07
−2.75 and 4.34+4.15

−2.96 on
Facsimile, FaceWarehouse and FaceScape datasets, respectively. Standardisation results in
1.45+0.58

−0.42 times lower L2 norm error on the Facsimile dataset with all the models except
SpiralNet++, with which standardisation practically does not affect the L2 norm error.
On FaceWarehouse and FaceScape datasets, standardisation decreases the L2 norm error
by the respective factors of 24.66+23.42

−20.62 and 12.95+18.00
−11.44. The impact of standardisation

on the perceptual metrics is also positive, regardless of the model used. It decreases
DAME by 1.91+0.42

−0.62, 4.99+2.54
−2.81, 1.31+0.43

−0.28 on Facsimile, FaceWarehouse and FaceScape
datasets, respectively. Moreover, standardisation improves FMPD by 3.30+2.65

−2.26, 4.87+2.43
−3.24,

3.89+3.53
−2.71, respectively.

Standardisation of the vectors in Euclidean coordinates representation on the test sets
almost always improves the quality of generated meshes, with a few exceptions. Using
standardised Euclidean coordinates representation decreases the L1 norm error by 1.14+0.29

−0.20

on the Facsimile dataset, except from the SpiralNet++ model, with which it increases the
L1 norm error by 6%. On the other hand, standardisation decreases the L1 norm error
with the SpiralNet++ model on the FaceWarehouse dataset, while does not affect the L1

norm error when using the Mesh Autoencoder. Nonetheless, standardisation decreases
the L1 norm error on the FaceWarehouse test set by 1.15+0.25

−0.39. Consistent improvements
by the factor of 1.94+0.72

−0.62 can be observed across the results from all the models on
the FaceScape dataset. The standardisation has an overall positive effect on L2 norm
error. On the Facsimile dataset, standardisation decreases the L2 norm error by the factor
of 1.48+0.53

−0.26. Similarly to the results on the training set, SpiralNet++ is an exception,
and standardisation increases its L2 norm error by almost 26%. On FaceWarehouse and
FaceScape datasets, standardisation results in 2.97+1.38

−1.96 times and 3.42+3.20
1.76 times lower L2

norm error, respectively. Standardisation improves the perceptual quality of the generated

3.5 Experiments and Comparisons | 59

meshes in most cases. It decreases FMPD by 2.36+1.59
−1.54 times on the Facsimile test set, by

2.11+0.55
−0.58 times on the FaceWarehouse test set and by 5.35+9.81

−4.77 times on the FaceScape
test set. Exceptions are not consistent across the datasets. Namely, standardised input to
LSA-3DMM on the Facsimile dataset increases FMPD by 22% and standardised input to
the Mesh Autoencoder on the FaceScape test set significantly increases FMPD by 72%.
This case shows the inconsistency between FMPD and DAME, as standardised input to the
Mesh Autoencoder on the FaceScape test set reduces DAME by a factor of 1.11. Overall,
standardisation decreases DAME by the respective factors of 3.43+2.51

−2.47, 5.16+2.70
−3.74 and

3.88+3.50
−2.79 on Facsimile, FaceWarehouse and FaceScape test sets.

The impact of normalisation of the deformation representation depends on the choice
of a model and the dataset. The practise of normalising the DR representation prevails
in research publications where deformation representation is used in deep learning. The
results from the Deep3DMM Comparison Platform demonstrate that the normalisation
of shapes in the deformation representation should not be a standard practice. This work
shows that although normalisation can improve the quality of the outputs in some cases,
it can also increase the geometric and perceptual error in many other cases, as explained
below.

The comparative results from the Facsimile dataset are presented in Table 3.3. Regard-
less of the model, on the Facsimile training set, the L1 norm error is consistently higher
with normalised deformation representation (DR Norm), compared to the deformation
representation (DR). In this case, the normalisation results in 2.24+2.01

−1.15 times higher L1

norm error. A similar trend can be observed in L2 norm error results. Regardless of the
model, normalisation has an undesirable effect of increasing the L2 norm error by the factor
of 2.76+2.43

−1.55. Regarding the perceptual error, normalisation increases DAME and FMPD,
with one exception. Namely, FMPD is 2.92 times lower with the LSA-3DMM model and
normalised deformation representation. The opposite is true with all the other models
compared, where FMPD increases by 2.3+1.99

−1.95 when normalisation is used. Moreover,
normalised DR vectors perform 2.41+1.00

−1.31 times worse on the DAME metric across all the
models, including LSA-3DMM. Therefore, it can be concluded that normalisation has
undesired effects on the Facsimile training set, regardless of the model. Interestingly, the
same cannot be concluded from the Facsimile test set results.

The normalisation of the DR samples from the Facsimile test set is beneficial when
training the Mesh Autoencoder and the LSA-3DMM. At the same time, it has a negative
impact on the outputs from FeaStNet, Neural3DMM and SpiralNet++ models. he L1 norm
error is 1.3 times lower with Mesh Autoencoder and 1.13 times lower with LSA-3DMM,
while the error gets increased with the remaining three models. Similarly, normalisation
has a negative impact on the L2 norm error when using FeaStNet, Neural3DMM and
SpiralNet++ models. However, it reduces the L2 norm error by the factors of 1.94 and 1.2

60 | 3.5 Experiments and Comparisons

with the Mesh Autoencoder and LSA-3DMM, respectively. The impact of normalisation
of the Facsimile test set on the perceptual metrics (FMPD and DAME) is negative with
FeaStNet, Neural3DMM and SpiralNet++ models, and the results are unclear with the
two remaining models. Specifically, normalisation decreases FMPD with LSA-3DMM by
282%, but increases FMPD with Mesh Autoencoder by 36%. In contrast, normalisation
decreases DAME with Mesh Autoencoder by 2%, but increases DAME with LSA-3DMM
by 36%. Nonetheless, it can be concluded that, on the Facsimile test set, the overall impact
of normalisation is positive with Mesh Autoencoder and LSA-3DMM, while the overall
impact of normalisation is negative with FeaStNet, Neural3DMM and SpiralNet++ models.

Unlike with the Facsimile training set, there are cases when normalisation of the
deformation representation is beneficial with the FaceWarehouse training set. These
cases almost overlap with those from the Facsimile test set, where normalisation has an
overall negative impact on FeaStNet, Neural3DMM and SpiralNet++ models, while its
impact on Mesh Autoencoder and LSA-3DMM can be considered as overall positive.
Normalisation decreases the L1 norm by 2% with Neural3DMM, by 16% with Mesh
Autoencoder and by 28% with LSA-3DMM. However, it increases the L1 norm with
FeaStNet and SpiralNet++ by 32% and 60%, respectively. The same trend is observed in
the L2 norm results. Normalisation decreases the L2 norm by 11% with Neural3DMM, by
35% with Mesh Autoencoder and by 66% with LSA-3DMM, while it increases the L2 norm
with FeaStNet by 62% and SpiralNet++ by 117%. The impact on the perceptual metrics
follows the trend observed in the L1 norm error results. When normalisation is applied
to DR vectors in FeaStNet, Neural3DMM and SpiralNet++ models, FMPD and DAME
increase. In LSA-3DMM, DAME increases, but FMPD is 1.88 times lower. Moreover, the
Mesh Autoencoder slightly benefits from normalisation, as DAME and FMPD decrease by
the factors of 1.03 and 1.04, respectively.

On the FaceWarehouse test set, normalisation often improves the geometric quality
of the reconstructed meshes. However, its impact is either neutral or negative on the
perceptual quality. Normalising the deformation representation decreases the L1 and L2

norm error in Neural3DMM, SpiralNet++ and Mesh Autoencoder. The L1 norm error is
lower by the respective factors of 1.25, 1.41 and 1.35. The L2 norm error is lower by the
respective factors of 1.58, 2.02 and 1.76. Notably, normalisation has a negligible geometric
impact in LSA-3DMM, whereas, in FeaStNet, it increases L1 and L2 norm error. Regarding
perceptual quality, normalisation has a consistent, negative effect across all the models.
In Mesh Autoencoder, the impact of normalisation on DAME and FMPD is insignificant.
The other models are significantly affected, with FMPD higher by the factor of 5.71+3.35

−4.67
and DAME higher by the factor of 2.04+0.69

−1.01.
The results from the FaceScape training set follow the trends observed in the FaceWare-

house training set. With the normalisation, the L1 and L2 norm error increase in FeaStNet,

3.5 Experiments and Comparisons | 61

Neural3DMM and SpiralNet++ models, while normalisation improves these metrics in
Mesh Autoencoder and LSA-3DMM. In these models, the L1 norm error decreases by
15% and 4%, while the L2 norm error decreases by 35% and 15%, respectively. FMPD
and DAME metrics are not fully consistent, with FMPD indicating that normalisation
improves the perceptual quality only in SpiralNet++ and LSA-3DMM. At the same time,
DAME shows that normalisation marginally improves the perceptual quality only in Mesh
Autoencoder. With other models, normalisation increases DAME and FMPD metrics.

The FaceScape test set results reveal the pattern from the training set. Normalisation
decreases the L1 and L2 norm error only in Mesh Autoencoder and LSA-3DMM. The
L1 norm is 1.29 and 1.08 times lower in these models. At the same time, the L2 norm
decreases by the factors of 1.93 and 1.2, respectively. Analogically to the training set,
normalisation increases the FMPD in FeaStNet, Neural3DMM and Mesh Autoencoder.
However, it decreases FMPD in SpiralNet++ by 15% and in LSA-3DMM by 12%. The
impact of normalisation on DAME also differs across the models. The improvements are
observed only in Mesh Autoencoder, with DAME decreasing by 58%.

Qualitative evaluation

Figures 3.1 and 3.2 allow to visually compare the the effects of standardisation of Euclidean
coordinates, as well as the effects of normalisation of the deformation representation (DR).
Qualitative evaluation of the reconstructed FaceScape dataset confirms the conclusions
from the numerical evaluation. Qualitative evaluation is more subjective and, as such, it is
considered supplementary to quantitative evidence.

Compared to standardised Euclidean coordinates (Euclidean Std), the use of Euclidean
coordinates has a detrimental effect on the perceptual and geometric quality of the results.
In SpiralNet++, FeaStNet, Mesh Autoencoder and Neural3DMM, lack of standardisation
results in severe surface artefacts, such as noise and long spikes. In LSA-3DMM, the
surface is smooth and lacks details. In all the models apart from FeaStNet, the geometric
accuracy is low, and the resulting facial meshes do not resemble their ground truth counter-
parts. Interestingly, on the test set with the FeaStNet model, the Euclidean representation
results in higher geometric accuracy than the Euclidean Std representation. However, due
to severe surface noise, the meshes produced with Euclidean representation are perceptually
different to ground truth. This is an extreme example which demonstrates the importance
of perceptual evaluation of the output meshes.

Regarding normalisation of the deformation representation, it leads to noticeable
surface artefacts in SpiralNet++, FeaStNet and Neural3DMM. It also negatively impacts
the geometric accuracy, as the overall shape of the reconstructed meshes tends towards
the mean shape. In Mesh Autoencoder and LSA-3DMM, normalisation improves the

62 | 3.5 Experiments and Comparisons

silhouette of the meshes. Additionally, in Mesh Autoencoder, normalisation reduces the
number of surface artefacts while preserving fine surface details.

Summary

1. Standardisation of Euclidean coordinates representation significantly positively
impacts the geometric and perceptual quality of meshes output by the deep 3D
morphable model. There are few exceptions to this trend, which are explained in
detail in this section. This answers the research question 2.

2. Although normalisation of the deformation representation is a common practice in
deep 3D morphable models, in most cases, it has a negative impact on FeaStNet,
Neural3DMM and SpiralNet++. The exceptions to this observation are detailed in
this section. In Mesh Autoencoder and LSA-3DMM, normalisation can improve
the output meshes’ geometric or perceptual quality, depending on the dataset. This
answers the research question 1.

3.5.3 Impact of different deep 3D morphable models

Quantitative evaluation

This work compares 5 deep 3D morphable models: FeaStNet, Neural3DMM, SpiralNet++,
Mesh Autoencoder and LSA-3DMM. Due to the multi-objective nature of these models’
assessment, it is impossible to select the best model unequivocally. Geometric quality,
measured with L1 and L2 norms, and perceptual quality, measured with DAME and FMPD,
are two different objectives. Prioritisation of these objectives depends on the practical
application of Deep3DMMs. Figure 3.3 shows the scatter plots of different models using
different representations in terms of two metrics, L1 norm and DAME. These metrics
represent the two objectives, and the models are located within a 2D space in respect of
these objectives. This visualisation allows finding a Pareto-front of optimal solutions and
selecting the solutions that minimise both objectives simultaneously.

Unfortunately, the combination of a model and representation, which achieves the
lowest geometric error, tends to have higher perceptual error than many other combinations.
Analogically, the combination that achieves the lowest perceptual error tends to have
significantly higher geometric error than other combinations. This is partly due to properties
of representations described in hypotheses 2 and 3, which are proven in Section 3.5.1.
Another reason is the different ability of each model to represent certain representations of
data, either Euclidean coordinates or differential surface properties.

On the Facsimile training set, SpiralNet++ with Euclidean Std vector has the lowest
L1 norm error of 1.353. Therefore, if geometric accuracy was the only objective, this

3.5 Experiments and Comparisons | 63

0

5

10

15

20

25

30

35

0 5 10 15 20

D
A

M
E

×1
0−2

L1 norm ×10−3

0

5

10

15

20

25

30

35

0 5 10 15 20

D
A

M
E

×1
0−2

L1 norm ×10−3

0

10

20

30

40

50

60

0 5 10 15

D
A

M
E

×1
0−2

L1 norm ×10−3

0

10

20

30

40

50

60

0 5 10 15

D
A

M
E

×1
0−2

L1 norm ×10−3

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20

D
A

M
E

×1
0−2

L1 norm ×10−3

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20

D
A

M
E

×1
0−2

L1 norm ×10−3

Euclidean FeaStNet Euclidean Std FeaStNet DR FeaStNet DR Norm FeaStNet

Euclidean Neural 3DMM Euclidean Std Neural 3DMM DR Neural 3DMM DR Norm Neural 3DMM

Euclidean Spiral Net++ Euclidean Std Spiral Net++ DR Spiral Net++ DR Norm Spiral Net++

Euclidean Mesh Autoenc Euclidean Std Mesh Autoenc DR Mesh Autoenc DR Norm Mesh Autoenc

Euclidean LSA Euclidean Std LSA DR LSA DR Norm LSA

Training Test

Fa
cs

im
ile

Fa
ce

W
ar

eh
ou

se
Fa

ce
Sc

ap
e

-3DMM -3DMM -3DMM -3DMM

Figure 3.3 The results from the comparison of 5 Deep3DMMs configured with 4 represen-
tations plot against the L1 norm error and the perceptual DAME metric. This visualisation
allows one to simultaneously assess the models’ performance in terms of both objectives.
The configurations using the same model share the same fill colour, while those using the
same representation share the same border colour. The discussion over these results can be
found in Section 3.5.3.

64 | 3.5 Experiments and Comparisons

combination would be the most optimal choice to reconstruct training data. However,
SpiralNet++ with Euclidean Std vector achieves a high DAME, which is higher than 12 of
20 compared combinations. If perceptual quality was the sole objective, Neural3DMM with
DR would be the combination of choice, as it results in a DAME of 2.092. Nonetheless, this
combination with the lowest DAME has a price measured in geometric quality. Namely,
its L1 norm error is over 2.3 times higher than that of SpiralNet++ with the Euclidean
Std. Based on the scatter plot in Figure 3.3, it can be deduced that the combinations
which minimise both of the objectives simultaneously are LSA-3DMM with Euclidean Std
(slightly in favour of geometric quality) and Neural3DMM with DR (slightly in favour of
perceptual quality).

On the Facsimile test set, Mesh Autoencoder with Euclidean Std results in the lowest
L1 norm error of 6.38, compared to any other combination. Nonetheless, 10 other combi-
nations outperform it in terms of the DAME metric. The combination which minimises
DAME is FeaStNet with the DR, while FMPD is minimised by the Mesh Autoencoder
with DR. Both of these combinations perform poorly on L1 norm error. Considering both
perceptual and geometric quality objectives, Mesh Autoencoder with Euclidean Std and
LSA-3DMM with Euclidean Std provide a fair balance between both objectives. It is
observed that although shapes in differential representation are superior regarding the
perceptual quality of the results, they severely harm the geometric quality. Therefore,
Euclidean coordinates-based representations are chosen as the ones which minimise both
objectives simultaneously.

Based on the FaceWarehouse training set results, LSA-3DMM with Euclidean Std
representation minimises the L1 and L2 norm error. However, this combination results in
DAME higher than 7 other compared combinations. On the other hand, LSA-3DMM with
DR representation minimises DAME for the price of geometric quality, where 10 other
compared metrics have better performance on L1 norm metric. When both objectives are
considered, Mesh Autoencoder with DR Norm representation provides the best overall
balance. When geometric quality is more favoured, LSA-3DMM with Euclidean Std
vector can be a good choice, and in favour of perceptual quality, LSA-3DMM with DR
representation is a reasonable choice.

On the FaceWarehouse test set, Neural3DMM with Euclidean Std representation has
the lowest L1 and L2 norm error. Importantly, this combination also has one of the highest
DAME and FMPD errors. Therefore, when both objectives are considered, there are better
overall solutions than this. Regarding DAME, LSA-3DMM with DR has the lowest DAME
of all combinations considered. Although 5 other combinations outperform it on L1 norm,
this combination has a good overall performance. Thus, it can be included within a set of
solutions which minimise both objectives, together with LSA-3DMM with Euclidean Std
representation.

3.5 Experiments and Comparisons | 65

Finally, the results from the FaceScape dataset are assessed. On the training set, L1

and L2 norm error is minimised by the combination of LSA-3DMM with Euclidean Std,
with relatively low DAME error. LSA-3DMM with DR has the lowest DAME, for the
price of L1 norm error higher than 9 of 20 combinations compared. Overall, LSA-3DMM
with Euclidean Std provides the best balance between perceptual and geometric quality
objectives.

The situation is different on the FaceScape test set. The Mesh Autoencoder gives the
best results when considering perceptual and geometric quality separately. Specifically,
combining the Mesh Autoencoder with the Euclidean Std minimises the L1 and L2 norm
error for the price of DAME higher than 8 other combinations compared. On the other
hand, Mesh Autoencoder with DR Norm results in the lowest DAME for the sacrifice
of geometric quality. Overall, Mesh Autoencoder with Euclidean Std optimises both
objectives with a slight favour towards the geometric quality, LSA-3DMM with Euclidean
Std has slightly lower DAME for the price of L1 norm. Finally, Mesh Autoencoder with
DR Norm still optimises both objectives, with favouring the perceptual quality. These
three combinations can be considered a good overall choice, with an advantage towards
either perceptual or geometric quality.

Qualitative evaluation

Figures 3.4 and 3.5 present the rendered meshes output from each model coupled with a
representation which minimises DAME, as well as coupled with a representation which
minimises L1 norm error. Results presented in these figures allow to visually assess the
strengths and weaknesses of each of the five compared models regarding the geometric
accuracy and perceptual quality. Due to its subjective nature, this qualitative evaluation is
only supplementary to quantitative evidence.

On the Facsimile test set, every model achieves the lowest DAME when using the DR
representation, except for the Mesh Autoencoder, where DR Norm results in the lowest
DAME. There is a significant variance of silhouettes across the outputs from the models.
The meshes output from SpiralNet++ and FeaStNet are more similar to mean shape rather
than the ground truth. The silhouettes output from LSA-3DMM, Mesh Autoencoder and
Neural3DMM are much more distinct. When looking at surface details, Mesh Autoencoder
outperforms other models. Despite minor surface artefacts, it preserves many fine details
which are present in the ground truth. In contrast, other models produce a smooth surface,
which lacks these distinct, refined features.

Among the meshes which achieve the lowest L1 error on the test set, the output from the
SpiralNet++ draws attention. The surface of the mesh is noisy, rendering the whole mesh
unrecognisable from the ground truth. Notably, the surface produced by the SpiralNet++

66 | 3.5 Experiments and Comparisons

Ground Truth DR
SpiralNet++

DR
LSA-3DMM

DR
FeaStNet

DR
Neural3DMM

DR
Mesh Autoencoder

Ground Truth Euclidean Std
SpiralNet++

Euclidean Std
LSA-3DMM

Euclidean Std
FeaStNet

Euclidean Std
Neural3DMM

Euclidean Std
Mesh Autoencoder

Training - perceptual quality (lowest DAME error)

Training - geometric quality (lowest L1 error)

Figure 3.4 Qualitative comparison of the meshes from the Facsimile training set, recon-
structed from each of 5 compared models using the representation, which achieved the
highest perceptual quality (top) and the highest geometric quality (bottom).

3.5 Experiments and Comparisons | 67

Test - perceptual quality (lowest DAME error)

Ground Truth Euclidean
SpiralNet++

Euclidean Std
LSA-3DMM

Euclidean Std
FeaStNet

Euclidean Std
Neural3DMM

Euclidean Std
Mesh Autoencoder

Ground Truth DR
SpiralNet++

DR
LSA-3DMM

DR
FeaStNet

DR
Neural3DMM

DR Norm
Mesh Autoencoder

Test: geometric quality (lowest L1 error)

Figure 3.5 Qualitative comparison of the meshes from the Facsimile test set, reconstructed
from each of 5 compared models using the representation, which achieved the highest
perceptual quality (top) and the highest geometric quality (bottom).

68 | 3.6 Conclusions

with the Euclidean Std is much more cleaner. Neural3DMM and Mesh Autoencoder
synthesise a silhouette closest to the reference.

Regarding the Facsimile training set, DR minimises DAME in all the compared models.
Mesh Autoencoder captures refined features around the eyes, between eyebrows and
collarbones. Despite that, it also introduces many small surface artefacts. Other models
produce smoother surface.

Euclidean Std representation minimises L1 error in all the compared models on the
Facsimile set. The output from the LSA-3DMM is the most similar to ground truth
regarding the surface quality and the volumes of facial features. The silhouettes produced
by other models are not far from the ground truth; however, they suffer from surface
perturbations, noise and spikes in case of FeaStNet.

Summary

1. The choice of an input and output representation significantly affects the geometric
and perceptual quality of meshes output by different deep 3D morphable models.
By altering the representation of the original method, it is possible to improve either
the perceptual quality of the model’s outputs (measured with DAME and FMPD) or
the geometric quality of the model’s outputs (measured with L1 and L2 norm). This
proves the hypothesis 1.

2. Across three different datasets, LSA-3DMM and Mesh Autoencoder models have
the best overall performance when considering the perceptual and geometric quality
of the results. This answers the research question 3.

3.6 Conclusions

The proposed Deep3DMM Comparison Platform allowed the comparison of different deep
3D morphable models under a single framework. The platform’s modular design provided
a flexible experimentation environment in which configurations of five Deep3DMMs with
four input and output representations were trained with three different datasets. The 60
experimental models were evaluated from a geometric accuracy perspective using L1 and
L2 metrics and from a perceptual quality perspective using DAME and FMPD metrics.
Quantitative and qualitative evaluation has proven hypotheses 1-3 from Section 3.1.1 and
answered the research questions 1-3 posed in Section 3.1.2.

Standardisation of Euclidean coordinates representation improves the geometric and
perceptual quality of meshes output by deep 3D morphable models. There exist a few
exceptions to this observation. Furthermore, the findings of this work prove that the
common practice of normalisation of the deformation representation is not suitable in

3.6 Conclusions | 69

FeaStNet, Neural3DMM and SpiralNet++. At the same time, it can be beneficial on some
datasets in Mesh Autoencoder and LSA-3DMM.

It was demonstrated that using Euclidean coordinates-based representations outper-
forms differential coordinates-based representations in geometric accuracy, while differ-
ential coordinates-based representations achieve better results on perceptual DAME and
FMPD metrics.

The proposed use of standardised Euclidean coordinates representation improved the
geometric and perceptual quality of the Mesh Autoencoder [151] method, which originally
used the Euclidean coordinates. Additionally, the proposed use of the DR improved the
perceptual quality of all the compared methods on most datasets. Among the proposed
combinations, LSA-3DMM and Mesh Autoencoder achieved the best perceptual quality
and geometric accuracy when these two objectives were considered simultaneously.

This chapter provided substantial insight into the advantages and disadvantages of
representations in Deep3DMMs. Chapter 4 proposes a novel approach that trains a deep
3D morphable model that benefits from high perceptual quality of differential coordinates-
based representations and high geometric accuracy of Euclidean coordinates.

This page is intentionally left blank.

CHAPTER4

DEEP SPECTRAL MESHES

4.1 Introduction

As discussed in conclusions of Chapter 3, the perceptual and geometric quality of 3D
assets generated with neural models often does not meet standards to be used in industrial
applications. Furthermore, the parameters exposed due to deep learning approaches, such
as deep 3D morphable models, may not always be meaningful.

These issues are addressed in this chapter, in which a new method is proposed to
decompose mesh into low-frequency and high-frequency displacements, and learn the
latent parameters of low and high-frequency displacements. This can be achieved through
introduction of spectral geometry processing to graph neural networks.

4.1.1 Inspiration by the spatial frequency theory of perception

Similarly to 3D meshes, images perceived by humans contain information at multiple
spatial scales, from coarse features to fine details. According to [110], mammalian
brains simultaneously create neural representations of an image at multiple frequency
bandwidths. It is a consequence of neurons’ receptive fields differing in size to capture
these representations. At any region of the visual field, there are various sizes of receptive
fields, from very small ones, which are sensitive to fine spatial details, to larger receptive
fields capturing lower frequency information.

There are two observations about the spatial frequency theory of mammalian perception
which are the inspiration for the method presented in this chapter:

1. Neurons in a mammalian retina are sensitive to dedicated spatial frequency band-
widths.

2. Mammalian brain simultaneously creates multiple neural representations of an image
at different spatial frequency bandwidths.

72 | 4.1 Introduction

In Chapter 3, it is demonstrated that certain input representations are more sensitive
to coarse features of a 3D shape, while other input representations are more sensitive
to fine details. Coarse features and fine details of a 3D shape are terms that require
technical formulation which would expose mathematical tools to analyse them. Although
not obvious at first, the context of spatial frequency theory of a visual system helps with this
technical formulation. Defining coarse features of a 3D mesh as lower spatial frequency
signal, and fine details of a mesh as higher spatial frequency signal, equips with a range of
tools from the area of spectral mesh processing.

The findings from Chapter 3 and above technical formulation are the building blocks
of a neural representation model of 3D shapes which would be closer to mammalian
perception. It can be hypothesised that, similarly to neurons sensitive to different frequency
bandwidths, using multiple input representations would sensitise the neural network to
capture 3D shape features at different spatial resolutions. Thus, the model would leverage
advantages of these input representations to faithfully reconstruct coarse features and fine
details.

4.1.2 Spectral mesh decomposition in geometric deep learning

Polygon meshes [104], including quad and triangle meshes, are the most popular surface
representation and are widely applied in the generation of creative content. They represent
3D surfaces with geometric vertices as absolute coordinates, making it challenging to edit
overall shape displacements while preserving local surface details. In contrast, differential
coordinates [39], often called the Laplacian operator or Laplacian coordinates, explicitly
describe local surface and enable global shape editing while preserving local displace-
ments [118]. Since differential coordinates are only translation-invariant and not scale- and
rotation-invariant, some improvements have been made to extend differential coordinates
with these additional properties. Other mesh operators [147] have also been introduced
to extend the Laplacian operator. The Laplace–Beltrami operator, a generalisation of the
Laplace operator, is used in this paper to represent mesh displacements.

Although mesh operators enable global shape editing while preserving local displace-
ments, they still cannot represent displacements at different frequencies or independently
edit displacements at different frequency levels. Spectral mesh processing [115] derives
eigenvalues, eigenvectors, or eigenspace projections from the mesh operators and uses
them to carry out desired tasks. It provides a powerful means to achieve different approxi-
mations of a 3D mesh with different frequencies. In this paper, spectral mesh processing is
used to decompose mesh displacements into low- and high-frequency displacements.

Three-dimensional meshes are non-Euclidean data, unlike Euclidean data such as
voxels, which have an underlying grid structure and can be treated by extending already-

4.1 Introduction | 73

existing 2D deep learning paradigms. The lack of grid structure poses a challenge when
attempting to apply classical deep learning techniques to non-Euclidean data. To address
this problem, geometric deep learning [15] has been developed explicitly for non-Euclidean
data. Consequently, geometric deep learning is used in the proposed method to learn the
latent parameters of low- and high-frequency displacements.

Parametric models, such as 3D morphable models [34], are commonly used to synthe-
sise new meshes by altering the coefficients in a parametric space. They are widely applied
due to their ability to model intrinsic properties of 3D faces. Parametric models have been
used in graph neural networks to represent facial shapes. A parametric model is also used
in this paper for 3D facial mesh synthesis.

As the most popular 3D structure for representing 3D models, triangle meshes are
graphs. Graph neural networks are suitable for the geometric learning of triangle meshes [141].
Therefore, triangle meshes are considered in our proposed methods, and graph neural
networks are used for deep learning.

By integrating the above-discussed Laplace–Beltrami operator for deformation repre-
sentation, spectral mesh processing for decomposition of mesh displacements, geometric
deep learning, and parametric models with graph neural networks, a new 3D facial mesh
synthesis model is developed in this paper. The model exposes user parameters to control
disentangled low- and high-frequency displacements, generate plausible facial shapes, and
allow the user to control displacements independently at low- and high-frequency levels.

Generating plausible facial shapes and allowing controllable deformation can conflict,
as plausible faces exist within a joint distribution of low- and high-frequency information.
For example, wrinkled skin at higher frequencies correlates with volume loss of fat
pads at lower frequencies. This problem is exacerbated when using smaller or biased
datasets, which can lead to undesirable correlations. A Conditioning Factor is introduced
to overcome the conflict between plausibility and user control. It is a scalar that modulates
the influence of mutual conditioning of low- and high-frequency displacements.

Lower-frequency displacements encode most of the mesh volume, while higher-
frequency displacements describe fine surface details. This observation is used to improve
the quality of generated meshes. Low frequencies are represented with standardised Eu-
clidean coordinates, which capture first-order mesh properties. The highest frequency
displacement is represented with normalised deformation representation (DR) to improve
perceptual quality. In this way, our proposed method improves the overall quality of
generated meshes from geometric and perceptual perspectives, as shown in Section 4.7.

74 | 4.2 Method Overview

4.2 Method Overview

This section introduces the spectral decomposition of meshes in 3D shape representation
learning. A method of partitioning 3D meshes to obtain multiple input vectors is described.
Each partition relates to a different spatial frequency signal. Following that, graph neural
network is presented. It learns latent representations for each spatial resolution. Finally,
the process of assembling the final 3D meshes from the reconstructed frequency bands is
described.

The proposed method considers only triangle manifold meshes that share the same
topology. Non-triangular meshes need to be triangulated beforehand. Delaunay triangula-
tion is a common method to triangulate a mesh. The original, non-triangular connectivity
of meshes can be reestablished after using the proposed method.

Although the focus is on manifold meshes, this method can be generalised to non-
manifold meshes, provided that they share the same topology and an alternative Laplacian
matrix is formulated for Equation (4.2), such as a Laplacian for non-manifold triangle
meshes in [112]. The input representations should be defined on non-manifold connectivity.
Additionally, the neural network architecture from Section 4.2.2 must provide operators
on non-manifold meshes. The operators that are described in Section 2.3.1 meet this
requirement.

4.2.1 Spectral Partitioning and Representation

To represent different scales of detail with different input representations, a procedure
is required, which consistently decomposes 3D meshes into several signals representing
different spatial scale of detail. The following mesh partitioning requirements are identified.
It should be possible to:

1. Assemble the signals back to the original mesh. In other words, the signals should
be additive and they should add up to the signal from before the partition.

2. Ensure that the signal associated with a spatial scale of detail contains only signal at
that given spatial scale of detail.

There can be considered two solutions to partitioning the 3D meshes into signals
representing different spatial scale of detail. These candidate solutions are tested against
the mesh partitioning requirements. The importance of satisfying these requirements is
further evidenced in Section 4.2.3.

3D mesh simplification allows to obtain signals at different spatial scales of detail
through coarsening of a 3D mesh [44]. It is possible to devise a mapping between
different mesh resolutions and obtain a multi-resolution mesh which would satisfy the

4.2 Method Overview | 75

requirement (1). Nevertheless, 3D mesh simplification operates on mesh connectivity
rather than signal on mesh vertices and therefore it does not meet the mesh partitioning
requirement (2). For example, it is possible to add noise associated with fine spatial detail
to signal residing on a coarse connectivity and the coarsening operation does not filter out
that noise to ensure that the coarse connectivity contains only coarse spatial details.

Spectral mesh partitioning allows to devise subspaces associated with different spatial
frequency scales. Projection of the original signal residing on 3D mesh vertices onto each
of these subspaces allows to obtain the signal associated with the given frequency scale.
The resulting signals are additive and they add up to the signal from before the partition,
thus satisfying the mesh partitioning requirement 1. As the procedure operates on the
original signal and produces signal associated with the given frequency bandwidth by
filtering out the signal outside of that bandwidth, it is possible to ensure that the signal
associated with a spatial scale of detail contains only signal at that given spatial scale
of detail. Therefore, the mesh partitioning requirement 2 is satisfied. For example, it
is possible to add noise associated with fine spatial detail to signal associated with low
frequency bandwidth. The spectral mesh partitioning operation allows to filter out the
signal associated with fine spatial detail.

Following this discussion, spectral mesh partitioning is a good method of choice. The
generalised spectral decomposition [147] of a Laplacian matrix L has a form of

L = UΛUT . (4.1)

It is found that the use of mass matrix counters the impact of irregular tessellation and,
in consequence, improves the geometric quality of meshes generated with the proposed
method. Therefore, the spectral decomposition of a Laplacian matrix L is formulated as

L = UΛUT M, (4.2)

where M is the mass matrix representing Voronoi areas around vertices. Section 4.3
demonstrates the advantages of using the formulation in Equation (4.2) over using the
formulation in Equation (4.1).

A mass matrix is a diagonal matrix whose entries Mii correspond to the area around
vertex i in the mesh. There are several algorithms to calculate the area around vertex i.
Barycentric area and Voronoi area are common methods. The barycentric area around
vertex i is one-third of a total area of triangles neighbouring the vertex i. Therefore, it is
highly dependent on the connectivity of a mesh. In contrast, the Voronoi area depends
solely on the position of neighbouring vertices. For this reason, the Voronoi mass matrix is
chosen to be used in this method.

76 | 4.2 Method Overview

ghigh(Fhigh)

z

σ

μ

Phigh

Plow

P'high

P'low

P

P'

Assemble

Decompose

4000 ✕ 32
924 ✕ 64

153 ✕ 128
22 ✕ 128

Ehigh(Fhigh)

σhigh

μhigh

8 ✕ 4

Elow(Flow)

4000 ✕ 32
924 ✕ 64

153 ✕ 128
22 ✕ 128 8 ✕ 4

μlow

✕

N(0,1)

14921 ✕ 9

σhigh

μhigh

14921 ✕ 3

σlow

+

8 ✕ 8

4000 ✕ 32
924 ✕ 64

153 ✕ 128
22 ✕ 128

Dlow(z)

8 ✕ 8

4000 ✕ 32
924 ✕ 64

153 ✕ 128
22 ✕ 128

Dhigh(z)

ghigh(Fhigh)

(Transposed) Graph Convolutional Layer

Up/Down-sampling Residual Block

ELU Activation FunctionDropout

High Frequency Latent Parameters Low Frequency Latent Parameters

-1 '

F'low

glow(Flow)-1 '

F'high

Fhigh

Flow

glow(Flow)

8 ✕ 8

14921 ✕ 9

14921 ✕ 3

14921 ✕ 9

14921 ✕ 3

Figure 4.1 Overview of the proposed Deep Spectral Meshes graph neural network. Prepro-
cessed meshes P are partitioned to two frequency bands through spectral decomposition.
The resulting low and high-frequency displacements Plow and Phigh are transformed to stan-
dardised Euclidean coordinates Flow and the deformation representation (DR) Fhigh (Sec-
tion 4.4.1). Subsequently, graph encoders Ehigh and Elow encode the features to latent means
µhigh and µ low, and deviations σhigh and σ low. Means and deviations are concatenated,
and latent codes Z are sampled from the distribution N ([µhigh | µ low], [σhigh | σ low]).
Graph decoders Dhigh and Dlow reconstruct inputs from Z (Sections 4.4.2 - 4.4.4). Outputs
F′

high and F′
low are converted back from their representations to Euclidean coordinates P′

high
and P′

low, which are later combined to get the final vertex positions P′ (Section 4.4.5).

4.2 Method Overview | 77

Spectral partitioning is the process of identifying n subsets of eigenvectors U and
projecting vertex positions P of a mesh onto these subsets of vectors to isolate different
frequency bands {P0, ...,Pn},P = ∑

n
i=0 Pi. The choice of size and number of frequency

bands is arbitrary and depends on a specific application. For Ui derived from Equation 4.1,
the projection of P onto a subset of eigenvectors Ui is defined as

Pi = UiUT
i P. (4.3)

For Ui derived from Equation 4.2, the projection of P onto a subset of eigenvectors Ui is
defined as

Pi = UiUT
i MP. (4.4)

As a consequence of spectral partitioning, frequency bands {P0, ...,Pn} can be trans-
formed into different, dedicated representations, which are more suitable for a given
spectral band. A representation transform can be denoted as function gi(Pi), which trans-
forms the ith frequency band into representation Fi. An associated inverse transform can
be denoted as g−1

i (Fi). These functions must output a per-vertex representation because Fi

are inputs to graph neural networks which process input signal defined on vertices.

4.2.2 Neural Network

Variational graph autoencoders [151] are used to encode features of each frequency band
into their respective latent distributions N (µ i,σ i), where µ i is a mean vector and σ i is
a standard deviation vector. If desired, each encoder can output a different number of
parameters. The optimal size of the parametric space depends on the training dataset
and requirements of a specific application. Therefore, it can be determined as part of the
hyperparameter optimisation process.

The neural network consists of n graph encoders Ei with n corresponding decoders
Di. The choice of convolutional, transpose convolutional, pooling, de-pooling or other
layers of encoders and decoders is arbitrary. While each encoder outputs a different
latent distribution of its frequency band, the encoders take the same set of parameters as
input. Specifically, mean vectors are concatenated to µ = [µ0, ...,µn] and deviation vectors
are concatenated to σ = [σ0, ...,σn]. Afterwards, latent parameters Z are stochastically
sampled from N (µ,σ). The decoders are optimised to output reconstructed vectors F′

i,
with the objective of minimising the discrepancy between Fi and F′

i.

78 | 4.3 Mass matrix in spectral partitioning

4.2.3 Final Assembly

Before combining reconstructed vectors F′
i, it is necessary to convert them back to Eu-

clidean coordinates so that the reconstructed frequency band P′
i = g−1

i (F′
i). It can be

observed that each decoder Di is optimised to generate outputs which, after transformation
with g−1

i (·), are a linear combination of eigenvectors Ui. This implies that P′
i can be

projected onto these vectors without information loss, as the filtered-out frequencies are
noise which lies outside the domain for this frequency band. Based on this observation,
the final reconstructed vertex positions are obtained through the aggregation of frequency
bands P′

i in the following way:

P′ =
n

∑
i=0

UiUT
i MP′

i . (4.5)

4.3 Mass matrix in spectral partitioning

In this section, the impact of a mass matrix M in spectral mesh partitioning is discussed.
The spectral partitioning with and without the mass matrix is compared. The former is
based on Equations (4.1) and (4.3). The latter is based on Equations (4.2) and (4.4).

The projection of vertex positions P onto a subset of first k eigenvectors U(k) corre-
sponding to the smallest eigenvalues is considered to obtain P(k). Vertex positions P(k) are
the results of low-pass filtering, which means that they represent low frequency information
of P. Therefore, the remaining high frequency information can be calculated as P−P(k).
As parameter k increases, the lower resolution signal P(k) is closer to original signal P.
Therefore, as parameter k increases, ||P−P(k)||1 decreases.

It is desirable that as k increases, ||P−P(k)||1 decreases at similar rate at all regions of
the face. If that is not the case, the mesh partitioning requirement (2) from Section 4.2.1
cannot be fully satisfied, as lower spatial frequency signal would remain in P−P(k) and /
or higher spatial frequency signal would remain in P(k). The resulting imbalance would
compromise the benefits of using different per-partition input representations, which are
more sensitive to signal at given spatial frequency scale.

In practical applications, tessellation of 3D meshes often varies in resolution across the
mesh. For example, 3D meshes of human heads tend to have more vertices in the area of a
face, where finer details of facial features and their displacements need to be preserved.
This is especially common around the eyes and lips, which are involved in complex facial
deformations. The area of a scalp tends to have coarser tessellation, because its subject
to lower frequency displacements and, in practical applications, the scalp is often hidden
under hair or headgear.

4.3 Mass matrix in spectral partitioning | 79

Varying spatial resolution of the tessellation of a 3D mesh leads to discrepancy between
the spatial frequency of a signal on the mesh vertices and the topological frequency of a
signal on the mesh vertices. This is because geodesic distance between the vertices and
spatial distance between these vertices is not proportional among all the vertices.

When following Equations (4.1) and (4.3), P(k) is denoted as P(k)(4.3). Consequently,
when following Equations (4.2) and (4.4), P(k) is denoted as P(k)(4.4).

Based on this discussion, it is hypothesised that:

1. As parameter k increases, ||P−P(k)(4.3)||1 decreases at different rate across the
vertices if the tessellation has varying spatial resolution. It decreases faster in the
areas with finer tessellation (smaller areas of the faces of a mesh, such as eyes) and
decreases more slowly at the areas of the coarser tessellation (larger areas of the
faces of a mesh, such as neck).

2. (1) implies that as parameter k increases, ||P(k)(4.3)||1 increases at different rate
across the vertices if the tessellation has varying spatial resolution. It decreases more
slowly in the areas with finer tessellation (smaller areas of the faces of a mesh) and
it decreases faster at the areas of the coarser tessellation (larger areas of the faces of
a mesh).

3. As parameter k increases, ||P−P(k)(4.4)||1 decreases at similar rate across all the
vertices.

4. (3) implies that as parameter k increases, ||P(k)(4.4)||1 increases at similar rate across
all the vertices.

An experiment is designed to prove above hypotheses (1) and (3), and by implication
hypotheses (2) and (4). For all k ∈ {50,100,150,200,250,300,350,400,500,600,700,
900,1000,1200,1500,1700,2000}, P(k)(4.3) and P(k)(4.4) is computed on m = 202 neutral
face meshes, n = 14,921 vertices each, from the Facsimile™ [59] dataset.

Next, the following error metrics are calculated:

Eave(k)(4.3) =
1
m

m−1

∑
h=0

1
n

n−1

∑
j=0

||ph
j(k)(4.3)

−ph
j ||1, (4.6)

Eave(k)(4.4) =
1
m

m−1

∑
h=0

1
n

n−1

∑
j=0

||ph
j(k)(4.4)

−ph
j ||1, (4.7)

Emax(k)(4.3) =
1
m

m−1

∑
h=0

max{||ph
0(k)(4.3)

−ph
0||1, ||ph

1(k)(4.3)
−ph

1||1,

. . . , ||ph
n−1(k)(4.3)

−ph
n−1||1}

(4.8)

80 | 4.3 Mass matrix in spectral partitioning

Emax(k)(4.4) =
1
m

m−1

∑
h=0

max{||ph
0(k)(4.4)

−ph
0||1, ||ph

1(k)(4.4)
−ph

1||1,

. . . , ||ph
n−1(k)(4.4)

−ph
n−1||1}

(4.9)

4.3.1 Quantitative evaluation

Figure 4.2 compares Eave(k)(4.3) and Eave(k)(4.4) in terms of the lower frequency band size
k. As k increases, on average ||P−P(k)(4.3)||1 decreases faster than ||P−P(k)(4.4)||1. It
means that to achieve the same L1 discrepancy between the lower frequency signal and the
original signal, the parameter k needs to be set to a higher value when using Equations (4.2)
and (4.4) comparing to using Equations (4.2) and (4.4). The requirement to use higher
value of k when using the mass matrix normalisation is not computationally significant,
as demonstrated in Figure 4.3. The CPU time is similar independently on the value of
k. The CPU time is consistently higher by 20 ms per mesh when using the mass matrix
normalisation. Nevertheless, this computational time difference is not significant, as it
adds merely 4 seconds to the preprocessing time of all the neutral faces in the Facsimile™
[59] dataset.

0 250 500 750 1000 1250 1500 1750 2000
k

0.000

0.002

0.004

0.006

0.008

0.010

0.012

A
vg

 L
1

er
ro

r

Mass matrix
No mass matrix

Figure 4.2 Plot of Eave(k)(4.3) (blue line) and Eave(k)(4.4) (green line) in terms of the
parameter k. Eave(k)(4.3) consistently requires lower k to achieve the same average L1 norm.

4.3 Mass matrix in spectral partitioning | 81

0 250 500 750 1000 1250 1500 1750 2000
k

0.140

0.145

0.150

0.155

0.160

0.165

0.170
C

PU
 ti

m
e

[s
]

Mass matrix
No mass matrix

Figure 4.3 Comparison of per-mesh CPU time required to compute Equations (4.3) (blue
line) and (4.4) (green line) in terms of different parameters k. It is demonstrated that CPU
time is independent of value of k and that Equation (4.4) takes ≈ 20 ms longer to compute
than Equation (4.3).

Figure 4.4 shows that despite consistently higher Eave(k)(4.4) than Eave(k)(4.3), the max
error Emax(k)(4.4) is not always higher then Emax(k)(4.4) in terms of k. In further evaluation, it
is shown that the max L1 error is actually consistently lower with mass matrix normalisation
when accounting for discrepancy between average L1 error.

0 250 500 750 1000 1250 1500 1750 2000
k

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
ax

 L
1

er
ro

r p
er

 v
er

te
x

Mass matrix
No mass matrix

Figure 4.4 Plot of Emax(k)(4.3) (blue line) and Eave(k)(4.4) (green line) in terms of the
parameter k. Emax(k)(4.3) is higher up to k = 600, and lower from that point.

82 | 4.3 Mass matrix in spectral partitioning

Based on the results presented in Figure 4.2, it can be deduced that P(k)(4.3) and
P(k)(4.4) are not comparable with the same value of k, because ∀k(||P−P(k)(4.3)||1 ̸≈
||P−P(k)(4.4)||1).

To prove hypotheses (1) and (3), the distribution of L1 error across the vertices can
be evaluated. To do that, Emax(k)(4.3) is compared with Emax(k)(4.4) in terms of the L1

error Eave(k)(4.3) and Eave(k)(4.4) respectively. Higher max error indicates less uniform
distribution of L1 error. The results are depicted in Figure 4.5. For a given L1 error, the
max error is consistently higher in the signal without mass matrix normalisation. That
indicates that the distribution of the L1 error is less uniform in ||P−P(k)(4.3)||1 comparing
to ||P−P(k)(4.4)||1.

0.000 0.002 0.004 0.006 0.008 0.010 0.012
Avg L1 error

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
ax

 L
1

er
ro

r p
er

 v
er

te
x

Mass matrix
No mass matrix

Figure 4.5 Comparison of Emax(k)(4.3) (blue line) and Emax(k)(4.4) (green line) in terms of
the average L1 error. It demonstrates that for a given average L1 error, Emax(k)(4.3) is higher
than Emax(k)(4.4).

4.3.2 Qualitative evaluation

To ensure fair comparison, a pair of hyperparameters k is selected so that the average L1

norm between the lower frequency signal and the original signal is similar (±10−4) when
using the mass matrix normalisation and without using the mass matrix normalisation. One
of multitude of possible pairs is picked, k = 500 for P(k)(4.3) and k = 1200 for P(k)(4.4).
This way, on average,

||P−P(500)(4.3)||1 ≈ ||P−P(1200)(4.4)||1.

Figure 4.6 presents randomly selected meshes P(1200)(4.4) and their corresponding
meshes P(500)(4.3). The spatial frequency of the signal varies significantly across the

4.3 Mass matrix in spectral partitioning | 83

No mass matrix

L1 Norm

Mass matrix

0

0.02

Avg L1 Norm:

0.0016 0.0015

0.0017 0.0017

No mass matrixMass matrix

0.00160.0017

0.0019 0.0020Avg L1 Norm:

L1 Norm
0

0.02

Figure 4.6 Qualitative comparison of spectral mesh decomposition using Equation (4.4)
under "Mass matrix" columns and Equation (4.3)) under "No mass matrix" columns.
Despite similar (±10−4) average L1 norm between the partitioned mesh and the original
signal, the distribution of L1 norm varies across the vertices. The areas of an eye, neck and
jawline are magnified to demonstrate the spatial frequency imbalance in meshes under "No
mass matrix" columns comparing to meshes under "Mass matrix" columns.

84 | 4.4 Deep Spectral Meshes

vertices in P(500)(4.3). The areas with coarse tessellation, such as the neck, the cheeks and
the scalp, lack the lower frequency information which is present in P(500)(4.3). On the
other hand, the areas of the eyes, nose, lips and ears have finer tessellation and P(500)(4.3)
contains higher frequency information in these areas.

The spatial frequency imbalance is demonstrated in P(500)(4.3) by magnifying the areas
of an eye, neck and jawline. In the area of an eye, P(500)(4.3) contains high frequency signal,
such as shape of canthi. Despite more detailed eye, P(500)(4.3) does not contain lower
frequency shape of superficial muscles of the neck, sternal end of the clavicle, jawline and
jowls. In contrast, this information is preserved in P(500)(4.4).

4.3.3 Conclusions

Based on the quantitative and qualitative evaluations, it can be concluded that spectral
decomposition of meshes following Equations (4.1) and (4.3) produces partitions with
spatial frequency imbalance, as it depends on the density of mesh tessellation. It can be
also concluded that using the mass matrix normalisation following Equations (4.2) and
(4.4) counters this imbalance. Therefore, the mass matrix hypotheses (1) and (3) are true,
and by implication hypotheses (2) and (4) are true. Therefore, Equations (4.10) and (4.11)
are chosen to be used in the proposed method.

It is observed that using the mass matrix normalisation requires larger size k of the
bandwidth to obtain similar discrepancy between the lower frequency partition and the orig-
inal signal. Nevertheless, it has been demonstrated that the requirement to use higher value
of k does not affect the CPU time, and using the mass matrix normalisation insignificantly
increases computational time of preprocessing.

4.4 Deep Spectral Meshes

This section explains the details of our parametric deep face model, which uses the spectral
decomposition of meshes. An overview of the model is provided in Figure 4.1.

4.4.1 Vertex Representation

Given a dataset of triangle meshes with shared connectivity, i.e., with the same triangle-
vertex index incidence table to associate each triangle with its three bounding vertices, the
triangle meshes are translated to make their centre coincide with the origin. Then, their
mean is computed, which is an averaged shape of all triangle meshes denoted as P̄. Next,
each triangle mesh is translated and rotated to align with the mean. Following this, the

4.4 Deep Spectral Meshes | 85

triangle meshes are uniformly scaled to fit within a cube with sides measuring two units
each.

Spectral Decomposition

Laplacian matrix L in Equation (4.2) consists of elements Li j, which are determined by
the following cotangent Laplacian operator used in [39]:

Li j =


j ∈ Ni cotαi j + cotβi j

j ̸∈ Ni 0

i = j −∑k ̸= j Lik

, (4.10)

where Ni are vertices ..., j − 1, j, j + 1, ... in the one-ring neighbourhood of vertex
i and αi j and βi j are the angles opposite to edge i j, as shown in Figure 4.7.

Figure 4.7 One-ring neighbourhood vertices and the angles used to calculate cotangent
weights.

For a large triangle mesh, Laplacian matrix L in Equation (4.2) has many eigenvectors.
Calculating all the eigenvectors of such Laplacian matrix is slow. To tackle this problem,
only the first k eigenvectors are calculated. Meshes are partitioned into two frequency
bands: low and high frequencies. The former band is defined by the first k eigenvectors
U(k), which correspond to the k smallest eigenvalues of Laplacian matrix L. Section 4.4.1
covers the high-frequency band.

We let P̂ be a displacement from a mean so that P̂ = P− P̄. As eigenvectors U(k)

correspond to the lowest eigenvalues, they form a discrete space of slowly changing values.
Therefore, by projecting P̂ onto space U(k), the resulting vertex positions Plow are P̂, which
is a mean deformed by only low-frequency displacements. Phigh represents the remaining
high-frequency displacements of a mean P̄. Meshes Plow and Phigh are computed as

86 | 4.4 Deep Spectral Meshes

follows:
X = U(k)UT

(k)M,

Plow = XP̂+ P̄,

Phigh = (I−X)P̂+ P̄.

(4.11)

P

k=20 k=50 k=100 k=200 k=300 k=400 k=500

Plow

Phigh

Figure 4.8 Visualisation of meshes Plow and Phigh produced using Equation (4.11) from a
mesh P using different parameters k.

High-Frequency Band

High-frequency band Phigh is encoded in a normalised deformation representation (DR)
[42, 136]. This representation encodes per-vertex deformation gradient Ti between the
position of vertex pi on mean P̄ and the position of deformed vertex p′

i on Phigh. Following
[8, 116], deformation gradient Ti is calculated by solving the following weighted least-
squares system, which minimises energy E(Ti) such that

E(Ti) = ∑
j∈Ni

ci j

∥∥∥∥(p′
i −p′

j)−Ti(pi −p j)

∥∥∥∥2

, (4.12)

where ci j are cotangent weights calculated on a mean of the training meshes.
As linear interpolation of matrices Ti is meaningless, they are decomposed into a

rotational part and a scale/shear part using polar decomposition so that Ti = RiSi. The
rotation matrix Ri, mapped to logRi, can be linearly interpolated and then converted back
to Ri = exp(logRi). Finally, identity matrix I is subtracted from Si.

Although both per-vertex matrices Ri and Si contain nine elements each, only six
non-trivial scale elements and three non-trivial rotation elements are combined to construct

4.4 Deep Spectral Meshes | 87

displacement vectors fi, where |fi|= 9. The results of our experiments, shown in Table 4.4,
demonstrate that the normalisation of DR results in a lower reconstruction error of test
data. Consequently, each channel is normalised to range [−1,1].

Low-Frequency Band

Meshes Plow remain in the Euclidean coordinate representation. Based on our experiments
in Section 4.7, inputs Flow are standardised by subtraction of the mean and division by
standard deviation.

4.4.2 Graph Network Architecture

Our network consists of two fully convolutional variational graph autoencoders, as depicted
in Figure 4.1. Encoders Ehigh and Elow take as input high-frequency features Fhigh and
low-frequency features Flow, respectively (see Section 4.4.1). The encoders compress each
input to compact distributions with means µhigh and µ low ∈ R8×4, and deviation vectors
σhigh and σ low ∈ R8×4. Subsequently, output means and deviations are concatenated so
that µ = [µhigh | µ low] and σ = [σhigh | σ low].

Latent code Z ∈ R8×8 is obtained in a stochastic process. First, standard deviation σ

is multiplied with scalar ε drawn from a normal distribution. Then, the result is added to
mean vector µ so that σ × ε +µ = Z = [Zhigh | Zlow].

Both decoders, Ehigh and Elow, take Z as input. This way, Ehigh decodes high-frequency
displacement F′

high from code Zhigh conditioned on code Zlow. Analogically, Elow decodes
low-frequency displacement F′

low from code Zlow conditioned on code Zhigh. Controlling
the influence of this conditioning is discussed in Section 4.5.

4.4.3 Network Structure

Both variational graph autoencoders have the same structure. They use convolution/transposed
convolution operations and upsampling/downsampling residual layers introduced in [151].
However, other types of graph convolutional and pooling operators can be used instead
if they accept input defined solely on vertices. Therefore, the encoders and decoders
operating on signal defined on edges would not be suitable, as our method uses low- and
high-frequency signal defined on vertices.

The encoders put their inputs through five graph convolutional layers. The local convo-
lution kernels are sampled from the global kernel weight basis to perform convolutional
operations on irregular graphs. Therefore, the network learns the shared global kernel
weight basis and per-vertex sampling functions [151]. We use stride = 2, kernel radius = 2,
weight basis = 35, and channel dimensions = [|f|, 32, 62, 128, 128, 4]. All layers, except the

88 | 4.4 Deep Spectral Meshes

last one, are followed by the ELU activation function. The outputs from the ELU are added
to outputs from a downsampling residual layer. The decoders mirror the encoders with five
blocks of graph transposed convolutional layers followed by the ELUs and upsampling
residual layers.

4.4.4 Training Process

The two variational graph autoencoders are trained simultaneously. At each iteration, the
weights and biases of each encoder–decoder pair are updated through backpropagation
using two separate Adam optimisers. Learnable parameters of Ehigh and Dhigh are optimised
in terms of loss Lhigh, while parameters of Elow and Dlow are updated in terms of loss Llow.
Losses are calculated as follows:

Lhigh = ||denorm(Fhigh)−denorm(Dhigh(Z))||1
+φKL(N (0,1)||p(Zhigh|Fhigh)),

(4.13)

Llow = ||destd(Flow)−Dlow(Z)||1
+φKL(N (0,1)||p(Zlow|Flow)).

(4.14)

In other words, both losses are a sum of two terms. The first one is the L1 norm of a
difference between the ground truth and its reconstruction. The second one is weighted
Kullback–Leibler (KL) divergence, which measures a difference between normal distribu-
tion N (0,1) and latent vector distribution, where φ is a scalar weight.

Since Dhigh outputs the normalised DR vectors (see Section 4.4.1), the output, F′
high,

as well as the ground truth, Fhigh, are denormalised before calculating the L1 norm of a
difference between them. Denormalisation is denoted with the denorm(·) function. In
the case of Dlow, the decoder outputs a destandardised signal in Euclidean coordinates.
Therefore, only ground truth Flow is destandardised before computing the L1 norm term.
Here, destandardisation is denoted with the destd(·) function.

4.4.5 Inference

This section describes the postprocessing steps required to obtain reconstructed vertex
positions P′. To be a valid input to the network, every mesh with vertex positions P
must be represented with Fhigh and Flow, following the process described in Section 4.4.1.
At inference, the network generates normalised DR vectors F′

high and Euclidean coordi-
nates F′

low = P′
low. To calculate P′

high, F′
high is denormalised and converted back from

the normalised DR representation to Euclidean coordinate representation, as in [136].

4.5 Conditioning Influence | 89

Subsequently, P′
high and P′

low are combined in the following way:

P′ = (I−X)P′
high +XP′

low, (4.15)

where X is the matrix from Equation (4.11).

4.5 Conditioning Influence

Conditioning, described in Section 4.4.2, allows for the network to generate plausible
facial meshes from a joint distribution of high- and low-frequency information. However,
it can be desirable to tame the influence of conditioning to increase artistic control and
prevent overfitting.

In an extreme case, the impact of conditioning could be removed if all the conditioning
parameters were set to a constant value, for example, zero. On the other hand, if only
a pseudo-randomly drawn fraction of these parameters was set to zero at each training
iteration, the impact of conditioning would lower. It is proposed to achieve this effect by
applying a dropout [54] to the conditioning parameters.

Specifically, at each iteration, conditioning parameters Zlow of decoder Dhigh are
randomly zeroed with probability (1−γ) using the samples from the Bernoulli distribution.
The same applies to conditioning parameters Zhigh of decoder Dlow. Therefore, scalar γ

can be called a Conditioning Factor, where γ = 0 prevents conditioning and γ = 1 means
full conditioning.

4.6 Implementation Details

Our parametric models are trained with the following datasets of facial meshes: Facsim-
ile ™ [59] (202 meshes, 14,921 vertices each), FaceScape [144] (807 meshes, 26,317 vertices
each) and FaceWarehouse [18] (150 meshes, 11,510 vertices each). As all three datasets
contain subjects performing a set of facial expressions, only the shapes with a neutral
expression are used. All meshes within each dataset have triangular faces with consistent
connectivity. In our experiments, each dataset is split into training, validation and test
subsets in proportions 85:5:10.

ARPACK [73] is used to solve the generalised eigenvalue problem in Equation (4.2).
Only the first k eigenvectors are computed. The networks are trained with k = 500
and k = 1000, the Conditioning Factor γ = 1.0 (full conditioning) and γ = 0.4 (partial
conditioning).

The networks are implemented in Pytorch 1.8 [93]. In all experiments, the networks
are trained for 500 epochs, with a learning rate of 10−4 and a learning rate decay of 1%

90 | 4.7 Applications and Comparisons

after each epoch. KL divergence weight φ from Equations (4.13) and (4.14) is 10−6. Adam
optimiser’s hyper-parameters are set to β1 = 0.9 and β2 = 0.999. The networks trained
with the Facsimile™ and FaceWarehouse datasets are optimised with a batch size of 16,
while those trained with FaceScape have a batch size of 8 due to GPU memory constraints.

Matrix X from Equations (4.11) and (5.10) needs to be pre-computed only once.
Otherwise, its frequent computation can significantly lower the performance of data
preprocessing. Table 4.1 compares the CPU time and memory required to compute U and
X on different datasets. Additionally, the table shows the CPU time of the final assembly
Equation (5.10). This operation is performed each time a new mesh is inferred and takes
0.20 to 0.98 s per mesh, depending on the dataset used. For faster eigendecomposition of
Laplacian L from Equation (4.10), approximation techniques can be used. Nevertheless,
they are not used in our implementation.

Table 4.1 Per-mesh CPU time and CPU memory required to compute terms from
Equations (4.11) and (5.10). Three datasets of different vertex count are compared: Face-
Warehouse [18] (150 meshes, 11,510 verts), Facsimile ™ [59] (202 meshes, 14,921 verts)
and FaceScape [144] (26,317 verts).

FaceWarehouse
(11,510 verts)

Facsimile™
(14,921 verts)

FaceScape
(26,317 verts)

Computation of U CPU time [s] 26.92 33.72 58.22
Computation of X CPU time [s] 2.11 7.70 9.88
Computation of Equation (5.10) CPU time [s] 0.20 0.36 0.98

Computation of U CPU memory [MB] 45.0 58.3 102.8
Computation of X CPU memory [GB] 1.04 1.74 5.41

All the experiments are trained and inferred on a single NVIDIA GeForce GTX 1080 Ti
with 16 GB memory. Data processing is performed on an Intel(R) Xeon(R) CPU E5-1630
v4 running at 8×3.70 GHz using 32 GB RAM. Training times range between 2 h for the
FaceWarehouse dataset and 19 h for the FaceScape dataset.

4.7 Applications and Comparisons

The approach proposed in this paper has a large number of applications. Besides those
identified in Section 4.8, this section investigates the applications of the proposed approach
in mesh reconstruction, mesh interpolation and multi-frequency mesh editing. It also
compares the proposed approach with previously published methods.

4.7 Applications and Comparisons | 91

4.7.1 Mesh Reconstruction

Mesh reconstruction can be used in representation learning, mesh compression, mesh
smoothing and fairing. In this subsection, our proposed method is applied to reconstruct
3D meshes for mesh compression. For illustration, all the reconstruction experiments on
the Facsimile™ dataset use a compression rate of 0.14%. These reconstruction experiments
compare our method and common representations used in other methods: Euclidean coor-
dinates, standardised Euclidean coordinates and the normalised deformation representation
(DR).

Implementation of our method follows the description from Sections 4.4 and 4.6, with
the Conditioning Factor γ = 1.0 and frequencies split at k = 500. All other representations
do not decompose the mesh into displacements with multiple frequencies. Therefore,
they are evaluated on the fully convolutional variational graph autoencoder with a single
encoder and decoder. The encoder is the same as Ehigh or Elow, and the decoder is the same
as Dhigh or Dlow, without the dropout layer. All the experiments encode to latent space Z
of 64 parameters.

Quantitative Evaluation

Two metrics, the point-wise L1 norm and the Dihedral Angle Mesh Error (DAME) [127],
are used to quantitatively assess the quality of meshes generated by our method. The
commonly used L1 norm ||P−P′||1 between reconstructed Euclidean coordinates P′ and
the ground truth P is chosen due to its sensitivity to overall shape changes. In other words,
the L1 norm is capable of capturing low-frequency error. Nonetheless, it poorly correlates
with high-frequency discrepancies perceived by the human visual system [25]. Therefore,
the results are also evaluated on a perceptual metric, as described below.

Given that the final meshes generated by our method are viewed by the human observer,
the perceptual quality of the results is essential. Quantitative evaluation of perceptual
mesh quality is often overlooked in previous work on parametric models with graph
networks. In this work, DAME [127] is used to capture high-frequency discrepancies
between the reconstructed and the ground truth meshes, and measure the perceptual quality
of the generated results. DAME is selected due to its highest correlation with human
judgement, measured on the compression task, compared to other common perceptual
metrics. Moreover, DAME is dedicated to datasets with shared connectivity [25].

DAME consists of three elements: the difference between oriented dihedral angles,
the masking effect and the visibility weighting. The last one is application-specific, as it
changes with the viewing angles and the rendering resolution. Therefore, following the
recommendation in [127], the visibility term is replaced with triangle areas. Border edges

92 | 4.7 Applications and Comparisons

are ignored in the calculation of DAME, as oriented dihedral angles cannot be calculated
on these edges.

The reconstruction results generated with our approach are compared with those output
by other methods: Mesh Autoencoder [151], SpiralNet++ [46], Neural 3DMM [14] and
FeaStNet [129]. Table 4.2 presents the quantitative outcomes of this comparison. Our
proposed method consistently outperforms all counterparts in terms of the perceptual
DAME metric across both the Facsimile™ and FaceWarehouse training and test datasets.
Regarding point-wise accuracy measured with the L1 norm, our method outperforms other
compared methods on the FaceWarehouse training dataset. However, on the Facsimile™
training and test sets and the FaceWarehouse test dataset, our method performs less
favourably than SpiralNet++ [46] and Neural 3DMM [14]. Nonetheless, a comprehensive
assessment encompasses both perceptual and point-wise accuracy perspectives, and the
perceptual results generated by [14, 46] have significantly higher perceptual DAME error.
These quantitative results are further supported by a qualitative user study in Section 4.7.1.

Table 4.2 Numerical comparison of the reconstruction results of the Facsimile™ and
FaceWarehouse datasets using our method (k = 500, γ = 1, Z= 64) and four other methods:
Mesh Autoencoder [151], SpiralNet++ [46], Neural 3DMM [14] and FeaStNet [129].

Training Test

L1 Norm
×10−3 ↓

DAME
×10−2 ↓

L1 Norm
×10−3 ↓

DAME
×10−2 ↓

Facsimile™

Ours 1.61 2.76 6.42 3.17
Mesh Autoencoder. 2.60 6.04 8.32 5.81
SpiralNet++ 1.35 5.35 6.38 4.87
Neural 3DMM 1.71 3.84 5.95 3.81
FeaStNet 2.02 5.30 9.07 5.35

FaceWarehouse

Ours 0.91 1.10 6.27 1.29
Mesh Autoencoder. 2.54 5.27 5.33 5.50
SpiralNet++ 1.21 6.06 4.69 5.63
Neural 3DMM 1.58 4.84 4.02 4.46
FeaStNet 1.92 6.81 8.17 6.30

In Table 4.3, the L1 norm and DAME metrics are used to evaluate reconstructed meshes
with our proposed approach and the 3D shape representations from other methods. It is

4.7 Applications and Comparisons | 93

demonstrated that, across the majority of datasets, our method outperforms other methods
in reconstructing examples from the training set. Reconstruction of examples seen by the
network during training has applications in 3D mesh compression.

Table 4.3 Quantitative comparison of the reconstruction results with our method (k = 500,
γ = 1) and with common representations used in other methods: Euclidean coordinates
[23, 50, 151], standardised Euclidean coordinates [14, 22, 43, 46, 102] and the normalised
deformation representation (DR) [62, 136]. To ensure a fair comparison between our
method and other input representations, they are evaluated on the fully convolutional
variational graph autoencoder with a single encoder and a single decoder. The encoder
is the same as Ehigh or Elow, and the decoder is the same as Dhigh or Dlow, without the
dropout layer. All the comparisons encode to latent space Z of 64 parameters. Our method
outperforms the reconstruction of examples from the training set on most datasets. On the
test set, our method favourably compromises between the point-wise L1 precision and the
perceptual DAME metric. Other methods considerably sacrifice one of these in favour of
another.

Training Test

L1 Norm
×10−3 ↓

DAME
×10−2 ↓

L1 Norm
×10−3 ↓

DAME
×10−2 ↓

Facsimile™

Ours 1.61 2.76 6.42 3.17
DR 4.77 3.05 9.29 3.00
Euclidean Std. 2.36 4.90 5.78 3.89
Euclidean 2.60 6.04 8.32 5.81

FaceWarehouse

Ours 0.91 1.10 6.27 1.29
DR 2.20 1.14 7.42 1.22
Euclidean Std. 1.11 3.23 5.33 2.53
Euclidean 2.54 5.27 5.34 5.50

FaceScape

Ours 1.27 2.25 1.65 2.41
DR 6.06 1.64 5.92 1.61
Euclidean Std. 0.96 1.81 1.30 1.82
Euclidean 1.32 2.20 1.71 2.26

The reconstructions of meshes from the test set reveal a pattern. The standard-
ised Euclidean representation achieves the lowest L1 norm error, and the normalised

94 | 4.7 Applications and Comparisons

DR has the lowest DAME error. Nonetheless, in the case of the Facsimile™ [59] and
FaceWarehouse [18] datasets, Euclidean and standardised Euclidean coordinates perform
the worst on the DAME metric. Analogously, DR has the highest L1 norm. It can be
concluded that, with these representations, either point-wise precision or perceptual quality
must be sacrificed significantly.

Our method balances these metrics favourably, as demonstrated in Figure 4.9. The
results on the Facsimile™ dataset reveal that, compared to normalised DR, our method
achieves a 30.9% lower L1 norm error, with only a 5.7% increase in DAME error. Con-
trasted with standardised Euclidean coordinates, our approach yields an 18.5% lower
DAME error at the cost of an 11.5% higher L1 norm error. Now, turning to the FaceWare-
house [18] dataset, our method has a 15.5% lower L1 norm error than normalised DR, with
just a 5.7% higher DAME error. In comparison to standardised Euclidean coordinates, our
method results in a 49% lower DAME error at the cost of just a 17.6% higher L1 norm
error.

However, for the FaceScape [144] dataset, our method does not improve upon the
reconstruction results from other representations on both training and validation sets.
Scatter plots in Figure 4.9 reveal the reason. The proposed approach can improve the
quality of reconstructed meshes by utilising dedicated mesh representations for each
spectral band. Nevertheless, on the FaceScape dataset, the DR representation yields little
improvement of the perceptual quality compared to standardised Euclidean representation.
Therefore, our proposed method cannot benefit from using different representations in
this particular case. Experiments on the FaceScape dataset demonstrate that our method
can elevate the overall quality of reconstructed meshes only when there is a substantial
difference between the point-wise and the perceptual accuracy yielded by at least two
different mesh representations.

Table 4.4 compares the deformation representation (DR) with and without the nor-
malisation preprocessing step described in Section 4.4.1. Moreover, the table contrasts
Euclidean coordinates with and without the standardisation preprocessing step, as de-
scribed in Section 4.4.1. Standardisation of low-frequency inputs represented in Euclidean
coordinates improves training and validation results across all datasets in the comparison.
Normalising high-frequency inputs represented with DR improves the L1 norm on vali-
dation sets and yields a similar or a lower DAME error. The impact of normalising DR
is not conclusive on the training dataset, as normalisation of DR improves the L1 norm
and DAME metrics on the FaceWarehouse dataset, while DR without normalisation yields
better results on the Facsimile™ dataset.

Figures 4.11 and 4.12 compare the effect of different values of k on perceptual and
spatial reconstruction error.

4.7 Applications and Comparisons | 95

Ours DR Euclidean Std Euclidean

Training Test

Fa
cs

im
ile

TM
Fa

ce
W

ar
eh

ou
se

Fa
ce

Sc
ap

e

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

D
A

M
E

×1
0−2

L1 norm ×10−3

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

D
A

M
E

×1
0−2

L1 norm ×10−3

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

D
A

M
E

×1
0−2

L1 norm ×10−3

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

D
A

M
E

×1
0−2

L1 norm ×10−3

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

D
A

M
E

×1
0−2

L1 norm ×10−3

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

D
A

M
E

×1
0−2

L1 norm ×10−3

Ours DR Euclidean Std Euclidean

Training Test

Fa
cs

im
ile

TM
Fa

ce
W

ar
eh

ou
se

Fa
ce

Sc
ap

e

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

D
A

M
E

×1
0−2

L1 norm ×10−3

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

D
A

M
E

×1
0−2

L1 norm ×10−3

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

D
A

M
E

×1
0−2

L1 norm ×10−3

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

D
A

M
E

×1
0−2

L1 norm ×10−3

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

D
A

M
E

×1
0−2

L1 norm ×10−3

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

D
A

M
E

×1
0−2

L1 norm ×10−3

Figure 4.9 Comparison of the reconstruction results with our method (k = 500, γ = 1, Z =
64) and with common representations used in other methods: Euclidean coordinates [23, 50,
151], standardised Euclidean coordinates [14, 22, 43, 46, 102] and normalised deformation
representation (DR) [62, 136]. Across Facsimile and FaceWarehouse datasets, our method
outperforms in reconstructing examples from the training set and favourably balances
perceptual and geometric quality on the Pareto-front of optimal solutions. Our method
underperforms on the FaceScape [144] dataset because the benefit of using normalised
DR representation for high-frequency information is minuscule compared to standardised
Euclidean representation.

96 | 4.7 Applications and Comparisons

Table 4.4 Ablation study on the reconstruction task demonstrating the impact of nor-
malisation of the deformation representation (DR) and the standardisation of Euclidean
coordinate inputs.

Training Validation

L1 Norm
×10−3 ↓

DAME
×10−2 ↓

L1 Norm
×10−3 ↓

DAME
×10−2 ↓

Facsimile™

DR without normalisation 4.01 2.77 12.05 3.07
DR with normalisation 4.77 3.05 9.29 3.00
Euclidean without standardisation 2.60 6.07 8.32 5.81
Euclidean with standardisation 2.36 4.90 5.78 3.89

FaceWarehouse

DR without normalisation 2.57 1.71 10.03 1.19
DR with normalisation 2.21 1.14 7.42 1.22
Euclidean without standardisation 2.54 5.27 5.33 5.50
Euclidean with standardisation 1.12 3.23 5.33 2.53

4.7 Applications and Comparisons | 97

Training
Fa

cs
im

ile
™

Test
Fa

ce
W
ar
eh
ou
se

Figure 4.10 The results from the user study comparing our method with common rep-
resentations used in other methods: Euclidean coordinates [23, 50, 151], standardised
Euclidean coordinates (Eucl. Std.) [14, 22, 43, 46, 102] and the normalised deformation
representation (DR Norm.) [62, 136]. The bars show the percentage of participants who
selected the mesh generated by the given method as more similar to the ground truth
mesh. The participants were asked to select “Difficult to say” only when they had to guess
between the generated models.

98 | 4.7 Applications and Comparisons

(A) (B)

Figure 4.11 Comparison of the impact of 18 different parameters k on (A) L1 norm and
(B) DAME test reconstruction error on the Facsimile™ test dataset.

Qualitative Evaluation

Figures 4.13 and 4.14 provide a visual assessment of the mesh quality in the reconstruction
experiments, comparing our method with other commonly used representations. The
meshes generated using Euclidean and standardised Euclidean representations display
visible surface artefacts and struggle to capture high-frequency details. The severity
of surface discrepancies corresponds with the colour visualisation of the DAME error.
Results obtained with the normalised deformation representation (DR) are perceptually
more similar to the ground truth meshes. Nonetheless, there is noticeable volume loss in
the neck, chin and cheeks. In contrast, our method produces results that are perceptually
similar to ground truth meshes without experiencing noticeable volume changes.

Figure 4.15 compares the rendered meshes from the Facsimile™ and FaceWarehouse
datasets reconstructed with our proposed method and other popular methods: Mesh
Autoencoder [151], SpiralNet++ [46], Neural 3DMM [14] and FeaStNet [129]. A user
study was conducted to qualitatively assess the perceptual quality of meshes generated by
our method (k = 500, γ = 1, Z = 64) compared with meshes synthesised using alternative
methods and common representations. The evaluation focused on reconstructions of
training and test subsets of the Facsimile™ and FaceWarehouse datasets. The study was
conducted online on a representative sample of 94 participants (42 female, 51 male, 1
non-binary), with the following age distribution: 25 participants aged 18–25, 52 aged
26–35, 11 aged 36–45 and 6 aged 46–55. Participants viewed three images of rendered
3D models and were instructed to compare the ground truth reference model (always in
the middle) against models A (left) and B (right). Subsequently, participants selected
the model they perceived as more similar to the reference model (either option “A” or
“B”). In cases where a clear distinction was challenging, participants had the option to
choose “Difficult to say”. Each participant completed a total of 48 comparisons. In each
comparison, one 3D model was generated by our method, while the other was produced

4.7 Applications and Comparisons | 99

20

40

60
80

90

230500100

410

1600
2000

650

1000

160 800
320

1300

1800

Figure 4.12 Comparison of the effect of different values of k (blue points) on perceptual and
spatial reconstruction error. The parameter k affects the trade-off between the perceptual
error measured with DAME and spatial fidelity measured with L1 norm. Values of k which
form a Pareto front of optimal solutions when considering solely perceptual quality and
spatial fidelity are connected with a red line.

by an alternative method or using a different commonly used representation. Participants
were instructed to use a desktop monitor or a tablet and complete the study in a full-screen
view.

100 | 4.7 Applications and Comparisons

Ours DR

L1 Norm

DAME

EuclideanEuclidean StdGround Truth

0

0.01

0

0.1

Training

Fa
cs

im
ile
™

L1 Norm

DAME

Fa
ce

W
ar

eh
ou

se

0

0.008

0

0.1

Figure 4.13 Qualitative comparison of the reconstruction results of training data with
our method (k = 500, γ = 1) and with common representations used in other methods:
Euclidean coordinates [23, 50, 151], standardised Euclidean coordinates [14, 22, 43, 46,
102] and the normalised deformation representation (DR) [62, 136]. The meshes generated
by our method achieve superior results compared to other representations. Zooming into
the digital version is recommended to see the surface artefacts on the results generated
with Euclidean and standardised Euclidean representations.

4.7 Applications and Comparisons | 101

EuclideanGround Truth Ours DREuclidean Std

L1 Norm

DAME

0

0.05

Test

Fa
cs

im
ile
™

0

0.1

L1 Norm

DAME

f

Fa
ce

W
ar

eh
ou

se

0

0.03

0

0.1

Figure 4.14 Qualitative comparison of the reconstruction results of test data with our
method (k = 500, γ = 1) and with common representations used in other methods: Eu-
clidean coordinates [23, 50, 151], standardised Euclidean coordinates [14, 22, 43, 46, 102]
and the normalised deformation representation (DR) [62, 136]. The meshes generated by
our method have similar surface quality to the outputs with DR while achieving much
lower volume loss in the neck, chin, and cheek areas.

102 | 4.7 Applications and Comparisons
Fa

cs
im

ile
™

Fa
ce

W
ar

eh
ou

se

Ours SpiralNet++ Neural 3DMMMesh AutoencoderGround Truth
Training

FeaStNet

Ours SpiralNet++ Neural 3DMMMesh AutoencoderGround Truth
Test

FeaStNet

Ours SpiralNet++ Neural 3DMMMesh AutoencoderGround Truth
Training

FeaStNet

Ours SpiralNet++ Neural 3DMMMesh AutoencoderGround Truth
Test

FeaStNet

Figure 4.15 Visual comparison of the reconstruction results of the Facsimile™ and
FaceWarehouse datasets using our method (k = 500, γ = 1, Z = 64) and four other
methods: Mesh Autoencoder [151], SpiralNet++ [46], Neural 3DMM [14] and FeaStNet
[129]. It is recommended to zoom into the digital version to compare the reconstructed
meshes.

Figure 4.16 displays the aggregated responses from the user study, which compared the
visual similarity of the meshes generated by our proposed method with those produced by
other methods [151, 46, 14, 129]. In all cases, a strong majority of participants perceived
the meshes generated by our method as more similar to the reference than those generated
by other compared methods. Participants expressed a high certainty of their responses,
with only a median of 4.3% choosing the “Difficult to say” option.

4.7 Applications and Comparisons | 103

Training
Fa

cs
im

ile
™

Training

Fa
ce
W
ar
eh
ou
se

Test

Test

Figure 4.16 The outcomes of the user study, which compared the visual similarity to the
ground truth of the meshes generated by our method and other methods: Mesh Autoencoder
[151], SpiralNet++ [46], Neural 3DMM [14] and FeaStNet [129]. The bars show the
percentage of participants who selected the mesh generated by the given method as more
similar to the ground truth mesh. The participants were asked to select "Difficult to say"
only when they had to guess between the generated models.

Figure 4.10 presents the results from the user study comparing our method with
common representations used in other methods: Euclidean coordinates [23, 50, 151],
standardised Euclidean coordinates [14, 22, 43, 46, 102] and the normalised deformation
representation (DR) [62, 136]. Participants’ responses align with our quantitative analysis
of perceptual DAME error from Table 4.3. On average, 87.9% and 65.7% of participants
perceived our methods’ results as more similar than those from methods using Euclidean
coordinates and standardised Euclidean coordinates, respectively. Regarding the compari-
son with normalised DR representation, the participants were divided. The training sets
reconstructed with our method received 10.7 and 8.5 more percentage points of participants’
preference. In comparison, the meshes produced with the normalised DR representation

104 | 4.7 Applications and Comparisons

were chosen as more similar on the test sets by 4.3 and 13.3 more percentage points of
participants. Consequently, the perceptual similarity of meshes generated by our method
and the normalised DR representation is comparable, while our method yields significantly
lower point-wise accuracy error, as demonstrated in quantitative analysis.

4.7.2 Mesh Interpolation

Mesh interpolation is widely applied in facial animation to produce new facial meshes from
two known facial meshes. In contrast to existing interpolation methods that interpolate two
facial meshes, our proposed approach interpolates low- and high-frequency parts of two
facial meshes.

In Figure 4.17, the subject in the green outline is encoded into parameters [Z1l|Z1h]

and the subject in the purple outline is encoded into parameters [Z2l|Z2h]. High-frequency
weight α and low-frequency weight β are used to interpolate between these latent parame-
ters so that the interpolated latent parameters are

Zα,β = [(1−β)Z1l +βZ2l|(1−α)Z1h +αZ2h]. (4.16)

The meshes resulting from Equation (4.16) are shown in Figures 4.17(A), 4.17(B) and
4.18. In the figures, the meshes arranged in a grid are decoded from latent parameters
Zα,β . When using the linear interpolation in the vertex space between the mesh in the
green outline and the mesh in the purple outline, the interpolation equation is

Pδ = P1 +δ (P2 −P1), (4.17)

where P1 and P2 are the vertex coordinates of the meshes in the green outline and the
purple outline, respectively, and 0 ≤ δ ≤ 1.

The meshes obtained from Equation (4.17) are shown in Figure 4.17C. Interpolating
low- and high-frequency latent parameters with two different conditioning values, 0.4 and
1.0, generates 28 new meshes. In contrast, interpolating the meshes in the green and purple
outlines creates only two new meshes.

Our discussion indicates that multi-frequency interpolation noticeably raises the capac-
ity to create novel facial meshes from two known facial meshes. In addition, Figure 4.17
demonstrates the disentanglement of low and high frequencies in the parametric space and
illustrates the impact of the Conditioning Factor γ .

When γ = 1.0, the high-frequency parameters of an elderly subject influence mid-
frequencies to impose the generation of plausible faces. However, due to bias towards
younger subjects in the dataset, this conditioning significantly restricts the domain of
generated faces. For an artist, such editing behaviour may be undesirable. In contrast,

4.7 Applications and Comparisons | 105

Low frequency weight β

H
ig

h
fr

eq
ue

nc
y

w
ei

gh
t α

0 2/3 11/3

0

1/3

2/3

1

Low frequency weight β

H
ig

h
fr

eq
ue

nc
y

w
ei

gh
t α

0 2/3 11/3

0

1/3

2/3

1

Weight δ

0 2/3 11/3

(A) Conditioning Factor γ = 1.0 (B) Conditioning Factor γ = 0.4

(C)

Figure 4.17 Interpolation of low-frequency and high-frequency latent parameters, k =
500. Two facial meshes (in green and purple outlines) are encoded. They are from the
Facsimile™ [59] dataset. In (A), the model is trained with the Conditioning Factor γ = 1.0.
In (B), the Conditioning Factor γ = 0.4. The meshes arranged in a grid are decoded
from interpolated latent parameters. In (C), the meshes in green and purple outlines are
interpolated in the vertex space.

106 | 4.7 Applications and Comparisons
H

ig
h

fr
eq

ue
nc

y
w

ei
gh

t α

Low frequency weight β

H
ig

h
fr

eq
ue

nc
y

w
ei

gh
t α

Low frequency weight β

0 12/31/3 0 12/31/3

0

1

2/3

1/3

0

1

2/3

1/3

(A) Conditioning Factor γ = 1.0

(B) Conditioning Factor γ = 0.4

Figure 4.18 Interpolation of low-frequency and high-frequency latent parameters. This
time, the parameter k = 1000. Two facial meshes (in green and purple outlines) are encoded,
both from Facsimile™ [59] dataset. In (A), the model is trained with the Conditioning
Factor γ = 1.0. In (B), the Conditioning Factor γ = 0.4. The meshes arranged in a grid
are decoded from interpolated latent parameters. They demonstrate that with γ = 0.4, the
network can generate implausible examples, such as the older man with young, smooth
skin at (α = 0,β = 1). This implausible effect is countered with higher Conditioning
Factor γ = 1.0 at (α = 0,β = 1).

4.7 Applications and Comparisons | 107

interpolation of low- and high-frequency parameters with γ = 0.4 is more predictable,
as high- and low-frequency displacements are almost fully disentangled. Nevertheless,
plausible faces exist within a joint distribution of low- and high-frequency displacements.
Consequently, the network may generate implausible examples, like the older man with
young, smooth skin depicted in Figure 4.17B at (α = 1,β = 0). Therefore, the choice
of γ depends on application-specific requirements, whether prioritising more precise and
flexible artistic control or the ability to generate only plausible faces.

4.7.3 Multi-Frequency Editing

Figure 4.19 presents the application of our method in editing low- and high-frequency
displacements independently. Additionally, the editing capabilities of our model are
compared with the method in [151], which does not disentangle low- and high-frequency
parameters. In our approach, low-frequency parameters affect the overall head shape
while preserving high-frequency details. The Conditioning Factor γ impacts the nature
of editing. With γ = 1.0 (full conditioning), high frequencies condition low-frequency
displacements to a more narrow domain of only plausible faces. In contrast, when γ = 0.4
(partial conditioning), edited heads are more diverse, despite some falling outside of the
domain of real faces. When editing high-frequency parameters, the overall head shape
remains unchanged, with only fine details being affected. Notably, with γ = 0.4, the editing
of high frequencies becomes more precise and predictable since high- and low-frequency
parameters barely influence each other.

108 | 4.7 Applications and Comparisons

Ours, γ = 0.4

Ours, γ = 1.0

Mesh Autoencoder

Ours, γ = 0.4

Ours, γ = 1.0

Initial Mesh
P1

Mesh Autoencoder

Initial Mesh
P2

Low frequency editing High frequency editing

(A) Comparison between low-frequency editing
of the method and the latent code editing of Mesh
Autoencoder.

(B) Comparison between high-frequency editing
of the method and the latent code editing of Mesh
Autoencoder.

Figure 4.19 Comparison of latent code editing between the proposed method and Mesh
Autoencoder [151]. In (A), the editing of low-frequency latent codes of encoded mesh P1.
In (B), the editing of high-frequency latent codes of encoded mesh P2. Top and middle
row: the examples decoded using our model with k = 500 and Conditioning Factor γ = 0.4
and γ = 1.0. Bottom row: the results of editing a subset of latent parameters using the
method in [151]. The parameters of our method successfully disentangle high and low
frequencies. While subjective, it can be observed that lower γ provides more control and
produces more diverse results. Meanwhile, altering the parameters of Mesh Autoencoder
[151] affects the entire frequency spectrum.

4.8 Conclusions | 109

4.8 Conclusions

The methods proposed in this chapter built upon the conclusions from Chapter 3 and
introduced Deep Spectral Meshes, an approach that involves the spectral decomposition of
3D meshes in representation learning with graph convolutional networks. It was described
how the spatial frequency theory of perception inspired the Deep Spectral Meshes approach.
The input representations and the neural network have been described. The implementation
details were provided and the applications of the proposed method were investigated.
Moreover, this chapter provided a comparison of the proposed approach with previously
published methods both quantitatively and qualitatively. The ability to independently
edit low and high-frequency displacements of facial meshes was demonstrated using
multiple examples. The impact of the Conditioning Factor γ was further explored. γ

balances mutually exclusive objectives of independent control of deformations at different
frequencies, and generation of plausible synthetic examples. The comparisons between the
proposed approach and previously published methods demonstrate the improvements of
the proposed method over the state-of-the-art results according to both L1 and perceptual
metric evaluations.

This page is intentionally left blank.

CHAPTER5

PERSONALISED EXPRESSIONS

GENERATION

5.1 Introduction

In video games and VFX industry, facial rigs are most commonly based on linear com-
binations of blendshapes which represent single action units (AUs) and their common
combinations. Therefore, building facial rigs requires time and expertise of 3D artists to
model often hundreds of blendshapes for a given 3D character identity. As an alternative
to this costly and laborious process, the Deformation Transfer (DT) [120] method is used
to semi-automatically transfer facial expressions from source identity to target identity.
However, shapes produced by DT are not personalised and deformed target identities
exhibit features from the source identity, as evidenced in this chapter.

To tackle this problem, the Facsimile dataset of neutral faces coupled with expressions
can be used to predict more personalised expressions. It can be hypothesised that:

1. Using a graph variational autoencoder to find a mapping between neutral face identity
and its personalised expression can improve the perceptual and geometric accuracy
of synthesised expressions comparing to the Deformation Transfer method.

2. The two-step method, which models the mapping between latent space of neutral
faces and the personalised expressions, yields lower perceptual and geometric error
on test dataset than the end-to-end method, which uses an autoencoder to directly
map between neutral face shapes and personalised expressions.

3. Using spectral mesh processing to combine low-frequency deformation synthesised
with graph variational autoencoder using global, coordinates-based representation
and high-frequency deformation synthesised with graph variational autoencoder

112 | 5.2 Personalised Blendshapes Generation using Variational Graph Autoencoders

z
σ

μ

Pneutral Pexpression

4000 ✕ 32
924 ✕ 64

153 ✕ 128
22 ✕ 128

Eneutral(Fneutral)

8 ✕ 8

✕

N(0,1)

14921 ✕ 3

+
8 ✕ 8

4000 ✕ 32
924 ✕ 64

153 ✕ 128
22 ✕ 128

Dexpression
(z)

(Transposed) Graph Convolutional Layer

Up/Down-sampling Residual Block

ELU Activation Function

FexpFneut

8 ✕ 8

Figure 5.1 Diagram of the proposed end-to-end approach to generate personalised blend-
shapes.

using differential representation improves perceptual and geometric quality of gener-
ated personalised blendshapes.

Two personalised blendshapes generation methods are described in Section 5.2. The
proposed methods use graph variational autoencoders and each of them is implemented
in two variants: with standardised Euclidean coordinates representation and with the
normalised deformation representation. Section 5.2.1 covers an end-to-end approach,
which is then extended to a two-step approach in Section 5.2.2. Subsequently, both
approaches with different representation variants and the Deformation Transfer method are
compared in Section 5.2.3. Next, Section 5.2 covers the proposed Personalised Blendshapes
Generation with Spectral Mesh Processing (PBS) method. Comparisons of PBS to other
methods are provided in Section 5.3.5.

5.2 Personalised Blendshapes Generation using
Variational Graph Autoencoders

5.2.1 End-to-end approach

It is proposed to employ graph autoencoder architecture to model a mapping between
a face in a neutral pose Pneutral and its corresponding expression Pexpression. Figure 5.1
provides an overview of this approach. Neutral face meshes Pneutral are transformed to
Fneut, while expression meshes Pexpression are transformed to Fneut. These transformations,
which are denoted g(·), involve preprocessing steps, which were detailed in Section 3.3.8.

5.2 Personalised Blendshapes Generation using Variational Graph Autoencoders | 113

Neutral face encoder Eneutral encodes Fneut to latent mean µ and deviation σ . Mean and
deviation are used to sample latent codes Zexp from the distribution N (µ,σ). While in
the reconstruction task Zexp represents a learned distribution of neutral meshes, here Zexp

is a learned representation of only those neutral face features which determine variation in
performing a given expression.

Neutral and expression representation

Given a dataset of triangle neutral pose meshes with shared connectivity and their corre-
sponding sets of expressions, neutral face meshes are translated so that centroid of each
neutral face mesh is at the origin. Each corresponding expression is translated by the same
vector. Subsequently, mean of neutral meshes is computed and denoted as P̄neutral . Neutral
meshes are rigidly registered to the mean and corresponding expressions are transformed
by the same rigid transformation. Afterwards, all shapes are uniformly scaled by the same
scalar, such that all meshes are in a cube whose sides are two units long. Mean of the
resulting neutral face meshes is denoted as P̄neutral , and means of identities performing n-th
expression are denoted as P̄expression n, where n ∈ {1, ...,N} is an index of an expression.

P̂neutral = Pneutral − P̄neutral, (5.1)

Fneutral = g(P̂neutral) (5.2)

where g(·) is a function which transforms its input onto arbitrary representation, for
example Euclidean coordinates (Euclidean), standardised Euclidean coordinates (Euclidean
Std.), deformation representation (DR) or normalised deformation representation (DR
Norm.).

P̂expression n = Pexpression n −Pneutral, (5.3)

Fexpression n = g(P̂expression n) (5.4)

Neural network and training

The network is based on a fully convolutional variational autoencoder. The encoder
Eneutral and decoder Dexpression use convolution/ transposed convolution operations and
upsampling/downsampling residual layers introduced in [151]. The encoder consists of
5 graph convolutional layers with stride = 2, kernel radius = 2, basis weights = 35, and
channel dimensions = [|f|, 32, 62, 128, 128, 8]. All of them, except the last one, are
followed by ELU [24] activation function. The outputs from ELU are added to outputs
from a downsampling residual layer. The decoders mirror encoders with 5 blocks of graph
transposed convolutional layers followed by ELUs and upsampling residual layers.

114 | 5.2 Personalised Blendshapes Generation using Variational Graph Autoencoders

Learnable parameters of the model are iteratively updated through backpropagation
with Adam [68] optimiser in terms of loss

L = ||denorm(Fexp)−denorm(Dexpression(Z))||1
+φKL(N (0,1)||p(Z|Fneut)),

(5.5)

when g(·) transforms into normalised representation, and

L = ||destd(Fexp)− (Dexpression(Z))||1
+φKL(N (0,1)||p(Z|Fneut)),

(5.6)

when g(·) transforms into standardised representation. The first term of each loss function
is L1 norm of a difference between ground truth expression and the network’s output. The
second term is weighted Kullback–Leibler (KL) divergence scaled with a scalar φ .

Inference and postprocessing

At inference, the network outputs Fexpression. The following equation processes it to obtain
the predicted mesh P′

expression n:

Pexpression n = g−1(Fexpression n)+Pneutral (5.7)

where g−1(·) is inverse transform of g(·).

5.2.2 Two-step approach

In this section, an alternative strategy is proposed. In an end-to-end approach, latent
space Zexp is a learned representation of only those neutral face features which determine
variation in performing a given expression. In contrast, a two-step approach first learns the
latent space Zneut of neutral facial shapes, and then it models a mapping between neutral
face features Zneut and personalised expressions Fexpression. Figure 5.2 shows the difference
between the end-to-end and the two-step approach.

Step 1 - neutral face representation learning

The first step aims at training an encoder Eneut which maps neutral face Fneut onto a
small set of parameters Zneut which form a latent space of neutral face features. To learn
encoder Eneut , a Mesh Autoencoder [151] is used. In this work, it is proposed to compare
two-stage approach using signal in Euclidean coordinates representation and in normalised
deformation representation. Therefore, the deep 3D Morphable Models used to learn Eneut

are the same as (F(3.15)) and VAEMesh(F(3.18)) from Section 3.5. After training, learnable

5.2 Personalised Blendshapes Generation using Variational Graph Autoencoders | 115

zexp 1

zexp 2

zexp N

...

zneut

...
End-to-end approach Two-stage approach

Eneut(Fneut) Dexp1(zexp 1)

Eneut(Fneut) Dexp2(zexp 2)

Eneut(Fneut) DexpN(zexp N)

Eneut(Fneut) Dneut(zneut)

Dexp1(zneut)

Dexp2(zneut)

DexpN(zneut)

Pneutral

Pneutral

Pneutral

Pexpression 1

Pexpression 2

Pexpression N

Pneutral Pneutral

Pexpression 1

Pexpression 2

Pexpression N

Figure 5.2 Comparison of an end-to-end training approach and the two-stage training
strategy.

parameters of the resulting encoder Eneut are frozen. The decoder Dneut is discarded as it is
used solely for the purpose of training Eneut .

Step 2 - decoding expressions

The second step aims at training a set of decoders Eexp n, where n ∈ {1, ...,N} is an index
of an expression.

5.2.3 Comparative results

Comparative experiments are conducted on Facsimile [59] dataset, which consists of 202
identities, each performing a set of 19 expressions and a neutral pose. Experiments are
conducted on three of these expressions: "face compression", "mouth wide" and "phoneme
OO - brow raise - eyes open wide". Shapes are represented as triangle meshes, 14,921
vertices each. In experiments, the dataset is split into training, validation and test subsets
in proportions 85:5:10. The networks are implemented in PyTorch 1.8 [38] and trained for
500 epochs with a learning rate of 104, batch size of 16 and a learning rate decay of 1%
after each epoch. KL divergence weight φ = 10−6 and Adam optimiser’s hyper-parameters
are set to β1 = 0.9 and β2 = 0.999. All the experiments are trained and inferred on a single

116 | 5.2 Personalised Blendshapes Generation using Variational Graph Autoencoders

NVIDIA GeForce GTX 1080 Ti with 16 GB memory. Data processing is performed on an
Intel(R) Xeon(R) CPU E5-1630v4 running at 8 × 3.70 GHz using 32 GB RAM.

Two-step versus end-to-end approach

The end-to-end approach directly maps neutral faces to expressions in a single training
process, offering higher accuracy since all layers are optimised together. It allows the model
to automatically learn the most relevant facial features. This approach also generalises well
to unseen faces if trained on diverse data. However, it requires all neutral identity shapes
to be paired with expressions. This approach is computationally more expensive than the
Two-step approach, making it less feasible for resource-constrained settings. Additionally,
it can be harder to interpret, as the model directly learns the mapping.

In contrast, the two-step approach first trains an encoder to learn a latent representation
of neutral faces and then maps this representation to facial expressions. This method
allows for modular training, enabling the reuse of the encoder for other tasks and reducing
redundancy. It also works with datasets where a subset of neutral identities is not paired
with expressions. This way, neutral faces encoder can be pretrained on a larger dataset.
Moreover, two-step approach provides better interpretability of a latent space. However,
its accuracy is generally lower than the end-to-end approach because the two steps are
optimized separately, leading to suboptimal feature learning.

The end-to-end approach is preferable when high accuracy is critical and sufficient data
of paired neutral shapes and expressions is available. Meanwhile, the two-step approach is
useful when a subset of neutrals is not paired with expressions, interpretability is needed,
or computational resources are a constraint.

5.2 Personalised Blendshapes Generation using Variational Graph Autoencoders | 117

End-to-end PB
(Eucl. Std.)

Two-step PB
(Eucl. Std.)

End-to-end PB
(DR Norm.)

Two-step PB
(DR Norm.)

L1 Norm 7.034 6.985 ↓ 1% 9.662 10.239 ↑ 6%
L2 Norm 3.632 3.674 ↑ 1% 5.640 6.018 ↑ 7%
FMPD 26.289 42.73 ↑ 63% 10.170 15.923 ↑ 57%

Face Compression

DAME 2.464 4.05 ↑ 64% 2.112 2.654 ↑ 26%

L1 Norm 5.436 5.298 ↓ 3% 6.556 7.053 ↑ 8%
L2 Norm 2.355 2.314 ↓ 2% 2.848 2.915 ↑ 2%
FMPD 25.519 34.781 ↑ 36% 8.591 14.037 ↑ 63%

Mouth Wide

DAME 2.238 3.018 ↑ 35% 1.767 2.233 ↑ 26%

L1 Norm 6.349 6.127 ↓ 3% 6.415 7.364 ↑ 15%
L2 Norm 3.359 3.197 ↓ 5% 3.259 3.781 ↑ 16%
FMPD 26.679 40.895 ↑ 53% 10.597 16.552 ↑ 56%

Phoneme OO
Brow Raise

Eyes Open Wide
DAME 2.460 3.728 ↑ 52% 2.074 2.636 ↑ 27%

Table 5.1 Quantitative comparison of spatial and perceptual error in two different training
strategies: end-to-end and two-step, each using two different shape representations: stan-
dardised Euclidean coordinates (Eucl. Std.) and the normalised deformation representation
(DR Norm.). Percentage points indicate change in error between the end-to-end and the
two-step approaches.

Table 5.1 provides quantitative evaluation of an end-to-end PB and two-step PB coupled
with standardised Euclidean coordinates and the normalised deformation representation.
Both approaches are evaluated from geometric accuracy perspective using L1 and L2

norms between the predicted expressions and the ground truth expressions. They are also
evaluated from perceptual perspective using DAME and FMPD error metrics.

The two-step PB with standardised Euclidean coordinates representation reduces geo-
metric error by up to 3% of L1 norm and up to 5% of L2 norm comparing to end-to-end PB
with standardised Euclidean coordinates. Nevertheless, these small improvements in geo-
metric quality are overshadowed by substantial increase in perceptual FMPD and DAME
metrics. Using end-to-end approach with standardised Euclidean coordinates representa-
tion leads to 63-64%, 35-36% and 52-53% higher perceptual loss in "face compression",
"mouth wide" and "phoneme OO - brow raise - eyes open wide" expressions, respectively.
Therefore, it can be concluded that end-to-end PB with standardised Euclidean coordinates
representation should be preferred over its two-step counterpart due to significantly higher
perceptual accuracy of synthesised meshes.

Comparison of the end-to-end and the two-step approaches which use the normalised
deformation representation provides clear and unequivocal results. In this case, the end-to-
end approach is better than the two-step approach from both, perceptual and geometric
accuracy perspectives. Comparing to its end-to-end counterpart, the two-step PB with

118 | 5.2 Personalised Blendshapes Generation using Variational Graph Autoencoders

Target Neutral

Deformation Transfer Source Target Expressions

Amos
 Tessa Larry Lucy
 Dennis

Lucy
 Dennis

Figure 5.3 Visualisation of meshes used to generate results with the Deformation Transfer
(DT) [120] method. Three different identities from the Facsimile [59] dataset with varying
gender and age were used as sources of deformations (bottom left). Two target identities
with neutral expression are selected for demonstration. A full validation dataset of identities
is used in evaluation. The DT is used to transfer expressions from source shapes onto
target neutral identities (top). The results are evaluated against the expected ground truth
expressions (bottom right).

5.2 Personalised Blendshapes Generation using Variational Graph Autoencoders | 119

Deformation Transfer
PB

(Eucl. Std.)
PB

(DR Norm.)
Fa

ce
 C

om
pr

es
si

on
M

ou
th

 W
id

e
Ph

on
em

e
O

O
B

ro
w

 R
ai

se
E

ye
s O

pe
n

W
id

e
Source:
Amos

Source:
Tessa

Source:
Larry

Ground Truth

Figure 5.4 Visual comparison between expressions generated with three different methods:
existing Deformation Transfer [120] method using three different sources of deformation,
the proposed end-to-end approach with standardised Euclidean coordinates (Eucl. Std.)
and the proposed end-to-end approach with normalised deformation representation (DR
Norm.). It should be noted that the Deformation Transfer [120] method is compared here
as it is a standard industrial approach for facial blendshapes generation. DT uses a single
set of sources and its lower performance is expected when compared against models which
are trained on the datasets of many identities.

120 | 5.2 Personalised Blendshapes Generation using Variational Graph Autoencoders

Deformation Transfer
PB

(Eucl. Std.)
PB

(DR Norm.)

Fa
ce

 C
om

pr
es

si
on

M
ou

th
 W

id
e

Ph
on

em
e

O
O

B
ro

w
 R

ai
se

E
ye

s O
pe

n
W

id
e

Source:
Amos

Source:
Tessa

Source:
Larry

L1 Norm
0

0.02

L1 Norm
0

0.02

L1 Norm
0

0.02

Figure 5.5 Qualitative comparison of synthesised expressions from Facsimile test dataset.
Expressions generated by our proposed methods achieve lower L1 error compared to the
results from the Deformation Transfer.

5.2 Personalised Blendshapes Generation using Variational Graph Autoencoders | 121

Deformation Transfer
PB

(Eucl. Std.)
PB

(DR Norm.)
Fa

ce
 C

om
pr

es
si

on
M

ou
th

 W
id

e
Ph

on
em

e
O

O
B

ro
w

 R
ai

se
E

ye
s O

pe
n

W
id

e
Source:
Amos

Source:
Tessa

Source:
Larry

L2 Norm
0

0.002

L2 Norm
0

0.002

L2 Norm
0

0.002

Figure 5.6 Qualitative comparison of synthesised expressions from Facsimile test dataset.
Expressions generated by our proposed methods achieve lower L2 error compared to the
results from the Deformation Transfer.

122 | 5.2 Personalised Blendshapes Generation using Variational Graph Autoencoders

the normalised deformation representation results in 6%, 8% and 15% higher L1 norm
error and 7%, 2% and 16% higher L2 norm error in "face compression", "mouth wide"
and "phoneme OO - brow raise - eyes open wide" expressions, respectively. The two-step
approach also leads to higher perceptual error with FMPD increase by 56-63% and DAME
increase by 26-27% in comparison to end-to-end PB with the normalised deformation
representation. The results clearly demonstrate that end-to-end PB with the normalised
deformation representation should be preferred over its two-step counterpart.

End-to-end PB versus Deformation Transfer

The proposed end-to-end PB networks using two variants of shape representations (stan-
dardised Euclidean coordinates and the normalised deformation representation) are com-
pared with the existing Deformation Transfer [120] (DT) method. Figure 5.3 presents
the identities and expressions used as sources in the DT process. It should be noted that
the Deformation Transfer [120] method is compared here as it is a standard industrial
approach for facial blendshapes generation. DT uses a single set of sources and its lower
performance is expected when compared against models which are trained on the datasets
of many identities. For better comparison, point-wise correspondence between source and
target meshes is given.

Table 5.2 presents quantitative results which compare geometric L1 and L2 norm error,
as well as perceptual FMPD and DAME. End-to-end PB outperforms the DT on L1 and
L2 norm error across different expressions. Interestingly, in two cases the DT yields
lower FMPD error than end-to-end PB. However, across all three expressions, it achieves
higher DAME when compared against end-to-end PB with DR norm. Unfortunately, the
representation used in end-to-end PB significantly affects its performance on geometric
and perceptual metrics. The benefits of using either representation are mutually exclusive.
Therefore, this problem is addressed in Section 5.3 which proposes use of spectral mesh
processing to utilise benefits of both of these representations simultaneously.

Figures 5.4 - 5.6 allow for qualitative comparison between the methods. Expressions
generated with the Deformation Transfer vary depending on the source of deformation.
Distinct features of source identities can be identified on output expressions.

5.3 Personalised Blendshapes Generation with Spectral Mesh Processing | 123

Deformation
Transfer [120]

End-to-end PB
(Eucl. Std.)

End-to-end PB
(DR Norm.)

L1 Norm 11.324 7.034 9.662
L2 Norm 7.611 3.632 5.640
FMPD 8.028 26.289 10.170

Face Compression

DAME 2.228 2.464 2.112

L1 Norm 8.679 5.436 6.556
L2 Norm 4.619 2.355 2.848
FMPD 8.960 25.519 8.591

Mouth Wide

DAME 1.997 2.238 1.767

L1 Norm 8.400 6.349 6.415
L2 Norm 5.076 3.359 3.259
FMPD 9.077 26.679 10.597

Phoneme OO
Brow Raise

Eyes Open Wide
DAME 2.292 2.460 2.074

Table 5.2 Quantitative comparison of spatial and perceptual discrepancy between ground
truth expressions and the expressions generated with three methods: existing Deformation
Transfer [120] method, the proposed end-to-end approach with standardised Euclidean co-
ordinates (Eucl. Std.) and the proposed end-to-end approach with normalised deformation
representation (DR Norm.).

5.3 Personalised Blendshapes Generation with Spectral
Mesh Processing

5.3.1 Method overview

The proposed method is outlined in Figure 5.7. In the first step, preprocessed meshes
Pneutral are transformed to standardised Euclidean vectors Fneut.spatial and normalised
deformation representation (DR Norm.) Fneut.di f f . Analogously, preprocessed meshes
Pexpression are transformed to Fexpr.spatial and Fneut.di f f .

In the second step, two neural networks are trained simultaneously. The first network
models the mapping between neutral face identities and their corresponding expressions
in standardised Euclidean coordinates representation, while the second network models
this mapping in normalised deformation representation. The architecture of each of the
networks is the same as the one described in Section 5.2.1.

In the third step, Euclidean coordinates P′
expr.spatial and P′

expr.di f f are decoded from their
respective outputs F′

expr.spatial and F′
expr.di f f . Both P′

expr.spatial and P′
expr.di f f are predictions

124 | 5.3 Personalised Blendshapes Generation with Spectral Mesh Processing

P'expression

Normalised Deformation Representation Learning

+

σ

μ

4000 ✕ 32
924 ✕ 64

153 ✕ 128
22 ✕ 128

Eneut.spatial(Fneut.spatial)

8 ✕ 8

✕

N(0,1)

14921 ✕ 3

8 ✕ 8

4000 ✕ 32
924 ✕ 64

153 ✕ 128
22 ✕ 128

Dexpr.spati
al(zspatial)

F'expr.spatialFneut.spatial

8 ✕ 8

σ

μ

4000 ✕ 32
924 ✕ 64

153 ✕ 128
22 ✕ 128

Eneut.diff.(Fneut.diff.)

8 ✕ 8

14921 ✕ 3

8 ✕ 8

4000 ✕ 32
924 ✕ 64

153 ✕ 128
22 ✕ 128

Dexpr.diff.(zspa
tial)

(Transposed) Graph Convolutional Layer

Up/Down-sampling Residual Block

ELU Activation Function

F'exp.diff.Fneut.diff.

8 ✕ 8

Pneutral

P'expr.diff.

P'expr.spatial S

Spectral
Asembly

Standardised Euclidean Representation Learning

zspatial

+
✕

N(0,1)

zdiff.

Figure 5.7 Overview of the proposed Personalised Blendshapes Generation with Spectral
Mesh Processing approach.

of an expression Pexpression. However, it is expected that P′
expr.spatial has higher spatial

fidelity and P′
expr.di f f has higher perceptual fidelity. Therefore, both meshes are combined

together to obtain the final vertex positions P′
expression.

5.3.2 Data preprocessing and network training

Inputs Fneut.spatial , Fneut.di f f are calculated following Equations 5.1 and 5.2, whilst Equa-
tions 5.3 and 5.3 are used to calculate expected outputs Fexpr.spatial and P′

expr.di f f . In case
of spatial representation, function g(·) encodes to standardised Euclidean coordinates. For
differential representation, function g(·) encodes to normalised deformation representation.

5.3 Personalised Blendshapes Generation with Spectral Mesh Processing | 125

Learnable parameters of the model are iteratively updated through backpropagation
with Adam [68] optimiser in terms of loss

Lspatial = ||denorm(Fexpr.spatial)−denorm(Dneut.spatial(Zspatial))||1
+φKL(N (0,1)||p(Zspatial|Fneut.spatial)),

(5.8)

Ldi f f erential = ||destd(Fexpr.di f f .)−Dexpr.di f f .(Zdi f f .)||1
+φKL(N (0,1)||p(Zdi f f .|Fneut.di f f .)).

(5.9)

5.3.3 Inference and spectral assembly

Signal F′
expr.spatial and F′

expr.di f f is converted to vertex positions P′
expr.spatial and P′

expr.di f f .
Consequently, P′

expr.spatial and P′
expr.di f f are combined in the following way:

P′
expression = (I−X)P′

expr.diff. +XP′
expr.spatial, (5.10)

where X is the matrix from Equation (4.11).

5.3.4 Pareto-optimal partitions

This section explores the impact of the parameter k on spatial and perceptual fidelity of
synthesised expressions. It can be hypothesised that for each expression there exists a
different Pareto front of optimal values of k.

To test this hypothesis, Personalised Blendshapes Generation with Spectral Mesh Pro-
cessing networks are trained on Facsimile training set to generate three expressions: "face
compression", "mouth wide" and "phoneme OO - brow raise - eyes open wide". Subse-
quently, the networks are inferred with a validation Facsimile dataset and spectral assembly
is performed using different parameters k, such that k ∈ K = {0,10,20, ...,90,100,120,
140, ..,180,200,230,260, ...,470,500,550,600, ...,950,1000,14921}, |K |= 37. Here, k=
0 =⇒ P′

expression = P′
expr.di f f . and k = 14921 =⇒ P′

expression = P′
expr.spatial .

Next, the personalised blendshapes synthesised using values from the set |K | are
evaluated both perceptually and geometrically to form a 2-dimensional space of solutions.
In Figure 5.8, each choice of the parameter k is plot against perceptual FMPD error and
geometric L1 norm error.

The results prove that Pareto-optimal solutions vary across expressions. It can be
observed that, in principle, lower values of k yield lower perceptual error and higher
geometric error. Higher values of k tend to result in higher perceptual error and, up to
certain expression-specific threshold, lower geometric error.

126 | 5.3 Personalised Blendshapes Generation with Spectral Mesh Processing

Figure 5.8 Cont.

5.3 Personalised Blendshapes Generation with Spectral Mesh Processing | 127

Figure 5.8 Comparison of the effect of different values of k (blue points) on perceptual
and spatial error between the ground truth and the synthesised expressions. Comparison is
performed using identities from validation Facsimile dataset.The plots depict results from
spectral assembly of the following expressions: "face compression" (top), "mouth wide"
(middle) and "phoneme OO - brow raise - eyes open wide" (bottom). The parameter k
affects the trade-off between the perceptual error measured with FMPD and spatial fidelity
measured with L1 norm. Values of k which form a Pareto front of optimal solutions when
considering solely perceptual quality and spatial fidelity are connected with a red line.

128 | 5.3 Personalised Blendshapes Generation with Spectral Mesh Processing

Interestingly, values k = 0 and k = 14921 are not always part of the Pareto front. It
means that in most evaluated cases the proposed method is capable of outperforming an
end-to-end PB with DR Norm. approach (k = 0) on perceptual FMPD metric and in all
compared cases it improves upon an end-to-end PB with Euclidean Std. (k = 14921) when
considering the spatial L1 norm metric.

For "face compression" Facsimile expression, the following k parameters are Pareto-
optimal: 10, 30, 440 and 500. Based on the knee of a curve, k = 440 is selected as the
solution which balances both perceptual and spatial fidelity objectives. In the case of
"mouth wide" Facsimile expression, the following k parameters are Pareto-optimal: 0, 10,
120, 380, 230 and 550. The knee of a curve suggests k = 380 as a well-balanced choice.
Finally, for "phoneme OO - brow raise - eyes open wide" Facsimile expression, the Pareto
front contains the following values of k: 500, 470, 800 and 200. As the slope of the Pareto
front is steep, the value of k = 200 is considered a balanced choice.

5.3.5 Comparative results

Figure 5.9 compares different blendshapes synthesis methods in terms of geometric L1

norm error and the perceptual DAME and FMPD errors. The following methods are com-
pared: the proposed Personalised Blendshapes Generation with Spectral Mesh Processing
(PBS) from Section 5.3, the end-to-end PB with DR Norm. and the end-to-end PB with
Euclidean Std. methods from Section 5.2.1, and the Deformation Transfer [120]. The
methods are evaluated on three different expressions. Pareto-optimal values of parameter k
were used for each expression in the proposed PBS method, as described in Section 5.3.4.

Clearly, the Deformation Transfer (DT) produces least accurate blendshapes from
geometric perspective. This result is expected, as the method uses a single set of source
shapes and it is compared against a model which learns from examples of many identities.
DT yields the highest L1 norm error compared to all other methods across all three
expressions. DT results in 61.11%, 60.15% and 32.47% higher L1 norm error than the
proposed PBS method. From perceptual perspective, the results are more ambiguous. On
DAME metric, DT yields higher error than the proposed PBS and end-to-end PB with DR
Norm. and it is only better than end-to-end PB with Euclidean Std. On the other hand,
on FMPD metric, DT gives the lowest error of all the compared methods on two of three
expressions.

The end-to-end PB with Euclidean Std. yields least favourable results, with the highest
perceptual error of all the methods and lack of geometric accuracy gains when compared
to the proposed PBS method. It gives 1.61, 1.94 and 1.53 times higher FMPD and 0.14%,
0.37% and 016% higher L1 norm error compared to the proposed PBS method.

5.3 Personalised Blendshapes Generation with Spectral Mesh Processing | 129

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10 11

D
A

M
E

×1
0−2

L1 norm ×10−3

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10 11

D
A

M
E

×1
0−2

L1 norm ×10−3

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10 11

D
A

M
E

×1
0−2

L1 norm ×10−3

Proposed method End-to-end PB DR Norm. End-to-end PB Euclidean Std. DT

Fa
ce

 C
om

pr
es

si
on

, k
 =

 4
40

M
ou

th
 W

id
e,

 k
 =

 3
80

Ph
on

em
e

O
O

 -
B

ro
w

 R
ai

se
Ey

es
 O

pe
n

W
id

e,
 k

 =
 2

00

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11

FM
PD

×1
0−2

L1 norm ×10−3

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11

FM
PD

×1
0−2

L1 norm ×10−3

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11

FM
PD

×1
0−2

L1 norm ×10−3

Figure 5.9 Comparison of different blendshapes generation methods in terms of percep-
tual DAME and spatial L1 error between the expected ground truth expression and the
expression synthesised with each method. Methods are evaluated on a test Facsimile
dataset.

130 | 5.4 Conclusions

The end-to-end PB with DR Norm. consistently underperforms on L1 norm metric
compared to PBS. Despite small improvements on DAME perceptual metric, where end-
to-end PB with DR Norm. yields just , it results in higher FMPD than PBS. Interestingly,
its results are comparable to PBS both perceptually and geometrically in "phoneme OO -
brow raise - eyes open wide" Facsimile expression. The reason for such a small difference
between these results is a small spread of just 0.08 between L1 norm error of End-to-end
PB Euclidean Std. and End-to-end PB DR Norm.

Comparing to other methods, expressions synthesised with PBS have the lowest overall
perceptual and geometric error. This is because the method utilises advantages of a global
standardised Euclidean coordinates representation, and differential normalised deformation
representation. Consequently, PBS yields similar perceptual error to end-to-end PB with
DR Norm. and similar geometric error to end-to-end PB with Euclidean Std., thus providing
the best overall results.

5.4 Conclusions

In the first part of this chapter, an end-to-end and two-step approaches have been proposed
to train a graph variational autoencoder architecture which models a mapping between
a face in a neutral pose and its corresponding expression. Quantitative and qualitative
evaluation have proven hypothesis 1 from Section 5.1. It was demonstrated that graph
variational autoencoders can improve upon the perceptual and geometric accuracy of
expressions generated with the deformation transfer (DT) [120] method, which is current
industrial standard practice. However, it needs to be noted that DT uses a single set of
source shapes, while graph variational autoencoders learn from face deformations across
many identities.

Experimental results presented in this chapter have shown that the end-to-end approach
outperforms the two-step approach. Despite minor improvements of 1-5% in L1 and
L2 norm error, the two-step PB with standardised Euclidean coordinates representation
yields significantly higher perceptual error comparing to end-to-end PB with standardised
Euclidean coordinates. Regarding the two-step PB with normalised deformation represen-
tation, its results yield higher error across all metrics when compared to the end-to-end PB
with normalised deformation representation. Therefore, the hypothesis 2 from Section 5.1
has been disproven.

In the second part of this chapter, Personalised Blendshapes Generation with Spectral
Mesh Processing (PBS) method has been proposed to improve perceptual and geometric
quality of synthesised expressions. The method built upon findings about global and
differential shape representations in deep 3D morphable models from Chapter 3, the

5.4 Conclusions | 131

proposed Deep Spectral Meshes method from Chapter 4 and the conclusions from the first
part of this chapter. The proposed PBS method improved overall perceptual and geometric
quality of synthesised expressions, which has proven the hypothesis 3 from Section 5.1.

This page is intentionally left blank.

CHAPTER6

CONCLUSIONS AND FUTURE WORK

6.1 Summary and conclusions

In response to industrial requirements, this thesis has addressed the challenges posed in
the following research question: "How to generate and edit geometrically and perceptually
accurate digital faces and personalised blendshapes?". Several hypotheses have been
proposed to answer this question. This section covers the main conclusions.

Chapter 3 tested the hypothesis that using different input and output representations to
deep 3D morphable models can improve upon existing mesh reconstruction methods in
terms of either perceptual or geometric accuracy. To test this hypothesis, the Deep3DMM
Comparison Platform has been designed to compare different deep 3D morphable models
within a single framework. Configurations of five Deep3DMMs with four input and output
representations were trained with three different datasets. The 60 experimental models
were evaluated from geometric accuracy perspective using L1 and L2 norm metrics and
from a perceptual quality perspective using DAME and FMPD metrics. Qualitative and
quantitative analysis has demonstrated that the hypothesis is true. The proposed use of
standardised Euclidean coordinates representation improved the geometric and perceptual
quality of the Mesh Autoencoder [109] method, which originally used the Euclidean
coordinates. Additionally, the proposed use of the DR improved the perceptual quality of
all the compared methods on most datasets.

It has been hypothesised that input and output representations, which explicitly encode
the surface properties, improve the perceptual quality of the resulting meshes, while those
which explicitly encode the vertex positions in 3D space, improve the geometric accuracy
of generated meshes. This hypothesis has been proven to be true using Deep3DMM
Comparison Platform. It has been demonstrated that using Euclidean coordinates-based
representations outperforms differential coordinates-based representations in geometric

134 | 6.1 Summary and conclusions

accuracy, while differential coordinates-based representations achieve better results on
perceptual DAME and FMPD metrics.

Chapter 4 tested the hypothesis that by integrating the representation which explicitly
encodes the surface properties, and by integrating spectral mesh processing for decom-
position of mesh displacements, geometric deep learning, and parametric models with
graph neural networks, a new 3D facial mesh synthesis model can be developed, such
that it would expose user parameters to control disentangled low- and high-frequency dis-
placements, generate plausible facial shapes, and allow the user to control displacements
independently at low- and high-frequency levels.

To test this hypothesis, spectral meshes were introduced to decompose mesh displace-
ments into low- and high-frequency parts. Mesh partitioning requirements helped to
identify the spectral mesh processing as the preferred method. Subsequently, these parts
were represented with standardised Euclidean coordinates and the normalised deformation
representation, respectively. Graph neural networks were proposed to reconstruct the
inputs, which were later converted back to Euclidean coordinates to obtain the recon-
structed 3D models. A Conditioning Factor was introduced to control the level of mutual
conditioning of displacements at different frequencies.

Extensive experiments were conducted to validate and compare the proposed ap-
proach with previously published methods, both quantitatively and qualitatively. It was
demonstrated that spectral decomposition of meshes without the mass matrix normalisa-
tion produces partitions with spatial frequency imbalance, because such partitioning is
tessellation-dependent. On the other hand, it was shown that mass matrix normalisation
counters this imbalance. Results demonstrated the capability of Deep Spectral Meshes
approach to independently edit low- and high-frequency displacements of facial meshes.
Moreover, the experiments illustrated the impact of the Conditioning Factor on balancing
mutually exclusive objectives of independent control of displacements at different frequen-
cies and generating plausible synthetic examples. The choice of parameter k has been
investigated. It was shown that there exists a Pareto-front of optimal parameters k which
satisfy joint objectives of perceptual and geometric accuracy of reconstructed meshes. As
the parameter k increases, the perceptual error increases and geometric error decreases.
Comparisons with existing methods demonstrate the superiority of this approach over
Euclidean coordinates, standardised Euclidean coordinates, the normalised deformation
representation (DR) and other methods, as assessed by both L1 and perceptual metric
evaluations. Consequently, the hypothesis has been proven to be true.

The significance of the proposed method is underscored through its applications pre-
sented in this thesis. The proposed method has been applied in mesh compression, en-
hancing the quality of the reconstructed meshes. Additionally, it has been employed in
mesh interpolation, expanding the capability to generate a larger variety of new shapes

6.2 Future work | 135

compared to direct interpolation between two facial meshes. This was achieved by inde-
pendently interpolating both low-frequency and high-frequency parameters. Moreover,
the proposed method has found application in multi-frequency editing, satisfying different
editing requirements. It allows the alteration of the overall shape while preserving details
by adjusting only high-frequency parameters. It also accommodates modifying fine details
while maintaining the overall shape by editing only low-frequency parameters.

Finally, Chapter 5 tested the hypothesis that graph autoencoders can be used to model
a mapping between the neutral face mesh and its personalised expression, such that it
improves upon currently used Deformation Transfer method [95] from geometric and
perceptual accuracy perspectives. This hypothesis has been proven to be true. Two
different training approaches were compared. In an end-to-end approach, the model learns
directly from neutral face mesh to output a personalised blendshape. In a two-stage
approach, a parametric model of neutral faces is trained in the fist stage. In the second
training stage, a graph model is trained to decode from features extracted from a neutral
mesh to a personalised expression mesh. It has been demonstrated quantitatively that the
end-to-end approach yields lower perceptual and geometric error and that both approaches
outperform the Deformation Transfer.

Subsequently, work in Chapter 5 confirmed the hypothesis that spectral mesh processing
applied to the proposed personalised expressions generation method can improve geometric
and perceptual accuracy of synthesised expressions. A neural network inspired by Deep
Spectral Meshes has been proposed to test this hypothesis.

6.2 Future work

Applications of Deep Spectral Meshes and spectral mesh processing introduced to geomet-
ric deep learning are potentially far-reaching, but several promising applications and areas
of research which warrant further investigation have been identified:

• This work restricts its application to low- and high-frequency bands. The partition
of mesh data into more than two frequency bands and an investigation into the
relationship between the learning model and the frequency bands remain unexplored.
The limitation to two frequency bands in the proposed approach is linked to the
properties of the chosen mesh representations. Standardised Euclidean coordinates
represent low-frequency information to ensure high point-wise accuracy of the
generated meshes. The normalised deformation representation (DR) encodes high-
frequency information for superior perceptual quality of the results. Future work on
partitioning mesh data into more than two frequency bands could further explore the
benefits of alternative representations at different frequency levels.

136 | 6.2 Future work

• Deep Spectral Meshes can be extended to address the problem of multi-frequency-
based deformation transfer, which has not been investigated in existing research
studies. The basic idea of multi-frequency-based deformation transfer involves de-
composing source and target meshes into mean, low- and high-frequency parts. The
differences between the source model and these parts at two different poses are deter-
mined and transferred to the corresponding bands of the target mesh. Subsequently,
the graph neural network proposed in this paper can be employed to reconstruct a
new shape for the target mesh with the pose of the source mesh.

• While the proposed approaches have been applied to deformable facial meshes,
future work could extend the proposed methods to articulated shapes like hands
and bodies. Existing research has proposed various methods to relate articulated
shapes to their underlying skeleton. With this extension, articulated shapes can
be decomposed into mean, low- and high-frequency parts. Then, the relationships
between these parts and the movements of the skeleton of the articulated shapes
can be investigated. These relationships can be used to synthesise mean, low- and
high-frequency parts of new poses. The graph neural network proposed in this paper
can then extract features, reconstruct them, and synthesise new shapes from the
reconstructed features.

• The proposed Deep Spectral Meshes could be applied to the monocular 3D face
reconstruction task to address the common challenge of balancing two conflicting
effects: (1) regularisation of the parametric models, which accurately reconstructs
global shape and (2) constraints from cues, which bring fine-level details. It can
be theorised that independently regressing the coefficients representing high- and
low-frequency information using different visual cues might help with balancing
these conflicting effects.

• Deep Spectral Meshes could be extended to handle dynamic meshes. They key
challenge in this extension is ensuring temporal coherence and maintaining compu-
tational efficiency at data preprocessing and inference stage.

Personalised expressions generation with PBS method can be extended in many re-
search directions. The following potential avenues are suggested:

• The proposed PBS method uses neutral face mesh as input to synthesise a per-
sonalised expression. The method can be extended with multimodal guidance.
Modalities which capture low-frequency information, such as pointclouds, could
guide the graph variational autoencoder which uses standardised Euclidean coordi-
nates representation. Modalities which capture higher-frequency information, such

6.2 Future work | 137

as shape-from-shading, could guide the graph variational autoencoder which uses
the normalised deformation representation.

• This work requires to train a separate neural network per expression. While this
approach provides flexibility, which is often required in industrial setting, future
work could explore training a conditional version, which allows to generate different
expressions based on a given condition.

• In the proposed approach, assembly with spectral mesh processing is a postprocess-
ing step. Therefore, comparing the influence of different parameters k is computa-
tionally inexpensive, as it does not require retraining of the networks. Nevertheless,
future research could focus on developing a solution which would involve assembly
with spectral mesh processing within a loss function, and the parameter k would
be a learnable parameter. A modified, differentiable assembly with spectral mesh
processing would need to be developed.

This page is intentionally left blank.

REFERENCES

[1] Abrevaya, V. F., Boukhayma, A., Wuhrer, S., and Boyer, E. (2019). A Decoupled 3D
Facial Shape Model by Adversarial Training. In Proceedings of the IEEE International
Conference on Computer Vision, pages 9419–9428.

[2] Agrawal, S., Pahuja, A., and Lucey, S. (2020). High accuracy face geometry cap-
ture using a smartphone video. In Proceedings - 2020 IEEE Winter Conference on
Applications of Computer Vision, WACV 2020, pages 81–90.

[3] Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein GAN. arXiv preprint
arXiv:1701.07875.

[4] Bagautdinov, T., Wu, C., Saragih, J., Fua, P., and Sheikh, Y. (2018). Modeling Facial
Geometry Using Compositional VAEs. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 3877–3886. IEEE.

[5] Bao, X., Tong, W., and Chen, F. (2023). A Spectral Segmentation Method for Large
Meshes. Communications in Mathematics and Statistics, 11:583–607.

[6] Bao, Y., Ding, T., Huo, J., Liu, Y., Li, Y., Li, W., Gao, Y., and Luo, J. (2025).
3d gaussian splatting: Survey, technologies, challenges, and opportunities. IEEE
Transactions on Circuits and Systems for Video Technology.

[7] Baran, I., Vlasic, D., Grinspun, E., and Popovi´c, J. P. (2009a). Semantic Deformation
Transfer. ACM SIGGRAPH 2009 papers, pages 1–6.

[8] Baran, I., Vlasic, D., Grinspun, E., and Popovi´c, J. P. (2009b). Semantic Deformation
Transfer. ACM SIGGRAPH 2009 papers, pages 1–6.

[9] Berthelot, D., Schumm, T., and Metz Google, L. (2017). BEGAN: Boundary Equilib-
rium Generative Adversarial Networks. arXiv preprint arXiv:1703.10717.

[10] Biewald, L. (2020). Experiment Tracking with Weights and Biases.

[11] Blanz, V. and Vetter, T. (1999). A Morphable Model For The Synthesis Of 3D Faces.
In Proceedings of the 26th annual conference on Computer graphics and interactive
techniques, pages 187–194.

[12] Booth, J., Roussos, A., Ververas, E., Antonakos, E., Ploumpis, S., Panagakis, Y., and
Zafeiriou, S. (2018). 3D Reconstruction of ’In-the-Wild’ Faces in Images and Videos.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(11):2638–2652.

[13] Booth, J., Roussos, A., Zafeiriou, S., Ponniah, A., and Dunaway, D. (2016). A 3D
Morphable Model learnt from 10,000 faces. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5543–5552.

140 | REFERENCES

[14] Bouritsas, G., Bokhnyak, S., Ploumpis, S., Zafeiriou, S., and Bronstein, M. (2019).
Neural 3D morphable models: Spiral convolutional networks for 3D shape representa-
tion learning and generation. In Proceedings of the IEEE International Conference on
Computer Vision, pages 7212–7221.

[15] Bronstein, M. M., Bruna, J., Lecun, Y., Szlam, A., and Vandergheynst, P. (2017).
Geometric Deep Learning: Going beyond Euclidean data. IEEE Signal Processing
Magazine, 34(4):18–42.

[16] Browatzki, B. and Wallraven, C. (2020). 3FabRec: Fast Few-shot Face alignment by
Reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6110–6120.

[17] Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2014). Spectral networks and deep
locally connected networks on graphs. In 2nd International Conference on Learning
Representations, ICLR 2014 - Conference Track Proceedings, pages 1–14.

[18] Cao, C., Weng, Y., Zhou, S., Tong, Y., and Zhou, K. (2014). FaceWarehouse: A 3D
facial expression database for visual computing. IEEE Transactions on Visualization
and Computer Graphics, 20(3):413–425.

[19] Chen, A., Chen, Z., Zhang, G., Mitchell, K., and Yu, J. (2019). Photo-Realistic
Facial Details Synthesis From Single Image. In Proceedings of the IEEE International
Conference on Computer Vision, pages 9429–9439.

[20] Chen, G. and Wang, W. (2024). A survey on 3d gaussian splatting. arXiv preprint
arXiv:2401.03890.

[21] Chen, Y., Wang, L., Li, Q., Xiao, H., Zhang, S., Yao, H., and Liu, Y. (2024).
Monogaussianavatar: Monocular gaussian point-based head avatar. In ACM SIGGRAPH
2024 Conference Papers, pages 1–9.

[22] Chen, Z. and Kim, T. K. (2021). Learning feature aggregation for deep 3D morphable
models. In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 13159–13168.

[23] Cheng, S., Bronstein, M., Zhou, Y., Kotsia, I., Pantic, M., and Zafeiriou, S.
(2019). MeshGAN: Non-linear 3D Morphable Models of Faces. arXiv preprint
arXiv:1903.10384.

[24] Clevert, D. A., Unterthiner, T., and Hochreiter, S. (2016). Fast and accurate deep
network learning by exponential linear units (ELUs). In 4th International Conference
on Learning Representations, ICLR 2016.

[25] Corsini, M., Larabi, M. C., Lavoué, G., Petřík, O., Váša, L., and Wang, K. (2013).
Perceptual metrics for static and dynamic triangle meshes. Computer Graphics Forum,
32(1):101–125.

[26] Croitoru, F.-A., Hondru, V., Ionescu, R. T., and Shah, M. (2022). Diffusion Models
in Vision: A Survey. 14(8):1–22.

[27] Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural net-
works on graphs with fast localized spectral filtering. In Advances in Neural Information
Processing Systems, pages 3844–3852.

REFERENCES | 141

[28] Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y., and Tong, X. (2019). Accurate 3D
face reconstruction with weakly-supervised learning: From single image to image set.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 285–295.

[29] Denton, E., Chintala, S., Szlam, A., and Fergus, R. (2015). Deep Generative Image
Models using a Laplacian Pyramid of Adversarial Networks. Advances in neural
information processing systems, pages 1486–1494.

[30] Dhamo, H., Nie, Y., Moreau, A., Song, J., Shaw, R., Zhou, Y., and Pérez-Pellitero,
E. (2024). Headgas: Real-time animatable head avatars via 3d gaussian splatting. In
European Conference on Computer Vision, pages 459–476. Springer.

[31] Dhariwal, P. and Nichol, A. (2021). Diffusion Models Beat GANs on Image Synthesis.
Advances in Neural Information Processing Systems, 11:8780–8794.

[32] Dong, Q., Wang, Z., Li, M., Gao, J., Chen, S., Shu, Z., Xin, S., Tu, C., and W., W.
(2023). Laplacian2Mesh: Laplacian-Based Mesh Understanding. IEEE Transactions
on Visualization &; Computer Graphics, pages 1–13.

[33] Dubrovina, A. and Kimmel, R. (2010). Matching shapes by eigendecomposition of
the Laplace-Beltrami operator. In Proc. 3DPVT, pages 1–8.

[34] Egger, B., Smith, W., Tewari, A., Wuhrer, S., Zollhoefer, M., Beeler, T., Bernard,
F., Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., and Vetter, T.
(2020). 3D Morphable Face Models—Past, Present, and Future. ACM Transactions on
Graphics, 39(5):1–38.

[35] Ekman, P., Friesen, W. V., and Hager, J. C. (2002). Facial Action Coding System:
The Manual. Research Nexus division of Network Information Research Corporation,
Salt Lake City, USA, 2nd edition.

[36] Engel, J., Koltun, V., and Cremers, D. (2018). Direct Sparse Odometry. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 40(3):611–625.

[37] Engel, J., Schöps, T., and Cremers, D. (2014). LSD-SLAM: Large-Scale Direct
Monocular SLAM. Computer Vision – ECCV, 8690:834–849.

[38] Falcon, W. (2019). PyTorch Lightning.

[39] Feng, X. and Shi, M. (2009). Surface representation and processing. In 2009 8th
IEEE International Conference on Cognitive Informatics, pages 542–545. IEEE.

[40] Gain, J. and Bechmann, D. (2008). A survey of spatial deformation from a user-
centered perspective. ACM Transactions on Graphics, 27(4).

[41] Gao, L., Lai, Y. K., Liang, D., Chen, S. Y., and Xia, S. (2016). Efficient and flexible
deformation representation for data-driven surface modeling. ACM Transactions on
Graphics, 35(5):158:1–158:17.

[42] Gao, L., Lai, Y.-K., Yang, J., Ling-Xiao, Z., Xia, S., and Kobbelt, L. (2019). Sparse
Data Driven Mesh Deformation. In IEEE Transactions on Visualization and Computer
Graphics, pages 1–15.

142 | REFERENCES

[43] Gao, Z., Yan, J., Zhai, G., Zhang, J., Yang, Y., and Yang, X. (2021). Learning Local
Neighboring Structure for Robust 3D Shape Representation. In The Thirty-Fifth AAAI
Conference on Artificial Intelligence (AAAI-21) Learning.

[44] Garland, M. and Heckbert, P. S. (1997). Surface simplification using quadric error
metrics. In Proceedings of the 24th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH 1997, pages 209–216.

[45] Gecer, B., Lattas, A., Ploumpis, S., Deng, J., Papaioannou, A., Moschoglou, S.,
and Zafeiriou, S. (2019). Synthesizing Coupled 3D Face Modalities by Trunk-Branch
Generative Adversarial Networks. arXiv preprint arXiv:1909.02215.

[46] Gong, S., Chen, L., Bronstein, M., and Zafeiriou, S. (2019). SpiralNet++: A fast
and highly efficient mesh convolution operator. In Proceedings - 2019 International
Conference on Computer Vision Workshop, ICCVW 2019, pages 4141–4148.

[47] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative Adversarial Nets. Advances in neural
information processing systems, pages 2672–2680.

[48] Gruber, A., Fratarcangeli, M., Zoss, G., Cattaneo, R., Beeler, T., Gross, M., and
Bradley, D. (2020). Interactive Sculpting of Digital Faces Using an Anatomical Model-
ing Paradigm. Eurographics Symposium on Geometry Processing, 39(5).

[49] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. (2017).
Improved Training of Wasserstein GANs. Advances in neural information processing
systems, pages 5767–5777.

[50] Hanocka, R., Fleishman, S., Hertz, A., Fish, N., Giryes, R., and Cohen, D. (2019).
MeshCNN: A Network with an Edge. ACM Transactions on Graphics (TOG), 38(4):1–
12.

[51] Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Courna-
peau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-
Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and
Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825):357–362.

[52] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2016-Decem:770–778.

[53] Hernandez, M., Hassner, T., Choi, J., and Medioni, G. (2017). Accurate 3D face
reconstruction via prior constrained structure from motion. Computers and Graphics
(Pergamon), 66:14–22.

[54] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.
(2012). Improving neural networks by preventing co-adaptation of feature detectors.
CoRR.

[55] Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models.
Advances in Neural Information Processing Systems, 2020-Decem(NeurIPS 2020):1–25.

REFERENCES | 143

[56] Hu, L., Zhang, H., Zhang, Y., Zhou, B., Liu, B., Zhang, S., and Nie, L. (2024).
Gaussianavatar: Towards realistic human avatar modeling from a single video via
animatable 3d gaussians. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 634–644.

[57] Huang, H., Li, Z., Sun, Z., and Tan, T. (2018). IntroVAE: Introspective Variational
Autoencoders for Photographic Image Synthesis. In Advances in neural information
processing systems, pages 52–63.

[58] Huang, X. and Belongie, S. (2017). Arbitrary Style Transfer in Real-Time with
Adaptive Instance Normalization. In Proceedings of the IEEE International Conference
on Computer Vision, volume 2017-Octob, pages 1510–1519.

[59] Humain Limited (2022). Humain Limited - Research & Development.

[60] Ichim, A. E., Kadleček, P., Kavan, L., and Pauly, M. (2017). Phace: Physics-based
Face Modeling and Animation. ACM Trans. Graph, 36(153):1–14.

[61] Jain, V. and Zhang, H. (2006). Robust 3D Shape Correspondence in the Spectral
Domain. In Proc. 3DPVT, Vol. 2, pages 1–12.

[62] Jiang, Z. H., Wu, Q., Chen, K., and Zhang, J. (2019). Disentangled representation
learning for 3D face shape. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages 11949–11958. IEEE.

[63] Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018). Progressive growing of
GANs for improved quality, stability, and variation. In 6th International Conference on
Learning Representations, ICLR 2018 - Conference Track Proceedings.

[64] Karras, T., Laine, S., and Aila, T. (2019a). A style-based generator architecture
for generative adversarial networks. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, volume 2019-June, pages
4396–4405.

[65] Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. (2019b).
Analyzing and Improving the Image Quality of StyleGAN. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8110–8119.

[66] Kerbl, B., Kopanas, G., Leimkühler, T., and Drettakis, G. (2023). 3d gaussian
splatting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1.

[67] Kim, B., Han, I., and Ye, J. C. (2022). DiffuseMorph: Unsupervised Deformable
Image Registration Using Diffusion Model. pages 347–364.

[68] Kingma, D. P. and Ba, J. L. (2015). Adam: A method for stochastic optimization. In
3rd International Conference on Learning Representations, ICLR 2015.

[69] Kingma, D. P. and Welling, M. (2014). Auto-Encoding Variational Bayes. Interna-
tional Conference on Learning Representations (ICLR).

[70] Kipf, T. N. and Welling, M. (2019). Semi-supervised classification with graph
convolutional networks. In 5th International Conference on Learning Representations,
ICLR 2017 - Conference Track Proceedings, pages 1–14.

144 | REFERENCES

[71] Le, B. H. and Deng, Z. (2012). Smooth Skinning Decomposition with Rigid Bones.
ACM Trans. Graph, 31(6):1–10.

[72] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken,
A., Tejani, A., Totz, J., Wang, Z., and Shi Twitter, W. (2017). Photo-Realistic Single
Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 4681–4690.

[73] Lehoucq, R. B., Sorensen, D. C., and Yang, C. (1998). ARPACK users’ guide:
solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods.
Society for Industrial and Applied Mathematics.

[74] Lemeunier, C., Denis, F., Lavoué, L., and Dupont, F. (2023). SpecTrHuMS: Spectral
transformer for human mesh sequence learning. Computers & Graphics, 115:191–203.

[75] Lescoat, T., Liu, H., Thiery, J., Jacobson, A., Boubekeur, T., and Ovsjanikov, M.
(2020). Spectral Mesh Simplification. Computer Graphics Forum, 39(2):315–324.

[76] Lewis, J. P., Cordner, M., and Fong, N. (2000). Pose space deformation: A unified
approach to shape interpolation and skeleton-driven deformation. In Proceedings of the
ACM SIGGRAPH Conference on Computer Graphics, pages 165–172.

[77] Li, H., Weise, T., and Pauly, M. (2010). Example-based facial rigging. ACM
Transactions on Graphics, 29(4):1–6.

[78] Li, R., Bladin, K., Zhao, Y., Chinara, C., Ingraham, O., Xiang, P., Ren, X., Prasad,
P., Kishore, B., Xing, J., and Li, H. (2020). Learning Formation of Physically-Based
Face Attributes. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3410–3419.

[79] Li, T., Bolkart, T., Black, M. J., Li, H., and Romero, J. (2017). Learning a model of
facial shape and expression from 4d scans. ACM Trans. Graph., 36(6):194–1.

[80] Lin, J., Yuan, Y., Shao, T., and Zhou, K. (2020). Towards High-Fidelity 3D Face
Reconstruction from In-the-Wild Images Using Graph Convolutional Networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 5891–5900.

[81] Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., and Black, M. J. (2015). SMPL:
A skinned multi-person linear model. ACM Trans. Graphics (Proc. SIGGRAPH Asia),
34(6):248:1–248:16.

[82] Melzi, S., Ren, J., Rodolà, E., Sharma, A., Wonka, P., and Ovsjanikov, M. (2019).
ZoomOut: spectral upsampling for efficient shape correspondence. ACM Trans. Graph,
38(6):155: 1–14.

[83] Melzi, S., Rodol, E., Castellani, U., and Bronstein, M. (2018). Localized Manifold
Harmonics for Spectral Shape Analysis. Computer Graphics Forum, 37(6):20–34.

[84] Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. (2003). Discrete Differential-
Geometry Operators for Triangulated 2-Manifolds. Visualization and Mathematcs III,
page 35–57.

REFERENCES | 145

[85] Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., and
Ng, R. (2021). Nerf: Representing scenes as neural radiance fields for view synthesis.
Communications of the ACM, 65(1):99–106.

[86] Moreau, A., Song, J., Dhamo, H., Shaw, R., Zhou, Y., and Pérez-Pellitero, E. (2024).
Human gaussian splatting: Real-time rendering of animatable avatars. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
788–798.

[87] Murray, J. D. and VanRyper, W. (1996). Encyclopedia of Graphics File Formats.
O’Reilly & Associates, Inc., Sebastopol, second edition.

[88] Nasikun, A. and Hildebrandt, K. (2022). The Hierarchical Subspace Iteration Method
for Laplace–Beltrami Eigenproblems. ACM Trans. Graph., 41(2):17: 1–14.

[89] Neumann, T., Varanasi, K., Wenger, S., Wacker, M., Magnor, M., and Theobalt, C.
(2013). Sparse localized deformation components. ACM Transactions on Graphics,
32(6):1–10.

[90] Nichol, A. and Dhariwal, P. (2021). Improved Denoising Diffusion Probabilistic
Models.

[91] Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B., Sutskever,
I., and Chen, M. (2021). GLIDE: Towards Photorealistic Image Generation and Editing
with Text-Guided Diffusion Models.

[92] Ortega, A., Frossard, P., Kovacevic, J., Moura, J. M., and Vandergheynst, P. (2018).
Graph Signal Processing: Overview, Challenges, and Applications. Proceedings of the
IEEE, 106(5):808–828.

[93] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., and Antiga, L. (2019). Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems,
32.

[94] Pidhorskyi, S., Adjeroh, D. A., and Doretto, G. (2020). Adversarial Latent Autoen-
coders. In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR).

[95] Popović, J., Seitz, S. M., and Erdmann, M. (2003). Motion sketching for control of
rigid-body simulations. ACM Transactions on Graphics, 22(4):1034–1054.

[96] Qian, S., Kirschstein, T., Schoneveld, L., Davoli, D., Giebenhain, S., and Nießner,
M. (2024). Gaussianavatars: Photorealistic head avatars with rigged 3d gaussians. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 20299–20309.

[97] Qiao, Y., Gao, L., Yang, J., Rosin, P., Lai, Y., and Chen, X. (2022). Learning on 3D
Meshes With Laplacian Encoding and Pooling. IEEE Transactions on Visualization
and Computer Graphics, 28(2):1317–1327.

[98] Rabby, A. and Zhang, C. (2023). Beyondpixels: A comprehensive review of the
evolution of neural radiance fields. arXiv preprint arXiv:2306.03000.

146 | REFERENCES

[99] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., Krueger, G., and Sutskever, I. (2021). Learning
Transferable Visual Models From Natural Language Supervision.

[100] Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434.

[101] Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M. (2022). Hierarchical
Text-Conditional Image Generation with CLIP Latents. (Figure 3).

[102] Ranjan, A., Bolkart, T., Sanyal, S., and Black, M. J. (2018). Generating 3D Faces Us-
ing Convolutional Mesh Autoencoders. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
pages 725–741. ECCV.

[103] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022). High-
Resolution Image Synthesis with Latent Diffusion Models. pages 10674–10685.

[104] Russo, M. (2010). Polygonal Modeling: Basic and Advanced Techniques. Jones &
Bartlett Learning.

[105] Saharia, C., Chan, W., Chang, H., Lee, C., Ho, J., Salimans, T., Fleet, D., and
Norouzi, M. (2022a). Palette: Image-to-Image Diffusion Models, volume 1. Association
for Computing Machinery.

[106] Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D. J., and Norouzi, M. (2022b).
Image Super-Resolution Via Iterative Refinement. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

[107] Saito, S., Schwartz, G., Simon, T., Li, J., and Nam, G. (2024). Relightable gaussian
codec avatars. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 130–141.

[108] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X.
(2016). Improved Techniques for Training GANs. Advances in neural information
processing systems, pages 2234–2242.

[109] Sanyal, S., Bolkart, T., Feng, H., and Black, M. J. (2019). Learning to Regress 3D
Face Shape and Expression from an Image without 3D Supervision. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 7763–7772.

[110] Sekuler, R. and Blake, R. (2006). Perception. McGraw-Hill, Boston, 5th edition.

[111] Shamai, G., Slossberg, R., and Kimmel, R. (2019). Synthesizing Facial Photome-
tries and Corresponding Ge-ometries Using Generative Adversarial Networks. ACM
Transactions on Multimedia Computing, Communications, and Applications (TOMM),
15(3s):1–24.

[112] Sharp, N. and Crane, K. (2020). A Laplacian for Nonmanifold Triangle Meshes.
Computer Graphics Forum, 39(5):69–80.

[113] Slossberg, R., Shamai, G., and Kimmel, R. (2018). High Quality Facial Surface
and Texture Synthesis via Generative Adversarial Networks. In Proceedings of the
European Conference on Computer Vision (ECCV).

REFERENCES | 147

[114] Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and Ganguli, S. (2015).
Deep unsupervised learning using nonequilibrium thermodynamics. 32nd International
Conference on Machine Learning, ICML 2015, 3:2246–2255.

[115] Sorkine, O. (2005). Laplacian Mesh Processing. Eurographics (STARs), 29.

[116] Sorkine, O., Alexa, M., and Berlin, T. U. (2007). As-Rigid-As-Possible Surface
Modeling. In Symposium on Geometry processing, volume 4, pages 109–116. Alexander
Belyaev.

[117] Sorkine, O. and Cohen-Or, D. (2004). Least-squares Meshes. In Proceedings Shape
Modeling Applications IEEE, pages 191–199.

[118] Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P.
(2004). Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM
SIGGRAPH symposium on Geometry processing, pages 175–184.

[119] Sorkine, O., Cohen-Or, D., and Toldeo, S. (2003). High-pass quantization for mesh
encoding. Eurographics Symposium on Geometry Processing, 42:42–51.

[120] Sumner, R. W. and Popovic, J. (2004). Deformation Transfer for Triangle Meshes.
ACM Transactions on Graphics, 23(2):399–405.

[121] Sumner, R. W., Zwicker, M., Gotsman, C., and Popovi´c, J. P. (2005). Mesh-Based
Inverse Kinematics. ACM transactions on graphics (TOG), 24(3):488–495.

[122] Tan, Q., Gao, L., Lai, Y. K., and Xia, S. (2018). Variational Autoencoders for
Deforming 3D Mesh Models. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages 5841–5850.

[123] Tena, J. R., De La Torre, F., and Matthews, I. (2011). Interactive Region-Based
Linear 3D Face Models. ACM SIGGRAPH 2011 papers, pages 1–10.

[124] Thies, J., Zollhöfer, M., Nießner, M., Valgaerts, L., Stamminger, M., and Theobalt,
C. (2015). Real-time Expression Transfer for Facial Reenactment. ACM Trans. Graph.,
34(6):183:1–183:14.

[125] Tong, W., Yang, X., Pan, M., and Chen, F. (2020). Spectral mesh segmentation via
ℓ0 gradient minimization. IEEE Trans. Vis. Comput. Graph., 26(4):440–456.

[126] Tuan Tran, A., Hassner, T., Masi, I., Paz, E., Nirkin, Y., and Medioni, G. (2018).
Extreme 3D Face Reconstruction: Seeing Through Occlusions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 3935–3944.

[127] Váša, L. and Rus, J. (2012). Dihedral Angle Mesh Error: a fast perception correlated
distortion measure for fixed connectivity triangle meshes. Eurographics Symposium on
Geometry Processing, 31(5):1715–1724.

[128] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
, and Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information
Processing Systems, 2017-Decem(Nips):5999–6009.

[129] Verma, N., Boyer, E., and Verbeek, J. (2018). FeaStNet: Feature-Steered Graph
Convolutions for 3D Shape Analysis. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 2598–2606.

148 | REFERENCES

[130] Vlasic, D., Brand, M., Pfister, H., and Popovic, J. (2005). Face Transfer with
Multilinear Models. ACMTrans. Graph, 24(3):426–433.

[131] Wang, H., Lu, T., Au, O., and Tai, C. (2014). Spectral 3D mesh segmentation with
a novel single segmentation field. Graphical Models, 76(5):440–456.

[132] Wang, K., Torkhani, F., and Montanvert, A. (2012). A fast roughness-based approach
to the assessment of 3D mesh visual quality. Computers and Graphics (Pergamon),
36(7):808–818.

[133] Wang, X., Guo, Y., Deng, B., and Zhang, J. (2020). Lightweight Photometric Stereo
for Facial Details Recovery. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 740–749.

[134] Wu, C., Bradley, D., Gross, M., and Beeler, T. (2016). An Anatomically-Constrained
Local Deformation Model for Monocular Face Capture. ACM Trans. Graph., 35(12):1–
115.

[135] Wu, F., Bao, L., Chen, Y., Ling, Y., Song, Y., Li, S., Ngi Ngan, K., and Liu, W.
(2019). MVF-Net: Multi-View 3D Face Morphable Model Regression. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 959–968.

[136] Wu, Q., Zhang, J., Lai, Y. K., Zheng, J., and Cai, J. (2018). Alive Caricature from
2D to 3D. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 7336–7345. IEEE.

[137] Wu, S., Rupprecht, C., and Vedaldi, A. (2020a). Unsupervised Learning of Probably
Symmetric Deformable 3D Objects from Images in the Wild. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1–10.

[138] Wu, Y. and Ji, Q. (2019). Facial Landmark Detection: a Literature Survey. Interna-
tional Journal on Computer Vision, 127(2):115–142.

[139] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. (2020b). A Compre-
hensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks
and Learning Systems, pages 1–21.

[140] Xiao, Y. P., Lai, Y. K., Zhang, F. L., Li, C., and Gao, L. (2020a). A survey on deep
geometry learning: From a representation perspective. Computational Visual Media,
6(2):113–133.

[141] Xiao, Y. P., Lai, Y. K., Zhang, F. L., Li, C., and Gao, L. (2020b). A survey on deep
geometry learning: From a representation perspective. Computational Visual Media,
6(2):113–133.

[142] Xu, C., Lin, H., Hu, H., and He, Y. (2021). Fast calculation of Laplace-Beltrami
eigenproblems via subdivision linear subspace. Computers & Graphics, 97:236–247.

[143] Yadan, O. (2019). Hydra - A framework for elegantly configuring complex applica-
tions.

[144] Yang, H., Zhu, H., Wang, Y., Huang, M., Shen, Q., Yang, R., and Cao, X. (2020).
FaceScape: a Large-scale High Quality 3D Face Dataset and Detailed Riggable 3D
Face Prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 601–610.

REFERENCES | 149

[145] Yuan, Y.-J., Lai, Y.-K., Yang, J., Fu, H., and Gao, L. (2019). Mesh Variational
Autoencoders with Edge Contraction Pooling. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR) Workshops, pages 274–275.
IEEE.

[146] Zeng, X., Peng, X., and Qiao, Y. (2019). DF2Net: A dense-fine-finer network for
detailed 3D face reconstruction. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2315–2324. IEEE.

[147] Zhang, H., Kaick, O. V., and Dyer, R. (2010). Spectral mesh processing. Computer
graphics forum, 29(6):1865–1894.

[148] Zhang, J., Cai, H., Guo, Y., and Peng, Z. (2020). Landmark Detection and 3D Face
Reconstruction for Caricature using a Nonlinear Parametric Model. CoRR, abs/2004.0:1–
12.

[149] Zhao, J., Mathieu, M., and Lecun, Y. (2017). Energy-based generative adversarial
network. ICLR.

[150] Zhou, Y., Deng, J., Kotsia, I., and Zafeiriou, S. (2019). Dense 3D Face Decoding
over 2500FPS: Joint Texture & Shape Convolutional Mesh Decoders. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 1097–1106.

[151] Zhou, Y., Wu, C., Li, Z., Cao, C., Ye, Y., Saragih, J., Li, H., and Sheikh, Y. (2020).
Fully Convolutional Mesh Autoencoder using Efficient Spatially Varying Kernels.
Advances in Neural Information Processing Systems, 33:9251–9262.

[152] Zhou, Z., Ma, F., Fan, H., Yang, Z., and Yang, Y. (2024). Headstudio: Text
to animatable head avatars with 3d gaussian splatting. In European Conference on
Computer Vision, pages 145–163. Springer.

[153] Zollhöfer, M., Thies, J., Garrido, P., Bradley, D., Beeler, T., Pérez, P., Stamminger,
M., Nießner, M., and Theobalt, C. (2018). State of the art on monocular 3D face
reconstruction, tracking, and applications. Computer Graphics Forum, 37(2):523–550.

This page is intentionally left blank.

APPENDIXA

DEEP3DMM COMPARISON PLATFORM

SOFTWARE DESIGN

A.1 Overview

This appendix provides insight into software design and implementation details of the
comparison platform.

A.1.1 Models

The methods are implemented as either autoencoder [129, 14, 46, 43] or variational autoen-
coder [151]. These models correspond to GraphVariationalAutoencoder and GraphAutoen-
coder classes in Figures A.1 and A.2. These classes inherit from the LightningModule [38],
significantly reducing the implementation boilerplate.

A.1.2 Architectures

The models are composed of different pieces of neural network architectures. As shown
in Figure A.1, the GraphAutoencoder comprises one instance of the MeshEncoder class
and one instance of the MeshDecoder class. These are subclasses of the torch.nn.Module
class, which is a base class for all neural network modules in PyTorch framework [93].
The GraphVariationalAutoencoder has a different encoder, an instance of the Probabilis-
ticMeshEncoder class. Unlike the MeshDecoder, which outputs the latent code Z, the
ProbabilisticMeshEncoder outputs the mean and standard deviation of the normal dis-
tribution, from which GraphVariationalAutoencoder samples the latent code input to an
instance of the MeshDecoder.

152 | A.1 Overview

architectures

layers

MeshEncoder MeshDecoder ProbabilisticMeshEncoder

«interface»
HorizontalBlockBase

«interface»
VerticalBlockBase

* *

models
GraphAutoencoder GraphVariationalAutoencoder

torch.nn.Module

1

*

1 1 1

torch.nn.Module torch.nn.Module

Figure A.1 The UML diagram showing the relationship between classes contained within
three core modules of the Deep3DMM Comparison Platform: layers, architectures and
models. Sequences of layers form HorizontalBlock or VerticalBlock objects composed
into architectures such as MeshEncoder, MeshDecoder and ProbabilisticMeshDecoder.
These architectures build the model, either an autoencoder or a variational autoencoder.
This diagram considerably simplifies the layers module, and Figure A.3 gives more insight
into it. The models module is also simplified in this diagram. Figure A.2 provides more
details on this module.

A.1 Overview | 153

A.1.3 Horizontal and vertical blocks

The architectures are composed of instances of classes which implement the Horizon-
talBlockBase and the VerticalBlockBase abstract classes. Although these classes can be
confusing at first, they improve the computational and memory footprint of the implemen-
tation. In some cases, they allow to reduce the number of learnable parameters.

Horizontal blocks work with graphs that have the same same number of vertices and
connections, and contain operations which do not change the graph structure. Because
of this, they only need one graph sampler, and learned mappings between graphs can
be reused, making the model more efficient. Vertical blocks, on the other hand, handle
changes in graph structure, such as upsampling, downsampling, and convolutions with
strides greater than 1, meaning that they require separate graph samplers for each operation.
This approach improves flexibility by performing graph sampling during runtime instead
of requiring predefined structures in preprocessing.

Figure A.3 depicts intricacies of HorizontalBlockBase and VerticalBlockBase classes.

A.1.4 Layers and samplers

The horizontal and vertical blocks are built of neural network layers. The type of these
layers is the main differentiator between the compared methods. For example, each method
uses a different convolutional operator. Additionally, the horizontal and vertical blocks
contain an instance or multiple instances of classes implementing a GraphSamplerBase
abstract class. These instances perform the graph downsampling or upsampling operation
and store the attributes associated with graph sampling.

A.1.5 Data processing and training

Figure A.2 shows the main components involved in the training process of deep 3D
morphable models. Apart from the previously described pieces of neural architecture,
the models use a GeometricLosses object, which provides methods for calculating the
error metrics used in a loss function. The model uses the UniversalDatastructure as an
intermediary to access data stored on a hard drive. The ExplicitDataModule uses the same
UniversalDatastructure to get paths to data, including samples from the training dataset.

The model, such as a GraphAutoencoder or a GraphVariationalAutoencoder, the
ExplicitDatamodule and different types of callbacks and loggers are used by the py-
torch_lightning.Trainer [38], which runs the training, validation and test dataloaders,
handles the forward pass and the backpropagation, ensures that data is on the correct
device and calls the callbacks. The logger tracks the metrics and other information through

154 | A.1 Overview

models losses

data_structures

UniversalDatastructure

GeometricLosses

pytorch_lightning.Callback

pytorch_lightning.Logger
pytorch_lightning.Trainer

pytorch_lightning.LightningModule

GraphAutoencoder

GraphVariationalAutoencoder

data_modules

ExplicitDataModule* pytorch_lightning.Trainer

1

1

Trained model
return

Figure A.2 The UML diagram depicting the relationship between classes of the
Deep3DMM Comparison Platform, which take part in training, testing and validation
of the deep 3D morphable model. Each model contains the GeometricLosses object, which
provides methods for the error metrics calculation. Each model also has an instance of the
UniversalDatastructure, allowing the model to access external data and metadata indepen-
dently of the file structure of the dataset. The pytorch_lightning.Trainer object orchestrates
the training. It runs the forward process and the backpropagation of the model, calls the
callbacks and logs the results using a choice of loggers. It uses an ExplicitDataModule
to lazy-load batches of training, validation and test data into the model. The optimised
parameters, the associated hyperparameters and other configurations are stored on the
hard drive. The details on the objects of which the models are composed are shown in
Figure A.3. The relationships with other modules of the data_structures and data_modules
can be found in Figure A.5.

A.2 Layers and architectures | 155

the appropriate callbacks. In this work, the Weights and Biases [10] experiment tracking
platform is used to log and visualise the metrics gathered during the training process.

A.2 Layers and architectures

A.2.1 Graph sampling

The GraphSamplerBase abstract class is an interface for different graph sampling methods.
Quadric Mesh Simplification [44] is performed by methods in the QuadricMeshSimplifica-
tion class. This sampling method is based on topology and coordinates of sampled meshes.
In contrast, simple sampling proposed in [151] is based purely on graph connectivity, and
it results in a sequence of non-manifold graphs. Simple sampling is performed by methods
in the SimpleSampler class.

A.2.2 Graph convolution and feature aggregation

For the purpose of convolution operation, the lower resolution graph is calculated using
the SimpleSampler class. Consistently with traditional convolutional operators, transpose
graph convolution allows to upscale a graph. SpiralConv [14], SpiralPlusPlusConv [46],
FeaStConv [129], VCConv [151] and LSAConv [43] are subclasses of torch.nn.Module.
Each of these classes implements its corresponding graph convolution method.

Features aggregation is implemented in SpiralConv [14], SpiralPlusPlusConv [46],
FeaStConv [129], VCConv [151] and LSAConv [43] classes. The residual block is imple-
mented as part of the VCConv [151] class.

A.2.3 Horizontal and vertical blocks

In object-oriented programming, the object can be interacted with invocation and by
inspection. Invocation refers to interacting with an object by calling its methods. That
includes polymorphism, where the same method invoked by a different object type can
run a different code. Inspection refers to externally examining and using the object
based on this information. In object-oriented programming, invocation is preferred over
inspection because there are often no formal ways to test if the object satisfies the user’s
requirements. The abstract base classes (ABC) were introduced to overcome this issue in
Python programming language. Abstract base classes allow the definition of a consistent
interface for every class which inherits from them. Consequently, they ensure that classes,
which inherit from the abstract base class, implement all the required abstract methods and
properties.

156 | A.2 Layers and architectures

layers

* SpiralPlusPlusConv

SpiralConv

FeaStConv

VCConv

QuadricMeshSimplificationSimpleSampler

SpiralPlusPlusHorizontalBlock

«interface»
GraphSamplerBase

LSAConv

«interface»
HorizontalBlockBase

«interface»
VerticalBlockBase

SpiralHorizontalBlock

VCHorizontalBlock

LSAHorizontalBlock

FeaStHorizontalBlock

SpiralPlusPlusVerticalBlock

SpiralVerticalBlock

VCVerticalBlock

LSAVerticalBlock

FeaStVerticalBlock

*

*

*

*

*

*

1 *

*

*

*

torch.nn.Module

torch.nn.Module

torch.nn.Module

torch.nn.Module

torch.nn.Module

architectures

MeshEncoder MeshDecoder ProbabilisticMeshEncoder

** *

Figure A.3 The UML diagram showing the relationship between the classes in the layers
module of the Deep3DMM Comparison Platform. SpiralConv [14], SpiralPlusPlusConv
[46], FeaStConv [129] and LSAConv [22] implement the graph convolutions and pooling
layers, while VCConv [151] implements the residual blocks built of graph convolutions,
pooling and residual layers. The horizontal and vertical blocks are the compositions
of these objects. The HorizontalBlocks have only one graph sampler instance, while
VerticalBlocks have at least one graph sampler.

A.3 Data loading and processing | 157

MeshEncoder, MeshDecoder and ProbabilisticMeshEncoder classes contain a sequence
of horizontal blocks or vertical blocks. To ensure that all the required methods are imple-
mented and that they behave predictably, different types of horizontal and vertical blocks
are implementations of base abstract classes, the HorizontalBlockBase and the Vertical-
BlockBase. Each horizontal or vertical block contains at least one Conv class associated
with the type of this horizontal or vertical block. For example, SpiralHorizontalBlock
contains at least one instance of SpiralConv [14] class.

The original implementations of the methods compared in this work rely on the
separate preprocessing step, in which graph sampling is performed. Performing this graph
sampling preprocessing step requires prior knowledge about the number of subsampled
and upsampled graphs. In contrast, graph sampling is performed during runtime in the
proposed implementation based on the model’s structure. Therefore, the proposed design
provides more flexibility in experimentation.

Importantly, subclasses of the HorizontalBlockBase have only one instance of a class
implementing the GraphSamplerBase abstract class because horizontal blocks operate on
a sequence of graphs with the same connectivity and vertex count. In other words, the
horizontal blocks cannot contain any layers that change the graph structure: upsampling
layers, downsampling layers or convolutional and transposed convolutional operations
with strides greater than 1. This design decision allows the use of only one graph sampler
for each operation within the horizontal block. Additionally, in methods which use learned
mapping between the consecutive graphs [151, 43], this learned mapping can be reused
within the horizontal block because the structure of the graphs is the same. This design
comes with two advantages. Firstly, the number of learnable parameters can be reduced
when using methods which utilise the learned mapping between the consecutive graphs.
Secondly, regardless of the method used, the mapping between the consecutive layers can
be calculated once and shared between the layers, reducing memory consumption.

Unlike the horizontal blocks, the vertical blocks handle graph upsampling and down-
sampling, as well as the convolutional and transposed convolutional operations with strides
of 2 and more. Each of these operations is associated with a separate instance of a class
which implements the GraphSamplerBase abstract class.

A.3 Data loading and processing

A.3.1 Universal interface to different file structures

Datasets of facial meshes can be stored in various incompatible directory structures and
naming conventions, as they often come from external sources. The DatastructureBase
abstract class addresses this incompatibility issue. The class provides a unified interface to

158 | A.3 Data loading and processing

datasets and to other processing and neural network training metadata. The methods of
the DatastructureBase abstract class allow iteration over dataset samples by subject or by
shape, independently of the actual structure of the data, as long as there exists a class which
implements the DatastructureBase abstract class. In this work, the UniversalDatastructure
class implements the DatastructureBase. This UniversalDatastructure class is compatible
with the file structure presented in Figure A.4.

UniversalDatastructure is used whenever there is a need to access or save any data or
metadata. It is used by the model, the data modules which load the training, validation
and test batches, as well as by the implementations of the DataProcessBase abstract class,
which preprocess the datasets. The file structure shown in Figure A.4 is the result of
multiple iterations and has proven sufficiently flexible and practical in this work.

The data directory contains subdirectories for each dataset. Each dataset directory
organises files into three main subdirectories: _general, _training and _representations. The
_general directory stores information common to all the other files in the dataset, regardless
of the data representation. The textfiles containing the names of shapes and subjects
are used by the ExplicitDataModule class and different iterators, which are depicted in
Figure A.5. The tri_faces.npy and quad_faces.npy files store the connectivity information
of dataset samples in NumPy format. As the mesh connectivity is shared across all the
dataset samples, storing this information in each sample would be redundant and inefficient,
considering both memory footprint and data loading time during the model training.

The _representations directory stores different representations of the dataset samples in
separate subdirectories. These representations are the signal on the graph’s nodes and are
used as inputs to deep 3D morphable models. They also play a role in the calculation of the
loss functions, as shown in Equations (3.20 - 3.25). Each of them is divided into directories
for different facial shapes, and each file within each shape directory contains NumPy array
files, one per subject. Additional information, such as a mean face, standard deviation or
minimum and maximum features, is stored as NumPy array files with an underscore as a
prefix. Different representations are the results of different stages of data preprocessing,
described with Equations (3.14 - 3.19).

The _training directory contains the training versions subdirectories. Each training
version stores the text files used for model training. In the work covered in this chapter,
the input_shapes.txt and output_shapes.txt contain the same neutral shape name. The
latent_points.txt specifies the nodes of the bottleneck layer in Mesh Autoencoder [151]
method. Finally, the training_subjects.txt, validation_subject.txt and testing_subjects.txt
are output by a method of the DataProcess class. The method splits the subjects listed
in all_subject_names.txt into training, validation and test sets. The same set of training,
validation and test samples across all the experiments ensures a fair comparison.

A.3 Data loading and processing | 159

data

Facsimile

FaceScape

FaceWarehouse

_general _representations

all_shape_names.txt

all_subject_names.txt

neutral_shape.txt

tri_faces.npy

quad_faces.npy

obj_raw

cart

cart_ctr

cart_ctr_reg

cart_ctr_reg_scl

cart_ctr_reg_scl_dr

cart_ctr_reg_scl_dr_norm

cart_ctr_reg_scl_std

cart_ctr_reg_scl_norm

01_Neutral

_mean.npy

Age18-AshleyPerez.npy

Age78-AlbertBrooks.npy

.
.
.

input_shapes.npy

output_shapes.npy

latent_points.npy

training_subjects.npy

testing_subjects.npy

validation_subjects.npy

Facsimile

06_Face_Compression

07_Mouth_Wide

_training

Facsimile

v_1

v_2

Figure A.4 The structure of datasets and other files used in this work by the Deep3DMM
Comparison Platform. The UniversalDatastructure provides an interface between this file
structure and the objects of the platform.

160 | A.3 Data loading and processing

Convenient orchestration of data processing

The DataProcessBase abstract class implements methods for common data processing
operations. These methods use iterators with associated readers and transforms. The
resulting interface allows quickly composing an arbitrary data processing pipeline. The
methods must be listed in the process() method of the DataProcess subclass. This method
calls a sequence of the processing operations defined by the parent class.

A.3.2 Iterators

The data processing pipeline is built of a sequence of iterators. The iterators inherit from
the torch.utils.data.Dataloader [93] class, and they accommodate iteration through the set
of data samples stored in either OBJ or NumPy [51] format. Different types of iterators
are implemented, depending on the metric calculated across all the iterated samples. The
Numpy iterator object is the basic iterator, which does not calculate or output any metrics.
The iterator instances of the Mean, Scale, MinMax, MinMaxMean, StdDev and L1Norm
classes output the following, respectively: per-channel average of the samples, uniform
scalar factor calculated as in Equation (3.7), the minimum and the maximum per-channel
values of a feature, minimum, maximum and average per-channel values of a feature and
the L1 norm calculated between two samples. The metrics, calculated and saved after the
iteration is complete, can be used by the transformation objects in the subsequent iterator.

A.3.3 Readers and data formats

The raw dataset samples are stored in Wavefront OBJ format [87]. This format encodes the
mesh geometry as ASCII text; therefore, its read and write time is longer than that of binary
formats. Moreover, the Wavefront OBJ files store the faces information in each sample,
despite being the same across all the samples in the dataset. Based on the comparative
evaluation, read and write time of the same meshes stored in the OBJ, STL and NumPy
formats, NumPy format significantly outperforms the other formats. Read and write time
is especially important in this work because the training samples are lazy-loaded by the
instance of the ShapesReader class, which is part of the ExplicitDataModule. As all the
training data cannot fit in a graphics processing unit (GPU), lazy-loading allows one to
read and store only a batch of data samples at one time in memory. This requires repeated
access to training data files, and consequently, the read time of the files can accumulate
significantly. The meshes are converted to NumPy arrays before any further preprocessing
steps to decrease the data processing time.

The readers inherit from the torch.utils.data.Dataset class. The readers inherit from
the torch.utils.data.Dataset class. The iterators use them to accommodate the reading

A.3 Data loading and processing | 161

data_processing data_modules

iterators

readerstransforms

torch.utils.data.Dataset

ObjReader

NumpyReader

Numpy_CenterNeutralExpressionFollow

Numpy_RegisterNeutralExpressionFollow

Numpy_DoubleReader_ASubtractB

Numpy_DoubleReader_ASubtractBAddConstantC

Mean

Scale

MinMax

MinMaxMean

StdDev

L1Norm

Numpy

Scale

Centre

RigidRegistration

Normalise

Denormalise

Standardise

Destandardise

ToDR

FromDR

Reshape

ToTensor

SubtractShape

AddShape

«interface»
DataProcessBase

DataProcess

torch.utils.data.Dataset

ShapesReader ExplicitDataModule

pytorch_lightning.LightningDataModule

3

data_structures

UniversalDatastructure

«interface»
DatastructureBase

torch.utils.data.Dataloader

1

Preprocessed
dataset

return use
Raw dataset

use

torch.utils.data.Dataloader

1

1

1

1

1

1

1

0..1

*

0..1

Figure A.5 The UML diagram showing the relationship between the classes of the modules
responsible for data loading and data processing. The data processing pipeline is built of a
sequence of iterators, which can calculate different metrics over the set of iterated samples.
The iterators use the readers to accommodate the reading of various file formats. A
sequence of transforms can be applied to each sample by the reader. The DataProcessBase
abstract class implements methods for common data processing operations. These methods
use iterators with associated readers and transforms. The DataProcess subclass implements
the process() method, which calls a sequence of the processing operations defined by the
parent class. The resulting preprocessed dataset is used by the ExplicitDataModule in the
training, testing and validation process, as shown in the diagram in Figure A.2.

162 | A.3 Data loading and processing

of different file formats. Wavefront OBJ and NumPy files are supported by ObjReader
and NumpyReader. Apart from loading the content of a file, the reader can apply a
transformation to each of the loaded samples. The transforms are used by the readers and
applied to each sample. Those implemented as objects have an advantage over functions.
Namely, at the initialisation stage, they allow for pre-computation of the attributes used
in the transformation. Furthermore, the metrics output by the iterator from the previous
preprocessing iteration can be loaded and processed at the initialisation.

It is preferred to iterate through the dataset as few times as possible. Consequently,
given the number of data transformations to be performed, it is preferred to stack as many
of them as possible in one reader. Unfortunately, the minimum number of iterations
over the whole dataset is determined by the number of metrics that need to be calculated
over the whole dataset. For example, standardisation requires the mean and standard
deviation output from the previous iteration. Thus, it cannot be performed after another
transformation in the reader.

A.3 Data loading and processing | 163

This page is intentionally left blank.

GLOSSARY

AAA Pronounced triple-A. A lot of time, A lot of resources, A lot of money. In the video
games industry, the term used to classify a high-budget, popular game from a major
publisher. 2

Action Unit Standardised unit of facial expression defined within the Facial Action Cod-
ing System (FACS) that represents a specific facial muscle movement or combination
of movements. 165, 167

canthus Corner of the eye where the upper and lower eyelids meet. 84

deep 3D Morphable Model Computational framework that employs deep learning tech-
niques to represent and manipulate 3-dimensional facial shapes, allowing for the
generation, editing, and analysis of facial geometry. 167

EKER™ Software developed by Humain Ltd. EKER™ is a facial rigging system based
on Facial Action Coding System. 2

Facial Action Coding System Comprehensive framework used to objectively categorise
and describe human facial expressions based on the underlying muscular movements.
2, 165, 167

Humain Ltd. Industrial partner of this research. Headquartered in Belfast, the company
provides rigging services to world leading entertainment and technology companies
within the video and games industry. 2, 165

jowl The loose skin and flesh under the jaw, which most people develop with age. 84

neuron’s receptive field In physiology, the region of the retina over which visual signals
influence the activity of that neuron. 71

neutral face Baseline position of a person’s face, denoted as AU 0. Facial pose which
shows no evidence of an Action Unit. It exhibits usual shapes of the features and
permanent wrinkles. 2

https://humain-studios.com
https://humain-studios.com

This page is intentionally left blank.

ACRONYMS

AU Action Unit 165, Glossary: Action Unit

Deep 3DMM Deep 3D Morphable Model Glossary: deep 3D Morphable Model

FACS Facial Action Coding System Glossary: Facial Action Coding System

https://www.paulekman.com/facial-action-coding-system

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Industrial Context
	1.3 Academic Context
	1.4 Objectives
	1.5 Contributions
	1.6 Thesis Outline

	2 Background and Related Work
	2.1 Facial Shape Representations
	2.1.1 Images and depth
	2.1.2 Points and meshes
	2.1.3 Differential surface representation
	2.1.4 Deformation representation
	2.1.5 Voxels

	2.2 Generative Deep Learning on Euclidean Domains
	2.2.1 Autoencoders
	2.2.2 Adversarial training
	2.2.3 Denoising diffusion models

	2.3 Geometric Deep Learning
	2.3.1 Convolutional Graph Neural Networks
	2.3.2 Pooling and de-pooling
	2.3.3 Spectral Mesh Processing
	2.3.4 Geometric Deep Learning in Spectral Domain

	2.4 Parametric Face Models
	2.4.1 Linear models
	2.4.2 Non-linear models

	2.5 Monocular 3D Face Reconstruction
	2.5.1 Structure-from-Motion
	2.5.2 Other shape cues from 2D images
	2.5.3 Statistical model priors
	2.5.4 Estimation of the parameters

	3 Comparison of Shape Representations in Deep 3D Morphable Models
	3.1 Introduction
	3.1.1 Inspiration by the quantisation of different mesh representations
	3.1.2 Impact of the model, input representation and its preprocessing on the quality of the outputs

	3.2 Method Overview
	3.3 Deep3DMM Comparison Platform
	3.3.1 Compared models
	3.3.2 Mesh sampling
	3.3.3 Graph convolution
	3.3.4 Pooling and unpooling
	3.3.5 Residual layer
	3.3.6 Datasets
	3.3.7 Experimental configurations
	3.3.8 Data processing
	3.3.9 Loss functions
	3.3.10 Evaluation metrics

	3.4 Implementation Details
	3.5 Experiments and Comparisons
	3.5.1 Impact of Euclidean and differential representations
	3.5.2 Impact of input normalisation and standardisation
	3.5.3 Impact of different deep 3D morphable models

	3.6 Conclusions

	4 Deep Spectral Meshes
	4.1 Introduction
	4.1.1 Inspiration by the spatial frequency theory of perception
	4.1.2 Spectral mesh decomposition in geometric deep learning

	4.2 Method Overview
	4.2.1 Spectral Partitioning and Representation
	4.2.2 Neural Network
	4.2.3 Final Assembly

	4.3 Mass matrix in spectral partitioning
	4.3.1 Quantitative evaluation
	4.3.2 Qualitative evaluation
	4.3.3 Conclusions

	4.4 Deep Spectral Meshes
	4.4.1 Vertex Representation
	4.4.2 Graph Network Architecture
	4.4.3 Network Structure
	4.4.4 Training Process
	4.4.5 Inference

	4.5 Conditioning Influence
	4.6 Implementation Details
	4.7 Applications and Comparisons
	4.7.1 Mesh Reconstruction
	4.7.2 Mesh Interpolation
	4.7.3 Multi-Frequency Editing

	4.8 Conclusions

	5 Personalised Expressions Generation
	5.1 Introduction
	5.2 Personalised Blendshapes Generation using Variational Graph Autoencoders
	5.2.1 End-to-end approach
	5.2.2 Two-step approach
	5.2.3 Comparative results

	5.3 Personalised Blendshapes Generation with Spectral Mesh Processing
	5.3.1 Method overview
	5.3.2 Data preprocessing and network training
	5.3.3 Inference and spectral assembly
	5.3.4 Pareto-optimal partitions
	5.3.5 Comparative results

	5.4 Conclusions

	6 Conclusions and Future Work
	6.1 Summary and conclusions
	6.2 Future work

	References
	Appendix A Deep3DMM Comparison Platform Software Design
	A.1 Overview
	A.1.1 Models
	A.1.2 Architectures
	A.1.3 Horizontal and vertical blocks
	A.1.4 Layers and samplers
	A.1.5 Data processing and training

	A.2 Layers and architectures
	A.2.1 Graph sampling
	A.2.2 Graph convolution and feature aggregation
	A.2.3 Horizontal and vertical blocks

	A.3 Data loading and processing
	A.3.1 Universal interface to different file structures
	A.3.2 Iterators
	A.3.3 Readers and data formats

	Glossary
	Acronyms

